Turbulence-induced vibrations prediction through use of an anisotropic pressure fluctuation model

Nout Van Den Bos*, Kevin Zwijsen, Alexander H. Van Zuijlen, Edo M.A. Frederix, Ferry Roelofs

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

67 Downloads (Pure)

Abstract

In nuclear fuel rod bundles, turbulence-induced pressure fluctuations caused by an axial flow can create small but significant vibrations in the fuel rods, which in turn can cause structural effects such as material fatigue and fretting wear. Fluid-structure interaction simulations can be used to model these vibrations, but for affordable simulations based on the URANS approach, a model for the pressure fluctuations must be utilised. Driven by the goal to improve the current state-of-the-art pressure fluctuation model, AniPFM (Anisotropic Pressure Fluctuation Model) was developed. AniPFM can model velocity fluctuations based on anisotropic Reynolds stress tensors, with temporal correlation through the convection and decorrelation of turbulence. From these velocity fluctuations and the mean flow properties, the pressure fluctuations are calculated. The model was applied to several test cases and shows promising results in terms of reproducing qualitatively similar flow structures, as well as predicting the root-mean-squared pressure fluctuations. While further validation is being performed, the AniPFM has already demonstrated its potential for affordable simulations of turbulence-induced vibrations in industrial nuclear applications.

Original languageEnglish
Article number7
Number of pages8
JournalEPJ Nuclear Sciences and Technologies
Volume9
DOIs
Publication statusPublished - 2023

Fingerprint

Dive into the research topics of 'Turbulence-induced vibrations prediction through use of an anisotropic pressure fluctuation model'. Together they form a unique fingerprint.

Cite this