Tuning the Spin Interaction in Nonplanar Organic Diradicals through Mechanical Manipulation

Alessio Vegliante, Saleta Fernández, Ricardo Ortiz, Manuel Vilas-Varela, Thomas Y. Baum, Herre S.J. van der Zant, Thomas Frederiksen*, Diego Peña*, Jose Ignacio Pascual*, More Authors

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

9 Downloads (Pure)

Abstract

Open-shell polycyclic aromatic hydrocarbons (PAHs) represent promising building blocks for carbon-based functional magnetic materials. Their magnetic properties stem from the presence of unpaired electrons localized in radical states of π character. Consequently, these materials are inclined to exhibit spin delocalization, form extended collective states, and respond to the flexibility of the molecular backbones. However, they are also highly reactive, requiring structural strategies to protect the radical states from reacting with the environment. Here, we demonstrate that the open-shell ground state of the diradical 2-OS survives on a Au(111) substrate as a global singlet formed by two unpaired electrons with antiparallel spins coupled through a conformational-dependent interaction. The 2-OS molecule is a “protected” derivative of the Chichibabin’s diradical, featuring a nonplanar geometry that destabilizes the closed-shell quinoidal structure. Using scanning tunneling microscopy (STM), we localized the two interacting spins at the molecular edges, and detected an excited triplet state a few millielectronvolts above the singlet ground state. Mean-field Hubbard simulations reveal that the exchange coupling between the two spins strongly depends on the torsional angles between the different molecular moieties, suggesting the possibility of influencing the molecule’s magnetic state through structural changes. This was demonstrated here using the STM tip to manipulate the molecular conformation, while simultaneously detecting changes in the spin excitation spectrum. Our work suggests the potential of these PAHs as all-carbon spin-crossover materials.
Original languageEnglish
Pages (from-to)26514-26521
Number of pages8
JournalACS Nano
Volume18
Issue number39
DOIs
Publication statusPublished - 2024

Keywords

  • carbon magnetism
  • exchange coupling
  • on-surface synthesis
  • organic diradicals
  • scanning tunneling microscopy

Fingerprint

Dive into the research topics of 'Tuning the Spin Interaction in Nonplanar Organic Diradicals through Mechanical Manipulation'. Together they form a unique fingerprint.

Cite this