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SUMMARY

Electron spin qubits associated with individual solid-state defects can exhibit excep-
tional coherence and bright optical interfaces. Furthermore, their magnetic interactions
with nuclear spins in the host material present a resource for multi-qubit registers. They
have thus emerged as powerful systems with which to develop quantum technologies. In
this thesis, we develop a toolbox for the precise control of multi-qubit spin systems asso-
ciated with single nitrogen-vacancy (NV−) centres in diamond. We utilise this platform
to explore a number of avenues in quantum science: networks, computation, sensing,
and simulation. Our findings provide new insights towards the goal of distributed quan-
tum computation, and establish a programmable solid-state-spin quantum simulator
for studying many-body physics.

NV-based optical quantum networks have made great progress in recent years,
demonstrating protocols such as entanglement distillation and entanglement swapping.
However, the consequences of stochastic ionisation events during their operation are
largely unstudied. Therefore, we first investigate the NV0 centre by developing novel
techniques to herald the charge-state (Ch. 3). We directly observe the fine structure, and
characterise the orbital and spin dynamics. Importantly, we realise that unmitigated
ionisation events will decohere nuclear-spin quantum memories.

We then investigate the use of a 13C qubit in isotopically-engineered diamond as a
memory for network protocols (Ch. 4). We show that the qubit decoheres slower than
previously demonstrated optical entangling rates, paving the way for key primitives such
as deterministic non-local quantum logic. We also show that it is robust to an NV ionisa-
tion and recharging event, providing promise that this error channel can be overcome.

Next, we turn to the control of multi-qubit registers for quantum information pro-
cessing (Ch. 5). We design and implement a novel two-qubit gate for high-fidelity control
over hitherto inaccessible 13C spins. We demonstrate a fully connected 10-qubit regis-
ter with minute-long coherence times and realise 7-qubit entanglement. These results
display the potential of multi-qubit spin registers in diamond for quantum computation.

In Ch. 6, we combine these techniques with multi-dimensional spectroscopy to pre-
cisely measure individual nuclear-nuclear couplings. We characterise a system of 27 13C
spins, and find the spatial structure of this system with sub-angstrom resolution. This
experiment constitutes a proof-of-principle demonstration towards the goal of atomic-
scale imaging of individual spin-complexes extrinsic to the diamond, and provides a pre-
cise characterisation method for multi-qubit quantum processors.

Finally, we leverage this knowledge to construct a quantum simulator based upon
individually controllable 13C spins (Ch. 7). We isolate a 1D chain of 9 spins, and imple-
ment the driven Ising model. Utilising novel initialisation, control, and read-out tech-
niques, we synthesise a many-body-localised discrete-time-crystal and observe its hall-
mark characteristics. This work gives insights into thermalisation in many-body quan-
tum systems and establishes a novel simulation platform based on solid-state spins.
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SAMENVATTING

Elektron spin qubits geassocieerd met individuele defecten in vaste-toestand materialen
hebben exceptionele coherentie-eigenschappen en heldere optische interfaces. Boven-
dien biedt de magnetische interactie met kernspins in het materiaal een bron voor re-
gisters bestaande uit meerdere qubits. Daarom zijn individuele defecten komen boven-
drijven als een veelbelovend systeem om quantumtechnologie mee te ontwikkelen. In
dit proefschrift ontwikkelen we methodes voor de precieze controle over spinsystemen
rondom een enkel stikstof-gat defect (nitrogen vacancy, NV−) in diamant. We gebrui-
ken dit platform om een aantal richtingen binnen de quantumwetenschap te onderzoe-
ken: netwerken, computers, sensoren en simulaties. Onze bevindingen bieden nieuwe
inzichten op de weg naar gedistribueerde quantum berekeningen, en brengen een pro-
grammeerbare spin quantum simulator tot stand om veeldeeltjesfysica te bestuderen.

Optische quantumnetwerken gebaseerd op stikstof-gat defecten hebben de laatste
jaren geweldige progressie geboekt met de demonstratie van protocollen zoals de dis-
tillatie en teleportatie van verstrengeling. Echter, de consequentie van de stochastische
ionisatie tijdens operaties is grotendeels onverkend gebleven. Daarom onderzoeken we
eerst het neutrale stikstof-gat defect (NV0) met nieuwe technieken om de ladingstoe-
stand te prepareren (Hoofdstuk 3). We meten direct de fijnstructuur, en karakteristeren
de orbitale en spin dynamica. Deze resultaten laten ook zien dat ionisatie decoherentie
van kernspins veroorzaakt.

Dan bestuderen we een 13C kernspin qubit in isotopisch-bewerkte diamant om
quantumtoestanden op te slaan tijdens netwerkprotocollen (Hoofdstuk 4). Onze bevin-
dingen laten zien dat willekeurige quantumtoestanden langer bewaard kunnen blijven
dan de tijd die nodig is om netwerkknooppunten te verstrengelen. Dit maakt de weg vrij
voor belangrijke demonstraties zoals niet-lokale quantum logica. We laten ook zien dat
het geheugen robuust is tegen veranderingen van de ladingstoestand van het NV, wat
hoop biedt dat dergelijke fouten opgelost kunnen worden.

Hierna bekijken we de controle van qubitregisters voor quantuminformatie doelein-
den (Hoofdstuk 5). We ontwerpen en implementeren nieuwe twee-qubit operaties met
hoge betrouwbaarheid op eerder ontoegankelijke kernspins. We demonstreren een vol-
ledig verbonden 10-qubit register met coherentietijden van een minuut en realiseren
een verstrengelde toestand met 7 qubits. Deze resultaten laten de potentie van qubit
spin registers in diamant voor quantumberekeningen zien.

In Hoofdstuk 6 combineren we deze technieken met multi-dimensionale spectro-
scopie om individuele kern-kern koppelingen precies te meten. We karakteriseren een
systeem van 27 13C spins, en vinden de ruimtelijke structuur van dit systeem met sub-
angstrom resolutie. Dit experiment vormt een eerste demonstratie richting het op ato-
mair niveau afbeelden van spin-complexen buiten de diamant en is een methode om
quantumprocessoren te karakteriseren.
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x SAMENVATTING

Tenslotte bouwen we op deze vergaarde kennis om een quantumsimulator te reali-
seren gebaseerd op individueel controleerbare 13C spins (Hoofdstuk 7). We isoleren een
eendimensionale ketting van 9 spins, en implementeren het gedreven Ising model. Ge-
bruikmakend van nieuwe initialisatie-, controle- en uitleestechnieken synthetiseren we
de veel-deeltjes-gelokaliseerde discrete-tijd-kristallijne fase en observeren we de bijbe-
horende eigenschappen. Dit werk levert inzicht op in de thermalisatie van veeldeeltjes
quantumsystemen en brengt een nieuw quantumsimulatieplatform gebaseerd op spins
in de vaste stof tot stand.



1
INTRODUCTION

1.1. QUANTUM 2.0

The field of quantum mechanics is often associated with the philosophical debates of
the first half of the twentieth century. However, applied in practice, it shaped the latter
half. Technologies made possible only through an understanding of quantum physics
are ubiquitous in our daily lives. Quantisation lead to the comprehension of band struc-
ture 1 and population inversion 2,3, critical to realising the semiconductor and laser de-
vices which drive modern technology.

Despite the immense impact of these so-called ‘Quantum 1.0’ technologies, their op-
eration is not reliant on the manipulation of individual quantum states 4–6. Over the
past few decades, a series of ground-breaking experiments have enabled the isolation,
control, and measurement of individual quantum systems, such as atoms, photons, su-
perconducting circuits, and solid-state spins 7–11. A central question remains: do these
intrinsically quantum systems enable a new class of ‘Quantum 2.0’ technologies which
go beyond current possibilities?

Quantum 2.0 technologies are often grouped into four categories: quantum commu-
nication, quantum sensing and metrology, quantum simulation, and quantum compu-
tation 5. Of these categories, quantum computation is the most intensively explored, due
to the widespread claim that a large-scale quantum computer will be capable of solving
some of the most pressing challenges for humankind, such as drug discovery and mate-
rials design 12,13. In the last two years, experiments using 53 superconducting qubits 14

and 50 photonic squeezed states 15 have claimed ‘quantum computational supremacy’:
the capability to run a known calculation on a quantum mechanical system which is in-
tractable using any conventional computing device 16,17. This advantage stems from the
immense Hilbert space associated with such systems, which scales exponentially with
the number of contributing quantum bits or ‘qubits’. However, despite these impressive
results, in both cases the task performed has no known practical applications. Realizing
useful quantum computation will require quantum systems to be increasingly isolated
from noise while simultaneously maintaining interfaces for control and measurement.
Meeting this requirement while scaling the system to the large numbers of qubits re-
quired is a formidable challenge, even when aided by error-suppressing schemes such
as quantum error mitigation 18 or, ultimately, quantum error correction 10,19,20.

1
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2 1. INTRODUCTION

Simulating the dynamics of interacting many-body quantum systems is a hard task
for classical computers 21,22. Analog quantum simulators rely on the capability to en-
gineer specific interactions which match those of a physical system of interest, such
that their dynamics can be reconstructed. Experimental quantum simulators using ul-
tracold atoms, trapped ions, photons, superconducting circuits, and solid-state spins
have been used to generate novel phases of matter, to study strongly correlated sys-
tems of bosons or fermions, and to investigate fundamental particle and gravitational
physics 23,24. Quantum simulations have now been performed with up to 256 individ-
ually probed Rydberg atom qubits 25,26, for which the description of the full quantum
state requires more memory than there exists global data capacity. However, limits to
the coherence of present experiments may mean that the system dynamics can be ap-
proximated by simplified state descriptions (such as matrix product states 27). Reaching
unambiguous quantum advantage in this setting remains an open target.

Quantum communication enables provably secure transfer of information 28. That
is, any adversarial attempt to intercept information can be detected before deciding
to transmit the data. The ultimate level of security is proven by a so-called ‘loophole-
free Bell test’ 29. Such tests were first demonstrated by three distinct experiments in
2015 30–32. Quantum communication typically employs flying photonic qubits, due to
their fast travel speeds and low decoherence rates either in free-space or optical fibre.
The ability to create quantum entanglement between static matter qubits (such as atoms
or electrons) and flying qubits gives rise to the field of quantum networks. Within such
systems, a wide range of protocols have been proposed, such as clock synchronisation
with unprecedented accuracy 33. This capability can also be used to link quantum com-
putational modules, allowing for the creation of larger systems without the need to cre-
ate a single monolithic device 34. To implement such protocols, high-quality light-matter
interfaces 35 must be realised, whose communication rate is ideally enhanced by multi-
plexing in the spatial-, frequency- or time-domain (or any combination thereof), in anal-
ogy with classical communications technology. Furthermore, each node must contain
well-controlled qubits that can store and process quantum information while entangle-
ment is distributed across the network.

Quantum sensing and metrology exploit the sensitivity of individual quantum sys-
tems to perturbations, such as magnetic, electric, or gravitational fields 36. Conversely,
extremely environmentally-insensitive qubits — atomic clocks — serve as frequency
(time) standards which are of critical importance for technologies such as GPS 37. The
use of quantum entangled states can enable sensitivity beyond the standard quantum
limit (shot noise limit), as famously demonstrated in the LIGO experiments 38. More-
over, unique capabilities, such as the preparation of increasingly macroscopic objects in
well-defined quantum states, may be used to probe fundamental question such as the
quantum mechanical nature of gravity 39,40. Finally, as we will explore in this thesis, the
nanoscale nature of many qubit hosts makes them ideal probes of microscopic environ-
ments and their dynamics 41.

These four classes of technologies have differing requirements. However, at their
heart, each relies on the ability to manipulate and measure quantum systems with
exquisite precision. Within this thesis, we will focus upon the use of spin qubits in dia-
mond towards these goals.
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1.2. QUANTUM TECHNOLOGY WITH SOLID-STATE SPINS

Spins in solid-state materials have been identified as promising systems for quantum
technologies 11,42,43. Optically-active defects (‘colour centres’) in wide-bandgap semi-
conductors are of particular interest due to the ability to initialise and read-out the elec-
tron spin qubit using optical excitation. Devices based on solid-state spins offer a num-
ber of practical advantages. Their solid-state nature avoids the need for ultra-high vac-
uum and complex laser cooling systems. Furthermore, a number of colour centres have
relatively high operating temperatures (demonstrating optical coherence between 1-20
K, and long-lived spin coherence up to room temperature), where cooling power is more
abundant 11. Finally, the ability to create on-chip photonic structures can be used to
enhance the interface between spin qubits and light 44.

In recent years, great progress has been made in the isolation and control of a
range of optically-active defect spins 45–53. One of the most prominent examples is the
nitrogen-vacancy (NV) centre in diamond. Building on developments in single molecule
spectroscopy 54, individual NV centres were first optically addressed in 1997 55. Since
these first measurements, developments in device quality and control techniques have
lead to fast and high-fidelity electron spin initialization and read-out (>99.8% 56 and
>97% 30 in <5 µs, respectively), high-fidelity spin manipulation within tens of nanosec-
onds using direct microwave drives 57,58, and coherence times up to one second 59–61.

The realisation of quantum technologies generally requires access to more than one
qubit. Importantly, magnetic coupling from the NV electron spin to the native nitrogen
nuclear spin and to proximal 13C spins in the diamond lattice provides access to addi-
tional qubits which can be used for computation, memory, or sensing 62–68. An outstand-
ing challenge, however, is to extend this platform beyond the control of a few spins, re-
alising increasingly larger systems which will eventually be capable of performing com-
putations and simulations that are intractable for classical technologies.

One promising approach towards this goal is via distributed quantum information
processing (DQIP). Independent multi-qubit registers (‘nodes’) can be linked using pho-
tonic entanglement (Fig. 1.1(a)) 33,34,69,70. These entanglement links can then be con-
sumed to perform quantum logic operations between nodes, forming them into a larger
architecture.

A number of first steps have been made towards this architecture. Photonic entan-
glement has been demonstrated between NV centres separated by up to 1.3 km 30,71,72.
Moreover, the use of a single 13C nuclear spin ‘data qubit’ (or ‘quantum memory’) in each
node has led to demonstrations of entanglement distillation in a two-node network 73,
and entanglement swapping in a three-node network 74, both of which are important
primitives for DQIP. Within individual nodes, control over a few nuclear spins has been
realised (Fig. 1.1(b)) 75. Such systems have been used to probe fundamental questions in
physics such as the existence of contextuality 76, and observations of quantum Darwin-
ism 77. Furthermore, in the context of quantum computing, primitive error-correctable
logical qubits have been demonstrated 68,75,78,79.

Building a truly large-scale architecture requires further improvements. In particular,
the efficiency of the optical links 80,81, the number of data qubits in each node and their
lifetime 56,74,82,83, and the fidelity of quantum logic operations must all increase. In this
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thesis, we address a number of challenges on this path, by elucidating and mitigating
the effects of optical excitation on the NV-13C system, and by realizing unprecedented
control over multi-qubit spin systems in diamond.

Figure 1.1: Architecture for distributed quantum information processing using spins in diamond. (a) Each
diamond node hosts at least one optically-active defect (purple spin, ‘Communication qubit’), such as an NV
centre as used in this thesis. Coherently emitted photons are interfered to create entanglement between re-
mote electron spins (‘Photonic link’). The presence of additional spin qubits within each node, such as 13C
nuclear spins (yellow spins, ‘Data qubits’), provides a resource for the manipulation and storage of complex
quantum states. The four nodes shown here serve as a unit-cell for a large scale system operating a distributed
surface code for quantum error correction 34,69,70. (b) Schematic of a quantum network node based upon
an NV centre within an interacting nuclear spin bath. The central electron spin (purple) exhibits magnetic
couplings (purple lines) to the intrinsic 14N spin of the NV centre (green), and to proximal 13C spins in the dia-
mond lattice (yellow). Prior to the work of this thesis, a few of the most strongly-coupled 13C spins (dark purple
lines) had been controlled as prototype qubits. In this thesis, we will explore the larger spin environment by
first developing techniques to address 13C spins with weaker electron-nuclear couplings (light purple lines).
We will then investigate the couplings between nuclear spins themselves (yellow and green lines) and utilise
these for further qubit control. These techniques provide access to spin registers comprising tens of qubits as
a resource for quantum technologies. Figure (b) adapted from Abobeih 79.

1.3. THESIS OVERVIEW

The text is broken down into the following chapters:
In Chapter 2, I summarise the key properties of the NV centre in diamond. I then give

an overview of the experimental techniques utilised and developed within this thesis,
along with the underlying theoretical models. I also outline the fabrication procedures
used to create devices akin to those used in this work.

In Chapter 3, we investigate the properties of the neutrally-charged NV centre. Using
resonant excitation spectroscopy, we reveal the fine structure, and use this knowledge to
selectively address individual spin-orbit states. We measure the timescales associated
with spin- and orbital-dynamics. Finally, we perform high-fidelity read-out of the spin
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state. Our findings suggest that — without intervention — stochastic ionisation will lead
to rapid dephasing of 13C data qubits in NV-based quantum networks. However, both the
knowledge gained of the NV0 level structure, and the capability to perform single-shot
read-out, provide avenues to mitigate such dephasing.

In Chapter 4, we investigate isotopic engineering of diamond as an avenue for realis-
ing robust quantum-network memories. We characterise a weakly-coupled (∼80 Hz) 13C
spin, and find that it retains its quantum state for >1e5 repetitions of the primitive used
to create remote entanglement between NV centres, a two order-of-magnitude improve-
ment upon the state of the art. We assess the robustness of the memory qubit to NV cen-
tre ionisation, with favourable results. Finally, we numerically investigate rudimentary
distributed quantum information protocols combining NV-NV photonic entanglement
and robust 13C quantum memories. We find that key primitives for distributed quan-
tum information processing — deterministic two-qubit gate operations and four-node
GHZ-state creation — are now within reach for NV-based quantum networks.

In Chapter 5, we develop novel decoherence-protected two-qubit gates for the selec-
tive control of 13C nuclear spins surrounding a single NV centre. We utilise these new ca-
pabilities to realise a fully connected 10-qubit register with two-qubit gate fidelities of up
to 99.1(9)% and coherence times of up to one minute. Furthermore, we create genuine
multipartite entanglement between 7 qubits. Our findings show that the combination
of the NV centre and surrounding nuclear spins is a promising platform for quantum
information processing.

In Chapter 6, we demonstrate atomic-scale imaging of a cluster of 27 13C nuclear
spins surrounding a single NV centre in diamond. By combining the methods devel-
oped in Ch. 5 with multidimensional spectroscopy based upon double-resonance tech-
niques, we isolate individual interactions between nuclear spins in the cluster. Using
171 measured coupling strengths, we develop numerical methods to extract the three-
dimensional structure of all 27 spins with sub-ångström resolution. This is a proof-of-
principle demonstration towards the goal of magnetic imaging of single molecules or
spin complexes outside the diamond. Moreover, this precise characterisation of the lo-
cal environment of a single NV centre gives unprecedented understanding for improved
quantum control of a nuclear spin register.

In Chapter 7, we implement a quantum simulation of the driven-Ising model using a
1D chain of 9 interacting nuclear spins. We combine the knowledge of the nuclear-spin
environment developed in Ch. 6 with novel control techniques to isolate, manipulate,
and measure a carefully chosen subset of spins. These spins have the required properties
to synthesise the discrete-time-crystalline phase: an out-of-equilibrium phase of matter
which exhibits robust spatiotemporal order protected by many-body-localization. We
show the hallmark characteristics of the many-body-localised discrete-time-crystal for
the first time, establishing 13C spins in diamond as a novel and promising quantum sim-
ulation platform for studying exotic states of matter.

In Chapter 8, I summarise the findings of this thesis. I discuss opportunities for near-
term experiments which build upon the work shown here. Finally, I give a broader out-
look for quantum technologies based on solid-state spins in diamond.
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2
METHODS FOR QUANTUM CONTROL

WITH NV CENTRES IN DIAMOND

In this chapter, I summarise the key properties of the nitrogen-vacancy (NV) centre in dia-
mond, and outline the experimental methods used to initialise, manipulate, and measure
the electron spin of a single NV centre at 4 Kelvin. I then describe how the NV centre can
be used to probe nuclear spins in its local environment and to realise universal quantum
control over those spins. These methods form the foundations of the work presented in the
rest of the thesis.
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Figure 2.1: Crystal structure and molecular orbitals of the NV centre. (a) Crystal structure of an NV centre
within a cubic unit cell of the diamond lattice. A nitrogen atom impurity (green) is adjacent to a vacant site
(white). Under natural abundance (all work in this thesis aside from Ch. 4), 1.1% of the 12C atoms (grey) are
replaced by the spin-1/2 13C isotope (yellow) (b) NV− centre molecular orbitals and their ground-state filling.
Figures adapted from Pfaff 1, Bernien 2.

2.1. THE NV CENTRE IN DIAMOND

Diamond is host to a number of defects (or ‘colour centres’), many of which have
favourable properties for quantum technologies 3. Of these, the nitrogen-vacancy (NV)
centre was the first to be individually detected 4, and remains the most widely studied.
An NV centre is manifested by a substitutional nitrogen atom impurity next to a vacant
lattice site (Fig. 2.1(a)). All experiments performed in this thesis make use of naturally
occurring NV centers in type-IIa chemical-vapour-deposition (CVD) grown substrates.
In these substrates, exceptionally low impurity concentrations of a few parts-per-billion
minimise unwanted background fluorescence and electronic spin-bath noise. Conse-
quently, the NV concentration is also very low.

If desired, there are typically two approaches to increase the concentration of NV
centres. While not used for the substrates employed in this thesis, they are described
here for completeness. First, a greater fraction of intrinsic nitrogen impurities can be
converted to NV centres by creating additional vacant sites. Subsequent annealing of
the diamond at high temperature (1200 ◦C) induces migration of these vacancies un-
til they form bound states (such as NV centres) 5. Vacancy creation can be performed,
for example, by electron irradiation 6–8, or by laser writing 9–11, both of which have been
shown to produce NV centres with coherent optical transitions as required for quantum
network protocols.

The second approach is to introduce additional nitrogen into the diamond. Ion
implantation and subsequent annealing offers the potential to create NV centres lo-
calised to within a few tens of nanometres 12, but current techniques used to perform this
process induce significant lattice damage which deteriorates NV centre properties 13,14.
These issues may be addressed in future work by performing shallow (low energy) im-
plantation and subsequent diamond overgrowth 15,16. Nitrogen can also be deliberately
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grown into the diamond, though this can come at the cost of a significant background
electron spin bath. This can be mitigated by the use of more advanced growth tech-
niques, such as ‘δ-doping’, which localises the impurities at particular depths 16–18.

The nitrogen-vacancy centre typically occurs in either the negatively-charged (NV−)
or neutrally-charged (NV0) state. For NV0, five electrons contribute to the filling of its
molecular orbitals, of which two are inherent to the nitrogen atom, and the other three
arise from the dangling bonds of the vacancy-neighbouring carbon atoms 19–21. Conver-
sion between the NV0 ↔NV− states occurs only by capturing an additional electron from
a local charge trap 21,22, which can be stimulated by optical excitation 23–26. The majority
of protocols based upon NV centres utilise the NV− state, which we will hereafter refer
to as NV, and which we will focus on for the remainder of this chapter. In Ch. 3 we will
further investigate the properties of the NV0 centre.

2.2. LEVEL STRUCTURE OF THE NV CENTRE

We begin with an overview of the NV centre fine structure and optical properties. The
composition of the NV centre molecular orbitals and their ground-state filling is shown
in Figure 2.1(b). These molecular orbitals are formed from linear combinations of the
neighbouring nitrogen and carbon orbitals under the C3v symmetry of the NV com-
plex 19–21. The 3A2 ground state is characterised by two doubly occupied orbitals (a′

1
and a1) and a pair of degenerate orbitals each hosting a single unpaired electron (ex and
ey ). These unpaired electrons form a spin-triplet (S = 1) ground state due to Coulomb
repulsion. From this ground state, optical excitation can promote a single electron from
the a1 orbital to either of the e orbitals, creating one of six orbital-doublet spin-triplet ex-
cited states. As the unoccupied orbitals of both the ground and first-excited states of the
NV centre lie within the diamond bandgap, optical transitions between these states do
not induce charge transfer between the NV and the diamond lattice 21,27. The NV centre
optical properties are thus akin to a trapped ion in vacuum, albeit hosted in a solid-state
matrix.

Figure 2.2(a) shows the energy levels of the NV centre and the allowed transitions.
At zero magnetic field, the ground state ms = ±1 levels are degenerate, but are split
from the ms = 0 level by spin-spin interactions, with a zero-field-splitting of ∆ZFS = 2.88
GHz 28–30. An external magnetic lifts the degeneracy of the ms = ±1 levels, with the Zee-
man term following the electronic gyromagnetic ratio of γe = 2.802 MHz/G (Fig. 2.2(c)).
The ground-state electronic Hamiltonian is thus:

He =∆ZFSS2
z +γe(B ·S). (2.1)

Here, S = (Sx ,Sy ,Sz ), where Sα are the electron spin-1 operators, and B = (Bx ,By ,Bz )
is the magnetic field vector. Throughout this thesis we work with axially aligned fields
such that Bx ≈ By ≈ 0. We have neglected second order spin-orbit coupling and effects
from electric (or strain) fields 28,29, alongside hyperfine interaction terms which we will
discuss in Sec. 2.6.

Lifting the degeneracy of the ms = ±1 levels provides access to a choice of isolated
qubit states, which we typically choose to be the ms = {0,-1} = {|0〉,|1〉} basis. Microwave
(MW) driving at the associated transition frequency realises high-fidelity manipulation
of the ground-state qubit within tens of nanoseconds 31,32.
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Optical excitation enables transitions to the six spin-triplet orbital-doublet first-
excited states. At room temperature, the excited states are mixed by two-phonon Raman
processes, leading to broad homogeneous linewidths ∼15 THz 33,34. However, at cryo-
genic temperatures (<10 K), the individual transitions are resolved, with typical few-GHz
energy separations compared with their lifetime-limited linewidths of 13 MHz 33,35. Op-
tical selection rules give rise to the transitions shown in Figure 2.2(a). The degeneracy
of the pairs of states {Ex ,Ey } and {E1,E2} is lifted under lateral strain (Fig. 2.2(b)) 19,21.
Further tuning of the different excited-state energies can be achieved through a combi-
nation of magnetic, electric and strain fields 19,35–38, but these techniques are not utilised
in this work. For all experiments in this thesis, a specific magnetic field is chosen to aid
in the control of the spin environment (discussed in Sec. 2.7), a (random) lateral strain
occurs inherently for each NV centre, and electric fields are not applied.

We now identify a set of transitions which can be used for spin initialisation and read-
out. As each step has differing requirements, we choose distinct optical transitions based
upon their properties. Due to the presence of spin-orbit coupling, the A1, E1, and E2

states all have a significant probability (>40% per cycle at 4 K 39,40) to undergo an inter-
system crossing (ISC) to the singlet states (1A1) 40,41. The 1A1 singlet states rapidly decay
to the metastable 1E states, which then decay back to the ground states. Importantly,
this final decay preferentially populates the ms = 0 state (with a ratio of {6(1):1:1} into
ms = {0:-1:+1} for strain fields of 2-5 GHz and working at 4 K 39). Exciting a chosen subset
of A1, E1, and E2 pumps population out of the spin-±1 projections, leading to rapid spin
initialisation (spin-pumping, SP) into the ms = 0 state, with achievable fidelities >99.7%
within 3 µs 39,42.

Conversely, the ISC rates from the states A2, Ex , and Ey are much reduced 40,41. Ex-
citing the ms = 0 ground state on either the Ex or Ey transition leads to highly cycling
behaviour, with an average of ∼100 cycles before a spin-flipping process occurs 39. There
is thus a significant contrast in the number of emitted photons for the |0〉 and |1〉 states
when exciting on either of these transitions, enabling single-shot read-out 42. Figure
2.3(b) shows example histograms of the number of detected photons after preparing a
single NV centre in each of these states and attempting read-out (see Sec. 2.4 for de-
tails of the experimental setup). The quality of the read-out process is described by the
single-shot read-out fidelity:

FSSRO = 1

2
(F0|0 +F1|1), (2.2)

where Fi | j is the probability to assign the state |i 〉 after attempting initialization in the
state

∣∣ j
〉

. Note that this is a lower bound, as it assumes perfect state initialisation. In
Figure 2.3(c) we plot the calculated read-out fidelity for this data. A value of 94.3(1)% is
achieved, as typical for the experiments performed in Chs. 5, 6 and 7.

Note that FSSRO is a strict metric for the case that we assign an outcome after every
read-out. By taking a probabilistic approach to measurement (discarding ambiguous
results), it is possible to assign certain outcomes with higher fidelities. An example is
seen in the histogram shown in Figure 2.3(b). If at least one photon is detected in this
experiment, there is a 99.1(1)% probability that the pre-measurement state was |0〉, even
though FSSRO is only 94.3(1)%. We denote this probability the ‘conditional read-out fi-
delity’, FCRO. As we will discuss in Sec. 2.9, probabilistic measurements can be a useful
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tool to improve the quality of certain operations, and are especially useful for heralded
state preparation. A related metric is the ‘projectivity’ of the measurement: the proba-
bility that the post-measurement state of the electron spin corresponds to the assigned
state 43. The projectivity becomes important when we wish to use the post-measurement
state, as, for example, in Ch. 5.

Without tuning of the energy levels, the main considerations when selecting optical
transitions are spectral isolation and read-out cyclicity (the number of optical cycles be-
fore a change of the spin state). First, we pick transitions which are well-isolated, such
that off-resonant excitation of other states is minimised. If the Ex and Ey transitions are
both isolated, we then consider their cyclicity. This is dependent on lateral strain and
magnetic field, but typically the Ex transition is preferred 20,44.

Figure 2.2: Level structure of the NV− centre in diamond. (a) Energies of the 3A2 orbital-singlet spin-triplet
ground states (S = 1), the 3E orbital-doublet spin-triplet first-excited states, and the 1A1 and 1E singlet mani-
folds (S = 0). All energies are shown in the absence of external fields. Under the appropriate optical selection
rules, laser excitation can drive transitions between the ground and first-excited spin-triplet states. Subse-
quent decay can occur either coherently in the zero-phonon line (ZPL), in conjunction with a phonon in the
phonon-sideband (PSB), or for the A1, E1 and E2 states, via an intersystem crossing (ISC) to the singlet man-
ifolds. (b) Level steering of the first excited states under lateral strain (or equivalent applied electric field). In
this thesis, all used NV centres have natural lateral strains of ε⊥ = 2-5 GHz, and no external electric fields are
applied. (c) Ground state fine structure. A zero-field-splitting of 2.88 GHz arises due to spin-spin interactions.
The application of an external magnetic field lifts the degeneracy of the ms = ±1 states, and a qubit is defined
between the ms = 0 (|0〉) and ms = −1 (|1〉 states. The hyperfine structure is discussed later in this chapter.
Figures adapted from Pfaff 1, Bernien 2, Hensen 29.
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Figure 2.3: NV centre single-shot read-out: (a) Energy levels and optical transitions selected for read-out (RO)
and spin-pumping (SP). Solid (dashed) wiggled lines represent spin-conserving (non-conserving) decay chan-
nels. (b) Histograms of the number of detected photons after spin-pumping into each of the ms = 0 (|0〉) and
ms = −1 (|1〉) states, and performing single-shot read-out for a duration of 38 µs (see (c)). The mean number
of detected photons is 〈n〉 = 6.84(4) (0.10(1)) for the |0〉 (|1〉) state. Dashed line at n = 1 indicates the state-
discrimination threshold. (c) Single-shot read-out fidelity as a function of the read-out duration. A maximal
fidelity of FSSRO = 94.3(1)% is reached for 38 µs. Panel (a) adapted from Robledo et al. 42.

2.3. DEVICE FABRICATION

Figure 2.4: Process flow for fabrication of diamond devices. Details for each box are given in the text.

For the experiments performed in this thesis, a number of device capabilities are
required to enable high-fidelity quantum control. The process for device fabrication is
outlined in Figure 2.4: we now discuss the details of each step.

In this work, we use naturally-occurring single NV centres in ultrapure CVD-grown
diamond substrates from Element Six (Box 1 of Fig. 2.4). Except where specified other-
wise, all of these substrates contain a natural abundance of 13C isotope, 1.1%, and have
been cleaved along the 〈111〉 crystal axis (having been grown along the 〈100〉 orienta-
tion). This has the benefit that — for NVs which are oriented in the 〈111〉 direction —
a well-aligned external magnetic field can be produced by simply placing a permanent
magnet at the back of the substrate.

If it is desirable to increase the NV concentration, electron irradiation is employed
with an electron energy of 2 MeV and a fluence of 1013 e−/cm2s to create vacancies
(performed at the Reactor Institute Delft). Subsequently, a three-step annealing pro-
cess 8 is performed under high vacuum (< 10−6 mbar), reaching a peak temperature
of 1100 ◦C, inducing vacancy migration and NV formation. Irrespective of perform-
ing irradiation and annealing, the substrate is cleaned using a triacid process, 1:1:1
H2SO4(97%):HNO3(60%):HClO4(60%) at 120◦C for one hour in a re-flux setup 8. The
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diamond is then mounted onto a silicon carrier wafer using rubber cement (Marabu
Fixogum) for ease of handling during the fabrication process.

Subsequently (Box 2), we create a marker (coordinate) grid and a gold stripline on the
diamond surface via electron-beam lithography (EBL). We use a single-layer EBL resist
(PMMA A8 950, spun at 3250 RPM to produce a layer ∼1 µm thick), followed by evapora-
tion of a 15 nm chrome layer for electron-beam conduction. After exposure and devel-
opment of the resist, and wet-etching of the chrome layer, we use a short oxygen plasma
etch to ensure a pristine surface for metal evaporation. We first evaporate a 7 nm tita-
nium adhesion layer, followed by 150 nm of gold. After a lift-off procedure in acetone,
the sample is removed from the carrier wafer and mounted on a printed circuit board
(PCB) using conductive silver paint, before wire-bonding for delivery of MW fields.

An automated search for suitable NV centres is performed using a room-temperature
confocal microscope. Example confocal images at the diamond surface (showing marker
positions for localisation) and at a depth† of ∼5 µm (showing candidate NVs) are exhib-
ited in Figures 2.5(a) and (b). The depth of 5 µm is chosen to ensure bulk properties
of the NVs (avoiding surface effects 45), while limiting the size of the solid-immersion
lenses (SILs) which will be written in the next phase. NVs are selected on having a 〈111〉
orientation (determined by polarisation-dependence of fluorescence), and showing no
strongly-coupled (>1 MHz) 13C spins in optically-detected magnetic resonance.

Once a number of suitable NV centres have been identified, we begin fabricating
the device itself (Box 3). First, a 15 nm chrome layer is evaporated for conduction in
scanning electron microscopy (SEM). SILs are then milled into the diamond surface at
the detected positions using a 30 kV gallium focused ion beam (FIB) combined with an
SEM (Fig. 2.5(c)) 42,46. These micro-structures enhance the collection efficiency from
diamond by suppressing total internal reflection. This enhanced collection efficiency
improves the signal-to-noise ratio for high-fidelity single-shot read-out 42, and also di-
rectly translates into improved remote-entanglement rates for quantum network exper-
iments 47. After SIL writing, the gold structures are removed using a KI wet-etch, before a
second triacid clean is used to remove the remaining materials. An oxygen plasma etch
then strips the top layer (∼20-30 nm) of the diamond, removing any remaining gallium
contamination (Fig. 2.5(d)).

Next (Box 4), the substrate is again mounted on a silicon carrier for a two-step EBL
process, each step following the recipe described above. The first step is used to create
a number of 20x20 µm2 alignment markers, while the second step uses these markers
to finely align a microwave stripline and electrodes for DC Stark-tuning (not employed
in this thesis) to the solid-immersion lens positions. As before, a 7 nm titanium layer is
evaporated for adhesion, followed by 150 nm of gold. After lift-off, atomic layer deposi-
tion (ALD) is used to create an Al2O3 anti-reflection coating 48. A thickness of ∼102 nm is
deposited (measured refractive index 1.61 for a 105◦C deposition process), reducing the
natural reflection of ∼17% to a residual value of ∼0.5-1%, which can be used for phase-
stabilisation measurements in single-photon remote-entanglement protocols 49,50. An
example device after the ALD and evaporation processes is shown in Figure 2.5(e).

Finally, the sample is mounted on a PCB using silver paint, and the stripline and gates
are wirebonded for delivery of MW fields and DC voltages (or grounding), respectively.

†This depth is corrected for refraction at the diamond surface 20.
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Figure 2.5: Nanofabrication of NV diamond devices. (a) Confocal microscope image of the diamond surface
after writing of a gold alignment grid. At the surface, a uniquely-identifiable pattern is observed (mid-left),
along with an array of 1x1 µm2 markers. Crosshairs give the positions of localised 〈111〉 NV centres (see (b)).
(b) Confocal image of the diamond at a depth of∼5µm (corrected for refraction at the diamond surface). Three
identified 〈111〉-oriented NV centres are located. Other bright spots did not pass the NV selection criteria. (c)
SEM image of a solid-immersion lens (SIL), milled into the diamond surface using a gallium focused ion beam.
Small localisation markers are seen outside the trench. (d) Substrate prior to two-step EBL and ALD processes.
After SIL writing, the diamond has been triacid cleaned, a PMMA resist layer has been applied (leading to the
observed interference pattern), and a 15 nm layer of chrome has been deposited for conduction in the electron-
beam. (e) Completed device, prior to wire-bonding. A single gold stripline is used to deliver microwaves to
all SILs, but each SIL has its own pair of electrodes (or ‘gates’) for Stark-tuning of the optical transitions. In
this case, the stripline and gates were evaporated on top of the ALD layer due to poor metal adhesion to the
diamond surface. Shown device was pre-characterised by A. J. Stolk and M. Teng, and fabricated by C.E.B. and
S. Baier.
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2.4. EXPERIMENTAL SETUP

2.4.1. HARDWARE COMPONENTS

All experimental data presented in this thesis was measured on diamond devices in
closed-cycle cryostats (Montana Cryostation S50) at ∼4 K. Three distinct hardware se-
tups and devices were used, as described in Table 2.1, but the majority of features are
common to these setups. In Figure 2.6, we show a typical schematic for one of the mea-
surement setups. Generally, experimental sequences are programmed via a Python in-
terface (QTLab) and then executed on the hardware via a microcontroller (ADwin Pro II).
Each hardware setup comprises optical elements for NV charge- and spin-state initial-
isation and readout 47, and MW and radio-frequency (RF) components for NV ground-
state spin manipulation and nuclear spin control (detailed in Sections 2.7-2.9). Pulse
sequences are created using an arbitrary waveform generator with 1 ns precision (Tek-
tronix AWG5014C).

Chapter Setup name Bz (G) Device name 13C concentration Crystal axis

3 LT3 1850 Hans 1.1% 〈111〉
4 M2 47 Gretel 0.01% 〈100〉
5 M1 403 111_no_1 1.1% 〈111〉
6 M1 403 111_no_1 1.1% 〈111〉
7 M1 403 111_no_1 1.1% 〈111〉

Table 2.1: Experimental setups and devices used throughout this thesis. Setup and device names are an inter-
nal reference. Bz is the externally applied magnetic field along the NV axis (in Gauss). Crystal axis gives the
direction parallel to the axis of optical irradiation.

2.4.2. DYNAMIC CONTROL

A central feature of the hardware is the capability to perform real-time (1 µs clock-cycle)
conditional logic using the microcontroller and AWG. Conditional logic based upon pho-
ton detection events is used for a number of protocols, such as to herald the NV in a par-
ticular charge or spin state 26,47. Details of individual implementations are given in the
chapters where they are used.

In a broader context beyond this thesis, active-feedback capabilities are key to a
number of NV-based experiments, including quantum error correction 51,52, complex
state preparation 53,54, adaptive quantum sensing 55, and quantum network protocols
such as teleportation 56,57, entanglement distillation 58 and entanglement swapping 50.
All of these schemes are made possible by the combination of fast electronics, non-
destructive measurements, and long relaxation and coherence times of the addressed
spins, as we will discuss in the next section.
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Figure 2.6: Experimental setup. Laser systems: A 515 nm laser (Cobolt MLD, current modulated, >135 dB
on/off ratio) is used for charge-resonance reset 47. A pair of 637 nm lasers (Toptica DL-pro and New Focus
TLB-6704-P) are used for resonant spin initialisation (SP) and read-out (RO). A 575 nm laser (Toptica DL-SHG-
pro) is used for resonant excitation spectroscopy of the NV0 centre (Ch. 3) and for resonant recharging (Chs.
3, 4). The 637 nm and 575 nm laser frequencies are stabilised using a wavemeter (HF-Ångstrom WS/U-10U)
and associated PID loop to 2 MHz accuracy. For the resonant lasers, we cascade two acousto-optic modulators
(AOMs, G&H FibreQ) to achieve >100 dB on/off ratios. AOMs can be modulated either by the microcontroller
or by the AWG. For the latter the control lines are omitted from the schematic to maintain readability. Optical
elements: Light is focused onto and collected from the diamond using a 0.9 NA microscope objective (Olym-
pus MPLFLN 100x) held under vacuum. The objective is movable in three dimensions using piezo-electric
stages (PI Q545 or similar) for fine alignment to a single NV centre. NV phonon-sideband (PSB) emission is
separated from reflected laser light using a long-pass filter (640 nm) and collected on an avalanche photo-
diode (APD, Laser Components). Detected photons are counted with the microcontroller. For time resolved
measurements (Ch. 3), the times-of-arrival of these photons are recorded using a time-to-digital converter (Pi-
coquant HydraHarp) which is synchronised to the AWG pulse sequence. Microwave electronics: Microwave
(MW) pulses (for NV ground state manipulation) are produced with a vector source (R&S SGS100A), for which
the frequency, duration, waveform and phase are determined by a pre-programmed AWG using IQ- and pulse-
modulation. Single-sideband modulation at 250 MHz is used to spectrally isolate the control pulses from low-
frequency noise of the AWG, which is filtered using a 175 MHz high-pass filter. The output of the vector source
is passed through an amplifier (AR25S1G6 or similar), and through a MW switch (TriQuint TGS2355-SM, 40 dB
on/off ratio) which is also controlled by the AWG. Video leakage noise of the switch is filtered using a 175 MHz
high-pass filter. RF electronics: Radio-frequency (RF) pulses for nuclear spin control are directly synthesised
by the AWG. This signal is passed through an RF amplifier (Analog Devices ADA4870), and filtered using a 52
kHz high-pass filter and 10 MHz low-pass filter. Finally, the MW and RF signals are combined using a diplexer
and enter the cryostat. Magnetic field: Axial magnetic fields at the NV centre are produced using permanent
neodymium magnets, which are mounted on motorised stages (Newport UTS100PP or similar). Coarse field
alignment is performed by minimising the mean transition frequency of the ms = 0 ↔−1 and ms = 0 ↔+1
transitions. Fine field alignment (uncertainty of 0.07◦) can be performed using thermal echo sequences as in
Ch. 6. Figure adapted from Pfaff 1, Kalb 59, Abobeih 52.
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2.5. SPIN RELAXATION AND COHERENCE OF NV CENTRES

With the ability to initialise and read-out the electronic spin state of a single NV cen-
tre via optical addressing, we now give an overview of the characteristic decoherence
timescales for the ground-state spin. Measuring these processes requires manipula-
tion of the electron qubit states, which is realised by resonant microwave driving. To
achieve high-fidelity single-qubit gates, we employ spectrally-broad Hermite pulse en-
velopes 60,61 with maximal Rabi frequencies of ∼25 MHz.

First, we consider spin relaxation (T1) processes. Under ambient conditions, spin-
lattice relaxation from two-phonon Raman processes limits the characteristic decay
time, T1, to ∼5 ms 62,63. However, with decreasing temperature, these Raman processes
(scaling ∝ T5) are strongly suppressed. Below ∼30 K, two-phonon Orbach processes are
also frozen 63. In ultrapure samples, cross-relaxation (‘flip-flop’ interactions) with other
NV centres is negligible. Consequently, leakage of the microwave and optical control
fields is often the dominant relaxation process at low temperatures. As discussed in the
previous section, our hardware setups incorporate cascaded AOMs to ensure >100 dB
on/off ratios for all lasers, and a microwave switch to suppress electronic noise (40 dB
on/off ratio) 64. In Figure 2.7(a), we show the measured spin-relaxation time for the de-
vice used in Chs. 5, 6, 7 64, averaged over the three ground-state spin states. The fitted
decay time is T1 = 3.6(3) · 103 s. For practical purposes, this shows that spin relaxation of
the NV− electron spin plays no role in the results presented in this thesis. Surprisingly,
the measured T1 times even exceed theoretically-proposed limits set by single-phonon
processes 65,66, suggesting that the exact spin-phonon dynamics are not yet fully under-
stood.

