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Abstract. Deep Reinforcement Learning (DRL) has become a powerful
strategy to solve complex decision making problems based on Deep Neu-
ral Networks (DNNs). However, it is highly data demanding, so unfeasi-
ble in physical systems for most applications. In this work, we approach
an alternative Interactive Machine Learning (IML) strategy for train-
ing DNN policies based on human corrective feedback, with a method
called Deep COACH (D-COACH). This approach not only takes advan-
tage of the knowledge and insights of human teachers as well as the
power of DNNs, but also has no need of a reward function (which some-
times implies the need of external perception for computing rewards). We
combine Deep Learning with the COrrective Advice Communicated by
Humans (COACH) framework, in which non-expert humans shape poli-
cies by correcting the agent’s actions during execution. The D-COACH
framework has the potential to solve complex problems without much
data or time required. Experimental results validated the efficiency of
the framework in three different problems (two simulated, one with a
real robot), with state spaces of low and high dimensions, showing the
capacity to successfully learn policies for continuous action spaces like in
the Car Racing and Cart-Pole problems faster than with DRL.

Keywords: Reinforcement Learning · Deep Learning · Interactive
Machine Learning · Learning from Demonstration

1 Introduction

Deep Reinforcement Learning (DRL) has obtained unprecedented results in
decision-making problems, such as playing Atari games [1], or beating the world
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champion in GO [2]. Nevertheless, in robotic problems, DRL is still limited in
applications with real-world systems [3]. Most of the tasks that have been suc-
cessfully addressed with DRL have two common characteristics: (1) they have
well-specified reward functions, and (2) they require large amounts of trials,
which means long training periods (or powerful computers) to obtain a satisfy-
ing behavior. These two characteristics can be problematic in cases where (1) the
goals of the tasks are poorly defined or hard to specify/model (reward function
does not exist), (2) the execution of many trials is not feasible (real systems
case) and/or not much computational power or time is available, and (3) some-
times additional external perception is necessary for computing the reward/cost
function.

On the other hand, Machine Learning methods that rely on transfer of human
knowledge, Interactive Machine Learning (IML) methods, have shown to be time
efficient for obtaining good performance policies and may not require a well-
specified reward function; moreover, some methods do not need expert human
teachers for training high performance agents [4–6]. In previous years, IML tech-
niques were limited to work with low-dimensional state spaces problems and to
the use of function approximation such as linear models of basis functions (choos-
ing a right basis function set was crucial for successful learning), in the same way
as RL. But, As DRL has shown, by approximating policies with Deep Neural
Networks (DNNs) it is possible to solve problems with high-dimensional state
spaces, without the need of feature engineering for preprocessing the states. If
the same approach is used in IML, the DRL shortcomings mentioned before can
be addressed with the support of human users who participate in the learning
process of the agent.

This work proposes to extend the use of human corrective feedback during
task execution to learn policies with state spaces of low and high dimensionality
in continuous action problems (which is the case for most of the problems in
robotics) using deep neural networks.

We combine Deep Learning (DL) with the corrective advice based learning
framework called COrrective Advice Communicated by Humans (COACH) [6],
thus creating the Deep COACH (D-COACH) framework. In this approach, no
reward functions are needed and the amount of learning episodes is significantly
reduced in comparison to alternative approaches. D-COACH is validated in three
different tasks, two in simulations and one in the real-world.

2 Related Work

This paper proposes a novel alternative to adapt policies, combining IML and
DL. Specifically, we focus on techniques which transfer the teacher’s knowledge
based on occasional human feedback that may be either evaluative or corrective.
Evaluative feedback has been used similarly to RL in methods wherein a human
teacher communicates the desirability of the executed action or policy, with
validations in problems of state spaces of either low dimensionality [4,5] or high
dimensionality [7,8]. In contrast, corrective feedback is given by the teacher
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directly in the action’s domain in order to modify the magnitude computed
by the policy. To the best of our knowledge, corrective feedback has been only
validated in problems with state spaces of low dimensionality [6,9].

3 Deep COACH

With COACH, a human teacher can advise a correction signal to the actions that
the agent executes. If the agent executes an action a that the human considers
to be erroneous, then s/he would indicate the direction in which the action
should be corrected (increment or decrement); thus, COACH was proposed for
problems with continuous actions. Each dimension of the action would have a
corresponding correction signal h with values 0, −1 or 1 which produces an error
signal with arbitrary magnitude e that is used to directly shape the policy in a
supervised manner. Thus, error = h ·e, where h = 0 indicates that no correction
has been advised. h = ±1 indicates the direction of the advised correction.

