TY - JOUR
T1 - Validity assessment of SAMOSA retracking for fully-focused SAR altimeter waveforms
AU - Ehlers, Frithjof
AU - Schlembach, Florian
AU - Kleinherenbrink, Marcel
AU - Slobbe, Cornelis
PY - 2023
Y1 - 2023
N2 - We demonstrate in this work how we can take advantage of known unfocused SAR (UF-SAR) retracking methods (e.g. the physical SAMOSA model) for retracking of fully-focused SAR (FF-SAR) waveforms. Our insights are an important step towards consistent observations of sea surface height, significant wave height and backscatter coefficient (wind speed) with both UF-SAR and FF-SAR. This is of particular interest for SAR altimetry in the coastal zone, since coastal clutter may be filtered out more efficiently in the high-resolution FF-SAR waveform data, which has the potential to improve data quality. We implemented a multi-mission FF-SAR altimetry processor for Sentinel-3 (S3) and Sentinel-6 Michael Freilich (S6), using a back-projection algorithm, and analysed ocean waveform statistics compared to multilooked UF-SAR. We find for Sentinel-3 that the averaged power waveforms of UF-SAR and FF-SAR over ocean are virtually identical, while for Sentinel-6 the FF-SAR power waveforms better resemble the UF-SAR zero-Doppler beam. We can explain and model the similarities and differences in the data via theoretical considerations of the waveform integrals. These findings suggest to use the existing UF-SAR SAMOSA model for retracking S3 FF-SAR waveforms but the SAMOSA zero-Doppler beam model for S6 FF-SAR waveforms, instead. Testing the outlined approach over short track segments, we obtain range biases between UF-SAR and FF-SAR lower than 2 mm and significant wave height biases lower than 5 cm.
AB - We demonstrate in this work how we can take advantage of known unfocused SAR (UF-SAR) retracking methods (e.g. the physical SAMOSA model) for retracking of fully-focused SAR (FF-SAR) waveforms. Our insights are an important step towards consistent observations of sea surface height, significant wave height and backscatter coefficient (wind speed) with both UF-SAR and FF-SAR. This is of particular interest for SAR altimetry in the coastal zone, since coastal clutter may be filtered out more efficiently in the high-resolution FF-SAR waveform data, which has the potential to improve data quality. We implemented a multi-mission FF-SAR altimetry processor for Sentinel-3 (S3) and Sentinel-6 Michael Freilich (S6), using a back-projection algorithm, and analysed ocean waveform statistics compared to multilooked UF-SAR. We find for Sentinel-3 that the averaged power waveforms of UF-SAR and FF-SAR over ocean are virtually identical, while for Sentinel-6 the FF-SAR power waveforms better resemble the UF-SAR zero-Doppler beam. We can explain and model the similarities and differences in the data via theoretical considerations of the waveform integrals. These findings suggest to use the existing UF-SAR SAMOSA model for retracking S3 FF-SAR waveforms but the SAMOSA zero-Doppler beam model for S6 FF-SAR waveforms, instead. Testing the outlined approach over short track segments, we obtain range biases between UF-SAR and FF-SAR lower than 2 mm and significant wave height biases lower than 5 cm.
KW - Altimetry
KW - Fully-focused SAR
KW - Retracking
KW - SAMOSA
KW - Sentinel-3
KW - Sentinel-6 Michael Freilich
UR - http://www.scopus.com/inward/record.url?scp=85143284308&partnerID=8YFLogxK
U2 - 10.1016/j.asr.2022.11.034
DO - 10.1016/j.asr.2022.11.034
M3 - Article
AN - SCOPUS:85143284308
VL - 71
SP - 1377
EP - 1396
JO - Advances in Space Research
JF - Advances in Space Research
SN - 0273-1177
IS - 3
ER -