Virtual wall oscillations forced by a dbd plasma actuator operating under beat frequency – a concept for turbulent drag reduction

M. T. Hehner*, D. Gatti, J. Kriegseis, P. Mattern, M. Kotsonis

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

5 Citations (Scopus)
226 Downloads (Pure)

Abstract

A modified concept for generating DBD-based virtual spanwise wall oscillations is introduced in continuation of earlier efforts by Hehner et al. (2019) ["Stokes-layer formation under absence of moving parts – A novel oscillatory plasma actuator design for turbulent drag reduc-tion", Phys. Fluids 31, 051701]. Four groups of a multi-electrode actuator array are operated at interfering high-voltage signals to achieve an oscillating discharge intensity at 50 Hz beat frequency. The resulting velocity fields have been recorded with time-resolved planar high-speed particle image velocimetry so as to analyse the induced flow topology and wall-normal velocity profiles. A direct comparison of the results to Hehner et al. (2019) has indicated favourable effects of the new concept in terms of flow topology (i.e improved spanwise flow homogeneity, velocity magnitude increase and reduced lift-off), which renders the new operation concept of the actuator array particularly promising for Stokes-layer-like flow formations and, consequently, for turbulent drag reduction over a range of Reynolds numbers.

Original languageEnglish
Title of host publicationAIAA AVIATION 2020 FORUM
PublisherAmerican Institute of Aeronautics and Astronautics Inc. (AIAA)
Number of pages7
ISBN (Print)9781624105982
DOIs
Publication statusPublished - 2020
EventAIAA AVIATION 2020 FORUM - Virtual, Online
Duration: 15 Jun 202019 Jun 2020

Publication series

NameAIAA AVIATION 2020 FORUM
Volume1 PartF

Conference

ConferenceAIAA AVIATION 2020 FORUM
CityVirtual, Online
Period15/06/2019/06/20
OtherVirtual/online event due to COVID-19

Fingerprint

Dive into the research topics of 'Virtual wall oscillations forced by a dbd plasma actuator operating under beat frequency – a concept for turbulent drag reduction'. Together they form a unique fingerprint.

Cite this