We now turn to the coherence times of the electron spin, T ∗
2 and T2. With natural

abundance of 13C isotopes, and working in the high Bz regime (see Sec. 2.7), Ramsey-
type measurements of the electron spin reveal typical dephasing (T ∗

2 ) times of ∼5 µs.
This dephasing arises from interactions between the NV and the surrounding nuclear
spin environment, which effectively creates a quasi-static magnetic field at the point of
the NV centre 67. Due to the slow nature of the nuclear spin-bath dynamics, the use of dy-
namical decoupling sequences (repeated spin-echo pulses) can significantly extend the
coherence time 64,68. Applying such sequences to the same device as mentioned above,
an arbitrary quantum state can be preserved for times >1 s (Fig. 2.7(b)). The electron-
spin coherence can be extended by more than five orders of magnitude, reaching a T2

time of 1.58(7) s after N=10240 pulses 64. Crucially, this coherence time is sufficient to
probe weakly coupled spins in the local spin environment (coupling ¿ 1/T ∗

2 ).

2.6. NV INTERACTING WITH A MANY-BODY SPIN-SYSTEM

The majority of quantum protocols rely on the ability to create and manipulate multi-
qubit entangled states. Within the diamond lattice, a large number of nuclear spins
magnetically couple to the NV electron spin. In this thesis, we will show that such nu-
clear spins can be used as a resource to realise prototype quantum network memories
(Ch. 4), multi-qubit registers (Ch. 5), and quantum simulators (Ch. 7). In the follow-
ing sections, I review the basic ideas and methods that those chapters are built upon,
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Figure 2.7: Electron spin T1 and T2 times: (a) Measured spin relaxation after preparing each of the three ms
spin projections and waiting for a time, t . Solid line is a fit to f (t ) = 1/3+ 2/3exp[−t/T1], from which we
extract T1 = 3.6(3) · 103 s. The inset shows the potential spin-relaxation channels due to optical or microwave
leakage (dashed lines). (b) Average state fidelity for the six cardinal states after a total evolution time, t = 2Nτ,
following the sequence schematised above the figure. For each evolution time, the number of decoupling
pulses N is optimised to maximise the mean state fidelity. The mean fidelity exceeds the classical bound of 2/3
for at least 1 s: the fitted exponential decay (solid line) crosses this bound at 1.46 s. All decoupling is performed
at time values commensurate with the 13C Larmor period to minimise interactions with the spin bath, and the
π-pulse phases follow the XY8 scheme to mitigate pulse errors 69. Figures adapted from Abobeih et al. 64.

beginning with the interaction Hamiltonian.
The complete spin-system comprises the intrinsic electron spin and 14N nuclear spin

of the NV centre, and a surrounding bath of (many) 13C nuclear spins. We can write the
total system Hamiltonian (for the electronic ground state) as a sum over the following
contributions:

Hsys = He +HN +He−N +HC +He−C +HC−C +HN−C. (2.3)

Here, Hi denote the Hamiltonian terms for the individual spin species: electron (e, He

already given in Eq. 2.1), 14N (N) and 13C (C). Hi−j denote the pairwise interactions.
For the nitrogen spin and its interaction with the electron spin, we have 21,70:

HN =−QI 2
z,N +γN(B · IN),

He−N = S ·AN · IN ≈ A∥,NSz Iz,N.
(2.4)

Here, Q = 4.95 GHz is the quadrupole splitting 70, γN = 0.3077 kHz/G is the nitrogen-spin
gyromagnetic ratio. IN = (Ix,N, Iy,N, Iz,N) are the 14N spin-1 operators. AN is the hyperfine
tensor for the electron-nitrogen interaction, with components Aαβ,N for α,β ∈ {x,y ,z}.
Under the secular approximation (denoted by the ‘≈’ sign throughout this section), this
interaction reduces to a purely ZZ coupling of A∥,N = 2.2 MHz.

The Hamiltonian terms for the 13C spins and their interaction with the electron are
given by:

HC =∑
i
γC(B · I(i )

C ),

He−C =∑
i

S ·A(i )
C · I(i )

C ≈∑
i

(A(i )
∥,C Sz I (i )

z,C + A(i )
⊥,C Sz I (i )

x,C).
(2.5)
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Here, γC = 1.0705 kHz/G is the carbon-spin gyromagnetic ratio. I(i)
C = (I (i )

C,x , I (i )
C,y , I (i )

C,z ) are

the 13C spin-1/2 operators acting on spin i . A(i )
C is the hyperfine tensor for the interaction

between the electron and the i th 13C spin. Formally, in the regime (γC Bz ± A(i )
∥,C ) À A(i )

⊥,C

as studied in this thesis, the term A(i )
⊥,C Sz I (i )

x,C can also be discarded under the secular
approximation. However, as we will see in the following section, carefully designed pulse
sequences can enhance the contribution from this term as a tool for quantum control.
Note that each 13C spin experiences a unique interaction with the electron, owing to
its individual lattice position. This interaction is composed of a combination of dipole-
dipole and Fermi contact terms 71. For simplicity, we denote the hyperfine component
perpendicular to the NV-axis, A(i )

⊥,C , to act along the x-axis of the given 13C spin. That is,

in this formulation, each 13C spin has a unique coordinate system defined by the spatial
orientation of its hyperfine interaction. In Ch. 6 we develop and demonstrate a method
to recover the global coordinate system for a system of 27 13C spins.

Finally, we have dipolar interactions between nuclear spins:

HC−C =∑
i , j

I(i )
C ·Ci− j · I( j )

C ,

HN−C =∑
i

IN ·CN− j · I(i )
C .

(2.6)

Here, Ci− j and CN− j are the 13C-13C and 14N-13C interaction tensors. Note that,
when combining all of the Hamiltonian contributions, the resulting (‘effective’) nuclear-
nuclear interaction strengths are modified due to the presence of the electron spin 72,73.
This effect is discussed further in Ch. 6.

Owing to the difference in gyromagnetic ratios between the electron spin and the nu-
clear spins, the electron-nuclear coupling are typically 3-4 orders of magnitude stronger
than nuclear-nuclear couplings (typically tens of kHz vs few-to-tens of Hz for the spins
considered in this thesis).

2.7. TWO-QUBIT INTERACTIONS VIA

DYNAMICAL DECOUPLING

As described in the previous section, the electron spin interacts with single nuclear spins
through the hyperfine interaction. The first pioneering multi-qubit experiments in dia-
mond utilised the electron spin along with the nitrogen nuclear spin (∼ 2.2 MHz hyper-
fine coupling), and/or 1-2 strongly coupled (A(i )

∥,C À 1/T ∗
2 ) 13C spins 42,56,74–78. For such

spins, hyperfine-split transitions can be resolved in the electron spin resonance (ESR)
spectrum, and conditional logic can be realised by applying weak microwave pulses
which selectively drive those individual transitions. However, the statistical likelihood
of observing several strongly-coupled 13C spins for a single NV becomes very small 78.
A breakthrough was made in 2012, where three independent experiments 79–81 showed
that tailored dynamical decoupling (DD) sequences can be used to detect and control
individual nuclear spins with coupling strengths A(i )

∥,C ¿ 1/T ∗
2 , providing access to many

more spins surrounding a single NV centre. We will now discuss the mechanism behind
this capability.
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Figure 2.8: Electron-13C interaction: for the ms = 0 (left) and ms =−1 (right) states of the electron spin (pur-
ple). In the ms = 0 state, the hyperfine interaction is turned off, and the nuclear spin (yellow) simply precesses
at the Larmor frequency (ωL ) around the axis set by the external magnetic field (B=(0,0,Bz )). In the ms = −1
state, the hyperfine interaction is turned on. Under the secular approximation, the interaction is described by
two terms which define the axis A=(A⊥,0,A∥). The interaction leads to a shift of the 13C precession frequency
to ω̃ (see text) and a tilting of the precession axis by an angle θ = arctan(A⊥/(ωL −A∥)) from the normal. Figure
adapted from Ch. 4.

We first consider the Hamiltonian terms given in Eq. 2.5. For the electron spin and a
single 13C, we have 62,79:

H =ωL Iz + A∥Sz Iz + A⊥Sz Ix . (2.7)

Here, we assume a well-aligned magnetic field, and are considering the interaction pic-
ture for the electron energy splitting (|0〉 ↔ |1〉). We have neglected the far-detuned
ms = +1 level. For simplicity, we have dropped the indices i and C from the hyperfine
components and 13C-spin operators. ωL = γC Bz is the 13C Larmor frequency.

Note that Eq. 2.7 can be written in the form:

H = |0〉〈0|H0 +|1〉〈1|H1,

H0 =ωL Iz ,

H1 = (ωL − A∥)Iz + A⊥Ix .

(2.8)

That is, the nuclear spin experiences differing evolution dependent on the state of the
electron spin (Fig. 2.8). In the ms = 0 state, the nuclear spin undergoes simple Larmor
precession around the axis defined by the external magnetic field (Bz , aligned along the
NV axis). However, in the ms = −1 state, the nuclear spin rotates around a tilted axis,

at a modified frequency ω̃ =
√

(ωL − A∥)2 + A2
⊥. Importantly, for non-zero A⊥, the two

rotation axes do not commute. Therefore, by toggling between these two axes at a fre-
quency which is periodic with the nuclear spin precession dynamics (i.e., by toggling the
electron spin state), it is possible to realise non-trivial rotations which are controlled by
the initial state of the electron spin.

To realise these non-trivial rotations, we consider a dynamical decoupling sequence
of primitive form: (τ – π – 2τ – π – τ). The corresponding nuclear spin unitary evolution
is given by 62,79:

V0 = exp[−i H0τ] ·exp[−2i H1τ] ·exp[−i H0τ] = exp[−iθ(I ·n0)],

V1 = exp[−i H1τ] ·exp[−2i H0τ] ·exp[−i H1τ] = exp[−iθ(I ·n1)].
(2.9)
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Here, the subscript denotes the initial state of the electron prior to application of the
sequence. nψ is the effective rotation axis about which the nuclear spin has rotated by
an angle θ at the end of the primitive. Critically, the rotation axes are dependent on the
choice of decoupling time, τ. If τ is perfectly resonant with the dynamics of a particu-
lar nuclear spin, the axes nψ are anti-parallel (n0 ·n1 = -1). Under this condition, and
setting θ = π/2, the canonical form of a maximally entangling controlled-rotation gate
(‘CRx(±π/2)’ gate) is realised between the electron and nuclear spin:

UCRx(±π/2) = |0〉〈0|⊗Rx (+π/2)+|1〉〈1|⊗Rx (−π/2), (2.10)

where Rx (θ) is a rotation about the x-axis by an angle θ. In the high-field regime (ωL À
A⊥, A∥), this condition is met for:

τk ≈ (2k −1)π

2ωL − A∥
(2.11)

with integer k > 0.
We make a few comments on these DD-mediated interactions. First, meeting the ex-

act resonance condition is not a strict requirement for a maximally-entangling electron-
nuclear gate. Writing the rotation axes as nψ = nx,ψx̂ +nz,ψ ẑ, it can be shown that any
set of axes satisfying n0,x =−n1,x and |nx |>|nz | is sufficient to reproduce Eq. 2.10 (up to a
single-qubit z-rotation on the nuclear spin) 82. Thus it is possible to work at moderately
detuned τ values if desired.

Second, in the above example, we set θ = π/2. In practice, the rotation angle θ is de-
pendent on both the number of decoupling pulses, N (N /2 applications of Vψ), and the
perpendicular hyperfine coupling component, A⊥. In the high-field regime, and at exact
resonance, this relationship is described by 79 θ = (N · A⊥)/ω̃. As N takes integer values,
the set of achievable rotation angles for a given τ value is discretised. Such discretisa-
tion errors can typically be mitigated by choosing an appropriate (detuned) τ value. The
smaller the value of A⊥, the slower the gate speed. For small A⊥, this leads to reduced
control fidelities due to nuclear spin dephasing within the gate duration.

Finally, we note that the choice of external magnetic field plays a role in the DD gate
dynamics. We focus on the high-field regime. Here, the number of decoupling pulses
required to realise the π/2 rotation scales linearly with the magnetic field 79. While the
required interpulse delay scales as the inverse of the magnetic field, and so the abso-
lute gate times should not change significantly, a large number of pulses can lead to loss
of fidelity due to pulse errors. Moreover, the linewidth of the resonance also scales in-
versely with the magnetic field. At very high magnetic fields, sub-ns temporal resolution
is required to accurately address the resonances. For these reasons, we choose to work
at a magnetic field of 403 G, which offers a good trade-off between these factors. This
field choice also remains far from the NV ground-state level anti-crossing at ∼1024 G 83,
and ensures that the NV MW transitions (ms = 0 ↔ ms = −1, ms = 0 ↔ ms = +1) are far
from degeneracy and so free of crosstalk which would induce leakage out of the qubit
subspace.

In Ch. 5, we develop novel two-qubit gates which combine resonant radio-frequency
driving with similar dynamical decoupling sequences (‘DDrf’ gates) to enable high-
fidelity operations to spins with weak A⊥ (¿ ω̃). This approach may enable high-
magnetic field operation with greater ease in future work.
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Figure 2.9: Dynamical decoupling (DD) spectroscopy: (a) Quantum circuit for DD spectroscopy. At particular
τ values, a dynamical decoupling sequence of N π pulses realises entangling interactions with individual nu-
clear spins (controlled-Rx (±θ/2) gates, Eq. 2.10), resulting in a loss of coherence (see text). (b) Measured DD
spectrum for N = 32 at a magnetic field of 403 G. Solid lines are fitted signals for seven individual 13C spins and
a bath of 200 generated spins with sampled hyperfine couplings < 10 kHz 64. Bloch spheres presented above
the data show the nuclear spin rotation axes nψ (see text) for C3 upon resonance (τ ∼10.8 µs) and at a value
commensurate with the Larmor period (τ∼13.9 µs). At resonance the nψ are anti-parallel, enabling maximally
entangling operations with the electron spin. Off-resonance, the nuclear spin undergoes simple precession
around (or close to) the z-axis, and no entanglement is generated. Figure (b) adapted from Taminiau et al. 62

and Abobeih et al. 64.

2.8. DYNAMICAL DECOUPLING SPECTROSCOPY

For an unstudied NV centre to be used for multi-qubit experiments, the first step is to
perform preliminary (coarse) characterisation of the nuclear spin environment. This
gives information about individual 13C spins and the suitable τ values for their DD-based
control. A detailed characterisation will be performed in Ch. 6. In this first approach, we
use the following scheme, labelled dynamical decoupling spectroscopy.

The sequence is shown in Figure 2.9(a). First, we prepare the electron in a super-
position state by spin pumping and subsequently applying a MW π/2 pulse. Next, we
apply a number N /2 repetitions of the decoupling primitive (N π pulses). Finally, we
measure the remaining coherence by applying a second π/2 pulse and then reading out
the electron spin optically. In Figure 2.9(b), we plot the measured coherence as a func-
tion of the dynamical decoupling delay, τ. We observe a rich structure hosting a number
of periodically-occurring coherence dips. Such collapses arise due to entanglement be-
tween the electron spin and nuclear spins at the given τ value.



2.9. UNIVERSAL CONTROL OF 13C SPINS

2

27

To formally describe the measured signal, we now revert to the scenario of the elec-
tron spin interacting with a number of nuclear spins. The probability to retrieve the
initial superposition state is given by 79 Px = (M +1)/2, where:

M =∏
i

Mi

Mi = Re[Tr[V N /2
0,i (V N /2

1,i )†]].
(2.12)

M can be written in this form, as a product of single-nuclear-spin Mi , under the
approximation that the nuclear spins are non-interacting. In the case of stronger
nuclear-nuclear interactions, this no longer holds. Such cases are analysed in detail in
Refs. 54,64,84,85, but in this work the approximation only incurs minor perturbations to the
signal.

From the measured spectrum, it is already possible to identify candidate single spins
which can be well controlled. Points at which M = 0 indicate complete loss of coherence
of the electron. In the case of an interaction with a single spin, this corresponds to a
maximally-entangling operation: a gate of the form of Eq. 2.10 has been achieved. Over-
lapping or very broad resonances (such as those shown in black in Fig. 2.9(b)) usually
indicate interactions with multiple spins, which is undesired for selective qubit control.
Therefore, we look for well isolated and narrow resonances, such as the highlighted res-
onance at τ ∼10.8 µs in Figure 2.9(b).

There are a number of methods by which one can extract the nuclear spin hyperfine
parameters from DD spectra to gain information about the nuclear spin environment.
The simplest is to measure these spectra for a wide range of τ and a few values of N . It
is then possible to match simulated signals with the measured values. This gives a rea-
sonable estimate for the hyperfine parameters of the most strongly-coupled 13C spins,
but is a relatively cumbersome and otherwise imprecise approach. In Ch. 6, we develop
an alternate methodology to precisely characterise a system of 27 13C spins. Since that
work, the analysis of DD spectra has been revisited, using novel algorithmic 86 and deep-
learning methods 87. Remarkably, using the latter approach, accurate extraction of the
hyperfine parameters of at least 23 of those 27 nuclear spins was achieved. While this
technique does not acquire the nuclear-nuclear couplings (which are obtained by the
methods of Ch. 6), it is a powerful tool for efficient preliminary characterisation of the
nuclear spin environments of new NVs.

Note that there are a number of alternate approaches to perform nuclear-spin spec-
troscopy, each with their own advantages and drawbacks. For example, this task can be
performed using DDrf gates as shown in Ch. 5, or via weak measurement sequences 88,89.

2.9. UNIVERSAL CONTROL OF 13C SPINS

In the previous two sections, we have discussed how dynamical decoupling can enable
electron-nuclear entangling gates, and how these are identified in practice. We now dis-
cuss how to implement universal single- and two-qubit control. We will first show how
read-out and initialisation of nuclear spins can be performed by coherently mapping
spin states to-and-from the electron spin, before discussing single-qubit operations and
two-qubit gate optimisation.



2

28 2. METHODS FOR QUANTUM CONTROL WITH NV CENTRES IN DIAMOND

Figure 2.10: Quantum circuits for 13C initialisation and read-out: For all circuits, the output states corre-
spond to the result of the sequence applied to the corresponding input states, assuming perfect operations. (a)
Measurement-based initialisation. This sequence of gates maps the x-basis spin projection of the nuclear-spin
to the z-basis of the electron, after which a measurement heralds the |x〉 nuclear state conditioned on the out-
come ‘0’ . (b) Swap initialisation. Compared with (a), an additional single-qubit gate and two-qubit gate realise
a partial-swap operation of the electron and nuclear spin states, deterministically preparing the nuclear spin in
the |0〉 state without the need for conditioning on measurement. Finally, the electron spin is reset. (c) Z-basis
nuclear-spin read-out. Following the same protocol as in (a), but with an additional single-qubit operation to
map the nuclear-spin z-basis to the x-basis for read-out, and utilising full (unconditional) measurement of the
electron spin to reveal the nuclear state. (d) Multi-qubit read-out of the XX operator. Concatenating two-qubit
gates between the electron and two separate nuclear spins within the sequence reveals information about the
joint state of the two nuclear spins. In this case, the XX-parity is odd, and so the electron spin outcome is |1〉.
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2.9.1. INITIALISATION

Consider the electron spin interacting with only a single nuclear spin, under application
of the sequence shown in Figure 2.10(a). After spin pumping the electron spin, we have
the initial state ρinit = |0〉〈0|e ⊗ρm,C . The nuclear spin is initially mixed (ρm = I /2), as we
work in the regime kB T ÀħωL .

In succession, we then apply Rπ/2
y,e (a π/2 pulse around the y-axis on the electron

spin), the two-qubit entangling gate CRx(±π/2), and finally Rπ/2
x,e . The final state is given

by 62,90:
ρMBI = (|0〉〈0|e ⊗|x〉〈x|C +|1〉〈1|e ⊗|−x〉〈−x|C )/2, (2.13)

where |±x〉 = (|0〉 ± |1〉)/
p

2. That is, the electron and nuclear spin states are classi-
cally correlated. Measuring the state of the electronic spin projects the nuclear spin
in the state |x〉C (for the outcome |0〉e ) or |−x〉C (for |1〉e ). We denote this scheme
‘measurement-based initialisation’ (MBI).

To maximise the nuclear spin initialisation fidelity, we here use a conditional ap-
proach for the electron spin measurement (as discussed in Sec. 2.2). Specifically, we
proceed with the experiment only upon detecting a single photon (FCRO >99%). Fur-
thermore, we turn off the excitation light within 2 µs of such an event to increase the
projectivity. There is then a very high probability (also >99% 51) that the electron spin is
indeed in the |0〉 state after measurement, minimising dephasing of the nuclear spin.

While this approach can enable high fidelity initialisation of the |x〉C state, condition-
ing on a certain outcome makes it probabilistic. Therefore, it does not scale well when
initialising a number of spins. An alternative approach is to apply the scheme shown in
Figure 2.10(b), which realises a swap gate. Taking the state ρMBI, we apply a single-qubit
rotation Rπ/2

z,C (method described below) followed by another CRx(±π/2) gate. The final

state is now 62,90:
ρswap = (|0〉〈0|e ⊗|0〉〈0|C +|1〉〈1|e ⊗|0〉〈0|C )/2. (2.14)

The nuclear spin is deterministically prepared in the |0〉C state, while the electron spin is
left in a mixed state. We thus complete the protocol by spin-pumping the electron back
into a known state with high fidelity.

Beyond the methods described here, alternative schemes based on polarisa-
tion transfer (‘dynamic nuclear polarisation’) can also be used to initialise nuclear
spins 16,91,92. Such techniques are utilised and discussed in Ch. 7.

2.9.2. READ-OUT

As can be inferred from the name ‘measurement-based initialisation’, the scheme of Fig-
ure 2.10(a) also enables read-out of the nuclear spin via the electron spin: an ‘ancilla-
based’ measurement 93.

We consider an arbitrary nuclear spin state that we wish to measure along the x-basis,
with the electron prepared in the |0〉e state prior to this measurement:

ρmeas = ρe ⊗ρC =
(
1 0
0 0

)
⊗

(
a b
c d

)
. (2.15)

Here, like ρe , ρC is Hermitian, positive, and has unit trace, but the parameters {a,b,c,d}
are otherwise unconstrained 93.
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We then apply the same sequence of operations as for MBI (Fig. 2.10(a)). However,
we now assign a measurement outcome in every experimental shot (rather than discard-
ing instances in which a photon is not detected). The nuclear-spin single-shot read-out
fidelity is thus bounded by FSSRO (Eq. 2.2). Prior to the read-out of the electron, the
electronic state (after tracing over the nuclear spin) is:

ρRO,e = 1

2

(
1+b + c 0

0 1−b − c

)
(2.16)

Reading out the electron spin, we find 〈Z 〉 = Tr[σzρRO,e] = (b + c), where σi are the Pauli
matrices. This is the same expectation value as expected from an ideal x-basis mea-
surement on the arbitrary nuclear state ρC , showing that the mapping scheme works
as expected. Measuring an arbitrary nuclear spin basis is achieved by rotating the tar-
get basis to the x-basis using an appropriate single-qubit gate: an example for a z-basis
measurement is shown in Figure 2.10(c).

Alongside single-qubit measurements, it is possible to measure multi-qubit opera-
tors by concatenating two-qubit gates within the sequence, as exemplified for the 〈X X 〉
operator in Figure 2.10(d). The compilation of these measurements is described in detail
by Cramer et al., 51,82 and Abobeih et al. 52. Note that the capability to perform multi-
qubit measurements in a non-destructive manner (called parity, or stabiliser measure-
ments) lies at the heart of quantum error correction, for which demonstrations of the
key elements have been achieved within this system 43,51,52.

In Ch. 7 we also develop a novel read-out scheme for nuclear spins which can
not be addressed using two-qubit gates due to weak electron-nuclear couplings. This
scheme concatenates the DD-based read-out described here with a secondary mapping
sequence which utilises the nuclear-nuclear couplings to transfer the spin projection of
a distant spin to one with a stronger electron-nuclear coupling.

2.9.3. SINGLE-QUBIT ROTATIONS

Strong microwave driving enables high-fidelity manipulation of the electron spin inde-
pendent of the state of the nuclear spins (Sec. 2.5), while tailored dynamical decoupling
sequences enable electron-nuclear two-qubit gates (Sec. 2.7). Alongside these gates,
universal control of an electron-nuclear register requires single-qubit operations on the
nuclear spins, which we will discuss here.

The critical requirement for single-qubit gates is that they should not create entan-
glement. So far, for the nuclear spins, we have only encountered one such case: in Eq.
2.10 we see that we can perform an Rπ

x,C gate for θ = π. For any other θ, however, this
gate is entangling with the electron spin. The question arises, therefore, whether it is
possible to create dynamical decoupling sequences which preserve the electron spin co-
herence while generating unconditional nuclear spin rotations. Within the framework
presented in Sec. 2.7, it can be shown that there are τ values for which the nψ are parallel
(n0 ·n1 = 1) and have non-zero x-components 62. At the resonance condition:

τm ≈ mπ

2ωL − A∥
(2.17)

for even integer m, we have n0,x = n1,x = ±1, where the sign alternates from an initial
value of +1 at m = 2 (−1 at m = 4 and so forth). The rotation angle θ is again dependent
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Figure 2.11: 13C single-qubit gates: (a) RF driving of a single nuclear spin around the x-axis after preparation
in the |↑〉 state. The fitted Rabi frequency is 464.2(1) Hz. (b) Bloch sphere evolution of the nuclear spin for Rabi
driving (red, see (a)) and free precession (blue, see (c)). (c) Free precession of a single nuclear spin around the
∼z-axis after preparation in the |x〉 state. The fitted precession frequency is 470.3(2) kHz. For both (a) and (c),
the electron remains in the |1〉 state during the 13C evolution time. The data is corrected for imperfect optical
read-out of the electron spin but not for gate errors in the preparation and read-out of the 13C spin. Error-bars
are smaller than the markers.

on both the number of decoupling pulses N and the perpendicular hyperfine coupling
A⊥ of the targeted spin. As for conditional rotations, the range of possible θ depends on
the values of nx . For realising unconditional π/2 gates, it is possible to work at a detuned
τ value, for which the desired rotation will be achieved up to an additional single-qubit
phase. Note that, while the effective rotation axis is along x (in the frame of the target

nuclear spin), arbitrary rotations can be achieved by compilation with Rφ

z,C gates (see

below). In Ch. 5, we will show that DDrf gates also enable Rθ
φ,C gates.

Rφ

z,C gates can also be implemented via dynamical decoupling sequences. This is
achieved for τ values for which the nψ are again parallel, but now lie along the z-axis (i.e.
have negligible x-components). Such a condition is generically met for τ values close to
integer multiples of the Larmor period, τL = 2π/ωL (Fig. 2.9(b)). For a given number of
decoupling pulses, N , the acquired phase, φ, is:

φ= (2ωL − A∥)Nτ (2.18)

Together, all the discussed operations realise a universal gate-set: arbitrary quantum
circuits can be implemented on electron-nuclear systems, independent of the states of
each spin. However, we can also consider scenarios in which the electron spin is only
being used as an ancilla qubit. That is, it is not hosting quantum information itself, and
can be freely prepared in a chosen state. In such cases, nuclear spin single-qubit gates
can also be implemented via simpler means.

For the Rθ
φ,C gates, we follow two further approaches. First, we revisit the conditional

DD resonances (Eq. 2.11). Notably, by preparing the electron spin in either |0〉 or |1〉 prior
to the DD sequence, it does not entangle with the target spin, enabling single-qubit gates
also for these τ values. This additional flexibility can reduce crosstalk.

Second, we can use direct RF driving, without any decoupling pulses. If the electron
is prepared in the |1〉 state prior to the pulse, each nuclear spin can be addressed indi-
vidually via its unique hyperfine shift (≈ A∥). The RF drive is synthesized via the AWG
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with an arbitrary phase, duration and amplitude (arbitrary φ, θ). This has a number of
benefits. First, the Rabi frequency only weakly depends on A⊥ 74, such that control of
13C spins with weak perpendicular couplings is still possible. Second, the gates do not
require dynamical decoupling pulses on the electron spin, which are a potential source
of infidelity. Finally, it is easier to achieve resonance using RF driving than it is for DD se-
quences, especially at larger magnetic fields where the DD resonances become increas-
ingly narrow. In Figure 2.11(a), we show high-fidelity RF driving of a single 13C spin.
The measured Rabi oscillations enable calibration of pulse durations (or amplitudes) to
implement desired Rθ

φ,C rotations.

Rφ

z,C gates can be implemented by preparing the electron in the |0〉 or |1〉 state and
subsequently waiting. The nuclear spin then precesses either around the z-axis at ωL ,
or around a slightly tilted axis at ω̃ (Sec. 2.7). This approach also avoids the need for
decoupling pulses. In Figure 2.11(c), we show free precession of a single 13C spin, from

which arbitrary Rφ

z,C rotations can be calibrated.
Note that in this thesis, the nuclear spins phases are generally defined in the labo-

ratory frame (unlike for the electron spin, where the phases are defined with respect to
a free-running microwave oscillator), and so each spin is acquiring phase at all times.
The initial phase of a nuclear spin superposition state is defined by the operation used
to create it. Thereafter, the relative phase is tracked at a rate dependent on whether the
electron is in a known eigenstate or is being decoupled. This ensures that all gates main-
tain well-defined phase relations.

A summary of the single- and two-qubit gate schemes is given in Table 2.2.

Gate type Technique Gate duration Conditions

Rθ
φ,e MW driving ∝ΩRabi, ∼100 ns Any

Rφ
z,e Virtual - Compiled via MW phase (I/Q mod)

Rθ
x,C DD ∝ A⊥, ∼1 ms Any

Rθ
φ,C DDrf (Ch. 5) ∝ΩRabi, ∼1 ms Any

Rθ
φ,C RF driving ∝ΩRabi, ∼1 ms Electron in |1〉

Rφ

z,C DD ∝∼ γC Bz , ∼1 µs Any

Rφ

z,C Wait ∝∼ γC Bz , ∼1 µs Electron in known eigenstate

Rφ

z,C Virtual - Compiled via RF phase (AWG)

CRx(θ) DD ∝ A⊥, ∼1 ms Any
CRφ(θ) DDrf (Ch. 5) ∝ΩRabi, ∼1 ms Any

Table 2.2: Summary of gate operations, the techniques used for their application, their associated durations,
and the conditions under which they may be used.

2.9.4. TWO-QUBIT GATE OPTIMISATION

The toolset described in the previous sections also provides a mechanism for calibrating
electron-nuclear two-qubit gates. As both initialisation and read-out of the 13C spins are
based upon two-qubit operations, their combined signal gives information about those
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gate fidelities. This signal can be used as a proxy for the two-qubit gate fidelity.

The calibration sequence is shown in Figure 2.12(a). After identification of promis-
ing resonances from DD spectroscopy, we estimate the parameters which realise a
CRx(±π/2) gate. This gate is then used in two ancilla-based measurements of the nu-
clear spin. The first measurement corresponds to MBI (using a conditional read-out),
whereas the second measurement uses complete single-shot read-out. For the second
measurement, we measure along both the x- and y-basis of the nuclear spin. The com-
bined outcomes give the coherence, C =

√
〈X 〉2 +〈Y 〉2, giving the full signal independent

of any nuclear spin z-rotations induced by a detuned two-qubit gate. We repeat this ex-
periment for a range of τ and N values close to the identified resonance. Figure 2.12(b)
shows example outcomes from this measurement, from which an optical set of parame-
ters are chosen to maximise the gate fidelity.

At present the maximum DD-based two-qubit gate fidelities achieved are ∼ 99% 58,94.
These numbers are not thought to be fundamentally limited, but rather arise from a
combination of factors including residual electron spin decoherence (primarily from
electronic noise), nuclear spin decoherence (which may be mitigated by nuclear spin
bath polarisation 16,91,92,95) and crosstalk (which may be suppressed by improved gate
designs 96–99). In Chs. 4 and 5 we will further discuss these effects alongside the decoher-
ence mechanisms of individual 13C spins, which exhibit rich physics due to the presence
of the frozen core phenomenon 94,100,101.

Figure 2.12: Two-qubit gate optimisation: (a) Quantum circuit used to initialise a single 13C spin and measure
the resulting expectation values 〈X 〉 and 〈Y 〉. For the latter basis, the dashed Rz (−π/2) gate is incorporated.
The ‘0’ in the first electron measurement indicates that the sequences continues conditioned on receiving that

outcome. (b) Measured coherence (C =
√

〈X 〉2 +〈Y 〉2) as a function of the number of decoupling pulses N
and the adjustment of the interpulse delay from resonance, ∆τ. Combinations which produce the highest
coherence correspond to the highest-fidelity two-qubit gates. Figure adapted from Kalb 59.



2

34 REFERENCES

REFERENCES

[1] W. Pfaff, Quantum measurement and entanglement of spin quantum bits in dia-
mond, Ph.D. Thesis, TUDelft (2013).

[2] H. Bernien, Control, measurement and entanglement of remote quantum spin reg-
isters in diamond, Ph.D. Thesis, TUDelft (2014).

[3] D. D. Awschalom, R. Hanson, J. Wrachtrup and B. B. Zhou, Quantum technologies
with optically interfaced solid-state spins, Nat. Photonics 12, 516 (2018).

[4] A. Gruber et al., Scanning confocal optical microscopy and magnetic resonance on
single defect centers, Science 276, 2012 (1997).

[5] S. Chakravarthi et al., Window into nv center kinetics via repeated annealing and
spatial tracking of thousands of individual nv centers, Phys. Rev. Mater. 4, 023402
(2020).

[6] D. Twitchen et al., Electron paramagnetic resonance (epr) and optical absorption
studies of defects created in diamond by electron irradiation damage at 100 and
350 k, Physica B Condens. 273, 628 (1999).

[7] B. Campbell and A. Mainwood, Radiation damage of diamond by electron and
gamma irradiation, Phys. Status Solidi A 181, 99 (2000).

[8] M. Ruf et al., Optically coherent nitrogen-vacancy centers in micrometer-thin
etched diamond membranes, Nano Lett. 19, 3987 (2019).

[9] Y.-C. Chen et al., Laser writing of coherent colour centres in diamond, Nat. Photon-
ics 11, 77 (2017).

[10] Y.-C. Chen et al., Laser writing of individual nitrogen-vacancy defects in diamond
with near-unity yield, Optica 6, 662 (2019).

[11] C. Stephen et al., Deep three-dimensional solid-state qubit arrays with long-lived
spin coherence, Phys. Rev. Appl. 12, 064005 (2019).

[12] Y. Chu et al., Coherent optical transitions in implanted nitrogen vacancy centers,
Nano Lett. 14, 1982 (2014).

[13] S. B. van Dam et al., Optical coherence of diamond nitrogen-vacancy centers formed
by ion implantation and annealing, Phys. Rev. B 99, 161203 (2019).

[14] M. Kasperczyk et al., Statistically modeling optical linewidths of nitrogen vacancy
centers in microstructures, Phys. Rev. B 102, 075312 (2020).

[15] A. E. Rugar et al., Generation of tin-vacancy centers in diamond via shallow ion
implantation and subsequent diamond overgrowth, Nano Lett. 20, 1614 (2020).

[16] T. Unden et al., Coherent control of solid state nuclear spin nano-ensembles, NPJ
Quantum Inf. 4, 1 (2018).



REFERENCES

2

35

[17] K. Ohno et al., Engineering shallow spins in diamond with nitrogen delta-doping,
Appl. Phys. Lett. 101, 082413 (2012).

[18] B. A. Myers et al., Probing surface noise with depth-calibrated spins in diamond,
Phys. Rev. Lett. 113, 027602 (2014).

[19] J. R. Maze et al., Properties of nitrogen-vacancy centers in diamond: the group the-
oretic approach, New J. Phys. 13, 025025 (2011).

[20] B. Hensen, Measurement-based quantum computation with the nitrogen-vacancy
centre in diamond, M.Sc. Thesis, TUDelft (2011).

[21] M. W. Doherty et al., The nitrogen-vacancy colour centre in diamond, Phys. Rep.
528, 1 (2013).

[22] N. B. Manson et al., NV—N+ pair centre in 1b diamond, New J. Phys. 20, 113037
(2018).

[23] G. Waldherr et al., Dark states of single nitrogen-vacancy centers in diamond un-
raveled by single shot nmr, Phys. Rev. Lett. 106, 157601 (2011).

[24] N. Aslam, G. Waldherr, P. Neumann, F. Jelezko and J. Wrachtrup, Photo-induced
ionization dynamics of the nitrogen vacancy defect in diamond investigated by
single-shot charge state detection, New J. Phys. 15, 013064 (2013).

[25] M. S. Barson, E. Krausz, N. B. Manson and M. W. Doherty, The fine structure of the
neutral nitrogen-vacancy center in diamond, Nanophotonics 8, 1985 (2019).

[26] S. Baier et al., Orbital and spin dynamics of single neutrally-charged nitrogen-
vacancy centers in diamond, Phys. Rev. Lett. 125, 193601 (2020).

[27] J. Weber et al., Quantum computing with defects, Proc. Natl. Acad. Sci. 107, 8513
(2010).

[28] M. Doherty et al., Theory of the ground-state spin of the nv- center in diamond,
Phys. Rev. B 85, 205203 (2012).

[29] B. J. Hensen, Quantum nonlocality with spins in diamond, Ph.D. Thesis, TUDelft
(2016).

[30] V. Ivády, I. A. Abrikosov and A. Gali, First principles calculation of spin-related
quantities for point defect qubit research, NPJ Comput. Mater. 4, 1 (2018).

[31] G. Fuchs, V. Dobrovitski, D. Toyli, F. Heremans and D. Awschalom, Gigahertz dy-
namics of a strongly driven single quantum spin, Science 326, 1520 (2009).

[32] G. De Lange, Z. Wang, D. Riste, V. Dobrovitski and R. Hanson, Universal dynamical
decoupling of a single solid-state spin from a spin bath, Science 330, 60 (2010).

[33] K.-M. C. Fu et al., Observation of the dynamic jahn-teller effect in the excited states
of nitrogen-vacancy centers in diamond, Phys. Rev. Lett. 103, 256404 (2009).



2

36 REFERENCES

[34] R. Albrecht, A. Bommer, C. Deutsch, J. Reichel and C. Becher, Coupling of a single
nitrogen-vacancy center in diamond to a fiber-based microcavity, Phys. Rev. Lett.
110, 243602 (2013).

[35] P. Tamarat et al., Stark shift control of single optical centers in diamond, Phys. Rev.
Lett. 97, 083002 (2006).

[36] L. Bassett, F. Heremans, C. Yale, B. Buckley and D. Awschalom, Electrical tuning of
single nitrogen-vacancy center optical transitions enhanced by photoinduced fields,
Phys. Rev. Lett. 107, 266403 (2011).

[37] M. W. Doherty, N. B. Manson, P. Delaney and L. C. Hollenberg, The negatively
charged nitrogen-vacancy centre in diamond: the electronic solution, New J. Phys.
13, 025019 (2011).

[38] H. Bernien et al., Two-photon quantum interference from separate nitrogen va-
cancy centers in diamond, Phys. Rev. Lett. 108, 043604 (2012).

[39] N. Kalb, P. C. Humphreys, J. Slim and R. Hanson, Dephasing mechanisms of
diamond-based nuclear-spin memories for quantum networks, Phys. Rev. A 97,
062330 (2018).

[40] M. L. Goldman et al., Phonon-induced population dynamics and intersystem cross-
ing in nitrogen-vacancy centers, Phys. Rev. Lett. 114, 145502 (2015).

[41] M. L. Goldman et al., State-selective intersystem crossing in nitrogen-vacancy cen-
ters, Phys. Rev. B 91, 165201 (2015).

[42] L. Robledo et al., High-fidelity projective read-out of a solid-state spin quantum
register, Nature 477, 574 (2011).

[43] S. B. van Dam, J. Cramer, T. H. Taminiau and R. Hanson, Multipartite entanglement
generation and contextuality tests using nondestructive three-qubit parity measure-
ments, Phys. Rev. Lett. 123, 050401 (2019).

[44] S. Loenen, Improving single-shot readout for diamond quantum processors, M.Sc.
Thesis, TUEindhoven (2019).

[45] S. Sangtawesin et al., Origins of diamond surface noise probed by correlating single-
spin measurements with surface spectroscopy, Phys. Rev. X 9, 031052 (2019).

[46] J. Hadden et al., Strongly enhanced photon collection from diamond defect cen-
ters under microfabricated integrated solid immersion lenses, Appl. Phys. Lett. 97,
241901 (2010).

[47] H. Bernien et al., Heralded entanglement between solid-state qubits separated by
three metres, Nature 497, 86 (2013).

[48] T. Yeung, D. Le Sage, L. M. Pham, P. Stanwix and R. L. Walsworth, Anti-reflection
coating for nitrogen-vacancy optical measurements in diamond, Appl. Phys. Lett.
100, 251111 (2012).



REFERENCES

2

37

[49] P. C. Humphreys et al., Deterministic delivery of remote entanglement on a quan-
tum network, Nature 558, 268 (2018).

[50] M. Pompili et al., Realization of a multinode quantum network of remote solid-state
qubits, Science 372, 259 (2021).

[51] J. Cramer et al., Repeated quantum error correction on a continuously encoded
qubit by real-time feedback, Nat. Commun. 7, 1 (2016).

[52] M. Abobeih, From atomic-scale imaging to quantum fault-tolerance with spins in
diamond, Ph.D. Thesis, TUDelft (2021).

[53] M. Degen et al., Entanglement of dark electron-nuclear spin defects in diamond,
Nat. Commun. 12, 1 (2021).

[54] H. Bartling et al., Coherence and entanglement of inherently long-lived spin pairs
in diamond, arXiv:2103.07961 (2021).

[55] C. Bonato et al., Optimized quantum sensing with a single electron spin using real-
time adaptive measurements, Nat. Nanotechnol. 11, 247 (2016).

[56] W. Pfaff et al., Unconditional quantum teleportation between distant solid-state
quantum bits, Science 345, 532 (2014).

[57] S. L. N. Hermans et al., Qubit teleportation between non-neighbouring nodes in a
quantum network, In preparation (2021).

[58] N. Kalb et al., Entanglement distillation between solid-state quantum network
nodes, Science 356, 928 (2017).

[59] N. Kalb, Diamond-based quantum networks with multi-qubit nodes, Ph.D. Thesis,
TUDelft (2018).

[60] W. S. Warren, Effects of arbitrary laser or nmr pulse shapes on population inversion
and coherence, J. Chem. Phys. 81, 5437 (1984).

[61] L. M. Vandersypen and I. L. Chuang, Nmr techniques for quantum control and
computation, Rev. Mod. Phys. 76, 1037 (2005).

[62] T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski and R. Hanson, Uni-
versal control and error correction in multi-qubit spin registers in diamond, Nat.
Nanotechnol. 9, 171 (2014).

[63] A. Jarmola, V. Acosta, K. Jensen, S. Chemerisov and D. Budker, Temperature-and
magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy en-
sembles in diamond, Phys. Rev. Lett. 108, 197601 (2012).

[64] M. H. Abobeih et al., One-second coherence for a single electron spin coupled to a
multi-qubit nuclear-spin environment, Nat. Commun. 9, 1 (2018).



2

38 REFERENCES

[65] T. Astner et al., Solid-state electron spin lifetime limited by phononic vacuum
modes, Nat. Mater. 17, 313 (2018).

[66] A. Norambuena et al., Spin-lattice relaxation of individual solid-state spins, Phys.
Rev. B 97, 094304 (2018).

[67] G. Balasubramanian et al., Ultralong spin coherence time in isotopically engineered
diamond, Nat. Mater. 8, 383 (2009).

[68] N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker and R. L. Walsworth, Solid-state
electronic spin coherence time approaching one second, Nat. Commun. 4, 1 (2013).

[69] T. Gullion, D. B. Baker and M. S. Conradi, New, compensated carr-purcell sequences,
J. Magn. Reson. 89, 479 (1990).

[70] B. Smeltzer, J. McIntyre and L. Childress, Robust control of individual nuclear spins
in diamond, Phys. Rev. A 80, 050302 (2009).

[71] A. P. Nizovtsev et al., Non-flipping 13c spins near an nv center in diamond: hyper-
fine and spatial characteristics by density functional theory simulation of the c510
[nv] h252 cluster, New J. Phys. 20, 023022 (2018).

[72] M. G. Dutt et al., Quantum register based on individual electronic and nuclear spin
qubits in diamond, Science 316, 1312 (2007).

[73] M. Abobeih et al., Atomic-scale imaging of a 27-nuclear-spin cluster using a quan-
tum sensor, Nature 576, 411 (2019).

[74] L. Childress et al., Coherent dynamics of coupled electron and nuclear spin qubits
in diamond, Science 314, 281 (2006).

[75] P. Neumann et al., Single-shot readout of a single nuclear spin, Science 329, 542
(2010).

[76] G. Fuchs, G. Burkard, P. Klimov and D. Awschalom, A quantum memory intrinsic
to single nitrogen–vacancy centres in diamond, Nat. Phys. 7, 789 (2011).

[77] W. Pfaff et al., Demonstration of entanglement-by-measurement of solid-state
qubits, Nat. Phys. 9, 29 (2013).

