Understanding the effects of root structure on the mechanical behaviour of engineered plant root materials

Israel A. Carrete, Sepideh Ghodrat*, Diana Scherer, Elvin Karana

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

33 Downloads (Pure)

Abstract

Plant root growth can be altered by introducing obstacles in the path of growth. This principle is used in design to produce planar grid structures composed of interweaving roots. The Engineered Plant Root Materials (EPRMs) grown with this method have the potential to serve as environmentally sensitive alternatives for conventional materials, but their applications are delimited by their material properties. To bridge the gap in the wider application of these materials, the role of plant root structure and an agar-agar matrix are explored in relation to the mechanical properties of the EPRMs. Tensile tests were performed on five root configurations, ranging from single roots to grids of varying sizes. Heterogeneities in each configuration suggest poor load distribution throughout the structure. Agar-agar was introduced as a biopolymer matrix to improve load distribution and tensile properties. Digital microscopy at the intersection of grid cells suggests a correlation between cell size, root tip density, and material strength. The largest cell size (2 cm) had the highest root tip density and yield strength (0.568 ± 0.181 roots/mm2 and 0.234 ± 0.018 MPa, respectively), whereas the structure with the least root tips (1 cm) was 31 % weaker.

Original languageEnglish
Article number111521
Number of pages10
JournalMaterials and Design
Volume225
DOIs
Publication statusPublished - 2023

Keywords

  • Biodesign
  • Biofabrication
  • Characterization
  • Engineered Living Materials (ELMs)
  • Engineered Plant Root Materials (EPRMs)
  • Growing Design
  • Natural Fiber Composites
  • Plant Roots

Fingerprint

Dive into the research topics of 'Understanding the effects of root structure on the mechanical behaviour of engineered plant root materials'. Together they form a unique fingerprint.

Cite this