TY - JOUR
T1 - Uncertainty quantification in a heterogeneous fluvial sandstone reservoir using GPU-based Monte Carlo simulation
AU - Wang, Yang
AU - Voskov, Denis
AU - Daniilidis, Alexandros
AU - Khait, Mark
AU - Saeid, Sanaz
AU - Bruhn, David
PY - 2023
Y1 - 2023
N2 - The efficient operation and management of a geothermal project can be largely affected by geological, physical, operational and economic uncertainties. Systematic uncertainty quantification (UQ) involving these parameters helps to determine the probability of the focused outputs, e.g., energy production, Net Present Value (NPV), etc. However, how to efficiently assess the specific impacts of different uncertain parameters on the outputs of a geothermal project is still not clear. In this study, we performed a comprehensive UQ to a low-enthalpy geothermal reservoir using the GPU implementation of the Delft Advanced Research Terra Simulator (DARTS) framework with stochastic Monte Carlo samplings of uncertain parameters. With processing the simulation results, large uncertainties have been found in the production temperature, pressure drop, produced energy and NPV. It is also clear from the analysis that salinity influences the producing energy and NPV via changing the amount of energy carried in the fluid. Our work shows that the uncertainty in NPV is much larger than that in produced energy, as more uncertain factors were encompassed in NPV evaluation. An attempt to substitute original 3D models with upscaled 2D models in UQ demonstrates significant differences in the stochastic response of these two approaches in representation of realistic heterogeneity. The GPU version of DARTS significantly improved the simulation performance, which guarantees the full set (10,000 times) UQ with a large model (circa 3.2 million cells) finished within a day. With this study, the importance of UQ to geothermal field development is comprehensively addressed. This work provides a framework for assessing the impacts of uncertain parameters on the concerning system output of a geothermal project and will facilitate analyses with similar procedures.
AB - The efficient operation and management of a geothermal project can be largely affected by geological, physical, operational and economic uncertainties. Systematic uncertainty quantification (UQ) involving these parameters helps to determine the probability of the focused outputs, e.g., energy production, Net Present Value (NPV), etc. However, how to efficiently assess the specific impacts of different uncertain parameters on the outputs of a geothermal project is still not clear. In this study, we performed a comprehensive UQ to a low-enthalpy geothermal reservoir using the GPU implementation of the Delft Advanced Research Terra Simulator (DARTS) framework with stochastic Monte Carlo samplings of uncertain parameters. With processing the simulation results, large uncertainties have been found in the production temperature, pressure drop, produced energy and NPV. It is also clear from the analysis that salinity influences the producing energy and NPV via changing the amount of energy carried in the fluid. Our work shows that the uncertainty in NPV is much larger than that in produced energy, as more uncertain factors were encompassed in NPV evaluation. An attempt to substitute original 3D models with upscaled 2D models in UQ demonstrates significant differences in the stochastic response of these two approaches in representation of realistic heterogeneity. The GPU version of DARTS significantly improved the simulation performance, which guarantees the full set (10,000 times) UQ with a large model (circa 3.2 million cells) finished within a day. With this study, the importance of UQ to geothermal field development is comprehensively addressed. This work provides a framework for assessing the impacts of uncertain parameters on the concerning system output of a geothermal project and will facilitate analyses with similar procedures.
KW - Energy production
KW - Geothermal uncertainty quantification
KW - GPU platform
KW - Monte Carlo simulation
KW - Net present value
UR - http://www.scopus.com/inward/record.url?scp=85165034641&partnerID=8YFLogxK
U2 - 10.1016/j.geothermics.2023.102773
DO - 10.1016/j.geothermics.2023.102773
M3 - Article
AN - SCOPUS:85165034641
SN - 0375-6505
VL - 114
JO - Geothermics
JF - Geothermics
M1 - 102773
ER -