[78] G. Waldherr et al., Quantum error correction in a solid-state hybrid spin register,
Nature 506, 204 (2014).

[79] T. Taminiau et al., Detection and control of individual nuclear spins using a weakly
coupled electron spin, Phys. Rev. Lett. 109, 137602 (2012).

[80] N. Zhao et al., Sensing single remote nuclear spins, Nat. Nanotechnol. 7, 657 (2012).

[81] S. Kolkowitz, Q. P. Unterreithmeier, S. D. Bennett and M. D. Lukin, Sensing distant
nuclear spins with a single electron spin, Phys. Rev. Lett. 109, 137601 (2012).

http://dx.doi.org/ 10.1126/science.1139831
http://dx.doi.org/ 10.1126/science.1131871


REFERENCES

2

39

[82] J. Cramer, Quantum error correction with spins in diamond, Ph.D. Thesis, TUDelft
(2016).

[83] A. Wickenbrock et al., Microwave-free magnetometry with nitrogen-vacancy cen-
ters in diamond, Appl. Phys. Lett. 109, 053505 (2016).

[84] N. Zhao, J.-L. Hu, S.-W. Ho, J. T. Wan and R. Liu, Atomic-scale magnetometry of dis-
tant nuclear spin clusters via nitrogen-vacancy spin in diamond, Nat. Nanotech-
nol. 6, 242 (2011).

[85] F. Shi et al., Sensing and atomic-scale structure analysis of single nuclear-spin clus-
ters in diamond, Nat. Phys. 10, 21 (2014).

[86] H. Oh et al., Algorithmic decomposition for efficient multiple nuclear spin detection
in diamond, Sci. Rep. 10, 1 (2020).

[87] K. Jung et al., Deep learning enhanced individual nuclear-spin detection, NPJ
Quantum Inf. 7, 1 (2021).

[88] K. Cujia, J. M. Boss, K. Herb, J. Zopes and C. L. Degen, Tracking the precession of
single nuclear spins by weak measurements, Nature 571, 230 (2019).

[89] M. Pfender et al., High-resolution spectroscopy of single nuclear spins via sequential
weak measurements, Nat. Commun. 10, 1 (2019).

[90] M. Bakker, Frozen core spin dynamics in diamond, M.Sc. Thesis, TUDelft (2015).

[91] P. London et al., Detecting and polarizing nuclear spins with double resonance on
a single electron spin, Phys. Rev. Lett. 111, 067601 (2013).

[92] I. Schwartz et al., Robust optical polarization of nuclear spin baths using hamil-
tonian engineering of nitrogen-vacancy center quantum dynamics, Sci. Adv. 4,
eaat8978 (2018).

[93] M. A. Nielsen and I. Chuang, Quantum computation and quantum information,
(2002).

[94] C. E. Bradley et al., A ten-qubit solid-state spin register with quantum memory up
to one minute, Phys. Rev. X 9, 031045 (2019).

[95] J. Randall et al., Observation of a many-body-localized discrete time crystal with a
programmable spin-based quantum simulator, arXiv:2107.00736 (2021).

[96] V. Mkhitaryan, F. Jelezko and V. Dobrovitski, Highly selective detection of individ-
ual nuclear spins with rotary echo on an electron spin probe, Scientific reports 5, 1
(2015).

[97] J. Casanova, Z.-Y. Wang, J. Haase and M. Plenio, Robust dynamical decoupling se-
quences for individual-nuclear-spin addressing, Phy. Rev. A 92, 042304 (2015).

http://dx.doi.org/10.1017/CBO9780511976667


2

40 REFERENCES

[98] T. K. Unden, D. Louzon, M. Zwolak, W. H. Zurek and F. Jelezko, Revealing the emer-
gence of classicality using nitrogen-vacancy centers, Phys. Rev. Lett. 123, 140402
(2019).

[99] W. Dong, F. Calderon-Vargas and S. E. Economou, Precise high-fidelity electron–
nuclear spin entangling gates in nv centers via hybrid dynamical decoupling se-
quences, New J. Phys. 22, 073059 (2020).

[100] G. Khutsishvili, Spin diffusion and magnetic relaxation of nuclei, Sov. Phys. JETP
15, 909 (1962).

[101] R. Guichard, S. Balian, G. Wolfowicz, P. Mortemousque and T. Monteiro, Decoher-
ence of nuclear spins in the frozen core of an electron spin, Phys. Rev. B 91, 214303
(2015).



3
ORBITAL AND SPIN DYNAMICS OF

SINGLE NV0 CENTRES IN DIAMOND

S. Baier∗, C. E. Bradley∗, T. Middelburg, V. V. Dobrovitski, T. H. Taminiau, R. Hanson

The neutral charge state plays an important role in quantum information and sensing
applications based on nitrogen-vacancy centres. However, the orbital and spin dynam-
ics remain unexplored. Here, we use resonant excitation of single centres to directly re-
veal the fine structure, enabling selective addressing of spin-orbit states. Through pump-
probe experiments, we find the orbital relaxation time (430 ns at 4.7 K) and measure its
temperature-dependence up to 11.8 K. Finally we reveal the spin relaxation time (1.5 s),
and realise projective high-fidelity single-shot readout of the spin state (≥ 98%).

The results of this chapter have been published in Phys. Rev. Lett. 125, 193601 (2020).
∗Equally contributing authors.
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3.1. INTRODUCTION

Defect centres in solids are a promising class of systems for quantum science and tech-
nology 1,2. They combine bright optical transitions, access to long-lived electronic- and
nuclear-spin registers and compatibility with solid-state device engineering. Of partic-
ular prominence is the negatively-charged nitrogen-vacancy centre (NV−) in diamond,
which has enabled recent advances in quantum information science 3,4 and quantum
sensing 5–7.

Alongside NV−, the nitrogen-vacancy defect can exist in both the neutral- (NV0) and
— with sufficient Fermi-level engineering — positive- (NV+) charge states. These ad-
ditional charge states can be used as a resource in a number of applications, such as
spin-to-charge conversion for improved spin-state read-out 8,9, classical data storage in
NV ensembles 10, and deliberate charge-state switching for improved nuclear-spin co-
herence under ambient conditions 11,12.

Conversely, for experiments based upon NV−, undesired conversion to NV0 can
be a hindrance: active charge-state initialisation protocols have been used to counter
this 13,14. For quantum networks, stochastic conversion from NV− to NV0 is an impor-
tant decoherence mechanism for nuclear-spin quantum memories 15.

Despite the importance of NV0, understanding of many of its properties remains elu-
sive. In particular, the orbital- and spin-dynamic timescales are unknown. Also, while re-
cent magnetic circular dichroism (MCD) measurements on ensembles 16,17 give insight
into the NV0 fine structure, no direct observation has been reported. Building an under-
standing of the system and its associated dynamic processes is important for improving
control in NV quantum devices. Moreover, the knowledge gained may offer new insights
into the physics of other impurities in solids 18. Finally, NV0 may prove to be a powerful
quantum system in its own right.

Here, we develop protocols combining resonant excitation of both NV0 and NV−. We
apply these novel protocols to reveal the orbital and spin dynamics of single NV0 centres
in diamond, as well as to realise initialisation and single-shot readout of the NV0 spin
state. We perform our measurements on single NV centres at cryogenic temperatures,
see Fig. 3.1(a) and Sec. 3.7.1. The NV centre is addressed with microwave (MW) pulses
(NV− ground-state spin transitions) as well as with polarisation-controlledλred = 637nm
(NV− zero-phonon line (ZPL)) and λyellow = 575nm (NV0 ZPL) laser light. We apply an
axial magnetic field of Bz = 1890(5)G to induce significant Zeeman splitting.

3.2. EXCITATION SPECTROSCOPY OF THE NV0 CENTRE

The ZPL of the NV0 centre has been conclusively attributed to this defect 19–24. A combi-
nation of ab-initio calculations and symmetry arguments led to the proposal of ground
states of 2E symmetry, which can be optically excited to a 2A2 manifold 25,26. An addi-
tional metastable 4A2 quartet state was also predicted, and has been observed by elec-
tron paramagnetic resonance (EPR) measurements under excitation of the NV0 ZPL 27.
A splitting of the transitions of the two orbital states Ex and Ey has been measured 26,28.
However, the associated fine structure has not been observed in PL or EPR measure-
ments.
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Figure 3.1: Direct observation of the fine structure of the NV0 centre. (a) Electron microscope image of a solid-
immersion lens fabricated around the NV centre. Optical (λyellow, λred) and mw control are indicated. (b)
Experimental sequence for spectroscopy consisting of a preparation (1) and measurement (2) part. (c) Spectra
obtained with linear (H,V) and circular (L,R) polarisations (Pyellow = 500pW), offset for clarity (see Sec. 3.7.2).
(d) Ground and excited state level structure. Spin-conserving optical transitions (solid arrows), excited state
decay (dashed arrows) and spin/orbital relaxations (dotted arrows) are indicated.

We start by performing spectroscopy using the experimental procedure sketched in
Fig. 3.1(b). For each frequency step, we (1) probabilistically prepare the emitter in NV0 by
applying strong laser excitation resonant with the NV− ZPL, in combination with weak
mw driving (see Sec. 3.7.1) to induce the conversion NV− → NV0. We then (2) apply
polarised yellow light, during which time all single-photons above 650 nm are integrated.

The measured spectra (Fig. 3.1(c)) show four transitions — the first direct spectro-
scopic observation of the NV0 fine structure. These observations validate the model of
Barson et al. 16, and we hence follow their theoretical description below. Under the sec-
ular approximation, the ground-state Hamiltonian of NV0 can be described by

H = gµB Ŝz Bz + lµB L̂z Bz +2λL̂z Ŝz

+ε⊥(L̂−+ L̂+).
(3.1)

g is the spin g-factor, µB is the Bohr magneton, l is the orbital g-factor, λ is the spin-
orbit interaction parameter and ε⊥ is the perpendicular strain parameter. L̂z = σz and
Ŝz = 1

2σz are the orbital and spin operators defined in terms of the Pauli matrixσz , while

L̂± = |±〉〈∓| with |±〉 = ∓(1/
p

2(|X 〉± i |Y 〉)) are the orbital operators defined within the
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basis of the strain eigenstates {|X 〉 , |Y 〉}. The z-axis is defined parallel to the NV axis.
The resulting level structure is presented in Fig. 3.1(d). The 2E ground state is com-

posed of a pair of doublet states with opposite spin-orbit parity (lower spin-orbit branch:
{|+,↓〉 , |−,↑〉}; upper spin-orbit branch: {|−,↓〉 , |+,↑〉}). The degeneracy of each doublet is
lifted by orbital- and spin-Zeeman contributions under the applied magnetic field. Con-
versely, the 2A2 excited state exhibits no spin-orbit structure, but is rather split by the
spin-Zeeman effect alone. These contributions lead to four spin-conserving transitions.
The contributing ground state for each observed transition is indicated in Fig. 3.1(c).

We find that the luminescence of the transitions depend significantly on the polari-
sation of the excitation light (see Fig. 3.1(c)). Differing transition amplitudes for orthogo-
nal polarisations can be attributed to optical selection rules that are strongly dependent
on ε⊥ (see Sec. 3.7.3 and Ref. 16). Based upon these observations, we develop a method
to extract ε⊥ and simultaneously the fine structure parameters of the NV0 Hamiltonian
(Sec. 3.7.3). By fitting spectra from three individual NV centres against our theoretical
model, we find l = 0.039(11) and λ = 4.9(4)GHz. These values are roughly a factor of 2
larger than those found previously using NV-ensemble MCD measurements†.

Crucially, the data in Fig. 3.1(c) shows that resonant optical excitation in this mag-
netic field regime allows for state-resolved addressing, enabling the heralded prepara-
tion of specific states and investigation of the system dynamics. To date, only the excited-
state lifetime, τexc, of 21 ns has been reported 30. Here, we investigate the orbital- and
spin-relaxation timescales of the ground state, τorbit and τspin, see Fig. 3.1(d).

3.3. TIME-RESOLVED FLUORESCENCE MEASUREMENTS

In order to unambiguously measure the dynamics of NV0, we design and implement
a charge-resonance (CR) protocol that realises high-fidelity heralded preparation into
NV0, with the λ= 575nm laser resonant with a chosen optical transition, see Fig. 3.2(a).
The CR protocol (1) can be broken down as follows. First, a heralding signal confirms
preparation in NV−, with the λ = 637nm lasers on resonance with the NV− transitions.
Next, a strong red optical pulse induces charge state conversion, after which a chosen
NV0 transition is excited with yellow light. If the photon counts obtained during the
‘NV0 check’ exceed a pre-set threshold, the protocol is completed. Further details are
given in Sec. 3.7.4.

After the CR protocol, we perform the experimental sequence on NV0 (2). Finally,
we detect whether undesired conversion to NV− occurred during the experimental se-
quence, and then perform read-out of the NV0 state (3). The number of repetitions of
the experimental sequence (2) is chosen to minimise the overhead from the CR protocol
while maintaining an NV0 population above 85%, and ranges from N=15-1000 depen-
dent upon the used yellow power. Note that the CR protocol prepares a specific spin
state of the NV0 centre. For circular polarisation we typically start the experiment by
heralding the |↓〉 spin state. For linear polarisation, however, due to their close spectral
vicinity, the CR check heralds either the |↓〉 or |↑〉 spin state.

In Fig. 3.2(b) we show time-resolved pump measurements. Here, the yellow

†A re-assessment of the procedures of Barson et al. concluded that it can not be excluded that an error in
documenting the data is the cause of this discrepancy 29.
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laser is gated by an acousto-optic modulator (AOM), with measured rise-/fall-time of
30(5)/7(1)ns. Upon opening the AOM, we observe a rapid increase in fluorescence due
to optical cycling, which is then damped as population is pumped out of the driven
state. By fitting the steady-state fluorescence counts for L/H polarisation we extract a
saturation power of 2.5(2)/1.8(1)nW and saturation counts of 105(2)/103(2)kcts/s, see
Fig. 3.2(c). As the optical power is increased, coherent optical Rabi oscillations are ob-
served. In Fig. 3.2(d), we plot the fitted frequency of these oscillations, revealing the ex-
pected

√
Pyellow dependence. When the AOM is closed the fluorescence decays with

τexc = 22(1)ns (inset Fig. 3.2(b)), which is consistent with literature 30.

Figure 3.2: Time-resolved resonant pump measurements. (a) Experimental sequence consisting of prepa-
ration (1), measurement (2) and readout (3) parts. (b) Fluorescence of NV0 when driving the lower spin-orbit
branch with H polarisation for Pyellow = 2,4,10,20nW (bottom to top) averaged over at least 1×106 repetitions.
Measurements have a timing resolution of 250ps and are offset for clarity. Solid red lines are simulations of the
full system dynamics with our theoretical model (Sec. 3.7.5). Inset: decay of fluorescence counts after the AOM
is closed. (c) Steady state (ss) fluorescence counts as a function of Pyellow, for H (squares) and L polarisation
(circles). The data is fit with a saturation curve f (P ) = A(P/(P +Psat)). (d) Optical Rabi frequency as a function

of
√

Pyellow. Fits yield a slope of 5.3(1)/5.1(1) MHz/
p

nW for L/H polarisation.
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Figure 3.3: Time-resolved pump-probe spectroscopy. The experimental sequence after state preparation is
given in the inset of (b). (a) Example traces for a range of tdelay (light to dark for increasing tdelay), at a temper-

ature of 5.5(1) K, integrated over 5×106 acquisitions each, measured with H polarisation. The dashed line is a
fit to the recovery behaviour (Sec. 3.7.7). (b) Recovery rate Rrecovery as a function of the cryostat temperature.
Circles (squares) describe data measured on the lower (upper) spin-orbit branch. Error bars for Rrecovery corre-
spond to 1 s.d. fit errors. The solid lines are fits of form f (T ) = A T +B exp[−∆/kB T ], giving A = 0.53(3)MHz/K
(A = 0.54(2)MHz/K) and B = 1(1)×107 MHz (B = 1(4)×107 MHz) for the lower (upper) branch.

3.4. ORBITAL DYNAMICS OF THE NV0 CENTRE

To uncover the recovery timescale after pumping we turn to pump-probe spectroscopy.
Example time-traces are shown in Fig. 3.3(a). The resulting data is well described by an
exponential recovery with a single timescale associated with how fast the system relaxes
once illumination is turned off (see Sec. 3.7.7). At base temperature of our cryostat (T =
4.65(3)K), we extract τrecovery = 0.43(6)µs. We attribute these fast dynamics to orbital
relaxation processes, i.e. |+〉↔ |−〉 and τorbit = τrecovery.

We repeat the pump-probe measurements across a range of temperatures. The fitted
recovery times are shown as rates Rrecovery = 1/trecovery in Fig. 3.3(b). After an initial linear
increase a rapid increase is observed at higher temperatures. At these higher tempera-
tures, the required time resolution exceeds the AOM switching time constants, which we
take into account in the fitting procedure (see Sec. 3.7.7).

The initial linear increase (∝ T ) can be attributed to single-phonon processes, while
high-order processes appear to govern the recovery rate at higher temperatures 31,32.
Here, we fit individually to a two-phonon Raman process (∝ T n) and a two-phonon
Orbach process (∝ exp[−∆/kB T ]), with kB being the Boltzmann constant. For the Ra-
man process the fit returns n = 13(2) (14(3)) for the lower (upper) spin-orbit branch; a
physical explanation for such values is currently lacking. For the Orbach process we find
a characteristic energy scale of ∆= 12(2)meV (∆= 13(4)meV) extracted from a fit to the
lower (upper) spin-orbit branch. ∆ is associated to the energy splitting to the first vi-
bronic level of the NV0 ground state, predicted to be a Jahn-Teller system 19,33. The value
found here agrees with the bulk absorption measurements of Davies 19 (13.6(7)meV),
and with recent density-functional theory calculations (21.4meV) 33, suggesting that the
measured increase of Rrecovery is predominantly due to two-phonon Orbach processes.
While a detailed model is beyond the scope of this work, we expect that our findings will
aid in the further understanding of the vibronic structure of NV0.
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Figure 3.4: Single-shot readout and spin pumping. (a) Histograms after preparation of the NV0 |↓〉 state
(dark colors) and mixed (light colors) spin states. (b) Relaxation (T1) measurement for the |↓〉 (circles) and
|↑〉 (squares) states, fitted with an exponential decay (recovery). The NV− population (triangles) remains neg-
ligible in the dark. The data is averaged over 3×103 repetitions each. (c) Spin-pumping: NV0 spin- and total
NV− populations as a function of yellow illumination time. Solid lines are fits to solutions for the underlying
3-level rate equations (Sec. 3.7.8). (d) Spin-pumping with charge-cycling: same as (c) but with stroboscopic
red illumination. The time axis is the yellow illumination time (half of the total sequence time).

3.5. SPIN DYNAMICS OF THE NV0 CENTRE

Now we turn to the spin dynamics of NV0. Here, we exploit polarisation control to se-
lectively prepare, address, and readout the NV0 spin state. These measurements are all
performed on timescales À τorbit = 0.43(6)µs and thus average over the orbital basis;
we will therefore only refer to the spin states. In all experiments below, we use L polar-
isation, addressing the |↓〉 state. We herald the preparation of |↓〉 by applying 25 nW for
250µs, and proceed when more than 25 photons are detected. After a delay of 0.1ms, we
perform a charge-state check with red excitation, followed by a second yellow readout
(again, 25 nW for 250µs), see Fig. 3.2(a)(3). We then repeat this experiment, but with a
delay of 10s between the yellow readouts, allowing for relaxation processes to occur. The
resulting histograms are shown in Fig. 3.4(a).

In the first case (dark colors), we observe a single dominant population which can
be modelled by a Poissonian distribution with mean photon count 25.2(2), and that we
attribute to |↓〉. In the second case (light colors), we additionally observe a second distri-
bution, again modelled as a Poissonian distribution with mean photon count 0.171(4).
A charge-state measurement of NV− performed before each read-out shows that only a
small fraction of the population (PNV− ∼ 1%) is found in the unwanted charge state —
which we discard from the histograms — and that the majority of low-count events can
be attributed to a dark state of NV0. As the populations evolve without laser excitation,
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the dark state must be part of the ground state manifold; we therefore assign this state
to the second spin state |↑〉. A read-out threshold of 5 photons (solid line, Fig. 3.4(a))
discriminates the two spin states.

We now sweep the delay time between initialisation and read-out. The measured
populations of |↓〉 (P↓) and |↑〉 (P↑) are plotted in Fig. 3.4(b), showing relaxation to a mean
population of 0.494(6). The data is consistent with a spin-1/2 T1 process of characteristic
timescale τspin = 1.51(1)s. Note that the observed value is a lower bound of the intrinsic
spin relaxation, as it may be limited by leakage of resonant laser light. By setting the
initial and long-time population in |↓〉 to be 1 and 0.5 respectively, we obtain a lower-
bound for the single-shot read-out fidelity, FRO = 1

2 (F|↓〉+F|↑〉) ≥ 98.2(9)%, where F|s〉 is
the probability to assign |s〉 after preparing |s〉 (see Sec. 3.7.10).

To investigate the cycling nature of the driven optical transition we now repeat the
measurement under 5nW of resonant yellow excitation, see Fig. 3.4(c). We find that P↓
decreases on a timescale faster than can be explained by spin-relaxation alone, show-
ing that the optical excitation induces spin pumping. Possible spin-mixing channels are
given either in the 2 A2 excited state or via an intersystem crossing, which might be of-
fered by the 4 A2 state. We also find a significant increase of PNV− due to optically-induced
charge conversion (see Sec. 3.7.6 and Ref. 34). However, this slows once |↓〉 is depleted as
|↑〉 is a dark state for optical excitation. Beyond this, P↑ reduces with τspin, and charge
conversion continues. We find a high state preparation fidelity for |↑〉 of 99+1

−10 % after
600ms, but with an absolute population in the NV0 |↑〉 state of only 22(2)%.

To reveal the respective rates we develop a three-level-rate equation model that we
fit to our data, using the measured spin-relaxation time as a fixed input (solid lines,
Fig. 3.4(c)) (see Sec. 3.7.8). For the applied power of 5 nW, we extract characteris-
tic timescales of 27(1)ms (90(4)ms) for the charge conversion (spin pumping) pro-
cess. From this we can estimate the cyclicity of the |↓〉 state within this regime to be
0.98(8)×105 cycles, mainly limited by recharging to NV− (see Sec. 3.7.9).

In a second experiment the 5nW yellow excitation is stroboscopically interleaved
with strong NV− → NV0 ionisation pulses, see Fig. 3.4(d) and Sec. 3.7.8. Again we ob-
serve a gradual decrease of P↓, and an increase of both P↑ and PNV− , but then PNV−

growth stops and even inverts. This observation can be explained via the picture that
the removal of an electron from NV− prepares a random spin-state in NV0, eventually
populating the dark state |↑〉. Competing rates between this spin-selection process and
spin relaxation lead to the observed steady state populations. We again fit a three-level
rate equation model, using the previously obtained parameters as fixed inputs, and ex-
tract a timescale for ionisation of 18(4)ms. The rate equation model does not accurately
describe the behaviour at long timescales, which is likely due to a reduction of the NV0

spin-relaxation time under red excitation and strong NV− microwave driving.

As a final step, we develop a master equation simulation to capture the full dynam-
ics of the NV0 centre (see Sec. 3.7.5). In Fig. 3.2(b) we plot the simulated excited state
population (solid line), using the uncovered NV0 timescales and spectral properties. We
match the Rabi frequency to the measured optical power and further include a spectral
average over a Gaussian distribution of detuning values with FWHM = 2π×20MHz. We
find excellent agreement with our experimental fluorescence data, emphasising a con-
sistent understanding of the NV0 dynamics.
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3.6. CONCLUSION

In conclusion, we have developed a novel toolbox for the study and control of single
neutrally-charged NV centres in diamond. We have uncovered the dynamic timescales
and demonstrated single-shot readout and initialisation-by-measurement of the NV0

spin, each with high fidelity. In future investigations, coherent control of the spin states
may be obtained. Detailed modelling of the defect may give new insights into the ob-
served temperature-dependence of the orbital dynamics. On the application side, pro-
tection of nuclear spin quantum memories from dephasing by NV0 may be achieved
by microwave spin locking in both orbitals, or by feedback based upon the NV0 spin
read-out demonstrated here. Finally, at reduced temperatures that suppress the orbital
dynamics, NV0 may prove to be a powerful system for quantum technologies in its own
right.

3.7. SUPPLEMENTARY MATERIALS

3.7.1. EXPERIMENTAL SETUP

Our experiments are performed on single nitrogen-vacancy (NV) centres in type-IIa bulk
diamond (Element Six, CVD grown, <111> oriented), using a cryogenic (Montana Cryo-
station, 4K) home-built confocal microscope setup. Enhanced photon-collection ef-
ficiency is achieved by fabrication of solid-immersion lenses 35 and an anti-reflection
coating 36. For phonon-sideband (PSB) detection, a dichroic mirror (Semrock, pass
above 650nm) and an additional long-pass filter are used to block reflections of the exci-
tation lasers. Photon emission is detected via an avalanche photo-diode (APD, Laser
components, quantum efficiency ∼ 80%), with a total collection efficiency of ∼ 3%
(∼ 10%) of the NV0 (NV−) PSB.

We apply a magnetic field of Bz = 1890(5)G along the symmetry axis z of the NV
centre via a permanent magnet. A slight misalignment of the field leaves a small per-
pendicular magnetic field component of B⊥ = 10(5)G. As the ratio B⊥/Bz is small, we
neglect the effect of the perpendicular magnetic field. In addition to the magnetic field,
local strain and electric fields can alter the NV centre level-structure 37. For the NV centre
used in the main text we observe the level structures as depicted in Fig. 3.5.

To address the NV0 charge state we apply resonant optical excitation of the NV0 zero-
phonon-line (ZPL) (λ = 575.17nm,ω = 2π× 521.22THz). The laser frequency can be
manually tuned to each 2E to 2 A2 transition. In the NV− charge state, selective exci-
tation of ZPL transitions (λ = 637.25nm,ω = 2π× 470.45THz) enables optical readout
(RO, ms = 0 −→←− Ex) and spin-pumping (SP, ms = ±1 −→←− E1,2). The ground state spin levels
(ms = 0 −→←− ms = −1; 2.4GHz) can be coherently adressed with microwave (mw) pulses
delivered via gold strip lines on top of the diamond surface. For the NV used in the main
text (NV A), we extract an NV− perpendicular strain of εNV− = 4.2(1)GHz, from the ob-
served optical transition frequencies, see Fig. 3.5. We note that it is unclear how this
relates to the strain in NV0, as the susceptibility of the NV0 states to electric fields is cur-
rently unknown. Further, charge state conversion may result in differing local charge
environments for the two charge states 38.
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Figure 3.5: Level structure for the two charge states NV0 and NV− of a single NV centre. The optical transitions
used within this work are indicated by yellow (red) solid arrows for NV0 (NV−). Charge-state switching between
the two charge states is achieved via two-photon absorption of the respective ZPL laser 34.

3.7.2. PHOTO-LUMINESCENCE MEASUREMENTS

For the photo-luminescence (PL) measurements presented in Fig. 3.1, the following
methodology was used. First, the NV centre is prepared in the neutral charge state
by application of a 50µs optical SP pulse (1µW) in combination with weak mw driv-
ing (νmw

Rabi ∼ 150kHz) of the NV− ms = 0 −→←− ms = −1 ground-state spin transition. This
method prevents optical spin-pumping into a NV− dark state (ms = 0). Second, 500pW
of yellow light (Pyellow) is applied for 15µs at the NV0 ZPL transition, during which all
single-photon detection is integrated. The red-yellow procedure is repeated N = 150
times before the frequency is stepped by 1MHz. For these measurements the weak NV−
mw driving (off-resonant for NV0) is kept active throughout the experiment due to tech-
nical reasons, but this is not expected to affect the NV0 dynamics.

A total of 20 full scans were made for each polarisation setting, which were collated
to produce the final PL data. For each PL scan, the fluorescence maxima are found via
a peak finding routine (python, scipy.signal.find_peaks_cwt). Further, all data sets are
shifted to the mean frequency of all fluorescence maxima and summed. We typically
observe shifts of the maxima by up to 200MHz due to spectral diffusion. PL scans of the
lower and upper spin-orbit branches were done in two separate measurements. To avoid
systematic shifts of the splitting between the two spin-orbit branches, the NV centre is
reset by strong green (λ = 515nm, 10µW) illumination in between these two measure-
ments, cancelling potentially accumulating effects of spectral diffusion from the red-
yellow scans.

In a second set of experiments, we study the linewidth of the observed optical tran-
sitions for various values of Pyellow, see Fig. 3.6(a). We observe a broadening of the
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Figure 3.6: Power broadening of NV0 optical transitions. (a) Example PL spectra for the lower spin-orbit
branch, measured at powers of 0.5 nW, 22 nW, and 160 nW (light to dark blue) with H polarisation. Each
spectrum consists of 20 individual scans which have been shifted on top of one another and summed. A pair
of Voigt profiles is fitted. The spectra have been normalised and offset for clarity. (b) FWHM of the fitted

Voigt profiles, as a function of
√

Pyellow. The solid line is a fit to the data (see text), from which we extract

a = 18.6(1)MHz/
p

nW and b = 25.1(3)MHz. The transform limit, 7.6 MHz, arising from the excited state life-
time, τexc = 21ns, is shown as a dashed line.

lines with increasing power. As a result, in the high power regime the fine structure
is no longer resolved. The extracted full width at half maximum (FWHM) is plotted in
Fig. 3.6(b) as a function of

√
Pyellow (i.e. ∝ optical Rabi frequency). For power broad-

ening, a linear dependence on the Rabi frequency is expected, while at low powers
the FWHM is limited by the intrinsic linewidth of the defect. In Fig. 3.6(b) we fit the
dependence under the assumption that the linewidth can be described by a convolu-
tion of a lifetime-limited Lorentzian profile ( fL = 1/(2π× τexc) = 7.6MHz) with Gaus-
sian broadening terms. The resulting Voigt FWHM can be approximated by 39 f ≈
0.5446 fL +

√
0.2166 f 2

L + f 2
G . The Gaussian component is given by the convolution of a

power-dependent term from power-broadening, and a power-independent term arising

from spectral diffusion: fG =
√

a2Pyellow +b2. The fit shows good agreement with the ob-

served behaviour. We find a spectral-diffusion-limited linewidth of 30.3(3)MHz, a factor
of 4 above the transform limit.

3.7.3. EXTRACTION OF THE NV0 FINE STRUCTURE PARAMETERS

The obtained PL measurements carry information of the parameters of the ground and
excited state Hamiltonians. Based on these measurements we develop a methodology to
extract the NV0 orbital g-factor l and spin-orbit interaction parameter λ.

Beside the fine-structure constants, the PL spectrum of the NV0 centre depends on
both magnetic field and strain (stress within the crystal and electric fields). These de-



3

52 3. ORBITAL AND SPIN DYNAMICS OF SINGLE NV0 CENTRES IN DIAMOND

Figure 3.7: Extraction of finestructure constants. (a) PL spectra for four different excitation light polarisations

(R, L, V, H) for NV A. (b) NV A: Example traces for extracted and normalised PL amplitudes Acirc,norm
1 (circles)

and Acirc,norm
2 (squares) for varying angles of the quarter-wave plate (QWP). (c) Same as (b) but for Alin,norm

when varying the angle of the half-wave plate (HWP). The dashed lines in (b,c) indicate the angles for which
the PL scans in (a) are taken. Solid lines show fits with a sine function. (d) Transition contrast for circular
(‘orbit contrast’, squares) and linear (‘spin-orbit contrast’, circles) polarisation extracted from the normalised
amplitudes, as indicated by the vertical arrows in (b,c), determined for three NV centres (dashed lines). (e,f)
∆spin-orbit and ∆spin for the same NV centres as in (d). The data of (d-f) is simultaneously fitted against the
Hamiltonians. The data is shown together with the best fit (solid lines) as a function of perpendicular strain ε⊥.
Dashed lines in (e,f) show the expected transition energy splittings for the fine structure constants of Barson
et al., see Ref. 16.
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pendencies are captured within the NV0 Hamiltonian of the 2E ground state, see Ref. 16:

H = gµB Ŝz Bz + lµB L̂z Bz +2λL̂z Ŝz

+ε⊥(L̂−+ L̂+).
(3.2)

Here, g is the spin g-factor, µB is the Bohr magneton, L̂z = σz and Ŝz = 1
2σz are the

orbital and spin operators defined in terms of the Pauli matrix σz . The last term of the
Hamiltonian shows the influence of perpendicular strain ε⊥, where L̂± = |±〉〈∓| with
|±〉 = ∓(1/

p
2(|X 〉± i |Y 〉)) and {|X 〉 , |Y 〉} is the basis for the strain eigenstates. Note that

parallel strain is not included as it does not affect the relative energy of the ground state
levels. For the excited state 2 A2, the Hamiltonian reads as

H = gµB Ŝz Bz (3.3)

and does not show a dependency on strain.
These two Hamiltonians lead to the energy level structure as presented in Fig. 3.5.

The four resulting transition frequencies are shown in the PL spectra in Fig. 3.7(a). The
corresponding eigenstates in the ground state are indicated. Depending on the polari-
sation (circular right (R) or left (L); linear horizontal (H) or vertical (V)), the amplitude of
the observed PL varies. From Voigt fits to the individual PL lines we extract the transition
frequencies and PL amplitudes. From the transition frequencies, we determine the en-
ergy splitting, ∆spin, between the two spin-states, |↑〉 and |↓〉, associated with each spin-
orbit branch, and the energy splitting ∆spin-orbit between the two spin-orbit branches.

Further, the PL amplitudes can be directly related to the transition strength for a
given polarisation and transition. In the absence of strain, circularly-polarised transi-
tions are expected, as one quantum of orbital angular momentum has to be transferred
upon excitation. Accordingly, under such excitation, full PL contrast would be expected
between the transitions within each spin-orbit branch (‘orbit contrast’). However, un-
der large strain, the ground state is better described within the strain eigenbasis 16, with
associated linearly-polarised transitions. In this scenario, full contrast would instead be
expected between the spin-orbit branches (‘spin-orbit contrast’), whilst no ‘orbit con-
trast’ would be expected within each branch. As a consequence the observed contrasts
can be used to determine the strain.

To extract the contrast, we repeat PL scans of a spin-orbit branch for several an-
gles of the quarter-wave plate (QWP) and half-wave plate (HWP). In the case of circu-
lar polarisation, we normalise each PL scan by the respective integrated total counts.
The fitted amplitudes Acirc

1 and Acirc
2 for the transitions of two spin states are then

normalised by the mean of the sum of the two amplitudes for all measured angles,

Acirc,norm
i = Acirc

i /Acirc
1 + Acirc

2 with i ∈ {1,2}. For linear polarisation, for each angle we take

the mean amplitude of the transitions within a spin-orbit branch, Alin = (Alin
1 + Alin

2 )/2.

We then normalise each angle by the mean for all measured angles, Alin,norm = Alin/Alin.
Figure 3.7(b,c) shows example plots for the resulting normalised amplitudes for vary-
ing circular and linear polarisations. Measurements on the respective other spin-orbit
branch give similar results.

As a next step we extract the transition contrast for circular polarisations (Fig. 3.7(b),
‘orbit contrast’) and linear polarisations (Fig. 3.7(c), ‘spin-orbit contrast’) from the am-
plitudes of fits with a sine function. These contrasts are plotted in Fig. 3.7(d) for three
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independently measured NV centres, NV A, NV B, and NV C. Further, we plot the mean
transition energy splittings ∆spin-orbit and ∆spin in Fig. 3.7(e) and (f).

The four data sets, (‘orbit contrast’, ‘spin-orbit contrast’, ∆spin-orbit, ∆spin), from the
three NV centres are now simultaneously fitted against the Hamiltonian with ε⊥,i for
each NV, l , and λ as free fitting parameters. Our results are summarised in Tab. 3.1
(method 1). The fitted strain results are used to place the experimental data points in
Fig. 3.7(d-f), see dashed lines in Fig. 3.7(d). Solid lines show the result of our fit. The tran-
sition energy splittings ∆spin and ∆spin-orbit are well described by our theoretical model.
While a good match of the transition contrast for NV A is found, NV B and C show a dis-
crepancy. A possible explanation could be non ideal polarisation settings at the position
of the NV for these data sets, resulting in less clean rotation around the Poincaré sphere,
i.e. mixed circular and linear polarisations when rotating the QWP/HWP. A mixed polar-
isation leads to both reduced ‘orbit contrast’ and reduced ‘spin-orbit contrast’.

As a second method we repeat our fitting procedure, but this time fixing the indi-
vidual strain values to εNV− of each NV, obtained from NV−, see Fig. 3.5. While it is not
known how the NV− strain translates to strain in NV0, a correlation is expected. From
the fit we obtain l and λ, see Tab. 3.1 (method 2). Within error the two methods give
the same values. In Sec. 3.2 we report the mean of the two values: lmean = 0.039(11),
λmean = 4.9(4)GHz.

method εA
⊥ (GHz) εB

⊥ (GHz) εC
⊥ (GHz) l λ (GHz)

1 3.2(6) 1.9(9) 7.2(4) 0.040(8) 4.5(4)

2 4.15 1.05 4.35 0.037(14) 5.2(4)

Table 3.1: Ground state Hamiltonian parameters extracted from a fit to our experimental data for the three NV
centres NV A, NV B, and NV C. For method 1 the measured contrasts of NV0 is used as an input to fit the strain
values, while method 2 uses the strains extracted from NV− as fixed parameters.

We now compare our data to the transition frequencies calculated using the fine
structure parameters of Barson et al. 16, llit = 0.0186(5), λlit = 2.24(5)GHz, (dashed lines,
Fig. 3.7(e,f)). Strikingly, with these parameters, our data for ∆spin cannot be reproduced
for any strain value, strongly indicating that the discrepancy in fine structure parameters
cannot be explained by systematic errors in our method to extract the strain of the NV.

We note that Barson et al. have used NV ensemble magnetic-circular dichroism mea-
surements while we here observe PL of single NV centres.

3.7.4. CHARGE-RESONANCE CHECK

As described in Sec. 3.3, one of the key components of the experiments in this work is
the introduction of a charge-resonance (CR) check for NV0. This check allows heralded
preparation of the NV in the neutral charge state, while also preparing the red lasers on
resonance with the NV− optical transitions, and the yellow laser on resonance with one
of the four NV0 transitions. The full procedure is shown in Fig. 3.8 and outlined in the
following.
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We first prepare the negatively-charged state. A strong green pulse (12µW) is applied
for 300µs in order to prepare the system (‘reset’). Next, we simultaneously apply a com-
bination of the red RO (1nW) and SP (3nW) light for a duration of 70µs, during which
time we integrate all single-photon counts incident on an avalanche photo-diode (APD)
(‘check NV−’). If a set photon-count threshold is exceeded, we have high confidence that
the red lasers are well on resonance with their associated transitions and that the NV is
in NV−, and proceed to the next step. If the count is below the threshold, but above zero,
then it is assumed that the NV is in the negative charge state and close to resonance, but
not yet in a satisfactory regime. In this case, the red check is repeated until the threshold
is passed. In the case that any red check produces a zero photon-count, the green pulse
(‘reset’) is reapplied to reset the charge state or to induce significant spectral diffusion
bringing the NV− transitions back in resonance with the red lasers. We note that the low
powers used for resonant excitation itself cause minimal spectral diffusion.

After the NV− check, an ionisation pulse is applied to prepare NV0 (‘ionise’). Here, we
apply 5nW (10nW) of RO (SP) light respectively, for a total duration of 1ms. While the
ionisation probability is low (∼ 2%), the chosen powers ensure that spectral diffusion is
minimal.

To verify that the NV has been successfully transferred to the neutral charge state and
to confirm that the yellow light is on resonance with a single transition we apply 25nW
of yellow light for 250µs (‘check NV0’). In this check, we either exceed the threshold, in
which case we proceed to the main experiment, or we return to the ‘check NV−’ step.
The counts of each successful ‘check NV0’ step are saved.

In our experiments, we use a single yellow laser only. We note that polarisation of this
laser affects the spin-state prepared after the CR check. When exciting with linear polari-
sation, one of the two spin states is prepared in each experimental repetition. Which spin
state is prepared may vary due to spectral diffusion between repetitions in combination
with the close spectral vicinity between the spin states (see Fig. 3.7(a)). However, when
exciting with circular polarisation, a single NV0 spin-state is selectively addressed and
heralded throughout: the probability to false-herald a non-targeted transition is negli-
gible. While the laser frequency corresponds to a transition associated with a specific
spin-orbit state, the check heralds a mixed orbital state as it takes significantly longer
than the orbital relaxation time. We note that a general (not spin-selective) resonance
check with higher efficiency could be achieved by adding a second laser to address a
NV0 transition corresponding to the opposite spin-state.

Finally, after the experiment has been completed, we perform the ‘check NV− after’
step, which can be used to detect transfer from NV0 to NV− during the experiment. This
is enabled by the fact that transfer between the NV charge states induces minimal spec-
tral diffusion, as witnessed by our recharging data (Sec. 3.7.6).

We then return to the ‘check NV0’ step due to two reasons. First, the detected counts
can be used to readout the NV0 spin state in the case recharging has not happened. Sec-
ond, for most experimental repetitions we remain in NV0, leaving a high probability that
the ‘check NV0’ step is passed again. In such cases, it is not necessary to repeat the ‘check
NV−’ step, reducing measurement overhead time.
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Figure 3.8: NV− and NV0 CR check. The application of laser pulses, counting of PSB photons, and decisions
depending if the measured counts (cts) have passed the preset thresholds (thr) are all performed via a micro-
processor (ADWIN).
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3.7.5. LINDBLAD MASTER EQUATION SIMULATIONS

In order to capture the full dynamics of the NV0 system we develop a theoretical model
based on the Lindblad master equation. In Eq. 3.4, we describe the initial (mixed) state
of the system, whose populations are parameterised by probabilities pi for i ∈ {0, ..,5}.
Eq. 3.5 describes the non-unitary time evolution of that state, ρ(t ):

ρ0 = p0 |+,↓〉〈+,↓|+p1 |−,↑〉〈−,↑|+p2 |−,↓〉〈−,↓|+p3 |+,↑〉〈+,↑|+p4 |0,↓〉〈0,↓|+p5 |0,↑〉〈0,↑|
(3.4)

ρ̇(t ) =− i

ħ [H(t ),ρ(t )]+∑
n

Cnρ(t )C †
n − 1

2
[ρ(t )C †

nCn −C †
nCnρ(t )]. (3.5)

Here, H(t ) is the time-dependent Hamiltonian, ħ the Planck constant and Cn =p
γAn the collapse operator capturing relaxation processes. An is the coupling opera-

tor and γ= 1/τrelax the corresponding decay rate with relaxation time constant τrelax.
We now show an example case for dynamics under optical pumping (see Fig. 3.2).

In the experiment, we herald a specific spin-orbit state via the ‘check NV0’ step, simul-
taneously bringing the yellow laser on resonance with the respective transition. As an
example, we can herald the |+,↓〉 state. However, due to orbital relaxation dynamics be-
ing much faster then the duration of the state check we effectively herald an orbitally
mixed |↓〉 state, i.e.

ρ0 = 1

2
(|+,↓〉〈+,↓|+ |−,↓〉〈−,↓|) . (3.6)

Under optical pumping, we can describe the (rotating frame) system Hamiltonian, H(t ),
and the total collapse operator,

∑
n Cn as:

H(t ) = 2π

|+,↓〉 |−,↑〉 |−,↓〉 |+,↑〉 |0,↓〉 |0,↑〉



0 0 0 0 Ω(t )
2 0 〈+,↓|

0 0 0 0 0 Ω(t )
2 〈−,↑|

0 0 0 0 0 0 〈−,↓|
0 0 0 0 0 0 〈+,↑|
Ω(t )

2 0 0 0 δ 0 〈0,↓|
0 Ω(t )

2 0 0 0 ∆+δ 〈0,↑|

(3.7)

∑
n

Cn = 1p
2

|+,↓〉 |−,↑〉 |−,↓〉 |+,↑〉 |0,↓〉 |0,↑〉



0 0
√

1
τorbit

√
1

τspin

√
1
τexc

0 〈+,↓|
0 0

√
1

τspin

√
1

τorbit
0

√
1
τexc

〈−,↑|√
1

τorbit

√
1

τspin
0 0

√
1
τexc

0 〈−,↓|√
1

τspin

√
1

τorbit
0 0 0

√
1
τexc

〈+,↑|
0 0 0 0 0

√
1

τexc,spin
〈0,↓|

0 0 0 0
√

1
τexc,spin

0 〈0,↑|

(3.8)
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The diagonal elements in the Hamiltonian of Eq. 3.7 correspond to the detuning of each
transition with respect to the laser frequency, while the off-diagonal elements enable
Rabi driving between respective levels. In our example, the laser is on resonance with the
|+,↓〉 −→←− |0,↓〉 transition. The transition |−,↑〉 −→←− |0,↑〉 has a detuning of ∆ = 160MHz. An
additional detuning, δ, is randomly sampled from a Gaussian distribution with FWHM
= 2π× 20MHz, to account for the effects of imperfect laser resonance checks or small
spectral diffusion. The Rabi frequency is given byΩ(t ) =αpP (t ), with α being a propor-
tionality factor and P (t ) the time dependent laser power. Note that we neglect driving of
the (far-detuned) upper spin-orbit states and thus omit the corresponding terms. In our
simulations we implement P (t ) with rise/fall times as independently measured in our
experiment, see Fig. 3.9(a). The elements in Eq. 3.8 correspond to relaxation processes
between certain levels, see Fig. 3.5. Here we use the respective timescales as extracted in
Sections 3.3-3.5.

