Zero Voltage Switching Criteria of Triple Active Bridge Converter

P. Purgat, S. Bandyopadhyay, Z. Qin*, P. Bauer

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

12 Citations (Scopus)
18 Downloads (Pure)

Abstract

Triple active bridge (TAB) as an isolated multiport converter is a promising integrated energy system for smart grids or electric vehicles. This article aims to derive and analyze zero voltage switching (ZVS) regions of TAB, in which both switching losses are reduced, and electromagnetic interference issues are mitigated. In the proposed closed-form solution of ZVS criteria, parameters such as the parasitic capacitance of the switches, the leakage inductance of the transformer, the switching frequency, the port voltage, the phase-shift inside and between the full-bridges are all taken into account. The analysis shows how the five degrees of freedom can be used to maintain ZVS operation in various operating points. The analysis and derived closed-form ZVS criteria are experimentally verified using a laboratory prototype. The derived analytical ZVS criteria are a powerful tool to study and optimize the operation of TAB converters.

Original languageEnglish
Article number9208782
Pages (from-to)5425-5439
Number of pages15
JournalIEEE Transactions on Power Electronics
Volume36
Issue number5
DOIs
Publication statusPublished - 2020

Keywords

  • Bidirectional power flow
  • dc-dc converters
  • smart grids
  • triple active bridge (TAB)
  • zero voltage switching (ZVS)

Fingerprint

Dive into the research topics of 'Zero Voltage Switching Criteria of Triple Active Bridge Converter'. Together they form a unique fingerprint.

Cite this