Wideband Direction of Arrival Estimation with Sparse Linear Arrays

Feiyu Wang, Zhi Tian, Jun Fang, Geert Leus

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

13 Downloads (Pure)

Abstract

This paper concerns wideband direction of arrival (DoA) estimation with sparse linear arrays (SLAs). We rely on the assumption that the power spectrum of the wideband sources is the same up to a scaling factor, which could in theory allow us to resolve not only more sources than the number of antennas but also more sources than the number of degrees of freedom (DoF) of the difference co-array of the SLA. We resort to the Jacobi-Anger approximation to transform the coarray response matrices of all frequency bins into a single virtual uniform linear array (ULA) response matrix. Based on the obtained model, two super-resolution DoA estimation approaches based on atomic norm minimization (ANM) are proposed, one with and one without prior knowledge of the power spectrum. Simulation results show that our proposed methods outperform the state of the art and are indeed capable of resolving more sources than the number of DoF of the difference co-array.
Original languageEnglish
Title of host publicationICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Subtitle of host publicationProceedings
PublisherIEEE
Pages4542-4546
Number of pages5
ISBN (Electronic)978-1-5090-6631-5
ISBN (Print)978-1-5090-6632-2
DOIs
Publication statusPublished - 2020
EventICASSP 2020: IEEE International Conference on Acoustics, Speech and Signal Processing - Barcelona, Spain
Duration: 4 May 20208 May 2020

Conference

ConferenceICASSP 2020
CountrySpain
CityBarcelona
Period4/05/208/05/20

Keywords

  • Jacobi-Anger approximation
  • Wideband direction of arrival (DoA) estimation
  • atomic norm minimization (ANM)
  • sparse linear array (SLA)

Fingerprint Dive into the research topics of 'Wideband Direction of Arrival Estimation with Sparse Linear Arrays'. Together they form a unique fingerprint.

Cite this