In Fig. 3.9(b-c) we plot the simulated expectations values for two different tempera-
ture scenarios, both for a driving power of 5nW. In both cases we observe that the |+,↓〉
state is depopulated, while population in the opposite orbital state, |−,↓〉, grows via the
excited state, |0,↓〉. Initially, a damped Rabi oscillation between |+,↓〉 and |0,↓〉 is ob-
served, before a steady state population is reached. In the case of lower temperature
and hence a slower orbital relaxation constant, τorbit, a stronger orbital pumping is ob-
served. After the laser light is switched off, the excited state decays with τexc, while the
two orbital states relax back to an equal population with the time constant τorbit.

In Fig. 3.2 we plot the expectation value of the excited state |0,↓〉, and find an excel-
lent agreement with the experimental fluorescence counts. This confirms the accuracy
of our theoretical model, and shows that the observed NV0 dynamics are well under-
stood. We note that the timescales for spin relaxation, τspin, and spin pumping, τexc,spin,
are much longer than the pumping duration, and hence are not observed in this set of
experiments.

3.7.6. RECHARGING DYNAMICS

An important feature of our experiments is the ability to switch between the NV− and
NV0 charge states through resonant excitation. Ionisation (NV− −→ NV0) under resonant
excitation has previously been experimentally studied 34,40, and an ionisation mecha-
nism was proposed that combines a two-photon and an Auger process 34. While a mech-
anism for the recharging process (NV0 −→ NV−) was also proposed, the power depen-
dence under resonant excitation has not been measured 34. Here we present such mea-
surements.

We first herald the defect in the NV0 state, see ‘check NV0’ step in the previous sec-
tion, with the yellow laser resonant to a single transition in the lower spin-orbit branch.
We then apply yellow recharging light for a certain time, before we read-out the NV−
population via the ‘check NV− after’ step. In Fig. 3.10(a) (Fig. 3.10(b)) we plot the NV−
population as a function of recharging time for linear (circular) polarisation, for a few
selected powers. For all powers we observe a growth in NV− population that eventually
approaches unity both under high- and low-power excitation. This important observa-
tion shows both that high-fidelity switching can be achieved, and that the red read-out is
robust: spectral diffusion remains minimal even for second long experiments. Addition-
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Figure 3.9: Master equation simulations. (a) Shape of the experimental yellow pulse with measured AOM rise
and fall times of 30(5) and 7(1)ns, respectively. (b,c) Simulated expectation value for the relevant NV0 levels
(inset) under resonant excitation of |+,↓〉 for τorbit = 425ns (T = 4.65K) (b) and τorbit = 50ns (T = 10.1K) (c).
For the chosen power, population of the |↑〉 spin levels remains zero throughout the simulation.
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Figure 3.10: NV− population as a function of recharging time after initialisation into NV0, for horizontal (a),
and left circular (b) polarisation, respectively. Solid lines are fits following a double-exponential growth func-
tion, while dashed lines are populations obtained by Master equation simulations (see text). (c) Fitted fast and
slow timescales as a function of the recharging power. Markers correspond to measured data for linear (trian-
gles and circles) and circular (diamonds and squares) polarisation, while the dashed lines connect the values
obtained from numerical simulations.

ally, the ability to reach near-unity NV− population within a few-hundred µs suggests
that significant population is not trapped in the 4 A2 level of NV0. Possible explanations
for this observation are that the inter-system crossing rate is small, the 4 A2 lifetime is
short, or the recharging process can also occur from the 4 A2 level itself.

For a range of recharging powers, we perform sweeps as exemplified in Figure 3.10(a)
and (b), and fit with growth functions. For comparison, we additionally perform Master
equation simulations, for which we can fit the same growth functions. In the simulations
the NV− state is implemented as a dark state that can be populated via an excitation of
the 2 A2 NV0 state to the conduction band. Orbital dynamics are neglected as their corre-
sponding timescales are much faster then the observed timescales for recharging. Fur-
ther, in order to perform the simulations in reasonable computational time, the recharg-
ing rate, spin-pumping rate, and spin-relaxation rates are re-scaled by a fixed factor of
four orders of magnitude. Remarkably, our simulations show both qualitative and quan-
titative agreement with the experimental data. At very short times small deviations arise
as the (unmodified) excited-state lifetime becomes comparable to the re-scaled recharg-
ing process.

We generally anticipate two recharging timescales. A fast timescale, τfast, is associ-
ated with resonant recharging. A slow timescale, τslow, arises from NV0 spin-pumping
and spin-relaxation causing the driven transition to become dark, i.e. via a spin flip
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|↓〉 −→←− |↑〉. Recharging from the dark state occurs due to a combination of off-resonant
excitation and relaxation back to the resonantly driven spin-state. Note that a slow
timescale is expected for both linear and circular polarisation. The initial CR check pre-
pares a single spin-state, and at low powers, both polarisations perform spin-selective
driving as power-broadening is significantly less than the detuning between the |↑〉 and
|↓〉 optical transitions. The behaviour can thus be described by a double-exponential
growth function: f (trecharge) = Ae−trecharge/τfast + (1− A)e−trecharge/τslow . Where it is not pos-
sible to fit a second timescale due to the dominance of the fast timescale (high powers),
a single exponential growth function is used, f (trecharge) = Ae−trecharge/τfast .

In Fig. 3.10(c), we plot all of the fitted rates. Two key features are apparent. First,
for both linear and circular polarisation, the fast timescales broadly overlap and follow
a linear power-dependence, as expected for a two-photon process for which the first
step is resonant and in saturation. From a linear fit we extract a recharging rate of 9.3(6)
Hz/nW. Second, the slow timescale is seen to be significantly faster for linear than for
circular polarisation. This difference arises from the fact that off-resonant excitation is
strongly suppressed by circular polarisation, preventing both spin-pumping back to the
resonant transition and off-resonant recharging. The extracted rates from the Master
equation simulations are in good agreement with our experimental data both for the
fast and the slow timescales.

Importantly, this characterisation can be used to determine the frequency of charge-
resonance checks required in each experiment to ensure that the NV0 population re-
mains high.

3.7.7. PUMP-PROBE SPECTROSCOPY

Here, we describe the procedures followed for the pump-probe spectroscopy measure-
ments, Fig. 3.3.

For each set temperature of the cryostat, we measure a series of time traces as exem-
plified in Fig. 3.3(a). For each time trace, we integrate the total photon counts during the
first 40 ns after opening the AOM for the probe and pump measurements, respectively,
and take their ratio. We then fit the recovery behaviour against the delay time, tdelay,

following the function f (tdelay) = a + A(1−e−(tdelay−t0)/T ), where a is the steady-state flu-
orescence under pumping, A is the peak fluorescence of the mixed state, t0 is the time at
which the pump is turned off, and T is the characteristic recovery time. Between subse-
quent pump-probe experiments, there is a minimum delay of 3µs, which is more than
five times longer than the longest observed recovery time, ensuring that the system is
reset between measurements.

At higher temperatures, a challenge for these measurements arises as the required
time resolution exceeds that of the AOM rise- and fall-times, see Fig. 3.9(a), and hence
the optical pulse is not turned off for the entirety of the set tdelay. We correct for this
systematic error by calibrating the delay times as those for which the optical pulse falls
below 90% of the full amplitude, measured using a fast photodiode. However, we note
that some corrections may remain, which may lead to an underestimate of the orbital
relaxation rates in those measurements. In future work, such measurements could be
improved using a fast electro-optic modulator to gate the pulses.
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3.7.8. RATE EQUATIONS

In order to extract the timescales for recharging and spin-pumping, as shown in Fig. 3.4,
we develop a three-level model for which we can derive analytic solutions for use in a
fitting routine.

We start with the scenario of Fig. 3.4(c). Given the relatively slow timescales un-
der consideration (for 5 nW of yellow excitation), we choose to neglect the orbital basis
(which is effectively mixed, see Eq. 3.6). This leaves three levels, |↑〉, |↓〉 and NV−, which
we denote as U (t ), D(t ), N (t ). We consider the processes of resonant recharging (r , from
D −→ N ), resonant spin-pumping (p, from D −→U ) and spin-relaxation (s, from D −→←− U ),
and neglect off-resonant recharging (from U −→ N ), off-resonant spin-pumping (from
U −→ D), and ionisation (from N −→ D,U ), which are all expected to have negligible rates
in this parameter regime. The dynamics between these levels are thus described by the
following coupled equations:

N (t )+D(t )+U (t ) = 1 (3.9)

d N (t )

d t
= r D(t ) (3.10)

dD(t )

d t
=−(r + s +p)D(t )+ s U (t ) (3.11)

dU (t )

d t
=+(s +p)D(t )− s U (t ) (3.12)

We impose initial conditions

D(0) = c1 (3.13)

U (0) = c2 (3.14)

N (0) = 1− c1 − c2 (3.15)

and derive analytic solutions to these equations (solutions available in code form upon
request), which we then use as fitting functions for the measured populations. The spin
relaxation time is fixed to the independently measured time of 1.51(1) s. All other pa-
rameters are free in the optimisation, leading to the following best-fit values:

τspin (s) τrecharge (s) τpump (s) c1 c2

1.51 0.027(1) 0.090(4) 0.960(6) 0.012(5)

Here, τspin = 1/s, τrecharge = 1/r , τpump = 1/p, and c1 and c2 are the respective popu-
lations in |↓〉 and |↑〉 after initialisation.

We now move to the scenario shown in Fig. 3.4(d). In this case, we stroboscopically
interleave periods of 5nW yellow excitation with periods of 500nW of red NV− spin-
pumping excitation coupled with hard microwave π-pulses regularly spaced by 1.25µs.
To simplify this into a rate-equation model, we make the following assumptions (along
with those already made for the previous case). First, we combine the stroboscopic driv-
ing into continuous driving with averaged resonant recharging (r , from D −→ N ) and ion-
isation (i , from N −→ D,U ) rates. We assume that charge conversion from NV− to NV0
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results in a completely mixed NV0 spin state: that is, the rate, i , equally couples to both
D and U . We note that analytic solutions incorporating an asymmetry in these couplings
were derived, but that any asymmetry could not be constrained by the fitting procedure.
Finally, we assume that the microwaves only couple the (not-described) spin levels of
NV− — preventing spin-pumping in that charge state — and so only influence the rate i .
Under this model, we arrive at the following set of coupled equations:

N (t )+D(t )+U (t ) = 1 (3.16)

d N (t )

d t
= r D(t )− i N (t ) (3.17)

dD(t )

d t
=−(r + s +p)D(t )+ s U (t )+ i

2
N (t ) (3.18)

dU (t )

d t
=+(s +p)D(t )− s U (t )+ i

2
N (t ) (3.19)

We again impose initial conditions

D(0) = c1 (3.20)

U (0) = c2 (3.21)

N (0) = 1− c1 − c2 (3.22)

and derive analytic solutions to these equations (solutions available in code form upon
request), which we then use as fitting functions for the measured populations. For this
scenario, we fix r , p, c1 and c2 to the values obtained from the fit to the previous case,
as the initialisation step and yellow excitation parameters are unchanged. The spin-
relaxation rate, s, is fixed to twice its previous value (tspin = 1.51/2), as the time-axis on
this plot is the total yellow excitation time, which is half of the total sequence time. This
leaves only the ionisation rate unfixed, for which we obtain a fitted value of τion = 1/i =
0.018(4) s. While the behaviour at short times is well described by the model, the long-
time behaviour is not well captured. If all fit parameters are unconstrained, we find that
the long-time behaviour is well described, and still obtain agreement to within 50% for
all values, aside from for τspin, for which we now fit 0.14(1) s. This could indicate that the
presence of red excitation and/or strong microwave driving induces an additional NV0

spin-relaxation mechanism.

3.7.9. SPIN CYCLICITY

In order to extract the cyclicity of the |↓〉 transition under resonant excitation as reported
in Sec. 3.5 we use the following procedure. Here, we are interested on how many pho-
tons are scattered before the |↓〉 spin state is left, i.e. before leaving the three-level system
{|+,↓〉 , |−,↓〉 , |0,↓〉}. The experiment starts when |+,↓〉 is heralded, which can then be ex-
cited to |0,↓〉 (for Pyellow = 5nW a Rabi flop takes about 42ns). From here the electron
decays (τexc = 22(1)ns) either to |+,↓〉 or to |−,↓〉, each with a 50% probability. If it de-
cays to |+,↓〉 it can immediately be excited again, while |−,↓〉 corresponds to a dark state
that can only relax back to |+,↓〉 via orbital relaxation (τorbit = 0.43(6) µs). This process
continues until either a charge- or spin-flip event happens. From Fig. 3.4(c) we have ex-
tracted characteristic timescales of 27(1)ms (90(4)ms) for the charge conversion (spin
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pumping) process. Within this regime the cyclicity is limited by charge conversion, for
which we calculate 0.98(7)×105 scattered photons before leaving the |↓〉 manifold.

We note that at lower powers the recharging process, which requires a two-photon
excitation, is expected to be suppressed. Here, the cyclicity will then be limited by a
spin-flip process, enabling 3.2(2)×105 cycles.

3.7.10. READOUT FIDELITY

In Sec. 3.5, we report single-shot read-out (RO) of the NV0 spin state with fidelity, FRO ≥
98.2(9)%. Here we outline the characterisation procedure.

The readout fidelity is defined by the relation FRO = 1
2 (F↓|↓ +F↑|↑), where Fi | j is the

probability to assign the spin state |i 〉 after preparing
∣∣ j

〉
. Note that this assumes that

each spin state can be initialised perfectly. Imperfect initialisation will lead to a decrease
in the achievable fidelity: the calculated RO fidelities are thus a lower bound.

In the presented experiments, we use a single yellow laser for both state initialisation
and readout. As this means that we are only able to herald the |↓〉 state with high fi-
delity, we use the intrinsic spin relaxation process of NV0 to prepare a mixed state, which
can also be used to calculate the fidelity for |↑〉 read-out. The histograms presented in
Fig. 3.4(a) are used for this calculation.

First, to calculate F↓|↓ and F↑|↓, we herald |↓〉 using a threshold of 25 photons for the
‘check NV0’ step of Fig. 3.8. After a brief delay (0.1ms), we check for any residual popu-
lation in NV− (‘check NV− after’), which is discarded. We then perform the ‘check NV0’
step again to read out the spin population. From 3000 experimental shots, we discard
52 cases, corresponding to an NV− population of 1.7(2)%. Of the remainder, 98.4(2)% of
cases match or exceed the chosen threshold of 5 photons (Sec. 3.5). We thus have: F↓|↓
= 98.4(2)%, and F↑|↓ = 1.6(2)%. We note that the initialisation fidelity of the |↓〉 heralding
step (25nW for 250µs) is likely limited by spin pumping to |↑〉. From independent spin-
pumping measurements we expect a reduction of that population by ∼ 0.8% over the 250
µs, though this is partially mitigated by the initialisation threshold of 25 photons. Note
that, while in this work the same parameters for initialisation and single-shot read-out
are used, further optimisation of the heralding pulse may increase the state preparation
fidelity in the future.

To calculate F↑|↑ and F↓|↑, we repeat the procedure, but now wait for 10 s between
the first ‘check NV0’ step and the ‘check NV− after’ step, preparing the mixed state. We
anticipate a state preparation infidelity of < 0.2% arising from the finite waiting time.

After preparation of the fully mixed state, the RO outcomes are described by:

F↓ =
1

2
(F↓|↑+F↓|↓) (3.23)

F↑ =
1

2
(F↑|↑+F↑|↓) (3.24)

where F↓ (F↑) is the probability to obtain ≥ 5 photons (< 5 photons). In this experiment,
we discard 35 cases attributed to NV−, estimating the NV− population to be 1.2(2)%.
From the remaining cases, we find F↑ = 49.8(9)% and F↓ = 50.2(9)%. Using the values
previously obtained for F↓|↓ and F↑|↓, we obtain F↑|↑ = 98(2)%, F↓|↑ = 2(2)%.

Combining the results we arrive at a single-shot read-out fidelity, FRO ≥ 98.2(9)%.
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ROBUST QUANTUM-NETWORK

MEMORY IN ISOTOPICALLY

ENGINEERED DIAMOND

C. E. Bradley, S. W. de Bone, P. F. W. Möller, S. Baier, M. J. Degen, S. J. H. Loenen, H. P. Bartling,
M. Markham, D. J. Twitchen, R. Hanson, D. Elkouss, T. H. Taminiau

Optical quantum networks can enable long-range quantum communication and modu-
lar quantum computation. A powerful approach is to use network nodes that host addi-
tional qubits, which provide the quantum memory and computational power to perform
entanglement distillation, quantum error correction, and information processing. Nu-
clear spins associated with optically-active defects in diamond are a promising candidate
for this role. However, dephasing of these spin qubits during the creation of the optical net-
work links hinders scaling to larger networks. In this work, we show that a single 13C spin
in isotopically engineered diamond offers a long-lived quantum memory that is robust to
the optical link operation. The measured memory lifetime is improved by two orders-of-
magnitude over the longest reported value, and exceeds the best reported times for making
remote photonic entanglement. We identify ionisation of the NV centre as a newly limiting
decoherence mechanism. As a first step towards overcoming this limitation, we demon-
strate that the nuclear spin state can be retrieved with high fidelity after a complete cycle
of ionisation and recapture. Finally, we use numerical simulations to show that the com-
bination of this improved memory lifetime with previously demonstrated entanglement
links and gate operations can enable key primitives for quantum networks, such as deter-
ministic non-local two-qubit logic operations and GHZ state creation across four network
nodes. Our results pave the way for test-bed diamond-based quantum networks capable
of investigating complex algorithms and error correction.

The results of this chapter are in preparation for peer review.
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4.1. INTRODUCTION

Optical quantum networks have the potential to enable a wealth of applications that go
beyond classical technologies, including secure communication, quantum sensor net-
works, and distributed quantum computation 1–3. Such a network consists of nodes with
‘communication’ qubits that are connected together by entanglement through photonic
channels (Fig. 4.1(a)). Each node ideally contains multiple additional ‘data’ qubits that
can be used to store and process quantum states. Universal operations over the network
can then be performed by repeatedly distributing entangled states and subsequently
consuming them 2.

Large-scale networks and universal quantum computation become possible if im-
perfections can be overcome through entanglement distillation and quantum error cor-
rection 2,3. Besides high-fidelity operations, this requires the faithful storage of quantum
states while new entangled states are repeatedly distributed over the network 2–4. We
capture this capability by a parameter that we term the ‘network number’, Nnetwork =
rent/rmem, given by the ratio of the inter-node entanglement generation rate rent and
the decoherence rate rmem of the data qubits during network operation†. Without error
correction, Nnetwork sets the available number of cycles of entanglement distribution,
and thereby the depth of protocols and computations that can be performed efficiently.
While quantum error correction can ultimately increase achievable circuit depths, this
will require Nnetwork À 1 2,3,6.

Various systems have demonstrated basic building blocks for optical quantum net-
works 5,7–15. The nitrogen-vacancy (NV) centre in diamond is a promising platform be-
cause it combines a spin-photon interface for heralded remote entanglement 16–18, with
access to multiple 13C nuclear-spin data qubits that can store quantum states for long
times 19–25. Entanglement generation rates rent larger than the idle qubit decoherence
rate have been shown, enabling a single cycle of entanglement delivery deterministically
on a clock cycle 5. As a first step towards exploiting additional computational power in
the nodes, experiments with up to two qubits per node demonstrated two-cycle network
protocols such as entanglement distillation 26 and entanglement-swapping in a three-
node network 27. However, in all these experiments Nnetwork < 0.1. The resulting net-
work operation is inherently probabilistic — if entanglement generation cycles do not
succeed early enough, all previously established quantum states stored in the network
memory are lost — hindering the scaling to larger systems operating over many cycles.
Realizing large Nnetwork will require higher entanglement rates rent through efficient spin
photon interfaces 28–31 and/or reducing the dephasing of the nuclear spin qubits during
network operation (rmem) 26,32.

In this work, we focus on the latter challenge. We demonstrate that 13C spin qubits
in isotopically engineered diamond provide robust data qubits for NV-based quantum
networks. We develop control and single-shot readout of an individual 13C spin that is
weakly coupled to a single NV centre. We then show that an arbitrary quantum state

†A related metric is the ‘link efficiency’ η link, which has been defined as the ratio of the entanglement rate
over the idle qubit decoherence rate, rather than the qubit decoherence during network operation 4,5. This
parameter η link sets an upper bound on Nnetwork, and a large η link is a necessary, but not sufficient condition
for realizing large-scale quantum networks.
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can be stored in this data qubit for over 1·105 repetitions of the remote entanglement se-
quence. For current entanglement link success rates, this would imply Nnetwork ≈ 10. We
show through numerical network simulations that this high Nnetwork value can enable
a next generation of network protocols, including deterministic two-qubit gates over
the network and the distillation of entangled states over a four-node network, which
provides a primitive for surface-code quantum error correction (Fig. 4.1(a)). Finally,
we identify ionisation of the NV centre as the limiting mechanism and show that the
data qubit can be protected through fast controlled resetting of the NV charge state.
When combined with recent progress with optical cavities towards enhanced entangle-
ment rates 29,31 and high-fidelity quantum gates 21,25,33, these results indicate that nu-
clear spins in isotopically engineered samples provide a promising path towards quan-
tum networks.

Figure 4.1: (a) Architecture for distributed quantum information processing using spins in diamond. Multi-
qubit nodes are formed from electron spin ‘communication’ qubits (purple) which magnetically couple to
nuclear spin ‘data’ qubits (yellow), allowing universal control. The coherent spin-photon interface of the link
qubits enables the heralded creation of remote photonic entanglement between nodes. The data qubits en-
able long-lived storage and processing of quantum information. The network portrayed here forms a unit cell
for distributed quantum error correction based on the surface code 2,3,6. (b) Electron-nuclear hyperfine cou-
pling: nuclear-spin precession at the Larmor frequency around an external magnetic field~B is perturbed by
the presence of the electron spin. Depending on the NV charge and spin states: NV− (purple), ms = {−1,0,+1},
or NV0 (orange), ms = {−1/2,+1/2}, the precession frequency and axis are modified. (c) Dynamical decoupling
spectroscopy of the NV centre 34. The resonance at 44.832 µs (red) reveals a single 13C spin with hyperfine pa-
rameters A∥ = 2π· 80(1) Hz and A⊥ = 2π· 271(4) Hz. The resonance at 44.794 µs (black) corresponds to the 13C
spin bath. Solid lines correspond to a theoretical model (Sec. 4.9.1). (d) Intrinsic decoherence timescales of
the nuclear spin for differing electron states. Solid lines are fits (Sec. 4.8). Dashed lines are guides to the eye.
N denotes the number of spin-echo pulses. All error bars are one standard error.
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4.2. SYSTEM OVERVIEW

We consider quantum network nodes consisting of a single NV centre coupled to multi-
ple 13C nuclear spins (Fig. 4.1(a)). The optically active NV electron spin acts as a com-
munication qubit and the 13C nuclear spins are additional data qubits that also function
as quantum memory to store states while new entanglement links between NV centres
are established. A key feature of this system is that the 13C spin dynamics depend on the
NV electron spin state (Fig. 4.1(b)). This is captured by the Hamiltonian for a single 13C
spin:

H =ωL Iz + A∥ms Iz + A⊥ms Ix . (4.1)

Here, we have made the secular approximation. ωL = γCBz is the nuclear spin Larmor
frequency, where γC is the 13C gyromagnetic ratio and Bz is the external magnetic field
along the NV axis (here Bz = 47 G). Iα are the nuclear spin-1/2 operators, while ms is the
spin-z projection of the electron spin. In the NV− charge state that is used for network
operation, ms ∈ {−1,0,1}, from which we define a qubit in the {−1,0} basis (:= {|1〉 , |0〉}).
Additionally, however, stochastic ionisation events can convert NV− to the NV0 state with
ms ∈ {−1/2,+1/2}.

As seen from Eq. 4.1, the 13C spin undergoes differing precession dependent on the
electron charge- and spin-state. This conditional precession enables complete control
over the 13C spins by controlled inversions of the electron NV spin 21. Uncontrolled
electron-spin dynamics, however, induce additional dephasing of the 13C spin, which
sets a limit on the achievable network number Nnetwork

20,32,35. Our approach to creat-
ing robust memory is to reduce the coupling between the NV electron spin and the 13C
data qubits by reducing the 13C concentration. While this approach results in slower gate
speeds, these are not the rate-limiting step in current network experiments 27. Note that,
in the case of 13C-spin-bath-limited decoherence, the coherence times increase propor-
tionally with the reduction in coupling strength, such that no intrinsic reduction in gate
fidelity is expected 36,37.

Our experiments are performed on a single NV centre in a type-IIa isotopically-
purified diamond (targeted 13C concentration of 0.01%) at a temperature of 4 K. The
hardware setup and NV centre properties are described in Sec. 4.8.

Dynamical decoupling (DD) spectroscopy with the NV centre 34 reveals coupling to
an isolated 13C spin, along with the wider spin bath (Fig. 4.1(c)). We characterise the
electron-nuclear hyperfine components parallel (perpendicular) to the NV axis to be A∥
= 2π· 80(1) Hz (A⊥ = 2π· 271(4) Hz) 34,38. In comparison to previous studies in natural 13C
abundance samples 20,32, the electron-nuclear coupling strength is reduced by approxi-
mately two orders of magnitude, as expected from the isotopic concentration.

We realise universal control over the electron-13C two-qubit system by microwave
(MW) and radio-frequency (RF) single-qubit gates, and a DD-based electron-nuclear
two-qubit gate 21,39. Furthermore, we develop repetitive readout of the nuclear spin to
improve the single-shot readout fidelity 19,40–44, giving a maximum state preparation and
measurement (SPAM) fidelity of 91(1)% (Sec. 4.9.1). For the measurements reported here
we focus on the system dynamics rather than maximising the fidelities, and thus use a
faster initialisation procedure to optimise the signal-to-noise ratio, with lower SPAM fi-
delity of 79.4(9)% (Sec. 4.9.1). The fidelities are predominantly limited by electron-spin
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decoherence during two-qubit gates, likely arising from the high concentration of P1
centre impurities in this specific device (∼ 75 ppb 45). Multi-qubit registers with com-
parable two-qubit gate fidelities to those achieved in natural-abundance 13C devices
(∼99% 21) are expected to be feasible with reduced impurity concentration in future dia-
mond growth.

4.3. MEMORY ROBUSTNESS WHILE IDLING

We first investigate the intrinsic decoherence processes of the 13C nuclear spin, i.e. when
the electron spin is idle. The electron spin state affects spin-bath dynamics, as flip-flop
interactions between nuclear spins are suppressed when the hyperfine interaction is
present (the ‘frozen core’ effect) 21,46,47. Therefore, we separately characterise the de-
coherence timescales with the NV electron in the |1〉 or |0〉 states.

Figure 4.1(d) summarises the measured timescales. The observation of vastly longer
T1,e=|1〉(À 5 s) than T1,e=|0〉(= 2.8(2) s) indicates that the spin relaxes primarily through
flip-flop interactions with other 13C spins. The measured T1,e=|0〉 is approximately 30-
100 times longer than typical values for natural abundance samples, consistent with the
expectation of a linear dependence on isotopic concentration 36,37.

The measured dephasing times are T ∗
2,e=|1〉 = 0.38(1) s and T ∗

2,e=|0〉 = 0.42(2) s. We first
isolate the timescale associated with couplings to the nuclear spin bath by performing
a spin-echo experiment on all 13C spins, decoupling the 13C bath from other processes
but leaving their mutual interactions unperturbed. We find a characteristic timescale,
T ∗

2,13C−bath
= 0.66(3) s (Sec. 4.9.2). The contribution from P1 impurities can similarly be

estimated using the NV electron dephasing time during double electron-electron reso-
nance measurements with the P1 impurities, T ∗,e

2,P1−bath = 230 µs 45. From the respective
gyromagnetic ratios, γC, γe, we infer T ∗

2,P1−bath = 0.61 s. Combining these processes gives
an estimate for T ∗

2 ∼ 0.45 s, close to the measured values.
We finally consider the application of spin echoes which mitigate quasi-static noise.

The single-echo T N=1
2,e=|0〉 (= 1.11(8) s) and eight-echo T N=8

2,e=|0〉 (= 1.62(9) s) are likely lim-
ited by the ms = 0 nuclear T1. The observation of some underlying structure in these
measurements is likely due to the dynamics of other proximal 13C spins 18. However, in
the electron |1〉 state, the nuclear spin frozen core has previously been shown to signifi-
cantly enhance 13C spin-echo times 21. While T N=1

2,e=|1〉 (= 1.82(6) s) and T N=8
2,e=|1〉 (= 2.91(8)

s) do exceed T N=1,8
2,e=|0〉 respectively, they are shorter than would be predicted from the 13C

concentration alone (∼ 1 minute). We ascribe this to the presence of the P1 bath, which
exhibits faster dynamics which are not well mitigated by echo pulses.

4.4. MEMORY ROBUSTNESS DURING NETWORK OPERATION

Armed with a characterisation of the intrinsic decoherence processes, we now turn to
the remote entanglement sequence shown in Figs. 4.2(a,b). This entangling primitive is
compatible with single-photon schemes used in recent NV network experiments 5,27,48.
In this work, we implement the protocol on a single network node to investigate its effect
on the 13C data qubit.

As discussed in the previous sections, imperfect knowledge of the electron spin state
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leads to spurious phases acquired by the nuclear spin. Within each entangling attempt,
there are a number of processes which can lead to such dephasing: the stochastic nature
of the electronic spin reset time, infidelities in the initialised electron spin state, excited
state spin-flips after the optical π-pulse, and MW pulse errors. Reducing the electron-
nuclear coupling strength enhances the robustness to such events.

We implement the entangling protocol experimentally. For simplicity, we omit the
optical π-pulses, but note that the small associated electron spin-flip probability is ex-
pected to play a negligible effect on the 13C decoherence 20,32. As a trade-off between
the optical reset rate and stochastic ionisation to NV0 49,50, spin reset is performed using
30 nW of optical power for 5 µs, resulting in an initialisation fidelity ≥ 98% (Sec. 4.9.3).
For the MW pulse used to create the electron superposition state, we implement a weak
multi-tone driving pulse (ΩRabi ∼ 93 KHz) (Sec. 4.9.4). This comes at the expense of a
time overhead, but mitigates heating. We set the MW rotation angle to π/2, for which
dephasing due to the entangling primitive is expected to be maximal for the given se-
quence (Sec. 4.9.6). Finally, as we are considering networks for distributed quantum
computation, we assume that the distance between network nodes is small (< 100 m).
Thus, any decision logic can be completed within 1 µs. With these choices, the total
duration of each primitive is 9 µs.

We prepare the nuclear spin in each of the six cardinal states (Ψi ∈
{|x〉,|−x〉,∣∣y〉

,
∣∣−y

〉
,|↑〉,|↓〉}), apply N repetitions of the primitive, and measure the ex-

pectation value in the associated eigenbasis, 〈σ̂ j 〉 = Tr(ρ σ̂ j ), where σ j are nuclear spin
Pauli operators, j ∈ {x,y,z} (Fig. 4.2(c)). We interleave one cycle of XY8 decoupling pulses
on the nuclear spin to mitigate dephasing. Without any post-selection of the data we
find that the data qubit can preserve an arbitrary quantum state for N1/e = 1.33(4)·105

entangling primitives (1.20(4) s of continuous entanglement attempts).

We now consider the effects of ionisation and spectral diffusion on the data. Af-
ter each experimental run, we perform two-laser probe measurements (E’, Ey transi-
tions), denoted charge-resonance (CR) checks (Sec. 4.9.7) 17. The number of photons
detected in this check is used to verify that the NV remained in NV− and on resonance
throughout the experiment. By varying the post-selection threshold for the CR check,
we can reject measurements in which the NV ionised or underwent spectral diffusion
with increasing confidence. We find a further improvement in the data qubit lifetime
when omitting these cases, showing that they are currently a significant limitation (Fig.
4.2(c)). After accounting for ionisation and spectral diffusion, we fit a decay time N1/e =
2.07(8)·105. Considering spin superposition- and eigen-states separately, we find N1/e,xy

= 1.90(8)·105 [1.71(7) s] and N1/e,z = 2.6(2)·105 attempts [2.4(2) s].

In Sec. 4.9.5, we additionally present results for the decay of a superposition state
when using strong microwave pulses, so that the sequence is shorter (primitive duration
6.3µs). We find a further improved corrected decay constant of N1/e,x = 4(1)·105 attempts
[2.6(6) s]. However, in this case, we cannot rule out that heating due to the strong pulses
changes the repumping dynamics, although the observation of similar ionisation statis-
tics suggests that this is not the case. Such heating can be addressed by improved device
engineering in future work.

For both primitive durations (6.3 µs and 9 µs), the measured decoherence timescales
are comparable to those arising from intrinsic spin-bath dynamics. This suggests that
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Figure 4.2: Memory robustness under remote-entanglement generation: (a) Sketch of a remote-entanglement
process. After generation of local spin-photon entanglement at each node (see (b)), a detection event at a cen-
tral beamsplitter heralds remote entanglement. Due to loss processes, the protocol is probabilistic. (b) Remote
entanglement primitive: (1) The electron spin is reset by an optical pulse of duration tr = 5 µs. (2) After a time
t ′ = 200 ns, a microwave pulse of duration tmw = 2.8 µs prepares a spin superposition state. (3) An optical
π-pulse generates spin-photon entanglement, after which a time tl = 1 µs is required to determine whether
the attempt succeeded. In case of success, a microwave π-pulse is used to preserve the electron coherence. E’
and Ey denote optical transitions (Sec. 4.8). (c) Data qubit expectation value in the encoded state eigenbasis,
as a function of the number of applied primitives (see (b)), averaged over the six cardinal states. Diamonds
(squares and circles) correspond to no post-selection (post-selection on measuring ≥1 and ≥5 photons in a CR
check performed at the end of the sequence). Solid lines are fits (see Sec. 4.8). Lower panel shows the fraction
of rejected data for the three cases.

the entanglement sequence only weakly increases the dephasing of the 13C spin.
We use Monte Carlo simulations to model the nuclear spin dephasing induced by
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the entanglement attempts, taking into account all known control errors (Sec. 4.9.6) but
neglecting the intrinsic decoherence rates 20. We find that even using pessimistic param-
eters, an A∥ = 2π· 80 Hz coupled nuclear spin is predicted to retain a fidelity of 77.6(4)%
with respect to an initial superposition state after 106 entangling attempts. This find-
ing is consistent with the interpretation of spin-bath limited decoherence in the present
experiment.

Our simulations also show that the dephasing infidelity after 106 entangling attempts
can be reduced below 1% by using optimised primitives incorporating an additional
electron spin echo (Sec. 4.9.6). Further improvement of the performance can be re-
alised by reducing the entangling primitive duration, such that more attempts can be
performed within the intrinsic decoherence timescales. These intrinsic timescales may
themselves be extended by optimised decoupling schemes 51 as well as using samples
with lower nitrogen defect concentrations. It is clear, however, that ionisation currently
is a limiting factor. We next probe the nuclear spin dynamics after such ionisation events
to understand if they can be mitigated.

4.5. MITIGATING IONISATION

The above section indicates that ionisation of the NV centre limits achievable memory
performance. In the above experiments, and in all work up to now 20,27,32, an ionisation
event (NV− → NV0) at some point in the sequence causes complete dephasing of the 13C
spins. This is because such events occur stochastically, the subsequent electron spin dy-
namics are unknown, and, as discussed above (see Eq. 4.1 and Fig. 4.1(b)), each electron
spin state causes different 13C spin evolution. Ionisation rates lower than those pre-
sented here can be achieved, because single-photon entangling schemes typically use
unbalanced spin-superposition states for which the optical excitation probabilities are
much smaller 5,27. However, because weaker optical powers result in longer sequence
times and the optical π-pulses cannot be removed, it is challenging to completely pre-
vent ionisation. A promising approach is to develop techniques which make the data
qubit robust to this process.

In order to study the effect of charge-state switching, we implement resonant op-
tical pulses that induce ionisation (NV− → NV0, 1 ms) and recharging (NV0 → NV−, 1
ms). Combining these pulses with CR checks, we can use heralding and post-selection
to perform verified charge-state switching from NV−→NV0→NV− (Sec. 4.9.7).

We first combine the verified charge-state switching protocol with nuclear spin con-
trol to investigate the properties of the 13C spin for the NV0 state. After preparing NV−
and initialising the nuclear spin in the state |↑〉, we apply the ionisation pulse, and pro-
ceed with the experiment if a subsequent CR check heralds preparation in NV0. We then
apply a nuclear spin RF π-pulse with a Rabi frequency of 5.4(2) Hz, for which we sweep
the carrier frequency f . After applying the recharge pulse, we read out the nuclear spin in
the Z-basis and post-select the data on finding the NV in NV−. As shown in Fig. 4.3(a), we
observe a single nuclear spin resonance at a frequency of 50229.8(1) Hz, which matches
the 13C Larmor frequency. The observation of a single transition, rather than two tran-
sitions at f = ωL ± A∥/2, suggest a fast averaging over the two NV0 electron spin states,
akin to motional narrowing 19.
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Figure 4.3: (a) Nuclear magnetic resonance spectroscopy after heralded preparation of NV0. Solid line is a fit
(Sec. 4.8). (b) Free induction decay of the nuclear spin coherence in NV0. Inset: Ramsey fringes measured
during the first 15 ms of free evolution (artificial detuning of 80 Hz with respect to 50230 Hz). Solid lines are fits
(Sec. 4.8). (c) Protection of an arbitrary data qubit state under NV charge cycling. Orange (red) bars correspond
to measurements with a charge-state cycle (idling in NV−) between nuclear spin initialisation and readout.
Solid (hatched) bars correspond to all measured data (post-selection on finding the NV in the negative charge
state).
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To characterise the nuclear spin dephasing, we prepare the nuclear spin in a super-
position state, and let it evolve freely while switching to NV0 for a variable time. The
inset of Fig. 4.3(b) reveals coherent oscillations, corresponding to precession of the nu-
clear spin at a frequency of 50231(1) Hz. The nuclear spin coherence (〈X 〉2 + 〈Y 〉2)1/2

decays as T ∗
2,NV0 = 57(3) ms. This dephasing time is significantly shorter than for NV−

(T ∗
2,NV− ∼ 0.4 s, Fig. 4.1(d)), indicating that the NV0 state introduces an additional de-

phasing mechanism. The fitted decay exponent of n = 1.2(1) (Sec. 4.8) matches the
value of n = 1 expected for the motional-narrowing-like regime 19.

The observation of a single nuclear spin frequency and a decreased T ∗
2 are consistent

with a rapidly fluctuating NV0 electron spin state. In this regime, the dephasing time
scales as T ∗

2 = 8/(A2
∥ ·T NV0

1 ) 19,52. Thus, we can extract T NV0
1 = 570(30) µs. This value

deviates from another recent cryogenic measurement (T NV0
1 = 1.51(1)s) 53. It is likely

that this discrepancy is either due to the much higher magnetic field (Bz = 1850 G) or
absence of a P1 bath in that work.

The observed nuclear spin dephasing time in NV0 is much longer than the time
needed to recharge to NV−. We now show that this enables the protection of the data
qubit from ionisation events. We prepare the 13C in each of the six cardinal states, and
compare the expectation values obtained when applying the ionisation and recharging
process prior to measurement, or when measuring immediately after state preparation.
Here, to minimise dephasing during the ionisation and recharging processes, we shorten
the ionisation pulse length to 0.3 ms, and use a higher-power 0.5 ms recharging pulse
(Sec. 4.9.7).

Without post-selecting cases in which the NV returned to the bright state, we find
a reduction of the spin expectation values of 8(1)% (averaged over the cardinal states)
when applying the charge-state cycle (Fig. 4.3(c)). Upon post-selection, we find a neg-
ligible difference between the cases (the charge-cycle scenario outperforms immediate
measurement by 1(1)%). We thus attribute the majority of the current infidelity to the
finite recharging probability, which is likely limited by spectral diffusion arising from the
high impurity concentration in the present sample (Sec. 4.9.7). We estimate that the
NV is in the NV0 state for an average of ∼ 500 µs, for which the 13C dephasing from the
measured T ∗

2,NV0 is ∼ 0.5%, within the uncertainty of the present measurements.
Incorporating such ionisation protection within a network protocol requires a few

further considerations. First, the average nuclear spin precession frequency during the
entangling primitives should match the precession for NV0, else additional dephasing
will occur at the difference frequency until recharging occurs. This can be realised by
alternating the choice of NV− qubit-basis ms = {0,−1}, {0,+1} between entangling at-
tempts. Second, re-charging within the entangling sequence can be realised by adding
auxiliary 575 nm excitation during all NV− spin-reset pulses, which prevents extended
periods in which the NV resides in the neutral charge-state 5. A drawback of this ap-
proach is that extensive application of yellow light may induce spectral diffusion due to
ionisation of the P1 bath or other impurities 54. A second, less intrusive approach is to in-
terleave periodic CR checks within the entangling sequence. Efficiently scheduling such
checks into a full remote entangling protocol is non-trivial, but the timescales associated
with ionisation, data qubit dephasing in NV0, CR-checking and recharging suggest that
such an approach is feasible.
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We note that the NV0 spin-T1 may increase with reduction of impurities, or under
different magnetic fields, which would result in faster nuclear spin dephasing. This
challenge might be overcome by either inducing fast NV0 spin-flips using microwave
driving, or by performing feedback correction using recently demonstrated NV0 optical
spin-readout at high magnetic fields 53.

4.6. NUMERICAL ANALYSIS OF QUANTUM NETWORK PROTO-
COLS

Finally, we investigate the projected performance of a number of quantum network pro-
tocols when combining the improved memory lifetime demonstrated in this work with
previously demonstrated entanglement links and gate operations. We focus on non-
local two-qubit operations and the creation of distributed four-qubit GHZ states, a key
building block for the distributed surface-code 2,3 (Fig. 4.1(a)).

These investigations are based upon density-matrix simulations of noisy quantum
circuits. We use the following set of parameters to model the dominant error sources,
which are either the measured state-of-the-art (on a variety of devices) or near-term pre-
dictions (denoted by *): two-qubit gates (1% infidelity 21), NV optical measurement (1%
infidelity* 9), and networked (NV-NV) Bell-pair creation (10% infidelity* 27). We account
for the finite duration associated with each operation, including probabilistic NV-NV re-
mote entanglement (duration 6 µs, success probability 0.01%* 27), and for decoherence
of electron and nuclear spin qubits across all operations 18,21. We do not take NV ionisa-
tion into account. A detailed summary of the models and parameters used can be found
in Sec. 4.9.8.

In Figs. 4.4(a,b,c), we show the quantum circuit and simulated average fidelity Fav
55

for a deterministic CNOT operation between nuclear spins in separate network nodes.
For N1/e = 2·103 (achieved in previous work 27), the projected average fidelity is Fav ≈
0.33, close to that of a completely random operation (Fav = 0.25); the nuclear spin de-
coheres on a timescale shorter than the average time taken to create an entangled re-
source state. In contrast, for the N1/e = 2·105 as obtained here, we find a projected gate
fidelity of Fav ≈ 0.86, which approaches the limit of Fav ≈ 0.89 set by the quality of the
NV-NV Bell-pair resource state, local two-qubit gate operations, and measurement er-
rors. These results indicate that deterministic two-qubit gate operations across optical
quantum networks are within reach.