In this framework, we use two types of neural network architectures: feed
forward fully-connected (FNN) for low-dimensional state problems, and convo-
lutional neural networks (CNN) for high-dimensional state problems, e.g., raw
image state spaces. In both cases the policies are updated every time feedback
is received and also by sampling from a memory buffer B with a fixed frequency
every b time steps. Every time the user advises a correction, the buffer B is fed
with the current state and a label generated by adding the action taken with
the error correction ylabel = a + error . In the case of the CNN architecture, the
convolutional layers are trained offline before the interactive process for learn-
ing a low-dimensional representation of the state. The state is embedded in the
latent space of an autoencoder trained with a database of the agent exploring
the environment. In Algorithm 1, the pseudocode of D-COACH is presented.

In the original COACH, it is proposed that each dimension should be trained
independently [10], which has the advantage of creating a working framework
that does not need any prior information about the problem in order to give
corrections. We call this type of policy updating decoupled training, so a cor-
rection in an specific action dimension does not modify the magnitude of the
actions in other axes for the same corresponding state. However, in this work we
consider that for some problems it may be advantageous to exploit prior user
knowledge about relations between the different dimensions of the actions. In
this way, a correction in one of the action axes may be used to update more
than one dimension. We call this case coupled training.

4 Experiments and Results

Our proposed algorithm is validated experimentally in three different problems:
(i) Cart-Pole (continuous action), which is a simulated task with low-dimensional
state space; (ii) Car Racing, a simulated task with high-dimensional state space
(raw pixels of an image); and (iii) Duckie Racing, a task with a real robot
featuring a high-dimensional state space (raw pixels of an image).
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Algorithm 1. D-COACH
1: Require: error magnitude e, buffer update interval b, buffer sampling size N , buffer

size K, pre-trained encoder parameters (if convolutional)
2: Init: B = [] # initialize memory buffer
3: for t = 1,2,... do
4: observe state st
5: execute action at = πt(s)
6: feedback human corrective advice ht

7: if ht is not 0 then
8: error t = ht · e
9: ylabel(t) = at + error t

10: update π(s) using SGD with pair (st, ylabel(t))
11: update π(s) using SGD with a mini-batch sampled from B
12: append (st, ylabel(t)) to B
13: if length(B) > K then
14: B = B[2 : K + 1]

15: if mod(t, b) is 0 and B is not ∅ then
16: compute π(s) using SGD with a mini-batch sampled from B

The experiments with the simulated agents are intended to compare the
complete D-COACH presented in Algorithm 1, along with a version of it without
buffer (ignoring lines 2 and 11–16), and with a well known DRL agent (Deep
Deterministic Policy Gradient DDPG [11] implemented by OpenAI [12]). The
comparison is carried out by plotting the cumulative reward obtained at each
episode by the agent as a function of time. In the case of D-COACH, the obtained
reward is only used as a performance metric. Also, the results are presented as a
function of time instead of episodes (except in the Duckie Racing experiment),
because episodes can have variable duration depending on the policy. Hence, the
episode scale would not properly show the time taken by the learning process,
which is an important characteristic, since D-COACH is meant to work with
real robots. The simulated environments, Cart-Pole and Car Racing, were ran
at 22.5 and 20.5 FPS, respectively. These experiments were carried out using
human teachers and simulated teachers. Humans had approximately 5 min to
practice teaching in each environment. The learning curves of agents trained by
10 human teachers were obtained and averaged; the learning curves of agents
trained by a simulated teacher were repeated 30 times and averaged. Along with
the algebraic mean, the confidence intervals that represent the 60th percentile of
the data were plotted. In the case of the Car Racing problem, it was observed
that coupled training was advantageous when the teachers were humans. The
designed coupled signals are shown in Table 1.

The hyper-parameters of the neural networks used in these experiments were
tuned with preliminary experiments. Different combinations of them were tested
by a human teacher and the ones that made the training easiest were selected
(see Fig. 1). The D-COACH error magnitude constant e was set to 1 in this
paper.
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Table 1. Values of h in the Car Racing problem for human teachers. When feedback
is given, the generated correction acts over more than one dimension of the action.
For instance, the feedback signal forward means that the agent should simultaneously
increase its acceleration and decrease its brake.

