Abstract
The Middle East frontal sand and dust storms (SDS) occur in non-summer seasons, and represent an important phenomenon of this region’s climate. Among the mentioned type, spring SDS are the most common. Trend analysis was used in the current study to investigate the spatial-temporal variability of springtime dust events in the Middle East using synoptic station observation from 2011 to 2022. The plausible changes in some controlling factors of dust activity at selected important dust sources in the Middle East were also studied during this time period. Our results showed a statistically significant spike in springtime dust events across the Middle East, particularly in May 2022. To evaluate the relative importance of controlling factors, the applied feature of importance analysis using random forest (RF) showed the higher relative importance of topsoil layer wetness, surface soil temperature, and surface wind speed in dust activity over the Middle East between 2011 and 2022. Long-term trend analysis of topsoil moisture and temperature, using the Mann-Kendall trend test, showed a decrease in soil moisture and an increase in soil temperature in some selected important dust sources in the Middle East. Moreover, our predictions using ARIMA models showed a high tendency to dust activities in selected major dust origins (domain 2 and domain 5) with a statistically significant increase (p-value < 0.05) between 2023 and 2029. Observed spatial and temporal changes within SDS hotspots can act as the first step to build up for the first time an SDS precise intensity scale, as well as establishing an SDS early warning system in future.
Original language | English |
---|---|
Pages (from-to) | 1341-1360 |
Number of pages | 20 |
Journal | Air Quality, Atmosphere and Health |
Volume | 17 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- ARIMA model
- Drought
- Mann-Kendall trend test
- Sand and dust storms
- Soil moisture
- Soil temperature
- the Middle East