We next turn to protocols for GHZ state synthesis between four network nodes. We
compare three protocols, which are schematically depicted in Fig. 4.4(d). First, we have
the ‘Plain’ protocol, the simplest known approach which fuses three distributed Bell
pairs into a GHZ state. Second, we have the recently identified ‘Modicum’ protocol 6,
which extends the Plain protocol by one additional Bell pair creation step between two
otherwise idling nodes to realise a single step of entanglement distillation. Finally, we
have the ‘Expedient’ protocol introduced by Nickerson et al. 2, which uses 22 Bell pairs
in total to perform additional rounds of distillation, and, in principle, can lead to high-
quality GHZ states even in the presence of errors. Note, however, that previous work did
not take into account the decoherence of the data qubits during entangling sequences
or idling 2.
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Figure 4.4: (a) Diagram of a single network node comprising an electron spin (purple) and up to three nuclear
spins (orange tones). (b) Quantum circuit for a CNOT operation between nuclear spins in separate network
nodes. p1,2 are feed-forward operations. The gate is performed deterministically: the nuclear-spin states are
prepared, then entanglement is distributed, and the gate is performed independent of the number of entan-
glement attempts required and for all measurement outcomes. (c) Simulated performance of the non-local
CNOT protocol (see (b)) for a range of data qubit lifetimes. With the improvements achieved in this work (N1/e
= 2·105), the average CNOT fidelity, Fav ≈ 0.86 approaches the limit of 0.89 set by other error sources (grey
line), see text. Conversely, the longest previously measured lifetime (N1/e = 2·103, Ref. 27) would only enable
a CNOT fidelity of Fav ≈ 0.33. Error bars are smaller than markers. (d) Simulated performance for creation of
a GHZ state between four network nodes, for three different protocols as schematised on the right. Further
details of each protocol are given in Sec. 4.9.8. In all cases, the progress made in this work (N1/e = 2·105) leads
to significant fidelity improvements, at the cost of a increase in protocol duration due to the slower two-qubit
gates. The horizontal error bars in (d) indicate the distribution of durations taken for each protocol to succeed
(68.2% confidence intervals).

In Fig. 4.4(d), we plot the simulated GHZ state fidelities (Fstate = 〈ΨGHZ|ρ|ΨGHZ〉) for
each protocol, alongside the average duration to prepare the state. For each scheme,
there are two data points, which show the fidelities obtained when considering the data
qubit lifetimes of N1/e = 2·103 and N1/e = 2·105 respectively. The first observation is that,
for all the tested schemes, the improved lifetimes lead to significantly higher fidelities.
With the lifetime achieved in this work, the simulated GHZ fidelities for the Plain and
Modicum protocols exceed F = 0.5, confirming genuine multipartite entanglement of
four qubits.

The differences in performance between the schemes with N1/e = 2·105 give insights
into the usefulness of entanglement distillation for the considered parameter regime.
First, between the Plain and Modicum protocols, we see that the additional distillation
step does improve the fidelity, from F=0.62 to F=0.75. However, this fidelity improvement
is limited due to the need for an additional SWAP operation (three two-qubit gates). Fur-
thermore, the probabilistic nature of distillation leads to a slight increase in the average
duration of the protocol. For the Expedient protocol, we see that it takes significantly
longer to successfully generate one GHZ state, and achieves lower fidelities. Additional
rounds of entanglement distillation are only beneficial if the fidelity improvements (from
distilling imperfect states) exceed the fidelity losses from decoherence of idle qubits. A
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further increase in Nnetwork is required to make use of such protocols.

Together, these results show that the lifetime of the robust quantum-network mem-
ory demonstrated in this work is sufficient to demonstrate key distributed quantum
computation protocols, such as deterministic two-qubit gates and basic distillation
schemes, across optical quantum networks.

4.7. CONCLUSION

We have demonstrated a robust quantum-network memory based upon a single 13C spin
qubit in isotopically-engineered diamond. Compared with previous work 20,27, the data
qubit lifetime is improved by two orders-of-magnitude during network operation. Criti-
cally, the data qubit now decoheres more slowly than state-of-the-art entanglement rates
between NV centre network nodes 5,27. Using numerical simulations, we show that the
corresponding parameter regime — with Nnetwork ∼ 10 — enables a range of novel proto-
cols for optical quantum networks, including deterministic two-qubit logic and creation
of genuinely-entangled four-qubit GHZ states. Additionally, such robust memory would
greatly speed up recently demonstrated protocols such as entanglement distillation and
entanglement swapping 26,27.

On the path towards reaching the fault-tolerance threshold for large-scale dis-
tributed quantum-information-processing, our simulations show that further improve-
ments in Nnetwork are needed. The 13C decoherence rate rmem is currently limited by
spurious ionisation of the NV centre to NV0. Our results show that arbitrary states can be
protected while cycling the charge state back and forth with minimal loss of fidelity, sug-
gesting that such events can be mitigated. Further improvements in rmem are possible
by further improving the intrisic coherence times, and reducing the time needed for the
entanglement sequence. Additionally, an improvement of the optical entanglement suc-
cess probability by a factor ∼ 100 is feasible using Fabry-Pérot micro-cavities 29,31, which
would also greatly speed up the overall operation speed. Together such improvements
would yield Nnetwork ≈ 1000, which is anticipated to be sufficient to realise large-scale
error corrected quantum networks 2.

4.8. METHODS

4.8.1. SAMPLE AND HARDWARE SETUP

Our experiments are performed on a type-IIa isotopically purified (targeted 0.01% 13C)
〈100〉 diamond substrate (Element Six). We address a single NV centre using a cryogenic
(4 K) confocal microscope. A solid immersion lens and anti-reflection coating are fab-
ricated to increase optical collection efficiency 16,56,57. An external magnetic field is ap-
plied along the NV symmetry axis using three orthogonal permanent neodymium mag-
nets mounted on linear actuators (Newport UTS100PP). We measure the field vector to
be (Bx,By,Bz) = (0.3(1),0.06(8),46.801(1)) G by spectroscopy of the P1 bath transition fre-
quencies 45.

Resonant optical excitation of NV− at 637 nm (red, Toptica DLPro and New Focus
TLB-6704-P) realises high-fidelity spin initialisation (E1,2 transitions, := E’) and single-
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shot readout (Ey transition) 16. We measure read-out fidelities of 68.5(2)% for the bright
state (ms = 0, := |0〉) and 99.3(3)% for the dark state (ms = −1, := |1〉), giving FSSRO =
0.839(3). We employ 515 nm (green, Cobolt MLD) excitation to prepare the NV in NV−
and on resonance with the 637 nm lasers 17. Finally, for experiments involving the neu-
tral charge state, NV0, we use resonant 575 nm (yellow, Toptica DL-SHG Pro) light to
realise fast recharging to NV−. Through direct current modulation or cascaded acousto-
optical modulators, we achieve on/off ratios > 100 dB for all lasers.

Microwave (MW) driving via a lithographically defined gold stripline enables coher-
ent control between |0〉 ↔ |1〉. Pulses are applied using Hermite envelopes with maxi-
mum ΩRabi ∼ 27 MHz, aside from within the entangling primitive, where a multi-tone
driving scheme is employed to mitigate heating (Sec. 4.9.4). Using a fast microwave
switch (TriQuint TGS2355-SM, 40 dB) to suppress electronic noise, we measure long
electron spin relaxation (T1 À 30 s), dephasing (T ∗

2 = 94(2) µs) and coherence (T2 =
0.992(4) ms) times, the latter of which is limited by the electron spin bath formed by
the P1 centres (75 ppb 45) which can be reduced in future diamond growth.

4.8.2. MAGNETIC FIELD STABILISATION

The presence of a number of 6-9 T magnetic field systems in adjacent laboratories leads
to slow magnetic field drifts (measured to be ∼ 200 mG peak-peak across all presented
measurements). These drifts are first mitigated using a feedback-loop. We measure the
electron spin resonance frequency approximately every 10 minutes, and compensate
any deviation to within 3 kHz (∼ 1 mG) of the set-point by moving the magnets. This
comes at the cost of slight magnetic field misalignment. If this misalignment becomes
too large, or nearby magnetic field systems are being swept too quickly, we observe
degradation of the nuclear spin operations. To remove such effects from our results,
during 13C-related data-taking we interleave separate reference measurements of the
nuclear spin expectation value after simple state-preparation and measurement. These
reference measurements do not contribute to the presented data-sets, but are used to
discard measurement runs in the case that the reference measurement falls below 75%
of the calibrated value.
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4.8.3. DATA ANALYSIS

Throughout this text, we do not correct the nuclear spin data for SPAM errors.
The intrinsic decoherence timescales of the 13C data qubit, as presented in Fig.

4.1(d), are fitted as follows:

F (t ) = A exp[−(t/T )n]

Metric A T (s) n

T ∗
2,e=|1〉 0.55(2) 0.38(1) 1.6(1)

T ∗
2,e=|0〉 0.46(1) 0.42(2) 2.0(2)

T N=1
2,e=|1〉 0.51(1) 1.82(6) 2.1(2)

T N=1
2,e=|0〉 0.52(2) 1.11(8) 0.9(1)

T N=8
2,e=|1〉 0.58(1) 2.91(8) 2.1(2)

T N=8
2,e=|0〉 0.60(2) 1.62(9) 1.0(1)

T1,e=|1〉 0.43(2) - -

T1,e=|0〉 0.49(2) 2.8(2) 0.9(1)

The decoherence timescale for the data qubit during network operation (upper panel
of Fig. 4.2(c)) is fit according to:

F (N ) = A exp[−(N /N1/e )n]

CR threshold A N1/e · 1e5 n

0 0.49(1) 1.33(4) 1.00(5)

1 0.49(1) 1.80(6) 1.09(8)

5 0.49(1) 2.07(8) 1.09(8)

while the fraction of rejected data (lower panel) is fit using:

F (N ) = 1− A exp[−(N /Nion)]

CR threshold A Nion· 1e5

1 0.988(4) 5.03(7)

5 0.91(1) 3.0(1)
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The 13C nuclear magnetic resonance spectrum for the NV0 state (Fig. 4.3(a)) is de-
scribed by:

F ( f ) = a − A[Ω2/2(Ω2 + ( f − f0)2)]

·[1−cos(
√
Ω2 + ( f − f0)2t )]

a A f0 (Hz)

0.421(3) 0.73(2) 50229.8(1)

where the measured Rabi frequency,Ω= 5.4(2) Hz, and the chosen pulse duration, t
= 92 ms, are fixed parameters.

For the 13C free induction decay in the NV0 state (Fig. 4.3(b)), we fit:

F (t ) = A exp[−(t/T ∗
2 )n]

A T ∗
2 (ms) n

0.54(2) 57(3) 1.2(1)

Finally, for the free evolution of 〈X 〉 (inset of Fig. 4.3(b)), we fit:

F (t ) = A exp[−(t/T ∗
2 )n] ·cos(ωt +φ)

A ω (Hz) φ (◦)

0.46(1) 81(1) -4(3)

where T ∗
2 = 56 ms and n = 1.2 are fixed to the values found in the previous fit.

4.9. SUPPLEMENTARY MATERIALS

4.9.1. NUCLEAR SPIN CONTROL

Dynamical decoupling (DD) spectroscopy is used to characterise the nuclear spin en-
vironment of the NV centre 34. The signal presented in Fig. 4.1(c) is modelled by the
interaction of the NV with two individual 13C spins, taking into account the decoherence
of the electron spin during the decoupling sequence 34.

The resonance at 44.832 µs is associated with the single spin characterised as a data
qubit in this work, for which we extract hyperfine interaction parameters of A∥ = 2π·
80(1) Hz and A⊥ = 2π· 271(4) Hz via Ramsey spectroscopy and DD nutation experiments
respectively 38. The resonance at 44.794 µs is, in reality, a sum over a number of spins
associated with the 13C bath. However, the signal is reasonably approximated by a single
nuclear spin with A∥ = 2π· 0 Hz and A⊥ = 2π· 150 Hz.

We realise universal control over the electron-13C system: an electron-nuclear two-
qubit gate is implemented following the methods described in Taminiau et al. 39 (CRot
duration ∼ 25 ms), while selective radio-frequency driving and free precession enable
arbitrary 13C single-qubit gates 21. Following the methods of Cramer et al., we estimate
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the two-qubit gate fidelity to be ∼ 84% 58. This is thought to be limited by the electron
spin coherence, which is restricted by the P1 spin bath rather than the 13C bath. Reduc-
tion of these impurities through improved diamond growth should enable high fidelity
control over a larger number of nuclear spins, as demonstrated in natural abundance
13C samples 21.

As the fidelity of the nuclear spin readout is limited by the electron spin coherence,
it is possible to improve this readout fidelity by repeated measurements, as has previ-
ously been achieved for single 13C nuclear spins under ambient conditions 19,40,41. We
implement the repetitive readout protocol shown in Fig. 4.5(a). As the electron-nuclear
coupling is weak — A∥ ¿ 1/τRO, for τRO the combined readout and repumping time —
electron spin flips during the optical readout induce minimal 13C dephasing. We can
thus repeat the mapping and readout procedure a number of times, from which we ac-
quire histograms as exemplified in Fig. 4.5(b).

Figure 4.5: Nuclear spin repetitive readout: (a) Repetitive readout protocol: in each repetition, the nuclear
X-basis spin-projection is mapped to the electron spin Z-basis, which is optically read out and then reset. (b)
Example histograms obtained when preparing the |x〉 and |−x〉 states with a single projective measurement,
followed by 8 X-basis readouts. Dashed line denotes the optimal state discrimination threshold. Dark (light)
colours correspond to populations which are assigned to the targeted (erroneous) state. (c) Optimised state
preparation and measurement fidelity as a function of the number of repetitive readouts. (d) Same as (b), but
now using the outcomes of 8 prior readouts (≥5 read-outs with ≥1 photon for |x〉 initialisation, no photons in
any of the 8 readouts for |−x〉 initialisation) as an additional initialisation step.



4

86 4. ROBUST QUANTUM-NETWORK MEMORY IN ISOTOPICALLY ENGINEERED DIAMOND

The histograms after preparation of |x〉 and |−x〉 respectively show two distinct pop-
ulations. The state preparation and measurement process is quantified by FSPAM =
1
2 (Fx|x +F−x|−x), where Fi | j is the probability to assign the spin state |i 〉 after attempting
initialisation in

∣∣ j
〉

. In Fig. 4.5(c), we plot FSPAM as a function of the number of repeated
readouts, in each case using the optimal threshold to discriminate the two states. At an
optimum number of 12 readouts, FSPAM reaches 80.4(9)%. In all other nuclear spin data
shown in the text, we utilise N = 8 readout repetitions (FSPAM = 79.4(9)%) as a trade-off
between optimal fidelity and measurement run-time. FSPAM is predominantly limited by
two mechanisms. First, the measurement sequence still induces some decoherence of
the nuclear spin — as can be seen by the decrease in fidelity for >12 read-outs — reduc-
ing the extractable information. This effect would likely be mitigated by improvement of
the two-qubit gate. Second, we prepare the |x〉 and |−x〉 states using a single projective
measurement 58. Repetitive measurements can also be used to initialise the spin: in Fig.
4.5(d) we additionally show the outcome of 8 repetitive readouts, conditioned on the
outcome of 8 prior readouts. We find an achievable FSPAM = 91(1)%, but do not employ
it in this work due to the additional time overhead of >0.5 s per experimental shot.

4.9.2. HOMONUCLEAR ECHO

In Sec. 4.3, we report the nuclear spin dephasing timescale associated with nuclear spin
bath dynamics to be T ∗

2,13C−bath
= 0.66(3) s. To identify this timescale, we prepare the elec-

tron in the |0〉 state and perform a homonuclear spin-echo at the 13C Larmor frequency
(ΩRabi = 120 Hz). Such a pulse inverts the local nuclear spin environment, decoupling it
from other quasi-static noise sources but leaving the 13C-13C interactions unperturbed.

In Fig. 4.6 we present the measured data and experimental sequence.

Figure 4.6: Homonuclear Echo: Measured nuclear spin dephasing when applying a homonuclear spin echo.
The electron is initialised in the |0〉 state, such that the echo pulse simultaneously inverts the addressed
13C along with the surrounding nuclear spin environment. The data are fit with an exponential decay,
f (t ) = A exp[−(t/T2)n ], for which we find T∗

2,13C−bath
= 0.66(3) s and n = 1.3(1).
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Figure 4.7: Electron spin reset: After initialisation in |1〉, the population in |0〉 is plotted as a function of the
repumping duration (30 nW, E’). A delay of 10 µs between turning off the spin-pumping laser and turning on
the readout laser ensures that minimal population resides in the metastable singlet states 20. The data are well
described by a two-timescale phenomenological model: f (t ) = A(1−exp[−t/τ1])+B(1−exp[−t/τ2]), for which
we find A=0.480(15), B=0.503(14), τ1=142(5) ns, τ2=905(31) ns.

4.9.3. ELECTRON SPIN INITIALISATION

Electron spin initialisation constitutes a large fraction of the remote entanglement prim-
itive duration 27. Therefore, faster initialisation rates are desirable. This can be achieved
by using higher laser powers, such that the NV centre is more frequently excited. How-
ever, higher laser powers also increase the ionisation rate 49,50. Furthermore, as initiali-
sation occurs primarily via the NV− intersystem crossing 20, the ∼ 370 ns lifetime of the
singlet state, alongside the finite branching ratio from this state to the targeted ms = 0
state, limit the extent to which higher laser powers increase the reset speed.

As a trade-off between these factors, we use 30 nW of E’ excitation for the repumping
process. This leads to initialisation fidelities ≥98% in a duration of 5 µs. In Fig. 4.7 we
plot the measured reset dynamics for this power.

4.9.4. WEAK ELECTRON-SPIN PULSES

When implementing large numbers of repetitions of the remote entanglement protocol
using strong microwave pulses, the mean number of detected photons during single-
shot read-out was observed to decrease. This is attributed to heating of the sample.

The applied heat-load can be reduced by decreasing the MW Rabi frequency, but
this is complicated by the presence of the nitrogen nuclear-spin. The electron-nitrogen
hyperfine coupling, A∥Sz Iz (A∥ = 2π ·2.18 MHz) causes a three-fold splitting of the tran-
sition frequency. For this reason, we usually employ strong, spectrally-broad Hermite
pulses (Rabi frequency ∼ 27 MHz) for high-fidelity (À 99%) manipulation of the elec-
tron spin, independent of the nitrogen spin state.

While prior initialisation of the nitrogen spin in a chosen state can relax this require-
ment 42, the large excited-state hyperfine coupling causes rapid depolarisation of the
nuclear spin under repeated optical reset of the electron-spin, ruling out this method in



4

88 4. ROBUST QUANTUM-NETWORK MEMORY IN ISOTOPICALLY ENGINEERED DIAMOND

the presented experiments 59.
An alternative approach is to apply three separate drive tones, each addressing one

of the nitrogen hyperfine levels. High-fidelity inversion is realised if the Rabi frequency
of each tone,Ω, is large relative to the transition linewidth, which is described by a Gaus-
sian distribution with σ f = 1/(

p
2πT ∗

2 ) = 4.5 kHz. Conversely,Ω should be small relative
to the detuning between the transitions A∥, such that AC-Stark frequency shifts remain
small. We apply square pulse envelopes with Ω = 92 kHz for each tone. The integrated
power over the multi-tone pulse is ∼ 80 (∼ 40) times reduced for the π (π/2) pulse when
compared to the strong Hermite pulses (Rabi frequency: π-pulse ∼ 27 MHz, π/2-pulse
∼ 16 MHz), enabling the repeated application of hundreds of thousands of MW pulses
without observation of heating effects.

We numerically evaluate the electron spin dynamics using the QuTip python pack-
age 60. Making the secular and rotating wave approximations, and transforming to the
interaction picture ω1Ŝz , with ω1 = D +γe Bz , the Hamiltonian describing the evolution
of the driven electron-nitrogen system is:

H ′ = 2D |2〉〈2|+QÎ 2
z +γN Bz Îz + A∥Ŝz Îz

+ 1p
2
Ω(cos

(
φ1

)
Ŝx − sin

(
φ1

)
Ŝy )

+ 1p
2
Ω(cos

(
A∥t +φ2

)
Ŝx − sin

(
A∥t +φ2

)
Ŝy )

+ 1p
2
Ω(cos

(−A∥t +φ3
)
Ŝx − sin

(−A∥t +φ3
)
Ŝy ).

(4.2)

Here, Ŝi and Îi are the electron and nuclear spin-1 operators. D is the zero-field splitting,
Q is the quadrupole splitting, γe and γN are the electron and nitrogen gyromagnetic
ratios, and Bz is the external magnetic field component parallel to the NV axis. φi are
the phases of the individual drive fields, while |2〉〈2| is the projector on the state |2〉 of
the electron spin: this term is a detuning of the non-driven electron spin transition. We
have additionally assumed that the three drive tones are x-polarised.

In Fig. 4.8 we show the simulated and measured electron spin dynamics. A high-
fidelity π-pulse is realised after ∼ 5.5 µs of driving. The observed modulations arise due
to slight relative AC-Stark shifts. Each drive tone induces a frequency shift approximately
given by δAC−Stark ∼ Ω2/2∆, where ∆ is the difference between the drive frequency and
each detuned transition frequency. For the mI = 0 transition, the shifts from the off-
resonant tones are cancelled to first order. However, for the mI =±1 transitions, there is
a frequency shift of ∼±2 kHz.

We note that the parameters used here are not suitable for natural abundance sam-
ples, (T ∗

2 ∼ 5µs, 1/(
p

2πT ∗
2 ) ∼ 45 kHz), where the broader intrinsic linewidth leads to

significant infidelity (simulated to be ∼ 33% by Monte Carlo sampling, compared with
∼ 0.6% for the present scenario). However, heating can alternatively be addressed by
improved device engineering in future work, for example by fabricating the stripline us-
ing superconducting materials. This would enable the use of strong microwave pulses
throughout the experiments and remove the time overhead required for weak pulses.
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Figure 4.8: Weak microwave pulses: Electron spin dynamics under application of the three-tone microwave
pulse. The solid line (circles) show the simulated (measured) dynamics after initialisation of the electron spin
in |0〉. A π-pulse is realised after 5.5 µs.

4.9.5. QUANTUM NETWORK MEMORY PERFORMANCE USING

STRONG PULSES

As discussed in the above section, the use of strong microwave pulses during the remote
entanglement primitive led to the observation of heating effects. For this reason, we im-
plemented the weak pulse scheme to ensure that optical processes were unaffected and
thus would be compatible with remote entanglement generation. Nevertheless, we here
study the data qubit decoherence when using strong pulses, which enables a shorter
duration per entangling attempt.

The entangling primitive used here is identical to that used in Sec. 4.4 (tr = 5 µs, t ′
= 200 ns, tl = 1 µs), but with the weak MW π/2 pulse (tMW = 2.8 µs) now replaced by a
Hermite π/2 pulse (tMW = 100 ns). The total duration is thus reduced from 9 µs to 6.3
µs. We measure the decay of the nuclear coherence, (〈X 〉2 + 〈Y 〉2)1/2, as a function of
the number of entangling primitives after initialisation in |x〉. We again interleave one
round of nuclear spin XY8 decoupling pulses. In Fig. 4.9 we plot the results, including
different post-selection thresholds for the post-measurement CR checks. Importantly,
the rejected fraction of events is similar to that observed when using the weak pulse
scheme, suggesting that optical dynamics are relatively unchanged.

When compared with the data presented in Sec. 4.4, we observe an increase in data
qubit robustness. With the most stringent filtering, we find a decay time of 419(96)·103

attempts (2.6(6) s). This compares favourably with the weak pulse case, where the equa-
torial states {|x〉,∣∣y〉

,|−x〉,∣∣−y
〉

} have a mean decay time of 190(8)·103 attempts (1.8(1) s).
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Figure 4.9: Data qubit robustness using strong electron pulses: Nuclear spin coherence as a function of the
number of applied remote entangling primitives. Blue, green, red lines correspond to post-selection using a
CR-check performed after the experiment, with thresholds of 0, 1, 5 respectively. The lower panel shows the
corresponding fraction of rejected data.

4.9.6. SIMULATED NUCLEAR SPIN DEPHASING DUE TO THE

REMOTE-ENTANGLEMENT PROTOCOL

In this section we numerically analyse the nuclear-spin dephasing induced by repeated
remote entanglement attempts. Our analysis is based upon Monte Carlo simulations,
adapted from the work of Kalb et al. 20. Here, we will neglect the intrinsic dephasing
timescales (T ∗

2 and T2) of the nuclear spin, rather focusing on the limits imposed by the
remote entanglement sequence alone. Further, we neglect the role played by ionisation.
We will consider two sequences, the first following that implemented experimentally,
and the second in which an additional electron spin-echo is incorporated within each
attempt, see Figs. 4.10(a,b).

To build up a statistical distribution for the phase acquired by the nuclear spin after
repeated application of the sequence, we generate a number of samples, K , each of N
trials.

In each trial, a random number 0 ≤ RNinit ≤ 1 is used to instantiate the NV elec-
tron in a given spin projection, |s〉 ∈ {−1,0,+1}, each with probability p|s〉. The p|s〉
are parameterised by a chosen initialisation error, pinit, such that p|0〉 = (1− pinit) and
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Figure 4.10: Numerical analysis of nuclear spin dephasing: (a) Sketch of the primitive remote entanglement
unit used in experiment as formulated for Monte Carlo simulation. The nuclear spin (yellow) acquires spuri-
ous phases according to the dynamics of the electron spin (purple) and the Ŝz Îz coupling A∥. This phase is
broken down into contributions from three imperfect operations, determined by initialisation infidelity (φa ,
parameterised by pinit), microwave inversion (φb , parameterised by pflip) and stochastic reset time (φc , pa-
rameterised by tc ). (b) Sketch of the primitive remote entanglement unit when incorporating an additional
electron spin-echo pulse (with failure possibility parameterised by pecho). (c) Results of Monte Carlo simula-
tions for the scenario given in (b), after application of 1 ·106 entangling primitives. α = π/2, pMW = 0.5, popt =
0.01, ta = 4.8 µs, tb/2 = 1 µs and 〈tc 〉 = 200 ns. Results are averaged over 600 samples.

p|−1〉 = p|+1〉 = pinit/2.

The nuclear spin is now evolved for a time, ta = (tp− tr+ ts), where tp is the total opti-
cal pumping duration, tr is the mean time to initialise (‘reset’) the spin, and ts is the spac-
ing between the end of the repump laser pulse and the centre of the ‘α’ microwave pulse
(used to prepare the electron superposition for spin-photon entanglement). A phase, φa

is acquired according to the initial state, at the difference frequency δω= A∥s.

Next, the ‘α’ microwave pulse is applied, the effect of which is treated as instanta-
neous. While throughout this work we set α = π/2, for which the sequence induces max-
imal dephasing noise on the data qubit,α is generally a free parameter which determines
a rate-fidelity trade-off for remote spin-spin entanglement in the single-click entangling
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protocol 5,27. Another random number, 0 ≤ RNMW ≤ 1, is used to determine whether the
electron spin is flipped between |0〉 ↔ |−1〉 (|+1〉 is assumed to be unperturbed). The
inversion is applied if RNMW < pMW, the inversion probability of the chosen microwave
pulse.

Immediately after the microwave pulse, we apply the effect of the optical π-pulse
used to create spin-photon entanglement. A third random number, 0 ≤ RNopt ≤ 1, is
used to determine whether the electron spin is flipped from |0〉→ {|−1〉 , |+1〉}, each with
equal probability. Again, the inversion is applied if RNopt < popt, which we set to be 0.01,
according to the estimated spin-flip probability of the Ex,y transitions 20. Note that the
probability of this spin-flip is much smaller than that induced by the microwave pulse,
justifying the omission of the optical pulses in the presented experiments.

In the case that we do not incorporate the electron spin-echo (Fig. 4.10(a)), the nu-
clear spin now simply acquires phase for a time tb (φb), defined as the time between
the centre of the microwave pulse and the onset of optical pumping. This time period
allows for the decision logic for success or failure of the remote entanglement protocol
(detection or loss of the optical photon). For short range (metre-scale) experiments, this
timescale is typically ∼ 1µs, limited by the current electronics used. The dephasing as-
sociated with tb is dominant in this sequence: forα = π/2, there is an extended period of
time during which the electron has an approximately 50% chance to be in either the |0〉
or |−1〉 state.

We thus also consider the case in which it is possible to incorporate the echo (for
example, because heating is mitigated by device engineering), see Fig. 4.10(b). In this
case, the nuclear spin acquires phase for a time tb/2 (φb,1), before the echo is applied,
and then for a further time tb/2 (φb,2). In case of successful application of the echo,
φb,1 +φb,2 = 0. We account for a finite failure probability of the echo pulse using another
random number, 0 ≤ RNecho ≤ 1. If RNecho < pecho, the electron spin is flipped between
|0〉↔ |−1〉.

Finally, we account for the stochastic optical reset. In the case that the electron spin
is in |−1〉 or |+1〉 at the onset of spin-pumping, a finite duration is required to prepare |0〉
for the start of the next repetition. A reset time, tc , is sampled from the phenomenolog-
ical two-timescale function fitted in Fig. 4.7, which determines the final evolution time
before the end of the trial, during which time a phase φc is acquired.

Summing these phases, we find the total phase acquired by the nuclear spin for the
i -th trial of the k-th sample: φi ,k . Repeating this process for N trials, we calculate the
cumulative phasesΦn,k =∑n

i=1φi ,k for n = {1, ..., N }.
For each sample, we can then calculate the state fidelity after each n trials:

Fn,k = 1

2
+ 1

2
cos

(
Φn,k −Φn

)
(4.3)

where Φn is the mean phase after n trials, averaged over all samples. Finally, we find

the characteristic n for which cos
(
Φn,k −Φn

)
falls below 1/e.

We consider two regimes. First, for the sequence excluding the spin-echo, we choose
parameters that are as least as pessimistic as used in the experiments in Sec. 4.4. We have
ta = 6.1 µs, tb = 2.4 µs, 〈tc〉 = 535 ns (following the two-timescale function fitted in Fig.
4.7), pinit = 0.03, pMW = 0.5, popt = 0.01. We find that after application of 1·106 entangling
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primitives, the expected fidelity with an initial superposition state is 0.776(4), averaged
over 4000 samples. These calculations indicate that dephasing due to the entangling
sequence is not limiting in the experiments.

We now turn to the case in which the echo is incorporated. We assume that strong
MW pulses can be employed, enabling ta = 4.8 µs, tb = 2 µs. Further, we assume that
faster spin reset can be achieved, as has been previously demonstrated with higher pow-
ers 20,32: setting 〈tc〉 = 200 ns (following a single exponential timescale). We set pMW =
0.5, popt = 0.01. We now perform a 2D sweep of the fidelity after 1 ·106 trials as a func-
tion of pinit and pecho. The results are plotted in Fig. 4.10. Even with 1% errors in the
initialisation and echo operations, a fidelity of 96.7(2)% is achieved.

4.9.7. CONTROLLED CHARGE-STATE SWITCHING OF THE NV CENTRE

Throughout the experiments shown in this work, we make use of two-laser probe mea-
surements (‘CR checks’) to detect the NV− charge state 17. During these checks, weak
resonant light is applied on the NV− E ′ (8 nW) and Ey (1.5 nW) transitions for 150µs, dur-
ing which we record all photon counts. By setting a threshold on the number of detected
photons, it is possible to herald that the NV is in the negative charge-state, and that the
spin-pumping and readout lasers are resonant. In the case of low counts a strong green
pulse (515 nm, 30 µW, 50 µs) is used to scramble the local charge environment, before
the check is repeated.

To investigate the effect of NV− ionisation on the nuclear spin data qubit, we require
fast switching of the NV charge state along with efficient detection. In this section we
design and implement a protocol which enables such studies.

The protocol is shown in Fig. 4.11(a). We begin with a CR check, which we use to
prepare the system in NV− (Check NV− (1)). At this point, we can utilise the previously
described universal control to prepare the nuclear spin in a chosen state. Next, we apply
a strong two-laser ionisation pulse. 50 nW of Ey and 500 nW of E ′ excitation are used,
which are chosen to maintain predominantly NV− ms = 0 projection while attempting
ionisation. After this pulse, a second CR check is performed (Check NV− (2)). We proceed
with the measurement only if this check returns 0 photon counts, which occurs with ∼
10% (40%) probability after a 300 µs (1 ms) pulse. This outcome heralds the system in a
dark state of the NV, which can be associated with either NV0 or a significant detuning of
the NV− transitions due to spectral diffusion.

We now perform the desired experiment on the nuclear spin, either allowing free
evolution or applying RF driving. Next, we apply a strong yellow (575 nm) recharging
pulse, using 500 nW for Figs. 4.3(a,b), and 1100 nW (the maximum attainable) for Fig.
4.3(c) to increase the recharging probability. After the recharging pulse, we apply spin-
pump light to prepare the NV− ms = 0 state and subsequently read-out the nuclear spin.
Finally, we perform one more CR check (Check NV− (3)). The outcome of this check
allows for post-selection of the nuclear spin read-out data upon finding the NV in the
negative-charge state (retaining 82% of cases with the 575 nm pulse parameters used for
Figs. 4.3(a,b): 1 ms, 500 nW, 85% for Fig. 4.3(c): 0.5 ms, 1100 nW). For post-selection,
we discard data which lies close to the bright/dark discrimination threshold (see below).
We only consider data for which the NV began in the negative charge-state (> 13 counts
in (1)), transferred to a dark state (0 counts in (2)), and then returned to the negative
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charge-state via the recharging pulse (≥ 5 counts in (3)).
In Fig. 4.11(b) we show example photon-count distributions from CR checks per-

formed after preparing NV− (1), after heralding the dark state (2), and after applying a
1.1 µW, 0.5 ms recharging pulse (3). The mean number of photons detected in each case
is 16.9, 0.3, and 13.7 respectively, clearly demonstrating the ability to switch between the
bright and dark states. However, the slight reduction of mean counts for case (3) com-
pared to case (1) indicates that the recharging process does not achieve unity success.
We now study this process more carefully.

We first quantify the charge-state read-out fidelity. Considering the data shown in
panels (1) and (2) of Fig. 4.11(b), we maximise the quantity Fcharge = 1

2 (Fb|b+Fd|d), where
Fi | j is the probability to assign the ‘bright’ (b, NV−) or ‘dark’ (d, NV0 or off-resonant) state
after attempting initialisation in that state. With a threshold of 3 counts (assign bright if
≥ 3 photons detected), we find Fcharge = 98.81(4)%.

In Fig. 4.11(c) we plot the NV− population after first preparing the dark state and then
applying a 1 ms, 500 nW recharging pulse, for which we sweep the pulse frequency. The
observation of two transitions corresponding to the spin-orbit branches of NV0 confirms
that this is the resonant recharging process 53,61. Here, the broader line observed for the
higher-frequency resonance (lower spin-orbit branch of NV0) is likely due to the polari-
sation of the yellow laser — which is fixed at an arbitrary value in these experiments —
being biased towards linear horizontal 53. Optimal recharging is achieved when working
at the central frequency for this branch, here 521.247 THz. Note that the lifetime of the
NV0 orbital-state is short even at 4 K (sub-µs), and so it is sufficient to only address a
single spin-orbit branch.

We now turn to the temporal dependence. In Fig. 4.11(d) we show the NV− popula-
tion as a function of the recharge pulse length, now at a (maximal) power of 1.1 µW. The
population grows rises quickly, with a fitted time constant of 71(2) µs. However, beyond
a maximum population of 88.6(6)% at t = 0.55 ms, the signal again decays. A possible ex-
planation for this decay is spectral diffusion, caused by ionisation of nearby P1 centres by
the yellow laser 54. Note that significantly higher recharging probabilities were achieved
in Ref. 53, where the diamond substrate contained significantly fewer impurities. In Fig.
4.11(e), we focus on the first 500 µs of recharging, and probe the population in each of
the NV− spin states. We observe that the recharging laser induces fast spin-pumping into
the ms = 0 state, as expected due to the intersystem crossing. At t = 500 µs, the fraction
of NV− population in this state is 91.9(8)%. Note that this spin-pumping effect mitigates
dephasing of the nuclear spin in the time between recharging and resonant spin-reset of
the NV− spin.
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Figure 4.11: Charge-state switching: (a) Flow diagram for the charge-state switching protocol, showing the de-
cision logic used for bright- and dark-state heralding and optional post-selection. (b) Distribution of photon-
counts from CR checks performed at the points (1), (2), (3) indicated in panel (a). (c) NV− population as a
function of the recharging pulse frequency, using a 1 ms pulse of 500 nW. Solid line is a fit to the sum of two
Voigt profiles. (d) NV− state population as a function of the recharging pulse duration, at 521.247 THz and 1.1
µW. Solid line is a fit to F (t ) = (1−exp[−t/τ1]) · (exp[−(t/τ2)n ], from which we find τ1 = 71(2) µs, τ2 = 22(4) ms
and n=0.54(3). Dashed line shows the decay component, characterised by τ2. (e) Populations in the NV0/dark
state, and in the differing spin-projections of the NV− state as a function of the recharging pulse duration,
again at 521.247 THz and 1.1 µW. Solid lines are fits to F (t ) = a+ A exp[−(t/τ)n ]. We find τ = {73(7),63(1),63(1)}
µs, n.= {1.0(1),1.00(1),1.00(1)}, for the ms = 0, NV0 and NV− populations respectively.
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4.9.8. SIMULATED PERFORMANCE OF A WEAKLY-COUPLED 13C FOR DIS-
TRIBUTED QUANTUM INFORMATION PROCESSING

In Sec. 4.6, we present the simulated performance of two-qubit logic operations and
generation of four-qubit GHZ states between nuclear spin qubits hosted in disparate
quantum network nodes. Here we outline the models and methods used for these sim-
ulations. Further details can be found in the code implementation.

SIMULATION PARAMETERS

In Tables 4.1-4.3, we give the list of relevant parameters, which are described in the fol-
lowing sub-sections.

Parameter Description Values

General parameters

pg Gate error probability 0.01
pm Measurement error probability 0.01
pn Network error probability 0.1
pRE RE success probability 0.0001
Tmeas Measurement duration 4.0 ·10−6 s
TRE RE duration 6.0 ·10−6 s
Te

X Electron X gate duration 0.14 ·10−6 s
Te

Y Electron Y gate duration 0.14 ·10−6 s
Te

Z Electron Z gate duration 0.10 ·10−6 s
Te

H Electron H gate duration 0.10 ·10−6 s

Table 4.1: General system parameters as used for the simulations presented in Figs. 4.4(c,d).

13C decoherence parameters (Ref. 27)

T1n
idle

13C T1 when idle 300 s
T1n

RE
13C T1 during RE attempts 0.03 s

T2n
idle

13C T2 when idle 10 s
T2n

RE
13C T2 during RE attempts 0.012 s

T2e
idle Electron T2 when idle 1.0 s

1.1% 13C gate durations

TC
X

13C X gate duration 1.0 ·10−3 s
TC

Y
13C Y gate duration 1.0 ·10−3 s

TC
Z

13C Z gate duration 0.5 ·10−3 s
TC

H
13C H gate duration 0.5 ·10−3 s

TCNOT CNOT gate duration 0.5 ·10−3 s
TCZ CZ gate duration 0.5 ·10−3 s
TSWAP SWAP gate duration 1.5 ·10−3 s

Table 4.2: Decoherence timescales as measured in Ref. 27, and typical gate durations for such a device (1.1%
13C) 21, as used for the simulations presented in Fig. 4.4(d) (labelled by N1/e = 2·103, the T 2n

RE decay).
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13C decoherence parameters (this work)

T1n
idle

13C T1 when idle 300 s
T1n

RE
13C T1 during RE attempts 1.2 s

T2n
idle

13C T2 when idle 10 s
T2n

RE
13C T2 during RE attempts 1.2 s

T2e
idle Electron T2 when idle 1.0 s

0.01% 13C gate durations

TC
X

13C X gate duration 13 ·10−3 s
TC

Y
13C Y gate duration 13 ·10−3 s

TC
Z

13C Z gate duration 6.5 ·10−3 s
TC

H
13C H gate duration 6.5 ·10−3 s

TCNOT CNOT gate duration 25 ·10−3 s
TCZ CZ gate duration 25 ·10−3 s
TSWAP SWAP gate duration 75 ·10−3 s

Table 4.3: Decoherence timescales as measured in this work, and associated gate durations (0.01% 13C device),
as used for the simulations presented in Figs. 4.4(c) (see text) and 4.4(d) (labelled by N1/e = 2·105, the T 2n

RE
decay).

NODE TOPOLOGY

We assume that the NV centre has a star topology, where two qubit gates are only possible
between the electron spin qubit and another qubit. Moreover, CNOT gates can only be
carried out controlled by the electron spin qubit. Direct read-out is only possible for the
electron spin qubit: other qubits must be read-out by first mapping their state to the
electron spin. The protocols considered here require a maximum of three 13C qubits in
each node.

DECOHERENCE

Decoherence is modelled using two types of noise channels: the generalised ampli-
tude damping channel and the phase damping channel 62 which have characteristic
timescales of T1 and T2 respectively. We assign different T1 and T2 values to the nu-
clear spins dependent on whether their associated electron spin is being used to gener-
ate inter-node entanglement at a given point in the sequence.

The set of Kraus operators for the generalised amplitude damping channel is given
by

K AD1 =
√

1

2

[
1 0
0

√
1−γ1

]
,

K AD2 =
√

1

2

[
0

p
γ1

0 0

]
,

K AD3 =
√

1

2

[√
1−γ1 0

0 1

]
,

K AD4 =
√

1

2

[
0 0p
γ1 0

]
.

(4.4)
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where γ1 = 1−exp(−t/T1).
The set of Kraus operators for the phase damping channel is given by:

KPD1 =
[

1 0
0

√
1−γ2

]
, KPD2 =

[
0 0
0

p
γ2

]
. (4.5)

where γ2 = 1−exp(−t/T̄2).
In Tables 4.2 and 4.3, the T1 times correspond to the experimentally measured deco-

herence times of the eigenstates of the Pauli-Z matrix (|↑〉,|↓〉), and correspond directly to
the T1 times used for the generalised amplitude damping channel of the model. The T2

times correspond to the experimentally measured decoherence times of the eigenstates
of the Pauli-X and Pauli-Y matrices (|x〉,|−x〉,∣∣y〉

,
∣∣−y

〉
). To account for the dephasing in-

duced by the generalised amplitude damping channel, modified T2 values must be used
in the phase damping channel, which are given by:

1

T̄2
= 2

T2
− 1

T1
(4.6)

GATES

We model single-qubit gates as noiseless. We model noisy two-qubit gates using a depo-
larizing noise model:

N2Q (ρ, pg ) = (1−pg )ρ+ pg

15

∑
σi ,σ j

(σi ⊗σ j )ρ(σi ⊗σ j )†. (4.7)

where σi ,σ j ∈ {I , X ,Y , Z } and the sum is over all combinations of the Pauli operators
σi ,σ j except for σi =σ j = I .

For simplicity of compilation, we consider a native gate-set consisting of the Pauli
gates, the Hadamard gate, the CNOT gate and the CZ gate. SWAP gates are carried out
using three CNOT gates. All single- and two-qubit gates have associated durations: after
each operation, the appropriate T1 and T2 decoherence is applied to all idle qubits.

NV-NV ENTANGLEMENT

We model the creation of remote-entanglement (RE) links (i.e. NV-NV Bell pairs) follow-
ing the single-click protocol 48. The protocol produces states that we assume are of the
form

ρNV ,NV = (1−pn)
∣∣ψ〉〈

ψ
∣∣+pn |11〉〈11| . (4.8)

with
∣∣ψ〉 = (|01〉 + |10〉)/

p
2 and pn a parameter that we call the network error, arising

from events in which both NVs emitted a photon 5. The single-click protocol is proba-
bilistic and has success probability psuccess = 2pdetpn , where pdet is the probability to
detect a photon.

In simulation, each time a RE link must be generated, Monte-Carlo methods are used
to determine the number of entangling attempts nRE before success. The decoherence
channels are then applied to all idle qubits with an associated duration of tRE = nREtent,
where tent is the duration of each entangling primitive.

The results presented in Fig. 4.4(c) are averaged over 500,000 repetitions, whereas
those in Fig. 4.4(d) use 100,000 repetitions, aside from the Expedient protocol for N1/e =
2·103, for which only 10,000 repetitions are used due to the low protocol success rate.
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MEASUREMENT NOISE

We restrict measurements to the Z -basis. To measure the qubits in the X -basis, we apply
a Hadamard gate before the measurement. The gate duration time of this additional
operation is included in the simulations.

We model (single qubit) measurement errors by projecting onto the opposite eigen-
state of the measured operator. Measurement errors are characterised by the probability
pm of an incorrect projection.

DYNAMICAL DECOUPLING

To mitigate dephasing of both communication and data qubits due to quasi-static noise
sources (for example, due to spin-bath interactions or magnetic field fluctuations), a dy-
namical decoupling scheme is accounted for in the sequencing of all operations. We
model this process by only applying operations at intervals of a basic echo sequence:
τ−π−τ. Here, π denotes a π-pulse being applied to the system, and τ is the inter-pulse
delay time. Operations are only allowed in between the echo sequences of each node;
consecutive operations in the same node are allowed, after which the decoupling se-
quence is restarted. We set τ equal to the duration of 5000 entangling attempts for the
purified sample and a τ equal to the duration of 500 entangling attempts for the natu-
ral abundance sample. The π-pulse duration is set to 13 ·10−6 seconds for the purified
sample and 1 ·10−6 seconds for the natural abundance sample.

NON-LOCAL CNOT OPERATIONS

In Fig. 4.4(c), we present the average fidelity of a non-local CNOT operation. Here, we
use the parameters given in Tables 4.1 and 4.3, but sweep the values of T 1n

RE = T 2n
RE =

N1/e ·TRE . The average fidelity of the operation is calculated by determining the entan-
glement fidelity following the relation given in Ref. 55. We do not show the results when
using the faster gate and measurement durations (Table 4.2), because a negligible differ-
ence is observed. For example, for N1/e = 83,333, we find an average fidelity of 0.7899,
compared with 0.7890 when using the slower durations.

