Abstract
We report a new strategy to improve the reactivity and durability of a membrane electrode assembly (MEA)-type electrolyzer for CO2 electrolysis to CO by modifying the silver catalyst layer with urea. Our experimental and theoretical results show that mixing urea with the silver catalyst can promote electrochemical CO2 reduction (CO2R), relieve limitations of alkali cation transport from the anolyte, and mitigate salt precipitation in the gas diffusion electrode in long-term stability tests. In a 10 mM KHCO3 anolyte, the urea-modified Ag catalyst achieved CO selectivity 1.3 times better with energy efficiency 2.8-fold better than an untreated Ag catalyst, and operated stably at 100 mA cm-2 with a faradaic efficiency for CO above 85% for 200 h. Our work provides an alternative approach to fabricating catalyst interfaces in MEAs by modifying the catalyst structure and the local reaction environment for critical electrochemical applications such as CO2 electrolysis and fuel cells.
Original language | English |
---|---|
Pages (from-to) | 35504-35512 |
Journal | ACS applied materials & interfaces |
Volume | 14 |
Issue number | 31 |
DOIs | |
Publication status | Published - 2022 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- CO2 utilization
- electrocatalyst
- membrane electrode assembly
- silver nanoparticles
- urea
- vapor-fed electrolyzer