TY - JOUR
T1 - Validation of an organ mapping antibody panel for cyclical immunofluorescence microscopy on normal human kidneys
AU - Brewer, Maya
AU - Migas, Lukasz G.
AU - Clouthier, Kelly A.
AU - Allen, Jamie L.
AU - Anderson, David M.
AU - Pingry, Ellie
AU - Farrow, Melissa
AU - Quardokus, Ellen M.
AU - Spraggins, Jeffrey M.
AU - Van de Plas, Raf
AU - de Caestecker, Mark P.
PY - 2024
Y1 - 2024
N2 - The lack of standardization in antibody validation remains a major contributor to irreproducibility of human research. To address this, we have applied a standardized approach to validate a panel of antibodies to identify 18 major cell types and 5 extracellular matrix compartments in the human kidney by immunofluorescence (IF) microscopy. We have used these to generate an organ mapping antibody panel for two-dimensional (2-D) and three-dimensional (3-D) cyclical IF (CyCIF) to provide a more detailed method for evaluating tissue segmentation and volumes using a larger panel of markers than would normally be possible using standard fluorescence microscopy. CyCIF also makes it possible to perform multiplexed IF microscopy of whole slide images, which is a distinct advantage over other multiplexed imaging technologies that are applicable to limited fields of view. This enables a broader view of cell distributions across larger anatomical regions, allowing a better chance to capture localized regions of dysfunction in diseased tissues. These methods are broadly accessible to any laboratory with a fluorescence microscope, enabling spatial cellular phenotyping in normal and disease states. We also provide a detailed solution for image alignment between CyCIF cycles that can be used by investigators to perform these studies without programming experience using open-sourced software. This ability to perform multiplexed imaging without specialized instrumentation or computational skills opens the door to integration with more highly dimensional molecular imaging modalities such as spatial transcriptomics and imaging mass spectrometry, enabling the discovery of molecular markers of specific cell types, and how these are altered in disease.NEW & NOTEWORTHY We describe here validation criteria used to define on organ mapping panel of antibodies that can be used to define 18 cell types and five extracellular matrix compartments using cyclical immunofluorescence (CyCIF) microscopy. As CyCIF does not require specialized instrumentation, and image registration required to assemble CyCIF images can be performed by any laboratory without specialized computational skills, this technology is accessible to any laboratory with access to a fluorescence microscope and digital scanner.
AB - The lack of standardization in antibody validation remains a major contributor to irreproducibility of human research. To address this, we have applied a standardized approach to validate a panel of antibodies to identify 18 major cell types and 5 extracellular matrix compartments in the human kidney by immunofluorescence (IF) microscopy. We have used these to generate an organ mapping antibody panel for two-dimensional (2-D) and three-dimensional (3-D) cyclical IF (CyCIF) to provide a more detailed method for evaluating tissue segmentation and volumes using a larger panel of markers than would normally be possible using standard fluorescence microscopy. CyCIF also makes it possible to perform multiplexed IF microscopy of whole slide images, which is a distinct advantage over other multiplexed imaging technologies that are applicable to limited fields of view. This enables a broader view of cell distributions across larger anatomical regions, allowing a better chance to capture localized regions of dysfunction in diseased tissues. These methods are broadly accessible to any laboratory with a fluorescence microscope, enabling spatial cellular phenotyping in normal and disease states. We also provide a detailed solution for image alignment between CyCIF cycles that can be used by investigators to perform these studies without programming experience using open-sourced software. This ability to perform multiplexed imaging without specialized instrumentation or computational skills opens the door to integration with more highly dimensional molecular imaging modalities such as spatial transcriptomics and imaging mass spectrometry, enabling the discovery of molecular markers of specific cell types, and how these are altered in disease.NEW & NOTEWORTHY We describe here validation criteria used to define on organ mapping panel of antibodies that can be used to define 18 cell types and five extracellular matrix compartments using cyclical immunofluorescence (CyCIF) microscopy. As CyCIF does not require specialized instrumentation, and image registration required to assemble CyCIF images can be performed by any laboratory without specialized computational skills, this technology is accessible to any laboratory with access to a fluorescence microscope and digital scanner.
KW - antibody
KW - cyclical immunofluorescence
KW - human
KW - kidney
KW - validation
UR - http://www.scopus.com/inward/record.url?scp=85196766837&partnerID=8YFLogxK
U2 - 10.1152/ajprenal.00426.2023
DO - 10.1152/ajprenal.00426.2023
M3 - Article
C2 - 38721662
AN - SCOPUS:85196766837
SN - 1522-1466
VL - 327
SP - F91-F102
JO - American journal of physiology. Renal physiology
JF - American journal of physiology. Renal physiology
IS - 1
ER -