GHZ-CREATION PROTOCOLS

In this section, we discuss the three GHZ creation protocols used in Fig. 4.4(d). The cir-
cuit diagrams of the protocols are depicted in Fig. 4.12. In each node, the first (purple)
qubit indicates the electron qubit of the NV centre (i.e., the communication qubit), with
the other qubits indicating 13C spins (‘memory’ and ‘data’ qubits). The memory qubits
are used to store intermediate states required to create the GHZ state. When the GHZ
state is created, it can be consumed to non-locally perform a weight-4 Pauli measure-
ment on qubits of a distributed error-correcting code, e.g., the surface code 2,3. In the
diagrams of Fig. 4.12, the inner-most 13C is the data qubit of the code (i.e., it would be a
constituent of an encoded logical qubit).

The Plain protocol is the most simple protocol to create a 4-qubit GHZ state out of
Bell pairs: it only requires three pairs. The local operations of this protocol ‘fuse’ the
three pairs into the GHZ state. Fusion takes place with Block B.2 from the legend: this
operations fuses two entangled states that do not overlap in any of the nodes with the
aid of a Bell pair that is consumed in the process. Feed-forward operations based on this
Bell-state measurement lead to protocol success with unit probability.
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As mentioned above, RE links can only be created between the electron qubits.
Hence, the states of the electron qubits must be swapped with those of data qubits
(‘stored’) at some point in all of the protocols. In the Plain protocol, this occurs after
the first pair of RE links are created: the electron qubits of nodes A,C are stored such
that it is possible to generate a third RE link between nodes A and C .

The Modicum protocol uses one additional Bell pair compared to Plain. This addi-
tional pair is used to distill the 4-qubit GHZ state. This distillation step is probabilistic;
if successful it increases the state fidelity. However, if it fails, the GHZ state is discarded
and the protocol restarts from scratch. Fusion of the Bell pairs takes place in Modicum
with Block B.1 (both in nodes A and C in Fig. 4.12), which describes fusion of two en-
tangled states that overlap in one network node. Distillation takes place with Block A.2
in nodes B and D , which essentially measures a stabilizer of the desired pure entangled
state. In particular, Block A.2 is known in the literature as ‘single selection’ 63. The oper-
ation is successful if the measurement results are even: in that case the correct stabilizer
operation is measured. In case of an odd measurement combination, the distillation
operation fails, and the protocol returns to the indicated ‘failure reset level’ (indicated
with ‘frl’ in the legend). The Modicum protocol is found with the dynamic programming
algorithm presented in Ref. 6.

The Expedient protocol 2 uses 22 Bell pairs to create the GHZ state. Compared to the
Plain protocol, the additional 19 Bell pairs are used for distillation purposes. This can
be either for distillation of Bell pairs before they are fused to form the GHZ state, or for
distillation of the GHZ state after it is created. Distillation takes place with Block A.2, but
also with Block C.1 and Block C.2. Block C.1 can be understood as an operation that per-
forms two distillation steps by consuming two ancillary Bell pairs. This block is known in
the literature as the ‘double selection’ distillation protocol 63. Block C.2 essentially per-
forms three distillation steps by consuming three Bell pairs. Depending on where in the
circuit the distillation steps occur, failure of a step means the entire protocol has to start
from scratch, or only a specific branch of the protocol has to be carried out again. Fusion
again takes place with Block B.2.



4.9. SUPPLEMENTARY MATERIALS

4

101

Figure 4.12: Circuit diagrams of the three GHZ creation protocols used in the simulations. Bell states are gen-
erated in the form of Eq. 4.8, followed by an X-gate on their second qubit to turn them into noisy versions of
the (|00〉+ |11〉)/

p
2 state. ‘Plain’ uses three Bell pairs to create a 4-qubit GHZ state. ‘Modicum’ uses a fourth

Bell pair to increase the GHZ fidelity with a distillation step. ‘Expedient’ 2 uses 22 Bell pairs and has many
(intermediate) distillation steps. Details of those steps are given in the text. The schematics above the circuits
show four network nodes (A,B,C,D) comprising an electron spin (purple) and up to three nuclear spins (orange
tones).
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5
A TEN-QUBIT SOLID-STATE SPIN

REGISTER

C. E. Bradley∗, J. Randall∗, M. H. Abobeih, R. C. Berrevoets, M. J. Degen,
M. A. Bakker, M. Markham, D. J. Twitchen, T. H. Taminiau

Spins associated to single defects in solids provide promising qubits for quantum infor-
mation processing and quantum networks. Recent experiments have demonstrated long
coherence times, high-fidelity operations and long-range entanglement. However, control
has so far been limited to a few qubits, with entangled states of three spins demonstrated.
Realizing larger multi-qubit registers is challenging due to the need for quantum gates
that avoid crosstalk and protect the coherence of the complete register. In this paper, we
present novel decoherence-protected gates that combine dynamical decoupling of an elec-
tron spin with selective phase-controlled driving of nuclear spins. We use these gates to
realise a 10-qubit quantum register consisting of the electron spin of a nitrogen-vacancy
centre and 9 nuclear spins in diamond. We show that the register is fully connected by
generating entanglement between all 45 possible qubit pairs, and realise genuine multi-
partite entangled states with up to 7 qubits. Finally, we investigate the register as a multi-
qubit memory. We demonstrate the protection of an arbitrary single-qubit state for over
75 seconds - the longest reported for a single solid-state qubit - and show that two-qubit
entanglement can be preserved for over 10 seconds. Our results enable the control of large
quantum registers with long coherence times and therefore open the door to advanced
quantum algorithms and quantum networks with solid-state spin qubits.

The results of this chapter have been published in Phys. Rev. X 9, 031045 (2019).
∗Equally contributing authors.
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Figure 5.1: Illustration of the 10-qubit register developed in this work. The electron spin of a single NV centre
in diamond acts as a central qubit and is connected by two-qubit gates to the intrinsic 14N nuclear spin, and a
further 8 13C nuclear spins surrounding the NV centre.

5.1. INTRODUCTION

Electron and nuclear spins associated with single defects in solids provide a promis-
ing platform for quantum networks and quantum computations 1,2. In these hybrid
registers, different types of spins fulfill different roles. Electron spins offer fast con-
trol 3–13 and high fidelity readout 7,14,15, and can be used to control and connect nu-
clear spins 15–21. Furthermore, electron-electron couplings enable on-chip connectivity
between defects 19,22,23, whilst coupling to photons 12,24–28 allows for the realization of
long-range entanglement links 29–31. Nuclear spins provide additional qubits with long
coherence times that can be used to store and process quantum states 16,17,21,24,32–35.

Recent experiments have demonstrated various schemes for high-fidelity two-qubit
gates 34,36–41, as well as basic quantum algorithms 36,42 and error correction codes 16,17.
However, to date, these systems have been restricted to few-qubit registers: the largest
reported entangled state contains 3 qubits 16,17,43. Larger quantum registers are desired
for investigating advanced algorithms and quantum networks 44–46. Such multi-qubit
registers are challenging to realise due to the required gates that selectively control the
qubits and at the same time decouple unwanted interactions in order to protect coher-
ence in the complete register.

In this work, we develop a novel gate scheme based upon selective phase-controlled
driving of nuclear spins interleaved with decoupling sequences on an electron spin.
These gates enable high-fidelity control of hitherto inaccessible nuclear spin qubits.
We combine these gates with previously developed control techniques 14,16,47 to realise
a 10-qubit register composed of a diamond nitrogen-vacancy (NV) centre, its 14N nu-
clear spin and 8 13C spins (Fig. 5.1). We show that the register is fully connected by
preparing entangled states for all possible pairs of qubits. Furthermore, by also de-
coupling nuclear-nuclear interactions through echo sequences, we generate N -qubit
Greenberger-Horne-Zeilinger (GHZ) states, and witness genuine multipartite entangle-
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ment for up to 7 spins. Finally, we investigate the coherence properties of the register.
We measure coherence times up to 63(2) seconds and show that an arbitrary single qubit
state can be protected for over 75 seconds. Furthermore, we demonstrate that two-qubit
entanglement can be preserved for over 10 seconds.

5.2. TWO-QUBIT GATES: THEORY

We consider an NV centre in diamond and surrounding 13C nuclear spins. To realise a
multi-qubit register, we design single-qubit gates and electron-nuclear two-qubit gates
to control the NV 14N spin and several individual 13C spins. Key challenges in these
hybrid systems of multiple coupled spins are to maintain coherence on the electron
spin qubit and to avoid unwanted crosstalk. In particular, the electron spin continu-
ously couples to all 13C spins through the hyperfine interaction, and the dynamics of
the electron spin and nuclear spins typically occur on very different timescales 36. To
address these issues, a variety of decoherence-protected gates, in which decoupling se-
quences on the electron spin are combined with nuclear spin control, have been inves-
tigated 36,37,39,40,48–52. Here we develop and demonstrate a novel electron-nuclear two-
qubit gate based upon phase-controlled radio-frequency (RF) driving of nuclear spins,
interleaved with dynamical decoupling (DD) of the electron spin. We will refer to this
scheme as a DDRF gate. Our scheme enables the control of additional 13C spins while
offering improved flexibility in dynamical decoupling to optimise the electron spin co-
herence and avoid unwanted crosstalk.

To design a selective two-qubit gate, we utilise the hyperfine interaction which cou-
ples each nuclear spin to the electron spin. As this interaction depends on the relative
position of the spin to the NV, different nuclear spins can be distinguished by their pre-
cession frequencies 48–50. In the interaction picture with respect to the electron energy
splitting, and neglecting non-secular terms, the Hamiltonian describing the electron and
a single 13C nuclear spin is given by 48–50

H =ωL Iz + A∥Sz Iz + A⊥Sz Ix , (5.1)

where ωL = γBz is the nuclear Larmor frequency set by the external magnetic field Bz

along the NV axis, γ is the 13C gyromagnetic ratio, Sα and Iα are the spin-1 and spin-1/2
operators of the electron and nuclear spins respectively, and A∥ and A⊥ are the parallel
and perpendicular hyperfine components.

To control the nuclear spin, we apply RF pulses of Rabi frequencyΩ, phaseφ and fre-

quency ω. To target a specific nuclear spin, we set ω = ω1, where ω1 =
√

(ωL − A∥)2 + A2
⊥

is the nuclear spin precession frequency when the electron is in the ms =−1 spin projec-
tion. In the following we assume (ωL −ω1) ÀΩ, such that driving of the nuclear spin is
negligible while the electron is in the ms = 0 spin projection, and set A⊥ = 0 for simplic-
ity (see Sec. 5.8.3 for the general case). Considering only the ms = {0,−1} subspace, with
the addition of RF driving and in a rotating frame at the RF frequency, the Hamiltonian
of Eq. 5.1 becomes (see Sec. 5.8.3 and Ref. 36)

H =|0〉〈0|⊗ (ωL −ω1)Iz

+|1〉〈1|⊗Ω(cos
(
φ

)
Ix + sin

(
φ

)
Iy ),

(5.2)
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Figure 5.2: (a) Illustration of the pulse sequence employed to realise a DDRF gate. Dynamical decoupling
pulses on the electron spin (purple) are interleaved with RF pulses (yellow) which selectively drive a single
nuclear spin. (b) Illustration showing that the initial state of the electron spin determines which RF pulses are
resonant with the nuclear spin. If the electron spin starts in |1〉 (ms =−1), the odd RF pulses (red) are resonant.
For initial electron state |0〉 (ms = 0), the even (blue) RF pulses are resonant. The phase of each RF pulse is
adapted to create the desired nuclear spin evolution, accounting for periods of free precession according to Eq.
5.3. (c) Nuclear spin trajectory on the Bloch sphere for a conditional rotation with N = 8 electron decoupling
pulses. Starting from the initial nuclear state |↑〉 (yellow), the red (blue) path shows the nuclear spin evolution
for the case where the electron starts in the state |1〉 (|0〉). The final state vectors are anti-parallel along the
equator: therefore, the gate is a maximally entangling two-qubit gate. (d) Top-down view of (c).

where |0〉 (|1〉) indicates the electron ms = 0 (ms = −1) spin projection. In this picture,
for the electron in state |0〉, the nuclear spin undergoes precession around the ẑ-axis at
frequency (ωL −ω1) = A∥. Conversely, while the electron is in the state |1〉, the nuclear
spin is driven around a rotation axis in the x̂-ŷ plane defined by the phase of the RF field
φ.

To simultaneously decouple the electron spin from the environment, we interleave
the RF pulses in a sequence of the form (τ - π - 2τ - π - τ)N /2, where π is a π-pulse
on the electron spin, 2τ is the interpulse delay, and N is the total number of electron
decoupling pulses (Fig. 5.2(a)) 48–50. We consider the evolution of the nuclear spin during
this sequence separately for the two initial electron eigenstates: |0〉 and |1〉48–50. We label
each successive RF pulse by integer k = 1, ...,K , where K = N + 1 is the total number
of RF pulses. If the inital electron spin state is |0〉, only the even k RF pulses will be
resonant and drive the nuclear spin (Fig. 5.2(b)). Conversely, for initial state |1〉, the odd
k pulses are resonant. The desired nuclear spin evolution can now be created by setting
the phases φk of the RF pulses.

We construct both an unconditional rotation (single-qubit gate) and a conditional
rotation (two-qubit gate). To ensure that the sequential RF rotations build up construc-
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tively, the phases of each RF pulse should be set to account for the periods of nuclear
spin precession between them, which build up in integer multiples of φτ = (ωL −ω1)τ.
For the case where the electron starts in the state |0〉 (even k), the required sequence of
phases isφτ,3φτ,5φτ, . . . , while for the case where the electron starts in the state |1〉 (odd
k) we require the sequence 0,2φτ,4φτ, . . . . The required phases are therefore given by
(see Sec. 5.8.3)

φ′
k =

{
(k −1)φτ+π k odd
(k −1)φτ k even,

(5.3)

where the (optional) π phase shift for the odd k sequence converts the unconditional
rotation into a conditional rotation. By adding a further phaseϕ to all pulses, we can also
set the rotation axis of the gate. The RF pulse phases are thus summarised byφk =ϕ+φ′

k .
With this choice of phases, the total evolution of the two-qubit system is given by

V = Vz ·VCROT. Here, Vz is an unconditional rotation of the nuclear spin around z (Sec.
5.8.3) and VCROT is a conditional rotation of the nuclear spin depending on the electron
state, given by

VCROT =|0〉〈0|⊗Rϕ(NΩτ)

+|1〉〈1|⊗Rϕ(−NΩτ),
(5.4)

where Rϕ(θ) = e−iθ(cos(ϕ)Ix+sin(ϕ)Iy )/ħ. VCROT describes a controlled rotation of the nu-
clear spin with tuneable rotation angle (set by N , Ω and τ) and rotation axis (set by ϕ).
Setting NΩτ= π/2, a maximally entangling two-qubit operation is achieved, equivalent
to a controlled-not (CNOT) gate up to local rotations. Example dynamics for a nuclear
spin evolving under such a sequence are shown in Figs. 5.2(c) and (d).

Our design has several advantages. First, the gate allows nuclear spins with small or
negligible A⊥ to be controlled, thereby increasing the number of accessible nuclear spin
qubits. Second, because the targeted dynamics are achieved by setting the RF phases
and amplitudes, the interpulse delay τ of the decoupling sequence can be freely op-
timised to protect the electron coherence. This is in contrast to the gates described
in van der Sar et al. 36, for which τ is restricted to a specific resonance condition for
each spin, making multi-qubit control challenging. Third, because our method does
not rely on an average frequency shift over the two electron spin states 37, our gates can
also be used for selective control of nuclear spins coupled to spin-1/2 defects (such as
the negatively-charged group-IV color centres 7,9,13,20,28,53,54), and via a contact hyper-
fine coupling, such as for donor spins in silicon 34 and SiMOS quantum dots 21. Finally,
because control is achieved through the RF field, a multitude of avenues for future inves-
tigation are opened up, such as parallelizing gates by frequency multiplexing and using
shaped and composite pulses to mitigate dephasing and crosstalk 38,55,56.

5.3. TWO-QUBIT GATES: EXPERIMENT

Our experiments are performed at 3.7K using a single NV centre in diamond with natural
abundance of carbon isotopes (1.1% 13C). Further details of the sample and experimen-
tal setup can be found in Sec. 5.8.1. As a starting point, we use the DDRF gate to identify
and characterise 13C nuclear spin qubits surrounding the NV centre. If the electron spin
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Figure 5.3: (a) Nuclear spin spectroscopy. After preparing the electron in a superposition state, the DDRF gate
(controlled ±π/2 rotation, see Eq. 5.4) is applied for different RF frequenciesω. The electron spin is then mea-
sured along a basis in the equatorial plane defined by angle ϕ (see inset). Each data point in (a) corresponds
to the fitted amplitude A of the function f (ϕ) = a + A cos

(
ϕ+ϕ0

)
, where ϕ is swept from 0 to 360 deg and ϕ0

accounts for deterministic phase shifts induced on the electron by the RF field. By fitting the amplitude, we
distinguish such deterministic phase shifts from loss of coherence due to entangling interactions. The signals
due to interaction with the 8 13C spins used in this work are labelled. The dashed gray line indicates the 13C
Larmor frequency ωL . A detailed analysis of the spectrum is given in Sec. 5.8.4. (b,c) Example phase sweeps
for two data points highlighted in red (b) and orange (c) in (a). Solid lines are fits to f (ϕ). The DDRF gate
parameters are N = 48 and τ= 8τL , where τL = 2π/ωL (≈ 2.3µs).
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is prepared in a superposition state and the RF frequency is resonant with a nuclear spin
in the environment, the entangling interaction (Eq. 5.4) decoheres the electron spin.
Therefore, varying the RF frequency (ω) performs spectroscopy of the nuclear spin envi-
ronment. Fig. 5.3 shows that multiple dips in the electron coherence can be observed,
indicating selective interactions with several individual nuclear spins. Importantly, like
other RF-based approaches 39,52, the DDRF sequence is sensitive to nuclear spins with
small or negligible A⊥. Besides extending the number of qubits that can be controlled
with a single NV centre, this also enables the detection of additional spins when using
the NV as a quantum sensor, which we exploit in parallel work to realise 3D imaging of
large spin clusters (see Ch. 6) 57.

To verify the control offered by the DDRF two-qubit gate, we first demonstrate high
fidelity ancilla-based initialization and readout by preparation and tomography of a
maximally entangled electron-nuclear state. To test the gate, we select a 13C spin (spin
C1, Fig. 5.3) with a strong parallel hyperfine component of A∥/2π= 213.154(1)kHz, but
a weak perpendicular hyperfine component A⊥/2π= 3.0(4)kHz. We exploit the freedom
in choosing the interpulse delay by setting τ to an integer multiple of the 13C Larmor pe-
riod, τL = 2π/ωL , so that unwanted interactions between the electron spin and other 13C
spins in the environment are effectively decoupled 47,58. The choice of Rabi frequency
Ω is a trade-off between obtaining faster gate speeds, maintaining frequency selectivity
and minimising additional noise from the electronic hardware (see Sec. 5.8.1).

The sequence to perform the state preparation and tomography experiment is shown
in Fig. 5.4(a) 16,37. We first initialise the electron spin in the state |0〉 by resonant optical
excitation 14. We then swap the state of the electron spin onto the 13C spin and reset the
electron spin. Next, we prepare the electron in a superposition state before perform-
ing the DDRF controlled-rotation gate, ideally preparing the electron-nuclear Bell state∣∣ψBell

〉= (|0+〉+|1−〉)/
p

2, where |±〉 = (|↓〉± |↑〉)/
p

2.

To perform quantum state tomography on the two-qubit state, we first measure the
electron spin along a chosen axis by appropriate basis rotations followed by Z -basis
optical readout 14. To mitigate potential dephasing of the nuclear spin induced by the
electron spin measurement, we make the electron spin measurement non-destructive
by using a short, weak laser pulse and conditioning progression of the sequence on the
outcome |0〉, i.e. the detection of a photon 16,42 (see Sec. 5.8.5). Following appropri-
ate basis rotations, we then use the electron spin to measure the nuclear spin in the
X -basis 16. In this measurement the electron is read out in a single-shot with average fi-
delity 0.945(2) 14. We independently characterise the nuclear spin readout, which is then
used to correct for readout infidelities in subsequent measurements (Sec. 5.8.5). In order
to reconstruct the full electron-nuclear state, we perform the sequence with and without
an additional electron π-pulse before the first readout (see Sec. 5.8.5).

The reconstructed density matrix from quantum state tomography is shown in Fig.
5.4(b). The prepared state ρ exhibits a fidelity, FBell =

〈
ψBell

∣∣ρ ∣∣ψBell
〉 = 0.972(8) with

the target Bell state. Based upon a simple depolarizing noise model, we estimate the
two-qubit gate fidelity to be Fgate = 0.991(9) (Sec. 5.8.5). Additional characterization
measurements in combination with numerical simulations indicate that the remaining
infidelity can be mostly attributed to electron spin dephasing due to noise from the elec-
tronic hardware (Sec. 5.8.4).
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Figure 5.4: (a) Experimental sequence to prepare an electron-nuclear Bell state and determine the expectation
value of the two-qubit operator Z X . A series of single and two-qubit gates are used to initialise the nuclear
spin 16,37. A subsequent π/2 rotation and two-qubit gate generate the Bell state

∣∣ψBell
〉 = (|0+〉+ |1−〉)/

p
2. A

measurement of the electron spin in the Z -basis is followed by an X -basis measurement of the nuclear spin
through the electron spin. These measurements are separated by a nuclear spin echo, which is implemented to
mitigate dephasing of the nuclear spin. The entire sequence is applied with and without an additional electron
π-pulse (dashed box) before the first electron readout, in order to reconstruct the electron state while ensuring
that the measurement does not disturb the nuclear spin state 16,42. (b) Density matrix of the electron-nuclear
state after applying the sequence shown in (a) to qubit C1, reconstructed with state tomography. We correct
for infidelities in the readout sequence, characterised in separate measurements (Sec. 5.8.5). The DDRF gate
parameters are N = 8, τ = 17τL ≈ 39.4µs, Ω/2π = 1.09(3)kHz, and the total gate duration is 629µs, compared
with the nuclear spin T∗

2 = 12.0(6)ms. We use error function pulse envelopes with a 7.5µs rise / fall time for
each RF pulse to mitigate pulse distortions induced by the RF electronics (see Sec. 5.8.1). The fidelity with the
target Bell state is measured to be FBell = 0.972(8). Lighter blue shading indicates the density matrix for the
ideal state

∣∣ψBell
〉

.

5.4. A 10-QUBIT SOLID-STATE SPIN REGISTER

We now show how the combination of our DDRF gate with previously developed gates
and control techniques 16,37 enables high-fidelity control of a 10-qubit hybrid spin reg-
ister associated to a single NV-centre. Our register is composed of the electron and
14N spins of the NV-centre, along with 8 13C nuclear spins (Fig. 5.1). Our quantum
register is connected via the central electron spin. To demonstrate this, we first show
that all nuclear spins can be entangled with the electron spin by following the pro-
tocol shown in Fig. 5.4(a). For the case of the nitrogen spin, initialization is per-
formed by a measurement-based scheme which heralds the preparation in a particu-
lar eigenstate. Compared to previous work 59, we realise an improved initialization fi-
delity (Finit = 0.997(11)) by pre-preparing the electron in the ms = −1 state instead of a
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Figure 5.5: (a) Experimental sequence for the preparation of a nuclear-nuclear Bell state and measure-
ment of the two-qubit operator Z Z . After preparation of the electron-nuclear-nuclear GHZ state |GHZ3〉 =
(|0++〉+ |1−−〉)/

p
2, an X -basis measurement on the ancilla (electron spin) projects the nuclear spins into

the Bell state
∣∣Φ+〉= (|++〉+ |−−〉)/

p
2. Measurement of the two-qubit correlations between the nuclear spins

is then performed through the electron spin. Spin echoes (dashed boxes) built into the measurement sequence
protect the nuclear spins from dephasing errors. (b) Measured expectation values (non-zero terms of the ideal
state only) for the electron-nuclear-nuclear state |GHZ3〉, and for the nuclear-nuclear state

∣∣Φ+〉
. Blue (purple)

bars show the experimental (ideal) expectation values for each operator. The nuclear-nuclear correlations are
well preserved after a nondestructive measurement of the electron spin in the X -basis.

mixed state of ms = −1 and +1, and by repeating the measurement-based initialization
sequence twice (see Sec. 5.8.5). After initialization, we work in the mI = {0,−1} sub-
space, and perform operations analogous to those for the 13C nuclear spins, including
the two-qubit gates using the DDRF scheme. Genuine entanglement is probed by mea-
suring the non-zero matrix elements of the target state, and confirmed by negativity of
the entanglement witness WBell =1−2

∣∣ψBell
〉〈
ψBell

∣∣60.
Next, we show that the register is fully connected by preparing entangled states for

all possible pairs of spins. To prepare nuclear-nuclear entanglement, we implement a
probabilistic measurement-based scheme 61, as shown in Fig. 5.5(a). We first prepare a
three-qubit GHZ state comprising the electron and two nuclear spins, |GHZ3〉 = (|0++〉+
|1−−〉)/

p
2, before performing a non-destructive X -basis measurement on the electron

spin. The measurement ideally prepares the Bell state
∣∣Φ+〉 = (|++〉+ |−−〉)/

p
2 on the

targeted pair of nuclear spins. Finally, we measure the necessary expectation values in
order to reconstruct the non-zero matrix elements of this state and confirm bipartite
entanglement (Fig. 5.5(b)).

The measured Bell state fidelities, ranging from 0.63(3) to 0.97(1), are shown in Fig.
5.6. We attribute the variations in the measured values to differences in the two-qubit
gate fidelities for each spin. In particular, the lower values measured for 13C spins C7
and C8 are due to short coherence times in combination with long two-qubit gate dura-
tions, necessitated by close spectral proximity to other spins (see Sec. 5.8.4). All data is
measured using a single set of gate parameters, and using a single hardware configura-
tion, rather than separately optimizing for each pair of qubits.



5

116 5. A TEN-QUBIT SOLID-STATE SPIN REGISTER

Figure 5.6: Measured Bell state fidelities for all pairs of qubits in the 10-qubit register. Genuine entanglement is
confirmed in all cases, as witnessed by a fidelity exceeding 0.5 with the target state. Qubits C1, C7, C8 and 14N
are controlled using DDRF gates (Sec. 5.2). Qubits C2, C3, C4, C5, and C6 are controlled using the methods
described in Taminiau et al. 37, as their hyperfine interaction parameters enable high-fidelity control using
previously optimised gates.

5.5. GENERATION OF N-QUBIT GHZ STATES

Quantum information processing tasks such as computations and error correction will
require the execution of complex algorithms comprising a large number of qubits. An
important requirement for a quantum processor is thus the ability to perform opera-
tions on many of its constituents within a single algorithm. We test this capability by
generating N -qubit GHZ type states, defined as

|GHZN 〉 = 1p
2

(|0〉⊗ |+〉⊗(N−1) +|1〉⊗ |−〉⊗(N−1)) . (5.5)

To generate such states, we follow the sequence shown in Fig. 5.7(a). First, N −1 nuclear
spins are initialised in the state |↑〉. Next, we prepare the electron spin in a superposition
state, and perform sequential controlled rotation gates between the electron and nuclear
spins.

Characterizing the full quantum state for a system of this size is an expensive task due
to the dimensionality of the associated Hilbert space. However, we can determine if the
state exhibits genuine multipartite entanglement of all N qubits using an entanglement
witness with a reduced subset of measurement bases 60. For a GHZ state with system
size N , there exist 2N operators from which the non-zero elements of the density matrix
can be reconstructed by linear inversion, and from which a fidelity with the target state
can be calculated. Negativity of the entanglement witness WGHZ =1/2−|GHZN 〉〈GHZN |
heralds genuine multipartite entanglement 60. We determine the required expectation
values of products of Pauli operators on the register via the electron spin. In these experi-
ments, the readout sequence is modified slightly. Prior to the readout of the electron spin
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Figure 5.7: (a) Experimental sequence to prepare a 7-qubit GHZ state |GHZ7〉 (purple) and determine the ex-
pectation value of the 7-qubit operator X Y Y Y Y Z Z (orange). The measurement sequence is broken down
into basis rotations (BR 1,2), an electron readout (RO), nuclear spin echoes (Echo 1,2), and a multi-qubit read-
out of the nuclear spins. All operations are applied sequentially (in the same way as shown in Fig. 5.5), but
some are shown in parallel for clarity. (b-c) Bar plots showing the measured expectation values (non-zero
terms of the ideal state only) after preparing the 5-spin (b) and 7-spin (c) GHZ states. The colors indicate
the number of qubits involved, i.e. the number of (non-identity) operators in the expectation value (inset).
Gray bars show the ideal expectation values. See Sec. 5.8.5 for the operator corresponding to each bar. The
fidelity with the target state is 0.804(6) (b) and 0.589(5) (c), confirming genuine multipartite entanglement in
both cases. (d) Plot of GHZ state fidelity against the number of constituent qubits. A value above 0.5 confirms
genuine N -qubit entanglement. The blue points are the measured data, while the green points are theoreti-
cal predictions assuming a simple depolarizing noise model whose parameters are extracted from single- and
two-qubit experiments. Numerical values are given in Sec. 5.8.5.
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state, we rotate the nitrogen spin such that the desired measurement basis is mapped to
the Z -basis. This ensures that the population in the measurement basis is protected
from dephasing during the optical readout of the electron spin, which is caused by the
large electron-nitrogen hyperfine coupling in the excited state (see Sec. 5.8.5 and Ref. 62).

As the number of qubits is increased, a new challenge arises: the total sequence time
becomes comparable to, or even exceeds the natural dephasing times (T ∗

2 ) of the nuclear
spins. In order to preserve the nuclear spin coherence, we insert spin (Hahn) echo pulses
(RF π-pulses) into the sequence to refocus each spin at the point of the next operation
performed upon it. In Sec. 5.8.5, we derive a general solution that can be used to algo-
rithmically construct echo sequences that avoid any overlap in gates and that minimise
idle time with the electron spin in a superposition state.

In Figs. 5.7(b,c), we show measurements for N = 5 and N = 7 qubits. In Fig. 5.7(d),
we present the measured fidelities with the target GHZ states for 2 to 8 qubits, along with
theoretical values as predicted by a depolarizing-noise model based on the individual
two-qubit gate fidelities (Sec. 5.8.5). The growing discrepancy between the measured
and predicted values for larger N suggests residual crosstalk between the qubits, which
is not taken into account in the model. For registers comprising up to 7 spins we observe
negativity of the witness WGHZ, revealing genuine N -qubit entanglement of up to 7 qubits
with high statistical significance.

5.6. A LONG LIVED QUANTUM MEMORY

The nuclear spin qubits surrounding the NV centre are promising candidates for quan-
tum memories with long coherence times 32,63. Here we investigate the coherence prop-
erties of the register under dynamical decoupling and show that an arbitrary single-qubit
state can be protected for over 75 seconds. Furthermore, we show that two-qubit entan-
glement can be preserved beyond 10 seconds.

We first investigate the coherence of individual nuclear spin qubits under dynamical
decoupling. After initializing the nuclear spin in the state |+〉, we prepare the electron in
the state |1〉 (electron T1 = 3.6(3) × 103 s 47). This has two effects. Firstly, it allows us to
perform selective RF π-pulses on the target nuclear spin. Secondly, the magnetic field
gradient imposed by the electron-nuclear hyperfine interaction induces a frozen core,
which suppresses flip-flop interactions between nuclear spins 64,65 and thereby reduces
the noise the spins are exposed to.

The observed spin-echo coherence times Tα=1
2 , withα the number of RF pulses, vary

between 0.26(3) s to 0.77(4) s for the 8 13C spins. For the 14N spin we find 2.3(2) s, con-
sistent with the smaller gyromagnetic ratio by factor 3.4. The range of coherence times
observed for the 13C spins is likely caused by differences in the microscopic environment
of each spin. In particular, 13C spins close to the NV centre are in the heart of the frozen
core, and, generally tend to couple predominantly to the part of the spin environment for
which the dynamics are also suppressed most strongly. Spins farther from the NV tend
to couple more strongly to the spin environment outside the frozen core. This explana-
tion is consistent with the observation that the spin with the longest Tα=1

2 of 0.77(4) s is
located closest (C1, r = 0.53(5) nm 57) to the vacancy lattice site, while the shortest Tα=1

2
of 0.26(3) s is found for a spin at a larger distance (C8, r = 1.04(4) nm 57). As expected,
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increasing the number of decoupling pulses leads to an increase in the measured coher-
ence times. For α = 256 pulses, the decay time of C5 reaches Tα=256

2 = 12.9(4)s, while
for the 14N spin, we measure Tα=256

2 = 63(2)s (see Sec. 5.8.2). For the other 13C spins
for which we measure Tα=256

2 , we find a range of values from 4(1) to 25(4) seconds (Sec.
5.8.2).

To confirm that arbitrary quantum states can be protected, we prepare the six car-
dinal states and measure the average state fidelity under dynamical decoupling. The
measured decay curves for spin C5 and the 14N spin are shown in Fig. 5.8, where α is
varied from 1 to 256. With 256 pulses, we measure a state fidelity exceeding the classical
memory bound of 2

3 at a time of 16.8 s for C5, and at a time of 75.3 s for the 14N spin.

The coherence times demonstrated here are the longest reported for individual
qubits in the solid state and exceed values for isolated nuclear spin qubits in isotopically
purified materials 24,32,33. More importantly, however, in our register we realise these
long coherence times while maintaining access to 10 coupled spin qubits.

We exploit the multi-qubit nature of the register to investigate the protection of en-
tangled states of two 13C spin qubits. After preparing the state

∣∣Φ+〉 = (|++〉+ |−−〉)/
p

2
following the sequence shown in Fig. 5.5(a), we again prepare the electron in the state
|1〉. We then measure the Bell state fidelity as a function of total evolution time for α= 1
to α = 256 pulses. Note that since

∣∣Φ+〉
is an eigenstate of Z Z , its evolution is not af-

fected by the coupling between the two qubits, which is predominantly dipolar and of
the form C Iz Iz , with C = 1.32(4) Hz 57. The measured fidelities are plotted in Fig. 5.8(c).
For α = 256 decoupling pulses, we confirm the preservation of entanglement for > 10s,
as quantified by a fidelity exceeding 0.5 with the desired Bell state.

With the capability to protect multi-qubit quantum states, it becomes important to
consider additional effects that may affect their coherence, such as the presence of cor-
related noise. As a first experimental step towards understanding such effects, we use
entangled states of nuclear spins to explore spatial correlations within the noise envi-
ronment. We perform experiments on two pairs of 13C spins. We prepare two Bell states
for each pair, one exhibiting even Z Z parity, which, written in the Z -basis, is given by∣∣Φ+〉 = (|↓↓〉+ |↑↑〉)/

p
2, and another exhibiting odd Z Z parity, |Ψ−〉 = (|↓↑〉− |↑↓〉)/

p
2.

The difference in the coherence times of these two states gives an indication of the
amount of correlation in the noise experienced by the two spins 66. In the case of per-
fectly correlated noise, one would expect the state

∣∣Φ+〉
to decay at four times the single

qubit decay rate (superdecoherence), while the state |Ψ−〉 would form a decoherence-
free subspace 67,68. In contrast, for completely uncorrelated noise, the coherence times
for the two states would be identical.

We measure the coherence times for the two Bell states, varying the total evolution
time for the case of a single spin-echo pulse (α = 1) with the electron spin prepared
in the state |1〉. In Fig. 5.8(d), we plot the normalised coherence signal for both Bell
states and for both pairs of qubits. A statistically significant difference between the de-
cay curves for the two Bell states is found for both pairs, where the odd-parity state |Ψ−〉
decays more slowly than the even-parity state

∣∣Φ+〉
, indicating partly correlated noise in

the system. We can relate the size of the effect to the distance between the spins in the
pairs, which has been characterised in separate work 57. This reveals that the pair with
a smaller separation (C1 and C6, distance 0.96(3)nm) shows more correlation than the
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Figure 5.8: (a) Dynamical decoupling for spin C5. With α = 256 pulses, the average state fidelity of the six car-
dinal states is measured to be 0.73(2) after 16.8 s, above the limit of 2

3 for a classical memory with a confidence

of 99.7% (upper-tailed Z test). Solid lines are fit to the function f (t ) = A +Be−(t/T )n
. The offset A is fixed us-

ing the average fidelity of the input states |↑〉 and |↓〉, which show no decay on these timescales. B , T and n
are fit parameters which account for the decay of the fidelity due to interactions with the nuclear spin bath,
external noise and pulse errors. (b) Dynamical decoupling of the 14N spin. For α = 256 pulses, the average
state fidelity at 75.3 s is 0.73(3), which is above the bound for a classical memory with 99.4% confidence. (c)
Dynamical decoupling of a pair of 13C spins prepared in the Bell state

∣∣Φ+〉
. Solid lines are fits to f (t ), but with

A as a free parameter to account for the observed decrease in the ZZ correlations at large pulse numbers, likely
due to pulse errors. With 256 decoupling pulses, genuine two-qubit entanglement is witnessed at times up to
10.2 s, where we observe a fidelity of 0.57(2) with the target Bell state (99.9% confidence of entanglement). In
addition, interpolation of the fit yields 11.3(8) s as the point where the fidelity crosses 0.5 (Sec. 5.8.2). (d) Nor-
malised coherence (〈X X 〉±〈Y Y 〉)/2N , where N is a normalization factor, for two pairs of 13C spins prepared
in both the even and odd parity Bell states

∣∣Φ+〉 = (|↓↓〉+ |↑↑〉)/
p

2 and |Ψ−〉 = (|↓↑〉− |↓↑〉)/
p

2. Solid lines are
fits to f (t ) with A = 0 and B = 1. For pair 1, the fitted decay times, T , are 0.45(2) s and 0.54(1) s for the states∣∣Φ+〉

and |Ψ−〉 respectively. For pair 2, the equivalent values are 0.46(2) s and 0.70(3) s.
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pair with a larger separation (C5 and C2, 1.38(7)nm). This observation is consistent with
the idea that spatially close spins tend to couple to the same nuclear spin environment,
and therefore experience correlated noise, although large deviations from this rule are
expected to be possible for specific cases 66. Characterizing such correlated noise pro-
vides new opportunities to investigate the physics of decoherence in spin baths 66, and
to develop and test quantum error correction schemes that are tailored for specific cor-
related noise 69,70.

5.7. CONCLUSION

In conclusion, we have developed a novel electron-nuclear two-qubit gate and applied
these gates to realise a 10-qubit solid-state spin register that can protect an arbitrary
single-qubit state for over one minute. The techniques developed in this work can be
readily implemented for multi-qubit control in a variety of other donor and defect plat-
forms, including spin-1/2 7,9,13,20,28,53,54 and contact hyperfine 21,34 systems, for which
many previous gate designs are challenging to apply 37,48–50. Further improvements in
selectivity and fidelity of the gates are anticipated to be possible by (optimal) shaping of
the RF pulses 38,55,56 and by reducing electronic noise. Additionally, the use of direct RF
driving opens the possibility to perform gates in parallel on multiple qubits. Combined
with already demonstrated long-range optical entanglement 29–31, our multi-qubit regis-
ter paves the way for the realization of rudimentary few-node quantum networks com-
prising tens of qubits. This will enable the investigation of basic error correction codes
and algorithms over quantum networks 44–46. Finally, looking beyond quantum informa-
tion, the gate sequences developed here also enable new quantum sensing methods 57.

5.8. SUPPLEMENTARY MATERIALS

5.8.1. EXPERIMENTAL DETAILS

SAMPLE

All experiments are performed on a high-purity, chemical-vapour-deposition homoex-
pitaxially grown diamond (type IIa) with natural abundance of carbon isotopes (1.1%
13C). The diamond was grown and cleaved (along the 〈111〉 crystal axis) by Element Six.
We work with a naturally occurring NV centre which was selected based on the absence
of strongly coupled (>500 kHz hyperfine coupling) 13C spins, but without any other cri-
teria on the spin environment. Microwave and RF fields are applied via a lithographically
defined gold stripline. A solid-immersion lens enhances photoluminescence collection
efficiency 14,71, and an aluminium-oxide layer is grown by atomic-layer-deposition to
serve as an anti-reflection coating 61,72.

CONFOCAL MICROSCOPE AND NV OPERATIONS

The sample is held in a home-built confocal microscope based upon a closed cycle cryo-
stat (Montana Cryostation, 3.7 K). We measure long NV electron spin relaxation and spin
coherence times (T1 > 1 h, T DD

2 > 1 s) 47, and we achieve fast spin operations (Rabi
frequency: 14 MHz) and readout/initialization (∼ 10 µs 14). We perform spin-selective
optical readout of the NV-centre to measure the spin state in a single shot, with fi-
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delities of 0.905(2) for the bright state (ms = 0, := |0〉) and 0.986(2) for the dark state
(ms = −1, := |1〉). The Ex and Ey optical transitions are split by 4.0GHz due to lateral
strain. All measurements are corrected for the finite readout fidelity in order to provide
a best estimate for the actual state.

MAGNETIC FIELD STABILIZATION

An external magnetic field is applied along the NV-axis, with magnitude ∼ 403 G. A PI
loop (Team-Wavelength WEC3293) is used to stabilise the temperature of the permanent
neodymium magnet, and thus the field. The temperature stability is measured to be 1.13
mK across a 24 hour period (one standard deviation), corresponding to a magnetic field
stability of∼ 450 µG, or a 0.5 Hz frequency shift for the 13C spins, which is negligible com-
pared to the intrinsic linewidth (1/

p
2πT ∗

2 ) of ∼ 20 Hz. The field alignment is calibrated
to within 0.1 degrees using a thermal echo sequence 57.

MICROWAVE AND RF SETUP

Microwave amplifier (AR 25S1G6) noise is suppressed by a fast microwave switch
(TriQuint TGS2355-SM) with a suppression ratio of 40 dB. Video leakage noise gener-
ated by the switch is filtered with a high pass filter. To obtain effective MW pulses in-
dependent of the 14N nuclear spin state, all microwave operations are performed using
Hermite envelopes 55,73. During dynamical decoupling, pulse errors are mitigated by
implementation of the XY8 scheme 74. In the initial two-qubit DDRF gate experiments
(Fig. 5.4), we use an RF amplifier (Analog Devices ADA4870). To reduce ringing of the RF
signal due to sub-period switching in the presence of an AC-coupling from a high-pass
filter (3rd order Butterworth, 52 kHz, home-built), we use error function pulse shapes,
with envelope function

f (t ) = 1− 1

2
erf

(
2(∆t − t + t0)

∆t

)
− 1

2
erf

(
2(∆t + t − tpulse)

∆t

)
, (5.6)

where ∆t is the risetime, t0 is the start time of the pulse, tpulse is the pulse length and
erf(x) is the error function. We also use error function pulses for the RF spin echo pulses
(see Sec. 5.8.5). In the multi-qubit experiments, the RF signal is generated directly by
an AWG (Tektronix 5014C, 4.5V pk-pk) to avoid heating of the chip and to allow shorter
RF pulses without ringing from filters in the RF electronics. In all cases, we ensure that
the RF pulses are comprised of an integer number of periods of the RF waveform, i.e. we
ensure that ωtpulse = 2πn for integer n, where tpulse is the RF pulse length. This ensures
that any phase picked up on the electron spin due to the RF pulse is cancelled. We set
n to maximise the length of tpulse while ensuring that tpulse < τ for the first and last RF
pulse in the DDRF sequence. For the remainder of the pulses, we use the value 2n.

OPTICAL SETUP

Laser pulses are generated by direct current modulation (515 nm laser for charge state
control, Cobolt MLD, on/off ratio of >135 dB) or by acoustic optical modulators (637 nm
lasers for spin pumping and single-shot readout, Toptica DL Pro and New Focus TLB-
6704-P). By placing two modulators in series (Gooch and Housego Fibre Q), an on/off
ratio of >100 dB is obtained for the 637 nm lasers 47. The laser frequencies are stabilised
to within 2 MHz using a wavemeter (HF-ANGSTROM WS/U-10U).
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5.8.2. 10 QUBIT REGISTER CHARACTERIZATION

QUBIT FREQUENCIES

ω0/2π [Hz] ω−1/2π [Hz] ω+1/2π [Hz] A∥/2π [kHz] A⊥/2π [kHz]

C1 431961(1) 218828(1) 645123(1) 213.154(1) 3.0(4)
C2 431956(1) 469020(1) 396542(1) -36.308(1) 26.62(4)
C3 431958(1) 413477(1) 454427(1) 20.569(1) 41.51(3)
C4 431951(1) 447234(1) 424752(3) -11.346(2) 59.21(3)
C5 431962(1) 408317(1) 457035(1) 24.399(1) 24.81(4)
C6 431962(1) 480625(1) 383480(40) -48.58(2) 9(2)
C7 431956(1) 451802(1) 412175(5) -19.815(3) 5.3(5)
C8 431973(1) 414407(1) 449687(2) 17.643(1) 8.6(2)

14N 5069110(1) 2884865(1) 7263440(1) 2189.288(1) -

Table 5.1: Precession frequencies and hyperfine couplings for the nuclear spins. ω0, ω−1, and ω+1 are the
measured nuclear precession frequencies for the ms = 0,−1 and +1 electron spin projections respectively, ob-
tained from least-squares fits of Ramsey signals. A∥ and A⊥ are the hyperfine interaction components parallel
and perpendicular to the applied magnetic field, obtained using the approximate relations in Eq. 5.7. For the
14N spin the frequencies given are for the mI = 0 ↔ mI =−1 transition, and the parallel hyperfine component
is taken as (ω+1 −ω−1)/2. Note that we use the definition ω1 =ω−1 in the rest of the chapter.

