TY - JOUR
T1 - Wind tunnel testing of wind turbine and wind farm control strategies for active power regulation
AU - Gonzalez Silva, J.
AU - van der Hoek, D.
AU - Ferrari, R.
AU - van Wingerden, J. W.
PY - 2024
Y1 - 2024
N2 - Wind energy has emerged as a prominent alternative energy source, harvesting energy through turbines to contribute sustainably to the electricity grid. Effective control of these turbines is crucial for regulating power generation, with wind farm control strategies geared toward maximizing on-demand energy generation. In this work, we propose a wind turbine regulator based on blade-pitch actuation and assess the impact of adopted turbine derating strategies on aerodynamic loading and downstream power availability in an experimental setting. By considering a derating strategy based on generator torque control law, we explore two wind farm control approaches: thrust balance and power compensation. Our findings highlight the advantages of balancing aerodynamic loads across the farm, preventing turbine saturation, and enhancing power availability by 3%-5% compared to a uniform power dispatch. Furthermore, the inclusion of power compensation results in a heightened upper limit in wind farm power tracking, indicating a 22% boost in wind farm power availability. This research underscores the potential benefits of innovative turbine regulation strategies for optimizing wind farm performance and enhancing overall energy flexibility.
AB - Wind energy has emerged as a prominent alternative energy source, harvesting energy through turbines to contribute sustainably to the electricity grid. Effective control of these turbines is crucial for regulating power generation, with wind farm control strategies geared toward maximizing on-demand energy generation. In this work, we propose a wind turbine regulator based on blade-pitch actuation and assess the impact of adopted turbine derating strategies on aerodynamic loading and downstream power availability in an experimental setting. By considering a derating strategy based on generator torque control law, we explore two wind farm control approaches: thrust balance and power compensation. Our findings highlight the advantages of balancing aerodynamic loads across the farm, preventing turbine saturation, and enhancing power availability by 3%-5% compared to a uniform power dispatch. Furthermore, the inclusion of power compensation results in a heightened upper limit in wind farm power tracking, indicating a 22% boost in wind farm power availability. This research underscores the potential benefits of innovative turbine regulation strategies for optimizing wind farm performance and enhancing overall energy flexibility.
UR - http://www.scopus.com/inward/record.url?scp=85203405795&partnerID=8YFLogxK
U2 - 10.1063/5.0215493
DO - 10.1063/5.0215493
M3 - Article
AN - SCOPUS:85203405795
SN - 1941-7012
VL - 16
JO - Journal of renewable and sustainable energy
JF - Journal of renewable and sustainable energy
IS - 5
M1 - 053302
ER -