Feedback h (direction, acceleration, brake)

Forward (0, 1, −1)

Back (0, −1, 1)

Left (−1, −1, 0)

Right (1, −1, 0)

Fig. 1. D-COACH neural networks architecture. Variations between environments are
specified with the acronyms CP (Cart-Pole), CR (Car Racing) and DR (Duckie Racing).
HD STATE: high-dimensional state space. LD STATE: low-dimensional state space.

4.1 Validation of Replay Buffer with Simulated Teachers

The use of experience replay has been extensively validated in DRL; however,
in this approach, we still consider it necessary to test its impact. Unlike DRL,
where the policy is updated with information collected from every time step, in
COACH-like methods there only is new data to update the policy when feedback
is given by the teacher, so the amount of data used to update the policy may be
lower than in the RL case. Since the original COACH has been widely validated
with real human teachers in several tasks, we carried out most of the comparisons
using a simulated teacher (a high performance policy standing-in as teacher,
which was actually trained with D-COACH and a real human teacher) in this
work, like in some of the experiments presented in [6], in order to compare the
methods under more controlled conditions.

The simulated teacher generates feedback using h = sign(ateacher − aagent),
whereas the decision of advising feedback at each time step is given by the proba-
bility Ph = α·exp(−τ ·timestep), where {α ∈ IR |0 ≤ α ≤ 1} and {τ ∈ IR |0 ≤ τ}.
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Fig. 2. Comparison between using or not experience replay buffer for different values
of Perr in the Cart-Pole problem. Buffer: K = 200; b = 10; N = 50. Ph: α = 0.6;
τ = 0.0003. Simulated teacher network learning rate: 0.0003.

Fig. 3. Comparison between using or not experience replay buffer for different values
of Perr in the CarRacing problem. Buffer: K = 1000; b = 10; N = 100. Ph: α = 0.6;
τ = 0.000015. Simulated teacher network learning rate: 0.0003.

Additionally, since human teachers occasionally advise wrong corrections, a prob-
ability of giving erroneous feedback Perr is added to the model. The variable Perr

indicates the probability that at least one dimension of h is multiplied by −1
when feedback is given.

A comparison of D-COACH with and without the use of an experience replay
buffer is carried out by means of the simulated teacher. To test the behavior of
these scenarios when erroneous feedback is added, different values of Perr are
selected. These results can be seen in Figs. 2 and 3 (for better readability, no
confidence intervals were added).

In Figs. 2 and 3 the learning curves show a large difference between the
processes of learning that use experience replay buffer with respect to the cases
without the buffer. In the case without the buffer, which is more similar to the
original COACH, it is possible to see that the learning agent is not benefiting
from the advised corrections as much as it can do when the pieces of advice
are kept in the memory. For instance, we can see that D-COACH learns more
from corrections with 20% of mistakes when using the buffer than in the case of
perfect corrections, but without any buffering. This means the buffer is necessary
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Fig. 4. Cart-Pole training. Buffer: K = 200; b = 10; N = 50. Ph: α = 0.6; τ = 0.0003.
Human teacher network learning rate: 0.003; Simulated teacher network learning rate:
0.0003.

for increasing the use of the information available, even when this information
is corrupted and not clean.

4.2 Comparison of DRL and D-COACH Using Real Human
Teachers

These experiments are intended to compare the learning process of D-COACH
(simulated teacher and human teacher) with the DRL algorithm DDPG. Tak-
ing into account that the Cart-Pole problem has a low dimensional state space,
the original COACH, based on basis functions, is also included in the com-
parison. In this case, Perr = 0% was used for the simulated teachers. The
results of this problem are shown in Fig. 4, wherein it is possible to see that
COACH-like methods outperform the DRL agent with a large difference. When
using the simulated teacher, D-COACH learns faster than the original COACH.
The performance of D-COACH with human teachers decreases with respect to
the simulated teacher. This is because human teachers are not perfect and make
mistakes, but they are being compared with a simulated teacher with Perr = 0%,
which means that it makes no mistakes. Also because the simulated teacher
model is quite simple to represent the complexity of the human behavior, then,
although it is not very realistic, it is still useful for comparisons of interactive
learning strategies under similar conditions.