In Table 5.1, we give the measured precession frequencies for each nuclear spin, de-
termined from Ramsey spectroscopy with the electron stored in the ms = 0,−1 and +1
spin projections. For the 13C spins, under both the secular approximation and the as-
sumption of a perfectly aligned field, the hyperfine parameters can then be obtained
from the relations

A∥ =
ω2
+1 −ω2

−1

4ω0

A⊥ =
√
ω2
+1 +ω2

−1 −2ω2
0 −2A2

∥
2

.

(5.7)

Note that due to the high accuracy of the Ramsey measurements, small deviations from
Eqs. 5.7 (due to non-secular Hamiltonian terms and magnetic field misalignment) are
likely to be larger than the uncertainties in the parameters extracted by propagating the
measurement errors. Therefore, the quoted values are approximate.

COHERENCE MEASUREMENTS

Table 5.2 contains the measured coherence properties of each spin. T ∗
2 times are mea-

sured with the electron in the ms = −1 and ms = 0 spin projections, while T2 measure-
ments are performed with a single spin echo pulse for the ms = −1 electron spin pro-
jection. A significantly lower T2 time is observed for the ms = 0 spin projection (∼15-90
ms). This effect is attributed to the frozen core created by the NV centre, whereby the
hyperfine interaction suppresses magnetic field noise due to flip-flop interactions 64. A
similar effect is observed for the longitudinal relaxation times of the 13C spins. Due to the
times required to acquire data, we do not perform full T1 characterizations for all nuclear
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spins with ms =−1. However, a verification measurement is performed for a single nu-
clear spin, with the electron spin prepared in the ms =−1 spin projection. We measure
the decay from the |↑〉 state for time periods up to 6 minutes, as shown in Fig. 5.9. On
these timescales, only a small decay is observed. Dynamical decoupling measurements
are performed with α = 256 pulses with the electron again in the ms = −1 projection.
Example data is given for C5 and the 14N spin in Fig. 5.10. For spins C6 and C8, the best
signal was achieved with all pulses performed around the x̂-axis. For the other spins, XY8
sequences were used 74. For C8, we were unable to measure the coherence time for 256
pulses due to strong pulse errors caused by spectral overlap with other spins. Optimised
pulse sequences for such situations will be investigated further in the future.

T ∗
2 (ms =−1) [ms] T ∗

2 (ms = 0) [ms] T2 (ms =−1) [s] Tα=256
2 (ms =−1) [s]

C1 12.0(6) 10.0(3) 0.77(4) 25(4)
C2 9.2(8) 9.1(5) 0.53(6) 6.8(8) [α= 256]

10.6(7) [α= 400]
C3 11.9(5) 12.3(3) 0.68(3) 7.4(8)
C4 5.7(2) 5.3(4) 0.53(6) 4.1(4)
C5 15.6(8) 17.2(4) 0.62(3) 12.9(4)
C6 3.7(2) 3.6(2) 0.59(2) 13(2)
C7 4.1(6) 4.6(7) 0.52(3) 4(1)
C8 7.6(4) 7.6(3) 0.26(3) 1.2(2) [α= 8]

14N 23.2(7) 25.1(7) 2.3(2) 63(2)

Table 5.2: Coherence times for the nuclear spins. T∗
2 is obtained from a least-squares fit of Ramsey signals,

with evolution for the ms = −1 and ms = 0 electron spin projections. T2 is obtained from a least-squares fit
of a spin echo experiment, with free evolution measured for the ms = −1 electron spin projection. Tα=256

2 is
obtained from a least-squares fit of a dynamical decoupling experiment with α= 256 pulses, with the electron
spin in the ms =−1 spin projection.

Figure 5.9: Longitudinal relaxation (T1) measurement for nuclear spin C5. We prepare the nuclear spin in the
|↑〉 eigenstate, and the electron spin in the ms = −1 projection. On timescales up to 6 minutes, only a minor
decay is observed.
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Figure 5.10: Dynamical decoupling of a single 13C spin (C5) with α = 1, 8, 64 and 256 pulses (a) and the 14N
spin with α = 1, 8, 32 and 256 pulses (b). Each nuclear spin is initialised and read-out in the X -basis. We fit the

data to the function f (t ) = A +Be−(t/T )n
(solid lines), where A = 0.5, and B , T and n are fit parameters which

account for the decay of the fidelity due to interactions with the nuclear spin bath, external noise and pulse
errors. With 256 decoupling pulses, the fitted coherence times are Tα=256

2 = 12.9(4) s (C5, (a)) and Tα=256
2 =

63(2) s (14N, (b)).

ANALYSIS OF ENTANGLEMENT PRESERVATION

For the preservation of entanglement between a pair of nuclear spins, as presented in
Fig. 5.8(c), we use a Bell state fidelity above 0.5 as an entanglement witness. To deter-
mine how long entanglement can be protected, we use two approaches. First, using the
measured data points and their statistical uncertainties, we can perform an upper-tailed
Z test to obtain a confidence interval that the state fidelity is above 0.5. For 10.2 s, the
measured fidelity of 0.57(2) corresponds to a confidence interval of 99.9%.

A second approach is to modify the fit function used in Fig. 5.8:

f (t ) = A+Be−(t/T )n
(5.8)

to instead incorporate a crossing value, tc , at which the function crosses the threshold,
denoted by c:

f (t ) = c +B(e−(t/T )n −e−(tc /T )n
). (5.9)

As before, B , T and n are free fit parameters. This approach is based upon interpolation
of the data and therefore uses additional assumptions, but gives an estimate for the time
at which the threshold is crossed. For the cases of α = 256 in Figure 5.8(c), we find a
crossing value of tc = 11.3(8) s.

GATE PARAMETERS

The electron-nuclear gate parameters for each spin are given in Table 5.3. Spins C1, C7,
C8 and 14N are all controlled using the DDRF gate scheme, while the remaining spins
are controlled using previously developed dynamical decoupling based gates 37. Two
parameter regimes are given for the electron-nuclear gate on spin C1. To produce the
results shown in Fig. 5.4(b), we used a RF amplifier to increase the nuclear spin Rabi fre-
quency. However, operating with this power caused issues during experiments involving
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N τ (µs) Gate duration (µs) RF π-pulse duration (µs)

C1∗ 8 39.356 629 469
C1 48 16.204 1556 1330
C2 44 7.218 635 1096
C3 22 11.250 495 929
C4 20 16.480 659 734
C5 32 6.540 419 1606
C6 90 4.932 888 1173
C7 64 18.522 2371 1024
C8 48 23.152 2222 1592

14N 12 16.204 389 278

Table 5.3: Gate parameters for the nuclear spins. N and τ parameterise a dynamical decoupling gate with N
electron π-pulses, separated by 2τ (see Fig. 5.2(a)). Two sets of parameters are given for C1; the starred entry
corresponds to the case with use of an RF amplifier (see text for details).

multiple nuclear spins. This is due to two effects; firstly, a loss of readout photons was
observed due to heating of the sample. For the final readout, this could be mitigated by
a wait duration of ∼ 1 ms, as the longitudinal relaxation time of the electron spin is long
(> 1 hour). Secondly, the use of an amplifier required additional high-pass filters due to
the presence of low-frequency noise (see Sec. 5.8.1). The AC-coupling induced by these
filters led to ringing effects over significant timescales (∼ 10−100 µs) which can induce
unwanted phases on the electron spin. We expect that these issues can be mitigated in
future experiments by using a free-space RF antenna to prevent heating of the sample
and an improved RF delivery system to reduce ringing. For spins C7 and C8, longer gate
durations are used to avoid crosstalk with additional spectrally close nuclear spins (∼ 1
kHz) 57.

5.8.3. TWO QUBIT GATES: THEORY

In this section we derive equations for the evolution of the NV-13C system under the dy-
namical decoupling with RF (DDRF) gate sequence (Fig. 5.2). Here, we consider the case
of a single 13C nuclear spin interacting with the electron spin of an NV centre through the
hyperfine interaction, under the presence of a radio frequency driving field. We first con-
sider an approximate idealised case for which the evolution operator can be calculated
analytically. We then consider the generalised case, where time-independent simulation
of the system is enabled by the application of a piecewise treatment which accounts for
the shift of nuclear spin quantization axis due to a change of the electron spin state. We
set ħ= 1 for all following derivations.

HAMILTONIAN

In the interaction picture with respect to the electron energy splitting and neglecting
non-secular terms, the Hamiltonian of the NV-13C system is given by

H =ωL Iz + A∥Sz Iz + A⊥Sz Ix +2Ωcos
(
ωt +φ)

Ix (5.10)
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where the final term describes the interaction of the nuclear spin with a radio frequency
(RF) driving field polarised along x with frequency ω, phase φ and Rabi frequency Ω.
Here, Sα and Iα are the spin-1 and spin-1/2 operators of the electron and nuclear spins
respectively. ωL = γBz is the nuclear spin Larmor frequency, where γ is the gyromagnetic
ratio of the 13C spin and Bz is the external magnetic field strength along the NV axis. A∥
(A⊥) is the component of the electron-nuclear hyperfine interaction parallel (perpen-
dicular) to the NV axis.

BASIC DERIVATION

Here we derive the dynamics under a simple approximate model that gives the idealised
evolution of the DDRF gate. Setting A⊥ = 0 and restricting to the ms = {0,−1} subspace
of the electron spin, we can write Eq. 5.10 as

H = |0〉〈0|⊗ωL Iz +|1〉〈1|⊗ω1Iz +2Ωcos
(
ωt +φ)

Ix , (5.11)

where |0〉 (|1〉) indicates the electron ms = 0 (ms =−1) spin projection andω1 =ωL−A∥ is
the nuclear spin precession frequency when the electron is in the state |1〉. We can now
move to the rotating frame at frequency ω and make the rotating wave approximation
(RWA), giving

H ′ = R0(t )(H −ωIz )R0(t )†

= |0〉〈0|⊗ (ωL −ω)Iz +|1〉〈1|⊗ (ω1 −ω)Iz +Ω(cos
(
φ

)
Ix + sin

(
φ

)
Iy ),

(5.12)

where R0(t ) = e iωt Iz . Setting the RF frequency resonant with the nuclear spin when the
electron is in the state |1〉 (ω = ω1) and neglecting driving of the nuclear spin when the
electron is in the state |0〉 (i.e. assumingΩ¿ (ωL −ω1)), we find 36

H ′ = |0〉〈0|⊗ (ωL −ω1)Iz +|1〉〈1|⊗Ω(cos
(
φ

)
Ix + sin

(
φ

)
Iy ). (5.13)

This is equal to the Hamiltonian given in Eq. 5.2. Writing equation 5.13 in the form
H ′ = |0〉〈0| ⊗ H0 + |1〉〈1| ⊗ H1, we can consider the evolution of the nuclear spin for the
two electron eigenstates separately, giving the unitary operators

U0(t ) = e−i H0t =
(

e−i (ωL−ω1)t/2 0
0 e i (ωL−ω1)t/2

)
,

U1(t ,φ) = e−i H1t =
(

cos(Ωt/2) −(i cos
(
φ

)+ sin
(
φ

)
)sin(Ωt/2)

−(i cos
(
φ

)− sin
(
φ

)
)sin(Ωt/2) cos(Ωt/2)

)
.

(5.14)

We now construct evolution operators for the dynamical decoupling sequence (τ−π−
2τ−π−τ)N /2. For simplicity, decoupling (π) pulses on the electron are treated to be per-
fect and instantaneous. We can consider separately the cases in which the electron starts
in either |0〉 or |1〉, giving the total evolution operators V0 and V1 respectively, defined as

V0 =U0(τ) ·U1(2τ,φK−1) ·U0(2τ) · · ·U0(2τ) ·U1(2τ,φ2) ·U0(τ)

V1 =U1(τ,φK ) ·U0(2τ) ·U1(2τ,φK−2) · · ·U1(2τ,φ3) ·U0(2τ) ·U1(τ,φ1),
(5.15)
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where φk are the phases of each RF pulse, k = 1, ...,K and K = N +1. The total evolution
of the two-spin system is then given by

V = |0〉〈0|V0 +|1〉〈1|V1. (5.16)

As can be seen from Eq. 5.15, the even k RF pulses only affect the dynamics of V0, while
the odd k pulses only affect the dynamics of V1. Therefore, we can design the sequences
individually in order to achieve the desired conditional rotation of the nuclear spin. In
order to ensure the rotations due to each RF pulse add up constructively, the phases
φk should be adapted to account for the periods of free precession, which build up in
integer multiples of φτ = (ωL −ω1)τ. For the case of V0, the required phases should
be updated according to the sequence φτ,3φτ,5φτ, . . . , while for the case of V1 the se-
quence is 0,2φτ,4φτ, . . . . This would yield an unconditional rotation of the nuclear spin.
To achieve a conditional rotation, we can additionally add a relativeπ phase shift to each
phase in the V1 sequence (odd k). Furthermore, we can add a phase ϕ to all RF pulses
which can be used to set the rotation axis for the full gate. Combining these elements,
the required RF pulse phases for a conditional rotation (two-qubit gate) are summarised
as φk =ϕ+φ′

k , where

φ′
k =

{
(k −1)φτ+π k odd
(k −1)φτ k even,

(5.17)

which is equal to Eq. 5.3. We can then substitute the phases defined by Eq. 5.17 into the
sequence given in Eq. 5.15, which gives

V0 =
(

e−i N (ωL−ω1)τ/2 cos(NΩτ/2) −i e−i N (ωL−ω1)τ/2e−iϕ sin(NΩτ/2)
−i e i N (ωL−ω1)τ/2e iϕ sin(NΩτ/2) e i N (ωL−ω1)τ/2 cos(NΩτ/2)

)
= Rz (N (ωL −ω1)τ) ·Rϕ(NΩτ),

V1 =
(

e−i N (ωL−ω1)τ/2 cos(NΩτ/2) i e−i N (ωL−ω1)τ/2e−iϕ sin(NΩτ/2)
i e i N (ωL−ω1)τ/2e iϕ sin(NΩτ/2) e i N (ωL−ω1)τ/2 cos(NΩτ/2)

)
= Rz (N (ωL −ω1)τ) ·Rϕ(−NΩτ),

(5.18)

where Rz (θ) = e−iθIz and Rϕ(θ) = e−iθ(cos(ϕ)Ix+sin(ϕ)Iy ). From Eq. 5.16, the total evolution
operator is therefore described by V = Vz ·VCROT, where Vz is an unconditional rotation
of the nuclear spin around z, given by

Vz = 1⊗Rz (N (ωL −ω1)τ), (5.19)

and VCROT is a controlled rotation of the nuclear spin with tuneable rotation angle (set
by N ,Ω and τ) and rotation axis (set by ϕ), given by

VCROT = |0〉〈0|⊗Rϕ(NΩτ)+|1〉〈1|⊗Rϕ(−NΩτ), (5.20)

which is equal to Eq. 5.4. Setting NΩτ = π/2, a maximally entangling two-qubit opera-
tion is achieved. With ϕ= 0, this operation is related to a controlled-not (CNOT) gate by
the local rotations:

VCROT = (Rz (π/2)⊗ 1) · (1⊗Rx (π/2)) ·CNOT (5.21)

where
CNOT = |0〉〈0|⊗ 1+|1〉〈1|⊗X . (5.22)
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GENERALISED CASE

We now consider the dynamics under the more general case where A⊥ 6= 0, and where
we do not neglect driving of the nuclear spin when the electron is in the state |0〉 (i.e.
we do not assume thatΩ¿ (ωL −ω1)). In this case, when the electron is in the state |1〉,
the nuclear spin precesses at frequency ω1 =

√
A2
⊥+ (ωL − A∥)2, with quantization axis

A⊥x̂ + (ωL − A∥)ẑ at an angle β from ẑ, defined by cos
(
β
)= (ωL − A∥)/ω1. As the nuclear

spin quantization axis is now dependent on the electron spin state, we rewrite Eq. 5.10
as

H = |0〉〈0|H0 +|1〉〈1|H1

H0 =ωL Iz +2Ωcos
(
ωt +φ)

Ix

H1 =ω1 Ĩz +2Ω̃x cos
(
ωt +φ)

Ĩx +2Ω̃z cos
(
ωt +φ)

Ĩz ,

(5.23)

where Ĩz = Ry (β)Iz Ry (β)† = cos
(
β
)
Iz+sin

(
β
)
Ix , Ĩx = Ry (β)Ix Ry (β)† = cos

(
β
)
Ix−sin

(
β
)
Iz ,

Ω̃x = Ωcos
(
β
)
, Ω̃z = Ωsin

(
β
)

and Ry (θ) = e−iθIy . We can define two different rotating

frames depending on the electron spin state; R0(t ) = e−iωt Iz and R1(t ) = e−iωt Ĩz . After
making the RWA, the interaction picture Hamiltonian terms become

H ′
0 = R0(t )(H0 −ωIz )R0(t )†

= (ωL −ω)Iz +Ω(cos
(
φ

)
Ix + sin

(
φ

)
Iy ),

H ′
1 = R1(t )(H1 −ωĨz )R1(t )†

= (ω1 −ω)Ĩz + Ω̃x (cos
(
φ

)
Ĩx + sin

(
φ

)
Ĩy )

= (ω1 −ω)(cos
(
β
)
Iz + sin

(
β
)
Ix )+Ωcos

(
β
)
(cos

(
φ

)
(cos

(
β
)
Ix − sin

(
β
)
Iz )+ sin

(
φ

)
Iy ).

(5.24)

The Hamiltonian contains additional terms compared to the idealised case with A⊥ = 0
(Eq. 5.13). We would therefore like to analyze the effect of these terms on the gate dy-
namics. Since we have used a different rotating frame for the two electron states, the evo-
lution through the dynamical decoupling sequence should be calculated in a piecewise
manner, where we change rotating frame between each electron spin flip. The gener-
alised evolution operators for the two initial electron states from Eq. 5.15 are then given
by

V0 =U0(τ) ·R0(N ′τ) ·R1(N ′τ)† ·U1(2τ,φK−1) ·R1((N ′−2)τ) ·R0((N ′−2)τ)† ·U0(2τ) · · ·
· · ·U0(2τ) ·R0(3τ) ·R1(3τ)† ·U1(2τ,φ2) ·R1(τ) ·R0(τ)† ·U0(τ)

V1 =U1(τ,φK ) ·R1(N ′τ) ·R0(N ′τ)† ·U0(2τ) ·R0((N ′−2)τ) ·R1((N ′−2)τ)† ·U1(2τ,φK−2) · · ·
· · ·U1(2τ,φ3) ·R1(3τ) ·R0(3τ)† ·U0(2τ) ·R0(τ) ·R1(τ)† ·U1(τ,φ1),

(5.25)

where N ′ = 2N −1.
We calculate the evolution numerically following the treatment derived above, mak-

ing use of the QuTip Python package 75. To understand the effect of the additional terms
from a non-zero A⊥, we consider a test spin with a parallel hyperfine component A∥/2π
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Figure 5.11: Theoretical infidelity of a Bell state generated by the DDRF gate as a function of the angle β be-
tween the nuclear spin quantization axes for the electron spin projections ms = 0, ms =−1. The dashed green
lines indicate the values of β for the 3 13C spins for which we use DDRF gates. The dashed gray line indicates
the β required for a gate infidelity of 1%.

= 50 kHz. As a measure of fidelity we apply the DDRF gate to create a Bell state (starting
from an ideal initialised state) and take the fidelity with the ideal Bell state. In Fig. 5.11,
we plot the simulated Bell state infidelity against the relative strength of the perpendicu-
lar hyperfine component A⊥, quantified in terms of β. For reference, we mark the values
of β for the 3 13C spins for which we use DDRF gates in the experiments described in
Sec. 5.4. In all cases, the simulated infidelity from this component is < 3×10−4. We also
mark the value of β for which the infidelity reaches 1% (∼ 0.13). This corresponds to
A⊥/2π ∼60 kHz for the 13C Larmor frequency of ωL/2π ∼ 432kHz in our experiments,
approximately equal to the largest A⊥ observed in our register. It is important to note
that this effect can be heavily suppressed by moving to larger magnetic fields. For exam-
ple, at a field strength of 2000G, a β value of 0.13 at 403G would be reduced to 0.03, with
a corresponding contribution to the infidelity less than 5×10−4. Alternatively, one could
also consider modifications to the gate design which account for the effect of non-zero
A⊥.

5.8.4. TWO-QUBIT GATES: EXPERIMENT

DDRF SPECTROSCOPY

A common approach to characterise the nuclear spin environment of an NV centre is to
perform dynamical decoupling spectroscopy, where the spacing between a sequence of
π-pulses on the electron spin is varied 48–50. The DDRF interaction presented in this work
can be used in a similar way, with the additional benefit that spins with small perpen-
dicular hyperfine components can also be detected. The sequence for the spectroscopy
experiment is shown in the inset of Fig. 5.12. First a π/2 pulse rotates the electron spin
to |+〉, after which the DDRF interaction is applied with fixed N and τ. Finally a sec-
ond π/2 pulse is applied with varying phase ϕ. By fitting the resulting oscillation, we
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can distinguish between deterministic electron phase shifts caused by the RF field and
loss of electron coherence due to interaction with the nuclear spin environment (see
Fig. 5.3(b,c)). We can repeat this procedure while varying the frequency of the RF pulse,
which will result in a dip in the amplitude if the RF frequency is resonant with one or
more nuclear spins.

An example spectrum is shown in Fig. 5.12 (for the NV centre considered in the main
text). We also show a theory curve from a numerical simulation of the sequence based on
the identified nuclear spins. In addition to the 8 13C spins used in this work, an additional
19 13C spins in the local environment of this NV centre were identified in parallel work 57.
Therefore, we plot the expected signal due to all 27 known spins. The Rabi frequencies
of each spin are observed to vary (see Table 5.3), which has not been investigated fully,
but could be caused by frequency dependencies of the RF transmission as well as by
the non-secular interaction terms in the electron-nuclear hyperfine coupling Hamilto-
nian 57,58,76,77. Since the parameters associated with these non-secular terms were not
measured, we do not take them into account directly in the model, but rather input the
measured Rabi frequencies for each spin individually.

As described in Sec. 5.8.3, the DDRF interaction realises an entangling operation
with a nuclear spin if the RF frequency matches the precession frequency when the elec-
tron is in the ms = −1 spin projection, i.e. when ω = ω1. This is due to the construc-
tive buildup of small rotations from each RF pulse within the dynamical decoupling
sequence, which is ensured by setting the phase of each pulse according to Eq. 5.17.
However, constructive buildup is also possible at other RF frequencies if the condition
φ′

k (ω)−φ′
k (ω1) = 0mod2π is satisfied, where φ′

k (ω) is the generalised version of Eq. 5.17
where ω1 →ω. Solving for ω, we find resonance conditions

ωm =ω1 + 2πm

τ
, (5.26)

for integer m. Examples of such off-resonant interactions are indicated by the arrows
in Fig. 5.12(b). The strengths of the off-resonant interactions are set by the Rabi fre-
quency in combination with the detuning of the RF field from both ω1 and ωL . For
the parameters used in Fig. 5.12, the off-resonant interactions are separated by inte-
ger multiples of 2π×54kHz. The two highlighted peaks therefore correspond to m = 4;
ωm/2π = 434.828kHz for C1 and m = −1; ωm/2π = 426.625kHz for C6. Additional un-
conditional rotations of the nuclear spins can also occur when ωp =ω1 + (2p +1)π/τ for
integer p, for which φ′

k (ωp ) = (k −1)φτ+π for all k. These rotations do not entangle the
electron and nuclear spins and therefore do not show up in the spectroscopy measure-
ments, but can cause additional unwanted crosstalk. In order to avoid such unwanted
crosstalk in the 10-qubit register, we ensure that any conditional or unconditional off-
resonant interactions do not overlap with the resonances of any targeted spins.
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Figure 5.12: Spectroscopy of the nuclear spin environment using the DDRF interaction. (a) Measured spectrum
(blue points) using the sequence described in the text and illustrated in the inset. Each data point corresponds
to the fitted amplitude A of the function f (ϕ) = a + A cos

(
ϕ+ϕ0

)
, where ϕ is swept from 0 to 360 deg and ϕ0

accounts for deterministic phase shifts induced on the electron by the RF field. By fitting the amplitude, we dis-
tinguish these phase shifts from loss of coherence due to entangling operations. The black line is the result of a
numerical simulation incorporating all 27 known spins surrounding the NV centre 57. (b) Individual numerical
simulations for each of the 8 13C spins used in this work. The black arrows indicate two prominent dips that
are caused by off-resonant interactions with 13C spins from the DDRF interaction (see text), corresponding to
m = 4 for C1 (blue dashed line) and m =−1 for C6 (brown dashed line).
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Spin FBell (measured) FBell (simulated)

C1* 0.972(8) 0.998
C1 0.93(1) 0.990
C7 0.85(2) 0.797
C8 0.81(2) 0.892

14N 0.93(1) 0.99996

Table 5.4: Measured and simulated electron-nuclear spin Bell state fidelities for the nuclear spins controlled
by DDRF gates. For C1, the spectrally closest spin is C5. For C7, there are three spins within 5kHz; C4 and
two unused spins with hyperfine components {A∥/2π, A⊥/2π} = {−20.7,12}kHz and {−23.2,13}kHz 57. For
C8, there are two spins within 5kHz; C3 and one unused spin with hyperfine components {A∥/2π, A⊥/2π} =
{14.5,10}kHz. *Measured with use of RF amplifier, see Sec. 5.8.1.

SOURCES OF INFIDELITY FOR THE DDRF GATE

As shown in Sec. 5.8.3, the perpendicular component of the electron-nuclear hyperfine
interaction contributes < 10−3 to the infidelity of the DDRF gate for the spins used in
this work. We now consider two additional sources of infidelity in our numerical model:
crosstalk between spins and nuclear spin dephasing. To model crosstalk, we consider a
system composed of the NV electron spin, the target nuclear spin, and any additional
nuclear spins within a 5 kHz spectral range of the target spin that were identified in
Abobeih et al. 57. If there are no spins within 5 kHz, we include only the nearest spin. To
account for nuclear spin dephasing, we use Monte Carlo methods. At the start of each
simulation, we randomly draw a detuning of the angular frequency from a Gaussian dis-
tribution withσ = (

p
2/T ∗

2 ) and shift the nuclear spin frequenciesωL andω1 accordingly.
All simulations are performed with 500 samples. The gate parameters, T ∗

2 values, and
hyperfine couplings used to simulate each spin are the same as those measured experi-
mentally (Tables 5.1, 5.2 and 5.3). We assume a magnetic field of 403.55G, aligned along
the NV axis. We calculate the Bell state fidelity from a simulated experiment following
the sequence shown in Fig. 5.4(a). In the simulation, the electron is initialised in the
state |0〉, while the nuclear spins are initially in a mixed state. We then apply the ‘ini-
tialise’ and ‘entangle’ blocks of the sequence shown in Fig. 5.4(a) to the target nuclear
spin, where each two-qubit gate is simulated using the unitary operator as described
in Eq. 5.25. We simulate the Bell state fidelities for both gate regimes on the nuclear
spin C1, along with the gates used for spins C7, C8, and 14N. For simplicity, the 14N spin
is treated analogously to the 13C spins, with appropriately modified Larmor frequency
and hyperfine interaction strength. Additionally, we assume perfect initialization for the
14N spin. In the simulations, we allow for optimization of the Rabi frequency Ω and of
the nuclear spin readout basis (the azimuthal angle) to maximise the fidelity, following
the calibration procedure used in the experiments. In Table 5.4 we compare the simu-
lated and measured values. For the spins C1 and 14N, the simulated Bell state fidelities
are quite high compared to the measured values, indicating that nuclear spin dephasing
and crosstalk are not the dominant infidelity mechanisms in these cases. Conversely, for
C7 and C8, the simulation predicts a large contribution from these two effects.

For the case shown in Fig. 5.4(b) (C1* in Table 5.4), we independently measure the
loss of coherence of the electron spin during the DDRF gate by applying the same dy-
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namical decoupling sequence without any RF pulses. We perform the experiment shown
in the inset of Fig. 5.3(a) with ϕ = 90 deg, after which the electron spin should ideally
end up in the state |0〉. We perform this experiment for two cases: one where the RF
source is connected and one where it is disconnected. We interleave these two cases in
blocks of 20000 repetitions (10 blocks in total) to ensure that any measured difference is
not due to drifts in the experimental setup. For the case where the RF source is discon-
nected, we measure P (0) = 0.999(2) and for the case where it is connected, we measure
P (0) = 0.992(2). This indicates that loss of coherence on the electron spin during the
DDRF gate due to noise from the RF source is a significant source of infidelity in this
case. Careful design of a low noise RF delivery system could therefore lead to significant
improvements in the gate fidelities.

5.8.5. MULTI-QUBIT ENTANGLEMENT EXPERIMENTS

QUBIT INITIALIZATION

Spin Finit

e 0.998(2)
C1* 0.983(1)
C1 0.965(5)
C2 0.985(5)
C3 0.970(5)
C4 0.965(5)
C5 0.980(5)
C6 0.985(5)
C7 0.86(1)
C8 0.83(1)

14N 0.997(11)

Table 5.5: Measured initialization fidelities for the spin register.

Initialization is performed at the start of all experiments. Initialization fidelities for
all spins are given in Table 5.5. The electron spin can be prepared in the ms = 0 spin
projection with high fidelity (0.998(2)) by resonant optical excitation 14.

The 13C nuclear spins are sequentially initialised by a partial swap sequence which
maps the |0〉 state of the electron spin onto the target nuclear spin 37. We assume sym-
metric state preparation and measurement errors (see below). The spread of values is
due to the different two-qubit gate fidelity for each nuclear spin 16.

The 14N spin is initialised by a measurement-based initialization (MBI) at the start
of the sequence 14. Unlike previous implementations of this scheme, where the electron
spin was prepared in a mixture of the ms = ±1 projections, we initialise into the ms = 0
state, after which a microwave π-pulse prepares the electron in the ms =−1 spin projec-
tion with high probability (>99%). In this way, we immediately double the success rate
of the procedure. We also perform the MBI sequence twice, thereby suppressing 14N
initialization errors due to imperfect readout. Fig. 5.13 shows an example electron spin
resonance experiment following nitrogen initialization in mI =−1. The transition is split
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Figure 5.13: Electron spin resonance experiment from which the 14N spin initialization may be inferred. We
repeat a measurement based initialization sequence twice in order to suppress initialization errors from erro-
neous photon detection events. We then perform a highly selective microwave pulse (duration: 10µs), followed
by optical readout of the NV electron spin. We sweep the frequency of the microwave pulse; the detuning
shown is relative to the ms = 0 ↔ ms = −1 transition frequency (1.74667(1) GHz). We fit six Lorentzian lines,
accounting for a stronger coupled 13C nuclear spin (C1) along with the 14N splitting.

into six lines due to hyperfine coupling to the 14N (∼ 2.18 MHz) and a 13C spin (C1; ∼ 213
kHz). We fit six Lorentzian lines to determine the relative height of the dips, which corre-
spond to the populations in each of the nitrogen spin states. The fitted amplitudes reveal
populations of p−1 = 0.997(11), p0 = 0.003(6), and p+1 = 0.000(6). We thus improve on the
initialization fidelity for this nuclear spin by an order of magnitude relative to previous
work (previously measured ∼ 0.96 for this NV 59). After initialization of the spin-1 14N, we
work in a two-level subspace mI = {−1,0}, and perform the remainder of the operations
analogously to the 13C spins, including two-qubit gates using the DDRF scheme.

MEASUREMENT OF ELECTRON-NUCLEAR ENTANGLED STATES

To characterise electron-nuclear entangled states, we generalise the method described
in Kalb et al. 42 to multiple spins and arbitrary electron states. We first measure the elec-
tron spin in a chosen basis, before measuring the relevant multi-qubit expectation val-
ues for the nuclear spins. The latter step is performed by multi-qubit measurements
using the electron as an ancilla. In order to minimise dephasing on the nuclear spins
during the first electron measurement, we only continue and perform the nuclear spin
measurements in the case that we receive a photon detection event within the first 60µs
(10µs for the experiment shown in Fig. 5.4, 5µs for the electron-nitrogen experiment in
Fig. 5.6), and dynamically stop the measurement on receipt of the photon. This has mul-
tiple advantages. First, we simultaneously minimise unwanted spin-flips after heralding
the electron state, and dephasing of the nuclear spins due to the optical cycling pro-
cess. Second, we enhance the projectivity of our measurement. Compared to single-shot
readout (average fidelity 0.945(2)), the electron spin state fidelity after a projective read-
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out of maximum duration 60µs is found to be 0.992(1). If limited to 10µs, this fidelity
rises to 0.996(1). The shorter duration was selected for the data in Fig. 5.4 in order to
measure the performance of the DDRF two-qubit gate with minimal disturbance from
additional effects such as measurement-induced dephasing, at a cost of a reduction in
the experimental repetition rate. After 10µs, the probability of detecting a photon given
that the electron was in the spin state |0〉 is 28(2)%, compared with 88(2)% after 60µs.
For the electron-nitrogen experiment in Fig. 5.6, an even shorter duration is required as
significant dephasing arises due to the large electron-nitrogen hyperfine coupling in the
excited state. The corresponding detection probability after 5µs is 6%.

To appropriately measure the entanglement correlations for both the Mi = +1 and
Mi = −1 electron spin measurement outcomes, we perform the sequence twice. Here
Mi is the outcome of an electron measurement in the i = {X ,Y , Z } basis. In the first
sequence (sequence A), we measure the electron after the appropriate basis rotation,
while in the second sequence (sequence B), we perform an additional π-pulse prior to
the electron readout (see Fig. 5.4(a)). The electron measurement probabilities p(Mi =
±1) are then reconstructed from the probability of photon detection across each pair of
measurements, using the relations

p(Mi =+1) = p A
i (n > 0)

p A
i (n > 0)+pB

i (n > 0)
,

p(Mi =−1) = pB
i (n > 0)

p A
i (n > 0)+pB

i (n > 0)
,

(5.27)

where p A
i (n > 0) is the probability to detect > 0 photons during the measurement in

sequence A (no π-pulse) and pB
i (n > 0) is the probability to detect > 0 photons during

the measurement in sequence B (with π-pulse). We can then calculate the electron-
nuclear expectation values as

〈Ie ⊗On〉 = p(MZ =+1)〈On〉MZ =+1 +p(MZ =−1)〈On〉MZ =−1,

〈Xe ⊗On〉 = p(MX =+1)〈On〉MX =+1 −p(MX =−1)〈On〉MX =−1,

〈Ye ⊗On〉 = p(MY =+1)〈On〉MY =+1 −p(MY =−1)〈On〉MY =−1,

〈Ze ⊗On〉 = p(MZ =+1)〈On〉MZ =+1 −p(MZ =−1)〈On〉MZ =−1,

(5.28)

where On is the nuclear spin Pauli operator and 〈On〉Mi=±1 is the expectation value of On

given that the electron measurement gave the outcome+1 (sequence A) or−1 (sequence
B). While this measurement procedure minimises dephasing for the 13C spins, the large
excited state hyperfine coupling between the electron and the 14N can lead to significant
dephasing within a few optical cycles 62. Consequently, for the multi-qubit experiments
shown in Fig. 5.7, we protect the nitrogen spin state by performing a basis rotation that
maps the desired measurement basis to the Z -basis prior to the electron measurement.

NUCLEAR SPIN READOUT CORRECTION

In order to provide best estimates for the state fidelities, we correct the results for in-
fidelities in the readout sequence. We base the correction on methods developed in a
previous work 16. We first calculate a single qubit readout fidelity for each nuclear spin
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based on a symmetric initialization and readout scheme. That is, we prepare a nuclear
spin into the eigenstate |↑〉, and measure in the Z -basis. Assuming the process is sym-
metric, for each nuclear spin we can write

〈Z j 〉 =C 2
Qj, (5.29)

where 〈Z j 〉 is the measured expectation value in the Z -basis for spin j, and CQ j is the
error associated with the initialization and readout processes. For the nitrogen spin, we
use an independently measured value of 0.997(11) for the initialization fidelity (see Fig.
5.13), and can directly extract the correction factor through the relationship

〈Z14N〉 =C14N,initC14N,RO. (5.30)

To correct a multi-qubit readout, we now prepare the corresponding multi-qubit state,
for example: |↑↑↑〉. Measurement of the expectation value 〈Z1Z2Z3〉 allows one to calcu-
late an appropriate readout correction, following the relation

〈Z1Z2Z3〉 =CQ1,initCQ2,initCQ3,initCQ1,Q2,Q3, (5.31)

where CQ1,Q2,Q3 accounts for the error associated with the 3-qubit readout (for example,
due to decoherence of the electron spin and crosstalk to other nuclear spins).

To calculate the factor CQ1,Q2,Q3, we require the initialization fidelities,
CQ1,init,CQ2,init,CQ3,init, which may now differ from the values measured in the sin-
gle qubit experiments (CQj) due to crosstalk during the multi-qubit initialization
procedure. To characterise these values, we also measure the expectation values
〈Z1I2I3〉, 〈I1Z2I3〉 and 〈I1I2Z3〉. Taking the previously measured single qubit readout
fidelities, and following the relations

〈Z1I2I3〉 =CQ1,initCQ1

〈I1Z2I3〉 =CQ2,initCQ2

〈I1I2Z3〉 =CQ3,initCQ3,

(5.32)

we retrieve the initialization fidelities, and thus arrive at a value for CQ1,Q2,Q3. Similar
analysis enables characterization of multi-qubit readout for all combinations of spins
used in the entanglement experiments.

SPIN ECHOES

In order to protect nuclear spin coherences across the multi-qubit entanglement and
measurement sequences, composed of up to 14 two-qubit gates and 7 single-qubit gates
on nuclear spins, we integrate RF spin echo pulses into the measurement sequence.
These pulses are inserted in two positions; after the entanglement step, and after the
basis rotations required for measurement of the appropriate multi-qubit Pauli opera-
tors. In this way, we extend typical nuclear spin coherence times of order 10 ms to 0.2
- 0.8 s (see Table 5.2). The exact sequencing of the echo pulses, along with the required
single and two-qubit gates, is tailored to the specific measurement basis.

The timings for the echo pulses are calculated from the point of the final microwave
pulse of the entanglement sequence. We identify the nuclear spins to be read out, the
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Figure 5.14: Example of a nuclear spin measurement sequence interspersed with spin echo pulses for the
case of 3 nuclear spins. Purple (orange) boxes correspond to periods in which the electron spin state is in
superposition (the ms =−1 spin projection). Boxes x1, x2, x3 correspond to gate operations on nuclear spins
1, 2, and 3 respectively, with their individual durations. Dashed boxes indicate that - in the case a basis rotation
is not required on a given spin - idling is performed for an equal duration to the operation time. Similarly,
boxes e1, e2, and e3 correspond to spin echo pulses on those spins, also with unique lengths. Boxes w1 −w6
are unique wait durations which must be derived from a set of simultaneous equations (Eqs. 5.33 and 5.34).
Electron pulses, repumping operations and optical readout are omitted for simplicity and can be considered
part of the wait boxes. t is a spacing parameter for the first round of echoes, which can be increased in the case
that a solution is not found for those equations due to the relative lengths of the gate and echo durations for
each nuclear spin.

time since the last operation acting upon them, and their respective gate and echo dura-
tions. A specific challenge for our sequence is to time the refocussing points of the sec-
ond round of echoes such that no additional waiting time is added during the readout.
In this way, we minimise the duration for which the electron spin state is in superposi-
tion and thus sensitive to dephasing noise. Instead, the electron spin is in the ms = −1
projection during idling times, and only suffers depolarization due to longitudinal relax-
ation (T1 timescales >1 hour). We identify a general solution, for which an example for 3
nuclear spins is given in Fig. 5.14.

Considering Fig. 5.14, we wish to balance the times between successive operations
on a given nuclear spin and the spin echo pulse which separates them. For example,
to balance the delays such that the echo pulse e1 refocusses the nuclear spin between
the first and second x1 operations, we must solve the equation (see Fig. 5.14 for timing
definitions)

x2 +x3 +w1 = 3t +e2 +e3 (5.33)

For the remainder of the echoes, we must simultaneously solve the following relations
alongside Eq. 5.33:

x3 +w1 +e1 = t +e3 +x1 +w2

w1 +e1 +e2 + t = x1 +w2 +x2 +w3

w2 +x2 +w3 +x3 = w4 +e2 +w5 +e3 +w6

w3 +x3 +e1 +w4 = w5 +e3 +w6 +x1

e1 +w4 +e2 +w5 = w6 +x1 +x2

(5.34)

The identification of a solution ensures that all nuclear spins are refocussed at the point
of each operation acting upon them. The example given here is readily scaled for an
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Figure 5.15: Characterization of the AC-Stark effect. Experiments are performed on the two 13C spins C3 and
C5, detuned by 5160(2) Hz. (a) Measurement of the phase shift induced on spin C3 by a 2 ms RF pulse applied
on spin C5. We first initialise spin C3 in the X -basis. We then either apply the RF pulse (green) or allow the
qubit to idle for the same duration (blue). Finally, we sweep the phase of the nuclear spin readout (in the
x̂-ŷ plane). We fit both curves to the function f (φ) = 0.5 + A cos

(
φ+φ0

)
, and extract the phase shift δφ0.

(b) Plot of the fitted phase shifts δφ0, against the duration of the applied RF pulse, tpulse. From a linear fit
f (tpulse) = a + Atpulse, we extract a value of 28(2) Hz for the AC-Stark shift, in agreement with the predicted
value of 28(1) Hz.

increasing number of nuclear spins. In experiment, we calculate the specific delays for
each measurement basis by translating this sequence structure into a matrix equation
which is algorithmically generated and solved using the Sympy Python package 78. The
output of this algorithm is directly fed into the control software to program the experi-
mental sequences.

Echo pulses are implemented by RF driving at the unique precession frequency of
each nuclear spin (in the ms =−1 electron spin state). An error-function envelope with
a rise time of 7.5µs is used to mitigate ringing of the RF signal due to sharp switching (see
Sec. 5.8.1). π-pulse durations for the echo pulses are given in Table 5.3. To estimate the
fidelity of the echo pulses, we numerically simulate the effect of a 1 ms, square-envelope
RF pulse with Rabi frequencyΩ/2π = 500 Hz following the numerical model described in
Sec. 5.8.3. The RF pulse is set to be resonant with a test spin whose hyperfine interaction
components are chosen to be A∥/2π = 50 kHz and A⊥/2π = 20 kHz and dephasing time
T ∗

2 = 10 ms. Assuming perfect electron spin initialization in the ms =−1 projection, and
perfect nuclear spin initialization in each of the 6 cardinal states, we find the average
fidelity with the ideal states to be 0.998.

We note that the measured Rabi frequencies associated with each spin are not
equal, an effect which we attribute to frequency dependencies of the RF transmission,
along with the non-secular interaction terms in the electron-nuclear hyperfine coupling
Hamiltonian 50,57,58,77. For nuclear spins which are initialised and read out using stan-
dard dynamical decoupling sequences, we calibrate the phase of the RF pulse to match
the azimuthal angle of the hyperfine interaction for that spin 79–81.

We also account for the AC-Stark shift imposed on the other spins by the echo pulses.
As an example, consider two nuclear spins A and B. We prepare spin A in the X -basis,
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apply the echo pulse on spin B, and then measure the phase of spin A. We then repeat
this sequence, but do not apply any RF power. The difference in the measured phases
of spin A reveals the shift due to the AC-Stark effect. The AC-Stark shift is approximately
given by

∆ω−1 = 1

2

Ω2

ω−ω−1
, (5.35)

whereΩ is the Rabi frequency,ω is the RF frequency, andω−1 is the ms =−1 nuclear spin
precession frequency. Fig. 5.15 shows a measurement of this frequency shift for spins C3
and C5, which have close spectral proximity (detuning of 5160(2)Hz). We measure a Rabi
frequency of 538(12)Hz for spin C3. By sweeping the duration of the RF pulse on spin
C5, we can extract a phase shift of 9.9(6) degrees/ms of applied RF, corresponding to a
frequency shift of 28(2)Hz. A calculation using Eq. 5.35 for the known RF frequency and
Rabi frequency predicts a value of 28(1)Hz, in agreement with the measurement. We
perform a similar calibration for all spins in the register.

