Abstract
Ceramic refractory bubbling devices may be applied in the steel ladle to induce the flotation of non-metallic inclusions to the slag phase. These inclusions have many origins along the steelmaking process and induce a detrimental effect on the mechanical properties of these metals. Therefore, the design of high-performance ceramic plugs relies on understanding the fundamentals of non-metallic inclusions captured by the gas bubbles. This study investigated the flotation dynamics of hydrophobic and hydrophilic hollow glass particles through experimentation using a water model and quantifying the particle concentration via light scattering. Both types of particles exhibited a comparable natural flotation removal rate, whereas a 40% increase for hydrophobic particles was observed when introducing 1.1 mm bubbles (at 25 NL/h) enhancing the efficiency from 43.1% to 65.2%. For hydrophilic particles, the efficiency increased from 59.1% to 86.2% when bubbles were injected into the system, whereas the removal rate decreased by 2.1-fold. The consequence of the practice of inert gas purging to remove non-metallic inclusions is also discussed.
Original language | English |
---|---|
Pages (from-to) | 3835-3841 |
Number of pages | 7 |
Journal | International Journal of Applied Ceramic Technology |
Volume | 21 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- interfaces
- non-metallic inclusion
- porous brick
- refractory