In Fig. 5 the learning curves of the Car Racing problem are presented. Again,
D-COACHresults in a fast convergence.Unlike reported results ofDRLalgorithms
for this problem, in the very early minutes D-COACH reaches high performance
policies that have not been obtained by most of the DRL approaches, to the best of
our knowledge. If we compare a policy trained with D-COACH for approximately
75 min by an experienced teacher against several state-of-the-art DRL approaches,
it can be seen that it outperforms most of them (see Table 2). The problem is con-
sidered to be solved if the agent gets an average score of 900 or more over 100 ran-
dom tracks. However, we observed that this value can substantially vary between
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Fig. 5. Racing Car training. Buffer: K = 1000; b = 10; N = 100. Ph: α = 0.6;
τ = 0.000015. Human teacher network learning rate: 0.001; Simulated teacher network
learning rate: 0.0003.

Table 2. Car Racing state-of-the-art learning algorithms comparison. DRL results
taken from [13].

Method Average score over 100 random tracks

DQN 343 ± 18

A3C (continuous) 591 ± 45

A3C (discrete) 652 ± 10

Ceobillionaire’s algorithm (unpublished) 838 ± 11

Full World Model 906 ± 21

D-COACH (experienced teacher) 895−909 ± 18−80

Average over 20 evaluations: 903 ± 46

different evaluations, so in Table 2, the obtained range of values over 20 evaluations
is presented for D-COACH.

4.3 Validation in a Real System

In the third problem that we called Duckie Racing, an agent has to learn to
drive a Duckiebot (from the project Duckietown [14] with modifications from the
Chile Duckietown Team1) autonomously through a track based on raw visual
information of an onboard camera. The actions in this problem are the forward
velocity and the steering angle of the Duckiebot. Two tasks are set for this
environment: (i) driving the Duckiebot freely through the track, with permission
to drive in both lanes, and (ii) driving the Duckiebot only in the right lane, which
demands more accuracy in driving. In this problem, an episode stops if the robot
leaves the track/right lane, or after 30 s. The performance index in this task is
the percentage of the total track length traveled during the episode. Hence the
faster and more accurate the Duckiebot drives, the more distance it will travel.

1 https://github.com/Duckietown-Chile/.

https://github.com/Duckietown-Chile/
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This problem is not used for comparisons of the methods, but only as a
validation of D-COACH using experience replay, which showed to be the best
alternative in the previous problems. Figure 6 shows the learning curve for each
of the tasks explored in this environment with a real robot and a real human
teacher. The curves and the video2 attached to this paper show that the sys-
tem quickly learns to drive properly through the road based only on the human
corrections. As expected, the policy is faster when the robot has the freedom
to drive over both lanes. Learning this task with RL would definitely take more
training time, and might need an external perception system to compute the
reward function, whereas with D-COACH this performance index does not have
any influence on the learning process, rather it is used for descriptive and com-
parative purposes. Figure 7 shows a comparison between an observation and its
reconstruction generated by the autoencoder.

Fig. 6. Duckie Racing training. Fig. 7. Duckie Racing autoencoder
input (left) vs output (right).

5 Conclusions

This work presented D-COACH, an algorithm for training policies modeled with
DNNs interactively with corrective advice. The method was validated in a prob-
lem of low-dimensionality, along with problems of high-dimensional state spaces
like raw pixel observations, with a simulated and a real robot environment, and
also using both simulated and real human teachers.

The use of the experience replay buffer (which has been well tested for DRL)
was re-validated for this different kind of learning approach, since this is a feature
not included in the original COACH. The comparisons showed that the use of
memory resulted in an important boost in the learning speed of the agents, which
were able to converge with less feedback, and to perform better even in cases
with a significant amount of erroneous signals.

2 https://youtu.be/vcEtuRrRIe4.

https://youtu.be/vcEtuRrRIe4
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The results of the experiments show that teachers advising corrections can
train policies in fewer time steps than a DRL method like DDPG. So it was
possible to train real robot tasks based on human corrections during the task
execution, in an environment with a raw pixel level state space. The comparison
of D-COACH with respect to DDPG, shows how this interactive method makes
it more feasible to learn policies represented with DNNs, within the constraints of
physical systems. DDPG needs to accumulate millions of time steps of experience
in order to obtain good performances as shown in [11]. However, this is not always
possible with real systems.
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