BELL STATE MEASUREMENTS

In Table 5.6, we present the numerical values for the Bell state matrix presented in Fig.
5.6. The data utilises a single set of gate parameters, rather than separately optimizing
the parameters to avoid crosstalk between each pair of qubits.

e 14N C1 C2 C3 C4 C5 C6 C7 C8

e - 0.93(1) 0.93(1) 0.97(1) 0.94(1) 0.93(1) 0.97(1) 0.93(1) 0.85(1) 0.81(2)
14N 0.93(1) - 0.84(3) 0.91(2) 0.87(2) 0.83(2) 0.89(2) 0.81(3) 0.72(4) 0.63(3)
C1 0.93(1) 0.84(3) - 0.83(2) 0.84(2) 0.80(2) 0.79(2) 0.83(2) 0.75(4) 0.82(5)
C2 0.97(1) 0.91(2) 0.83(2) - 0.92(2) 0.84(2) 0.94(2) 0.92(2) 0.76(3) 0.73(3)
C3 0.94(1) 0.87(2) 0.84(2) 0.92(2) - 0.95(3) 0.87(2) 0.79(2) 0.69(3) 0.86(7)
C4 0.93(1) 0.83(2) 0.80(2) 0.84(2) 0.95(3) - 0.84(2) 0.89(2) 0.77(4) 0.68(4)
C5 0.97(1) 0.89(2) 0.79(2) 0.94(2) 0.87(2) 0.84(2) - 0.79(2) 0.75(3) 0.74(6)
C6 0.93(1) 0.81(3) 0.83(2) 0.92(2) 0.79(2) 0.89(2) 0.79(2) - 0.69(3) 0.74(5)
C7 0.85(2) 0.72(4) 0.75(4) 0.76(3) 0.69(3) 0.77(4) 0.75(3) 0.69(3) - 0.65(6)
C8 0.81(2) 0.63(3) 0.82(5) 0.73(3) 0.86(7) 0.68(4) 0.74(6) 0.74(5) 0.65(6) -

Table 5.6: Bell state fidelities for all pairs of spins. Data as presented in Fig. 5.6. The target state is (|0+〉+
|1−〉)/

p
2 for electron-nuclear Bell states, and (|++〉+|−−〉)/

p
2 for the nuclear-nuclear Bell states. The fidelities

are calculated from the expectation values of the Pauli operators with non-zero expectation values for those
states, extracted from measurements. That is, F = (1+〈X Z 〉+ 〈Y Y 〉+ 〈Z X 〉)/4 for the electron-nuclear Bell
states, and F = (1+ 〈X X 〉 − 〈Y Y 〉 + 〈Z Z 〉)/4 for nuclear-nuclear Bell states. Statistical errors (one standard
deviation) are given in parentheses.

THEORETICAL PREDICTIONS FOR MULTI-QUBIT STATE FIDELITIES

We use a simple depolarizing noise model to estimate the gate fidelities and predict
the scaling of the GHZ state fidelity FGHZ = 〈GHZN |ρ |GHZN 〉 with the number of
qubits added, where |GHZN 〉 = (|0〉 ⊗ |+〉⊗(N−1) + |1〉 ⊗ |−〉⊗(N−1))/

p
2 is the state ide-

ally created by the application of the entanglement sequence (Fig. 5.7(a)) to the ini-
tial state |0〉 ⊗ |↑〉⊗(N−1). We use two measured quantities: the initialization fidelity
Finit, j =

〈↑ j
∣∣ρinit, j

∣∣↑ j
〉 = (1+CQ j ,init)/2 of each nuclear spin j (Table 5.5), and the Bell

state fidelity FBell, j after an entangling sequence between the electron and nuclear spin
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j (Table 5.7). For the entanglement sequence, we assume perfect single-qubit rotations
on the electron spin, while each two-qubit gate is modelled by a noisy operation 82

E j (ρ) = (1−p j )U jρU †
j +

p j

16

∑
α,β

αeβ jραeβ j , (5.36)

where α,β ∈ {I , X ,Y , Z } are single qubit Pauli operators, p j is the error probability and
U j is the ideal unitary operation given by

U j = |0〉〈0|e ⊗Ry (π/2) j +|1〉〈1|e ⊗Ry (−π/2) j . (5.37)

Applying the two-qubit entanglement sequence (Fig. 5.4(a)) using Eq. 5.36 for the two-
qubit gate, we can find an analytical solution for the error probability in terms of the
measured initialization and Bell state fidelities, given by

p j = 1− 1−4FBell, j

1−4Finit,eFinit, j
. (5.38)

The two-qubit gate fidelity can then be estimated from the error probability using the
relation 82

Fgate, j = min∣∣ψ j
〉 [〈

ψ j
∣∣U †

j E j (
∣∣ψ j

〉〈
ψ j

∣∣)U j
∣∣ψ j

〉]
= 1− 3p j

4
,

(5.39)

where the minimization is over all possible pure electron-nuclear two-qubit states
∣∣ψ j

〉
.

Calculated values of Fgate, j are shown in Table 5.7. We can then use Finit, j and p j to
predict FGHZ for a larger number of qubits by applying the multi-qubit entanglement
sequence shown in Fig. 5.7(a) to the initial state

ρinit =
(
Finit,e |0〉〈0|e + (1−Finit,e ) |1〉〈1|e

)
N−1⊗
j=1

(
Finit, j |↑〉〈↑| j + (1−Finit, j ) |↓〉〈↓| j

)
.

(5.40)

The resulting values are shown in Table 5.8 and Fig. 5.7(d). Note that this model does
not capture the effects of correlated noise and crosstalk between spins, which provides
a possible explanation for the deviation of the measured fidelities from the theoretically
predicted values as the number of qubits is increased.

ADDITIONAL DATA FOR THE N -QUBIT GHZ STATE EXPERIMENTS

Figs. 5.7(b,c) show two example bar plots of the non-zero expectation values for 5 and
7 qubit GHZ states. Fig. 5.16 shows the bar plots for 2-8 qubit GHZ states, from which
the fidelities shown in Table 5.8 and plotted in Fig. 5.7(d) are calculated. Fig. 5.17 shows
the bar plots of the non-zero expectation values after initializing 1-7 nuclear spin qubits,
which are used for correct to readout errors as described above.
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Spin FBell (measured) Fgate (extracted)

C1* 0.972(8) 0.991(9)
C1 0.93(1) 0.97(1)
C2 0.97(1) 0.99(1)
C3 0.94(1) 0.97(1)
C4 0.93(1) 0.97(1)
C5 0.97(1) 0.99(1)
C6 0.93(1) 0.95(1)
C7 0.85(2) 0.99(3)∗
C8 0.81(2) 0.98(3)∗

14N 0.93(1) 0.94(1)†

Table 5.7: Measured Bell state fidelities between the electron and each nuclear spin, as well as the extracted
two-qubit electron-nuclear gate fidelities. The extracted two-qubit gate fidelities are calculated with Eq. 5.39,
using initialization fidelities taken from Table 5.5. ∗The measured initialization and Bell state fidelities are
similar for these spins, suggesting significant effects that are not taken into account in this model. †The optical
projective measurement on the electron spin is expected to have a greater effect on the nitrogen spin due to
the strong hyperfine coupling when the electron is in the excited state. This is not taken into account in the
model, and therefore the gate fidelity is expected to be higher than calculated here.

Number of Spin Finit Finit FGHZ FGHZ WGHZ

qubits added [predicted] [measured] [predicted] [measured] violation (σ)

2 C5 0.978 0.970(11) 0.972 0.966(9) 51
3 C2 0.963 0.968(10) 0.947 0.949(9) 49
4 C6 0.949 0.917(8) 0.889 0.827(7) 46
5 14N 0.946 0.905(7) 0.836 0.813(6) 52
6 C1 0.913 0.885(8) 0.782 0.695(7) 27
7 C3 0.886 0.862(6) 0.740 0.615(5) 23
8 C4 0.855 0.682(6) 0.692 0.365(5) -

Table 5.8: Predicted and measured initialization and GHZ state fidelities for different numbers of qubits.
Predicted fidelities for the initial states are calculated as the fidelity of ρinit (Eq. 5.40) with the ideal initial
state |0〉⊗ |↑〉⊗(N−1), while the measured values are calculated from measurements of the non-zero expecta-
tion values for this state (see Fig. 5.17). Predicted fidelities for the GHZ states are calculated by applying the
entanglement sequence shown in Fig. 5.7(a) to the initial state ρinit, where each two-qubit gate is modelled
as the noisy operation given in Eq. 5.36. Also tabulated are the experimental violations (in statistical standard
deviations) of the witness WGHZ =1−2 |GHZN 〉〈GHZN |.
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Figure 5.16: Bar plots showing the non-zero expectation values for 2-8 qubit GHZ states, used to calculate the
GHZ state fidelity plotted in Fig. 5.7(d). The colors indicate the number of qubits involved, i.e. the number of
(non-identity) operators in the expectation value (inset). Gray bars show the ideal expectation values.
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Figure 5.17: Bar plots showing the non-zero expectation values for 1-7 nuclear spin qubits after initializing in
the state |0〉⊗|↑〉⊗(N−1). These measurements are used to correct for readout errors (see Sec. 5.8.5). The colors
indicate the number of qubits involved, i.e. the number of (non-identity) operators in the expectation value,
shown in the insets of Fig. 5.16. Gray bars show the ideal expectation values.
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6
ATOMIC-SCALE MAGNETIC

RESONANCE IMAGING USING A

QUANTUM SENSOR

M. H. Abobeih, J. Randall, C. E. Bradley, H. P. Bartling, M. A. Bakker, M. J. Degen,
M. Markham, D. J. Twitchen, T. H. Taminiau

Nuclear magnetic resonance (NMR) is a powerful method for determining the structure of
molecules and proteins 2. Whereas conventional NMR requires averaging over large en-
sembles, recent progress with single-spin quantum sensors 3–10 has created the prospect
of magnetic imaging of individual molecules 11–14. As an initial step towards this goal,
isolated nuclear spins and spin pairs have been mapped 15–22. However, large clusters
of interacting spins—such as those found in molecules—result in highly complex spec-
tra. Imaging these complex systems is an outstanding challenge because it requires high
spectral resolution and efficient spatial reconstruction with sub-angstrom precision. Here
we realise such atomic-scale imaging using a single nitrogen-vacancy (NV) centre as a
quantum sensor, and demonstrate it on a model system of 27 coupled 13C nuclear spins
in a diamond. We present a multidimensional spectroscopy method that isolates individ-
ual nuclear-nuclear spin interactions with high spectral resolution (< 80mHz) and high
accuracy (2 mHz). We show that these interactions encode the composition and inter-
connectivity of the cluster, and develop methods to extract the 3D structure of the cluster
with sub-angstrom resolution. Our results demonstrate a key capability towards magnetic
imaging of individual molecules and other complex spin systems 10–14.

The results of this chapter have been published in Nature 576, 7787 (2019).
For length considerations of the thesis, the supplementary materials are not included here, but can be found
online 1.
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6.1. INTRODUCTION

The nitrogen-vacancy (NV) centre in diamond has emerged as a powerful quantum
sensor 3–14,23,24. The NV electron spin provides long coherence times 6,7,21 and high-
contrast optical readout 6,25,26, enabling high sensitivity over a large range of temper-
atures 6,7,21,26,27. Pioneering experiments with near-surface NV centres have demon-
strated spectroscopy of small ensembles of nuclear spins in nano-scale volumes 3,4,6–9,
and electron-spin labelled proteins 5. Furthermore, single nuclear spin sensitivity has
been demonstrated and isolated individual nuclear spins and spin pairs have been
mapped 15–22. Together, these results have established the NV centre as a promising plat-
form for magnetic imaging of complex spin systems and single molecules 11–14.

In this work, we realise a key ability towards that goal: the 3D imaging of large
nuclear-spin structures with atomic resolution. The main idea of our method is to ob-
tain structural information by accessing the couplings between individual nuclear spins.
Three key elements are: (1) realising high spectral resolution so that small couplings can
be accessed, (2) isolating such couplings from complex spectra, and (3) transforming the
revealed connectivity into the 3D spatial structure with sub-angstrom precision.

The basic elements of our experiment are illustrated in Fig. 6.1a. We consider a clus-
ter of 13C nuclear spins in the vicinity of a single NV centre in diamond at 4 Kelvin. This
cluster provides a model system for the magnetic imaging of single molecules and spin
structures external to the diamond. Each 13C spin precesses at a shifted frequency due
to the hyperfine interaction with the electron spin, resembling a chemical shift in tra-
ditional NMR 2,28. These shifts enable different nuclear spins in the cluster to be distin-
guished.

6.2. MULTIDIMENSIONAL SPECTROSCOPY

We use the NV electron spin as a sensor to probe the nuclear-nuclear interactions (Fig.
6.1b). Inspired by NMR spectroscopy 2,28, we develop sequences that employ spin-echo
double-resonance (SEDOR) techniques to isolate and measure individual couplings with
high spectral resolution. First, we polarise a nuclear “probe" spin (frequency RF 1) using
recently developed quantum sensing sequences that can detect spins in any direction
from the NV, enabling access to a large number of spins (see Sec. 6.7.3) 29. Second, we
let this probe spin evolve for a time t and apply N echo pulses that decouple it from
the other spins and environmental noise. Simultaneously, pulses on a “target" spin in
the cluster (frequency RF 2) re-couple it to the probe spin, selecting the interaction be-
tween these two spins. Finally, a second sensing sequence detects the resulting polar-
isation of the probe spin through a high-contrast readout of the electron spin (see Sec.
6.7.5), which enables fast data collection. This double-resonance sequence provides a
high spectral resolution through a long nuclear phase accumulation time. Importantly,
the resolution is not limited by the relatively short coherence time of the electron spin
sensor (see Sec. 6.7.5) 25,30.

It is instructive to first consider the case without echo pulses (N = 0). In such a
Ramsey-type measurement 25–27,30,31, all couplings act simultaneously. This results in
complex spectra that indicate the presence of multiple spins and many nuclear-nuclear
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Figure 6.1: Basic concepts of the experiment. a, We consider an individual cluster of 13C nuclear spins near
a single NV centre in diamond. To obtain the 3D structure of the cluster we use the NV electron spin as a
quantum sensor to measure nuclear-nuclear spin couplings. b, Experimental sequence. The NV sensor is used
to polarise and detect the “probe” spin(s) at frequency RF 1 (see Sec. 6.7.3). A double-resonance sequence
of N echo pulses is applied simultaneously on the probe spin(s) (RF 1) and the “target” spin(s) (RF 2), so that
the coupling between these spins is selectively detected. See Fig. 6.5 for the detailed sequence. c, A Ramsey
signal (N = 0) for a nuclear spin in the cluster (detuning f0 = 5 kHz relative to RF 1 = 455.37kHz). Because
all couplings are probed simultaneously, the power spectral density (PSD) yields a complex non-resolvable
spectrum. See Fig. 6.6 for more examples. d, Double-resonance spectroscopy (N = 1). Sweeping the target
frequency (RF 2) reveals all spins that couple to the probe spin(s). For larger t , more peaks appear as weaker
couplings become visible. RF 1 = 463.27 kHz. e, Sweeping the evolution time t for a fixed RF 1 and RF 2 reveals
the coupling strength between spins. This example reveals a 235.96(1) Hz coupling between two spins with a
spectral resolution of 1.807(7) Hz FWHM. RF 1 = 463.27 kHz and RF 2 = 455.37 kHz. f, An example with N = 256
echo pulses showing an extended coherence time to 10.9(5) seconds, which enables selective measurements
of sub-Hz couplings with high spectral resolution (78(1) mHz) and precision (2 mHz). RF 1 = 408.32 kHz and
RF 2 = 413.48 kHz. All graphs: see Sec. 6.7.6 for fit functions. Error bars are one standard deviation, a.u.
indicates arbitrary units.
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spin interactions in the cluster (Fig. 6.1c). However, this 1D measurement gives no direct
information on the connectivity between spins. Additionally, the underlying structure of
individual spins and couplings is obscured by the many frequencies (2 j for coupling to
j spins) and the low spectral resolution of >30 Hz FWHM (set by the dipolar-broadened
linewidth of the nuclear spins and inversely proportional to the dephasing time T ∗

2 ).
In contrast, our double-resonance sequence enables couplings between specific

spins to be isolated and measured with high resolution. We first scan the target fre-
quency RF 2 for a fixed probe frequency RF 1 (Fig. 6.1d). This reveals the spectral po-
sitions of nuclear spins coupled to the probe spin. We then sweep the evolution time
t and Fourier transform the signal to quantify the coupling strengths (Fig. 6.1e). For a
single pulse (N = 1), the nuclear spin coherence time is T2 = 0.58(2)s, yielding a spec-
tral resolution of 1.807(7)Hz and a centre frequency accuracy of 10 mHz. The spectral
resolution is set by the coherence of the sample spins and can be further enhanced by
applying more echo pulses. For N = 256, a resolution of 78(1) mHz and an accuracy of
2 mHz are obtained, making it possible to detect sub-Hertz interactions (Fig. 6.1f). The
obtained resolution is an improvement by a factor ∼ 103 over Ramsey-type spectroscopy
on the same type of sample (Fig. 6.1c) 19–22,25,27,30, and is an order of magnitude higher
than in previous experiments on other spin samples 7–9,26,31,32.

To characterise the complete cluster, we perform 3D spectroscopy by varying the
probe frequency RF 1, the target frequency RF 2, and the evolution time t . The combi-
nations of RF 1 and RF 2 reveal the spectral positions of the spins in the cluster. The cou-
pling between spins is retrieved from the Fourier transform along the time dimension t .
This yields a 3D data set that in principle encodes the composition and connectivity of
the spin cluster (Fig. 6.2).

6.3. RESOLVING SPECTRALLY OVERLAPPING SPINS

In general, multiple spins can have (near-)identical precession frequencies. This has
two consequences. First, the echo pulses will invert these spins simultaneously, so that
multiple couplings are probed at the same time. Figure 6.3a shows an example with
one probe spin and three target spins. This example illustrates that, while the resulting
spectra are more complex, the high spectral resolution of our method enables retrieval
of the underlying nuclear-nuclear couplings even when several spins overlap spectrally.

Second, to determine the number of spins in the cluster, and to assign the measured
couplings to them, we need to resolve the ambiguity introduced by the fact that multiple
spins can overlap spectrally. For example, the observation of a coupling between fre-
quencies {RF 1,RF 2} = {A,C } and a coupling between frequencies {B ,C } is by itself not
enough to determine if there are one or two spins with frequency C . Our method re-
solves such ambiguities by extracting an over-determined data set with many couplings
that together constrain the problem. This enables individual spins to be uniquely iden-
tified from their connections to the rest of the cluster (see Fig. 6.3b for an example).

6.4. CORRECTIONS FOR ELECTRON MEDIATED INTERACTIONS

Transforming the 3D spectra into a spatial structure requires a precise relation between
the measured couplings and the relative positions of the spins. A complication is that
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Figure 6.2: Three-dimensional spectroscopy. By varying the probe frequency RF 1, the target frequency RF 2,
and the evolution time t , we obtain a three-dimensional data set that encodes the composition of the spins
in the cluster and their couplings. The observation of a signal at {RF 1,RF 2} indicates the presence of one or
more spins at both frequencies and a coupling between them. The Fourier transform along the time dimension
t reveals the spin-spin coupling strengths. Examples for three different RF 1 values are shown.
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Figure 6.3: Spectrally overlapping spins. a, Retrieving couplings when multiple spins are re-coupled simulta-
neously. Example in which the echo pulses invert three target spins (quadruple resonance). The PSD reveals a
complex, yet resolvable, spectrum. Red lines indicate the 8 frequencies f =± f1 ± f2 ± f3, where f1 = 17.17(2)
Hz, f2 = 7.05(3) Hz and f3 = 3.21(4) Hz are the extracted couplings of the probe spin to three target spins.
Grey dashed lines mark additional frequency components that appear due to failures to invert one or two of
the target spins 1. b, Overcoming ambiguity in identifying spins and assigning couplings. Example from the
data. Spins C2, C3, C6, C14, C15 and C18 all yield a coupling signal to the same RF2 frequency. Because the
couplings between these 6 spins reveal that they are part of two spatially separated sub-clusters, it follows that
the signals at RF2 must originate from two distinct spins (C24 and C27).
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the presence of electronic spins can modify the nuclear couplings 33, causing the mea-
sured value to deviate from a basic dipole-dipole coupling. We use perturbation the-
ory to derive a set of many-body corrections that depend on the electron-nuclear and
nuclear-nuclear couplings, and the magnetic field direction (see Sec. 6.7.7). For the type
of cluster considered here, the corrections could be significant. However, the signs of the
leading terms depend on the electron spin state. By averaging the measured couplings
for the ms = +1 and ms = −1 states, the deviations are strongly reduced. Together with
a novel method to align the magnetic field to within 0.07 degrees (see Sec. 6.7.2), this
enables us to approximate the nuclear-nuclear couplings as dipolar.

6.5. ATOMIC-SCALE IMAGING OF THE CLUSTER

Finally, we determine the structure of the spin cluster. Figure 6.4a summarises all ex-
tracted couplings. We identify M = 27 nuclear spins and retrieve a total of 171 pairwise
couplings, out of the total of M(M − 1)/2 = 351 couplings. The structure of the clus-
ter is completely described by 3M − 4 = 77 spatial coordinates (see Sec. 6.7.8), so that
the problem is over-determined. However, due to the large number of parameters and
local minima, a direct least-squares minimisation 11 is challenging. Instead, we sequen-
tially build the structure by progressively adding spins, while keeping track of all possible
structures that match the measured couplings within a certain tolerance.

We use two different methods. The first method constrains the spin coordinates to
the diamond lattice. The second method discretises space in a general cubic lattice, with
voxel spacing down to 5×10−3 nm (∼ 1/70th of the lattice constant, see Sec. 6.7.8). While
this second method is more computationally intensive, it uses minimum a priori knowl-
edge and can be applied on arbitrary spin systems. We run these analyses in parallel with
the measurements, so that sets of the most promising spin assignments and structures
are regularly created. These yield predictions for which unmeasured couplings (com-
binations of RF 1 and RF 2) are required to decide between different assignments and
structures, which we use to guide the experiments and reduce the total measurement
time (see Sec. 6.7.8).

Figure 6.4b shows the structure obtained for the 27 spins using the diamond-lattice.
The blue connections show the strongest couplings (> 3 Hz) and visualise the inter-
connectivity of the cluster. The cubic-lattice method yields a nearly identical structure
(see Sec. 6.7.8); the average distance between the spin positions for the two solutions
is 0.58Å, a fraction of the bond length of ∼ 1.54Å. As a final step, we use these struc-
tures as inputs for least-squares minimisation, where the x, y, z coordinates are allowed
to relax to any value. The solution obtained lies close to the initial guess with an average
distance of 0.46 Å. The uncertainties for the spatial coordinates (δx, δy , δz) are below
a diamond bond length for all 27 spins (Fig. 6.4c,d), indicating atomic-scale imaging of
the complete 27-spin cluster.

Additionally, we determine the position of the NV sensor relative to the cluster. Al-
though not required to reconstruct the cluster, this provides a control experiment. We
measure the coupling of the 14N nuclear spin to 12 of the 13C spins (Fig. 6.8). This unam-
biguously determines the location of both the 14N atom and the vacancy (fit uncertain-
ties < 0.3Å). We can now compare the electron-13C hyperfine couplings to previous den-
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Figure 6.4: Atomic-scale imaging of the 27-nuclear-spin cluster. a, 2D plot summarising all couplings be-
tween the 27 spins identified from the 3D spectroscopy (Fig. 6.2). Includes identification of spins with overlap-
ping frequencies. The size and colour of each point indicates the strength of the measured coupling averaged
over the electron ms =+1 and ms =−1 states. Dashed grey lines indicate the nuclear spin frequencies (ms =−1
state). Solid grey lines indicate the bare 13C Larmor frequency. Total measurement time: ∼ 400 hours. Numer-
ical values and uncertainties are given in the supplemental materials 1. b, 3D structure of the nuclear spins
obtained using the diamond-lattice method (see text). Blue lines indicate couplings greater than 3Hz and il-
lustrate the connectivity of the cluster. See Fig. 6.7 for zoom-ins of strongly coupled subclusters. c, Distance
∆r between the obtained spin positions from the diamond-lattice method (see text) and from a least-squares
optimisation. Deviations are generally below one diamond bond length (dashed line, ∼ 1.54Å). d, The uncer-
tainties for the 77 spatial coordinates of the cluster from a least-squares optimisation are less than the bond
length, indicating atomic-scale resolution. In depth comparisons between the structures and uncertainties
obtained with the different methods are given in the supplementary materials 1.
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sity functional theory (DFT) calculations for 5 of our spins 34. All 5 couplings agree with
the DFT calculations (Fig. 6.8), providing an independent corroboration of the extracted
structure, as well as a direct test of the DFT calculations. Looking beyond quantum sens-
ing, this precise microscopic characterisation of the NV environment provides new op-
portunities for improved control of quantum bits for quantum information 21,25,29,32,33,
and for investigating many-body physics in coupled spin systems.

In our method, the NV sensor spin is exclusively used to create and detect po-
larisation (Fig. 6.1b). Therefore, the two main requirements for the sensor spin are
(1) a high-contrast readout to keep measurement times manageable, and (2) that it
does not limit the spectral resolution by disturbing the evolution of the nuclear spins
through relaxation 26,31,32. We satisfy these requirements by working at 4 Kelvin, so
that the electron relaxation is negligible (T1 = 3.6(3)× 103 s 21), and high-fidelity read-
out through resonant optical excitation is available (see Sec. 6.7.1). Recent experiments
have demonstrated both these requirements up to room temperature 6,26,27,31,32. The
electron spin relaxation—milliseconds at room temperature—can be decoupled from
the sample spins through laser illumination 31,32 or sequential weak measurements 26,27.
High-contrast readout has been demonstrated by using a nuclear spin as a memory that
can be read out repeatedly 6,31. Nuclear spins themselves are well-isolated from temper-
ature 32. Therefore, when combined with those methods, the ideas presented here could
be extended to ambient conditions.

6.6. CONCLUSION

In conclusion, we have developed and demonstrated 3D atomic-scale imaging of
large clusters of nuclear spins using a single-spin quantum sensor. Our approach
is compatible with room temperature operation 26,27,31,32 and could be extended to
larger structures, as the number of required measurements scales linearly with the
number of spins. Future improvements in the data acquisition and the computation
of 3D structures can further reduce time requirements. In particular, recent methods
to polarise and measure nuclear spins are expected to improve sensitivity 26,27, espe-
cially for samples with weak couplings to the NV sensor. Optimised sampling of the
measurements and adaptive algorithms based on a real-time structure analysis can
further reduce the total number of required measurements. Therefore, when combined
with recent progress in nanoscale NMR with near-surface NV centres 3–9, our results
provide a path towards the magnetic imaging of individual molecules and complex spin
structures external to diamond 11–14.

6.7. METHODS

6.7.1. SAMPLE AND NV CENTRE SENSOR

We use a naturally occurring NV centre in a homoepitaxially chemical-vapor-deposition
(CVD) grown diamond with a 1.1% natural abundance of 13C and a 〈111〉 crystal orien-
tation (Element Six). The NV is placed in a solid-immersion lens to enhance photon col-
lection efficiency 35. The NV centre has been selected for the absence of 13C spins with
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hyperfine couplings > 500 kHz. The NV electron spin coherence times are T ∗
2 = 4.9(2)µs

and T2 = 1.182(5)ms. We work at 4 Kelvin, so that the electron relaxation is negligible
(T1 = 3.6(3)×103 s 21), and use high-fidelity readout through resonant optical excitation
(average F = 94.5%) 35.

The nuclear-spin dephasing times observed range from T ∗
2 = 3 ms to 17 ms, corre-

sponding to a inhomogeneous linewidth of ∼ 30−150 Hz. Due to the frequency differ-
ences between nuclear spins in ms =±1 (Table 6.1), spin diffusion is strongly suppressed
and the longitudinal relaxation of the nuclear spins is T1 > 6 minutes 29.

6.7.2. MAGNETIC FIELD ALIGNMENT

A magnetic field of ∼ 403G is applied using a room-temperature permanent magnet
which is installed on a XYZ translation stage to control the strength and the direction
of the magnetic field. Our methods are based on echoes and are therefore robust against
slow fluctuations in the magnetic field strength. Although magnetic field drift has no
significant effect on the measured nuclear-nuclear couplings, we stabilise the magnetic
field to < 3 mG using temperature stabilisation of the magnet and an automatic re-
calibration procedure (every few hours).

We align the magnetic field along the NV axis to avoid electron-mediated shifts that
cause the measured couplings to deviate from nuclear-nuclear dipolar coupling (see
supplemental materials 1). We use a “thermal” echo sequence—previously introduced
to measure temperature 36 (see Fig. 6.9). In this sequence, the electron evolves half of
the time in a superposition of the states ms = 0 and ms = −1, and half of the time in a
superposition of ms = 0 and ms =+1. Since the energies of the states ms =±1 are shifted
by equal and opposite amounts by Hamiltonian terms proportional to Sz , the effects of
such terms are cancelled. However, Hamiltonian terms that shift the energies of ms =±1
in the same way, such as the magnetic field perpendicular to z, do not cancel. Therefore,
the sequence decouples the main source of noise (the magnetic field fluctuations along
z from the surrounding spin bath), while remaining sensitive to shifts caused by a non-
zero magnetic field in the x, y directions. This sequence extends the sensing time from
T ∗

2 ≈ 5µs to T2 ≈ 1 ms, resulting in an uncertainty in the alignment of 0.07 degrees (Fig.
6.9).

6.7.3. QUANTUM SENSING SEQUENCES

We employ two different sensing sequences (see the polarise and detect blocks in Fig.
6.1b). Sequence A consists of dynamical decoupling sequences of N ′ equally spaced π-
pulses on the electron spin of the form (τr −π−τr )N ′ 37–39. This sequence is only sensitive
to nuclear spins with a significant electron-nuclear hyperfine component perpendicular
to the applied magnetic field 37. The inter-pulse spacing 2τr determines the spin fre-
quency that is being probed.

Sequence B is a recently developed method, described in detail in Bradley et al. 29,
that interleaves the dynamical decoupling sequence with RF pulses. This method en-
ables the detection of spins with a weak or negligible perpendicular hyperfine compo-
nent 29,31. For this sequence, the frequency of the RF pulse sets the targeted spin fre-
quency, while τr can be freely chosen 29. Importantly, the amplitudes and phases of the
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RF pulses are set so that they together build up to the desired evolution 29. The added RF
field imprints a deterministic phase on the electron spin sensor 29, which we compensate
by calibrating the phase of the electron π/2-pulses.

6.7.4. ELECTRON-NUCLEAR SPECTROSCOPY

As a starting point, we use the electron spin as a sensor to roughly characterise some of
the nuclear spins in the cluster. We perform spectroscopy by sweeping the interpulse
delay τr in sequence A (see for example Abobeih et al. 21) and the RF frequency for se-
quence B 29. This identifies the frequency range at which spins are present in the cluster
and provides the parameters to polarise and detect several spins 25. Note that the reso-
lution of this spectroscopy technique is limited by the electron spin T2 and the nuclear
spin T ∗

2 .

6.7.5. NUCLEAR-NUCLEAR DOUBLE-RESONANCE SPECTROSCOPY

The sequence for the double-resonance experiments is shown in Fig. 6.1b and Fig. 6.5.
To polarise and detect the probe spin, we either use sequence A (without the RF1 pulses
in the dashed box) or sequence B (with the RF1 pulses), depending on whether the per-
pendicular hyperfine coupling to the electron spin is significant or not. For sequence A,
we set the interpulse delay as τr = (2k−1)π/(ω0+RF 1), with k an integer andω0 the 13C
Larmor frequency for the electron ms = 0 state, and calibrate the number of pulses N ′ to
maximise the signal 37. For sequence B we calibrate the RF power to maximise the signal.

We create nuclear polarisation by projective measurements 25. First the electron is
prepared in a superposition state through resonant excitation 35 and aπ/2 pulse. Second,
the sensing sequence correlates the phase of the electron with the nuclear spin state. Fi-
nally, the electron is read out so that the nuclear spin is projected into a polarised state 25.
To enhance the signal-to-noise ratio and to ensure that the electron measurement does
not disturb the nuclear spin evolution, we only perform the double-resonance sequence
if a photon was detected during the electron readout 25. The resulting signal contrast for
different spins varies from 20% to 96%.

Because the correlation data is read out and stored in the electronics, the ultimate
limit for the spectral resolution of our method - i.e. when applied on hypothetical sig-
nals with infinitesimal spectral width - is set by the precision of the 10 MHz reference
clock used for the timing of the waveform generator 8,40,41. For the double-resonance se-
quence, the phases of the RF1 echo pulses are calibrated so that their phase difference is
0 or π/2 with respect to the polarisation axis, which is determined by the direction of the
hyperfine interaction 19,20,42. For the target spins, the phase of the RF2 pulse does not
affect the signal and is arbitrarily set.

To mitigate pulse errors we alternate the phases of the pulses following the XY8
scheme 43, both for the electron and nuclear spins. For the electron spin, we use Hermite
pulse envelopes 44 with Rabi frequency ∼ 14MHz to obtain effective microwave pulses
without initialisation of the intrinsic 14N nuclear spin. The nuclear-spin Rabi frequen-
cies are in the range 0.3−0.7kHz.
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6.7.6. DATA ANALYSIS

We extract the spin-spin couplings f and their uncertainties from fitting the
time-domain double-resonance signals (e.g. Fig. 6.1e-f, top) to S = a + A ·
e−(t/T2)n

cos(2π f t +φ), where T2 is the coherence time (also a fit parameter). The PSD is
obtained from a Fourier transform of the time domain signal with zero filling 2 and the
D.C. component filtered out (e.g. Fig. 6.1e-f, bottom). The spectral resolution (FWHM)
is obtained from a Gaussian fit of the PSD. Alternatively we can define the spectral res-

olution (FWHM) directly from the time domain signal as 2
p

ln2
πT2

. This yields a spectral
resolution of 0.91(3) Hz for Fig. 6.1e. For the spin in Fig. 6.1f, using N = 1 yields a
spectral resolution of 0.8(1) Hz and using N = 256 yields 49(2) mHz. Note that no satura-
tion of the improvement of spectral resolution with the number of pulses is yet observed.
Therefore, with more pulses (and longer measurement times) higher spectral resolutions
and more precise measurements are feasible.

6.7.7. ELECTRON-MEDIATED INTERACTIONS

We calculate corrections to the nuclear-nuclear couplings due to the presence of the
electron spin using perturbation theory up to second order. The effect of other nuclear
spins on nuclear-nuclear couplings was found by numerical simulations to be negligi-
ble (∼ mHz). In contrast to previous results for strong electron-nuclear couplings 33,45,
here many-body interactions due to the non-secular nuclear-nuclear couplings must be
taken into account. The resulting frequency in a double-resonance experiment is of the
form (see supplemental materials 1)

fDR(ms =±1) ≈ 1

4π
|C +

+∆λ1(ms )+∆λ2(ms )+∆λ3(ms )|,
(6.1)

where C is the parallel (zz) component of the dipole-dipole interaction between the nu-
clear spins and ∆λi are correction terms due to the presence of the electron spin 1.

The dominant correction for our parameter regime is ∆λ2, which depends on both
the electron-nuclear and nuclear-nuclear interactions. We make a Taylor expansion up

to first order in A( j )
zz /γc Bz , where A( j )

zz is the parallel electron-nuclear hyperfine coupling
for spin j , γc is the nuclear gyromagnetic ratio and Bz is the component of the magnetic
field along the NV axis. This yields an expression of the form ∆λ2(ms ) ≈ ms∆λ

(0)
2 +∆λ(1)

2 ,

where the leading, zeroth-order, correction ms∆λ
(0)
2 is given by

∆λ(0)
2 = (A(1)

zx + A(2)
zx )Czx + (A(1)

z y + A(2)
z y )Cz y

γc Bz
, (6.2)

where A( j )
zx (Czx ) and A( j )

z y (Cz y ) are the perpendicular electron-nuclear (nuclear-nuclear)
coupling components. We cancel this term by averaging the double-resonance frequen-
cies measured for the ms =±1 electron spin projections.

The remaining electron-mediated corrections depend on the angles of the electron-
nuclear hyperfine interactions. Because these angles are unknown, we estimate the max-
imum possible shift for each spin-spin interaction by maximising over all angles. For our
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cluster (Fig. 6.4), most of these maximum possible shifts are small (their average value
is ∼ 0.03Hz). In rare cases, the maximum possible correction runs up to 0.6Hz 1, but as
the locations of the involved spins are already precisely fixed through strong (> 20Hz)
interactions with several other spins, this would have a negligible effect on the obtained
structure. Therefore, we can base the structural analysis on dipole-dipole interactions.

6.7.8. 3D STRUCTURE ANALYSIS

The 3D structure of the nuclear spins is obtained using the dipole-dipole coupling for-
mula, which relates the zz couplings Ci j to the spatial x, y, z coordinates of spins i and j
as

Ci j =
αi j

∆r 3
i j

(
3(z j − zi )2

∆r 2
i j

−1

)
, (6.3)

where ∆ri j =
√

(x j −xi )2 + (y j − yi )2 + (z j − zi )2, αi j = µ0γiγ jħ/4π, µ0 is the permeabil-

ity of free space, γi is the gyromagnetic ratio of nuclear spin i and ħ is the reduced Planck
constant.

The goal is to minimise the sum of squares ξ = ∑
i< j |∆ fi j |2, where ∆ fi j = fi j −

|Ci j |/4π are the residuals and fi j are the measured coupling frequencies. For M = 27
spins, there are 3M−4 = 77 free coordinates and M(M−1)/2 = 351 pairwise couplings, of
which 171 were determined in this work. ξ can in principle be minimised using standard
fitting methods, however tests with randomly generated spin clusters indicate that the
initial guess for the coordinates should be within ∼ 0.5Å in order for the fit to converge
to the correct solution. For 27 spins, this corresponds to an intractable ∼ 10100 possible
initial guesses. Instead we sequentially build the structure by adding spins one-by-one.

For the diamond lattice positioning method, we first use the strongest measured cou-
pling to any spin that is already positioned to reduce the position of a new spin to a num-
ber of possible lattice coordinates. For each possible coordinate, we then check if the
predicted couplings to all other spins satisfy ∆ fi j < T , where T = 1.1Hz is a tolerance
that is chosen to ensure that all promising configurations are included while maintain-
ing reasonable computation time. Configurations are discarded if they do not satisfy this
requirement for one or more of the pairwise couplings. If more than Xcutoff = 5000 pos-
sible configurations are identified, only the best Xcutoff solutions are kept, according to
their ξ values.

For the cubic lattice positioning method, the same procedure is followed, with the
key difference being that the lattice is adaptively generated depending on the strongest
coupling to an already positioned spin in the cluster (see supplemental materials 1). This
ensures that in each case the lattice spacing is fine enough to appropriately sample the
volume associated with the dipole-dipole coupling between the nuclear spins.

6.7.9. ROBUSTNESS OF THE ANALYSIS

The method is robust to failure. The problem is generally highly over-determined, so that
discarding the correct configuration due to Xcutoff will lead to no solution at all, rather
than an erroneous solution. Given enough computational resources, a correct solution is
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always expected to be found. As a test, we used the cubic lattice reconstruction method
on 17 randomly generated 30-spin clusters spins with added noise and no erroneous
structures were returned 1.

6.7.10. COMPARISON TO 1D RAMSEY SPECTROSCOPY

Fig. 6.6 compares the 1D Ramsey signal with reconstructed spectra from our 3D spec-
troscopy. This comparison illustrates the effective improvement in resolution, and the
ability to resolve dense spectra, of our method. Note that, apart from the spectral res-
olution, the signals should not be compared directly, because the Ramsey experiment
is difficult to interpret quantitatively. First, the Ramsey signals likely contain contri-
butions from multiple spins, both due to spectral overlap and higher-order contribu-
tions 37–39. Second, any inadvertent polarisation of other spins in the cluster or the en-
vironment modifies the spectrum. These effects are difficult to separate from actual
nuclear-nuclear couplings, and the fact that the spectra are asymmetric indicates that
they play a significant role. Our 3D spectroscopy method resolves these issues.

6.7.11. FINDING THE POSITION OF THE NV CENTRE

Because the NV electron wavefunction is not known a-priori, we cannot use the electron-
nuclear couplings to find the NV position. In particular, density functional theory (DFT)
calculations 34 indicate that, for electron-nuclear couplings in the range observed here,
assuming a point-dipole model for the electron spin can lead to large discrepancies, and
is therefore not justified.

Our approach is to measure the couplings between the 13C spins and the NV nitro-
gen nuclear spin, for which the point-dipole approximation is accurate. The nitrogen-
13C couplings can be measured using a similar double-resonance procedure as for mea-
suring 13C-13C couplings. We use the nitrogen spin as the probe spin: this gives better
spectral resolution, due to its longer coherence time (T2 = 2.3(2)s 29). We initialise the
nitrogen spin in mI = 0 using measurement-based initialisation 35 and manipulate the
spin state using RF pulses. Fig. 6.8b shows the measured couplings between the nitrogen
and 13C spins.

Using the couplings, the nitrogen spin is added to the 13C nuclear spin cluster using
the diamond lattice positioning method, where γ j → γn = 2π×0.3077kHz/G, the nitro-
gen gyromagnetic ratio, in equation 6.3. Determining the nitrogen lattice site also allows
the vacancy site to be determined due to the known N-V distance and the alignment
with the magnetic field along z, thereby giving the location and the orientation of the
NV centre with respect to the 13C nuclear spin cluster. The resulting 3D plot showing the
best solution is shown in Fig. 6.8a. The nitrogen spin coordinate is the same for all 5000
configurations identified. Fig. 6.8c gives the results of a least-squares fit.

6.7.12. COMPARISON TO DFT

Now that we independently determined the position of the 13C spins relative to the NV
centre, we can compare the hyperfine couplings to DFT calculations, without any prior
assumptions. In Nizovtsev et al. 34, hyperfine couplings are calculated for 510 lattice sites
surrounding the NV centre. Fig. 6.8d shows the lattice positions given in Nizovtsev et al.
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along with the coordinates of the 13C spins found in this work. The 13C spin coordinates
are transformed so that the nitrogen spin is at the origin, and mirrored such that z →−z,
in order to be in the correct coordinate frame. Additionally a scaling factor of 1.02 was
applied, which was found by comparing the 510 lattice sites from Nizovtsev et al. with
the same sites in our work. 5 of the 27 spins identified in this work were calculated in
Nizovtsev et al. The remaining spins cannot yet be compared with DFT calculations.
Fig. 6.8e shows the measured electron-13C hyperfine couplings (see Table 6.1), as well as
those predicted in Nizovtsev et al., for the 5 spins. For the DFT results, we take the aver-
age of the predicted couplings for the possible C3v symmetric lattice sites. Additionally,
we take the negative of the predicted A∥ for all spins (a global minus sign is possible due
to the unknown orientation of the magnetic field along z).
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Figure 6.5: Experimental sequence. The pulse sequence consists of five parts: sensor preparation, sensor
initialisation, polarisation of the probe spin, double resonance, and detection of the probe spin. Sensor prepa-
ration: The NV centre is prepared by excitation with two 637 nm lasers for 150 µs and counting the detected

photons (RO laser resonant with the Ex transition and Init laser with the E
′

transition) 25,35. If the number of
photons exceeds a certain threshold, the NV is in the negative charge state and resonant with both lasers, and
we proceed to the next step. If not, we apply a 515 nm laser (charge reset (RS) laser, 1 ms) and repeat the pro-
cess 25,35. Sensor initialisation: The NV electron spin is initialised into the ms = 0 state through spin pumping
(Init laser, 100 µs) 35. Polarising probe spin: First, the NV sensor is brought into a superposition state using a
π/2 pulse. Then, a dynamical decoupling sequence of N ′ equally spaced π-pulses on the electron spin of the

form (τr −π−τr )N ′
is applied. This sequence correlates the state of the nuclear spin(s) with the phase of the

electron spin. We use two different sequences (see Sec. 6.7.3). For sequence B, the MW π-pulses are inter-
leaved with radio-frequency pulses (RF 1) that resonantly drive the probe spin(s) (dashed box), see Bradley et
al. for details 29. A second π/2 pulse maps the electron phase to population and the electron spin is read out
(RO laser). Double resonance: N echo pulses are applied simultaneously on the probe spin(s) (RF 1) and the
target spin(s) (RF 2), so that the coupling between these spins is isolated. To mitigate pulse errors we alternate
the phases of the pulses following the XY8 scheme 43. Detecting probe spin: The detection sequence is the
same as the polarisation sequence except for the final RO laser pulse which is applied for 10 µs and with higher
power.
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Figure 6.6: Ramsey experiments and reconstructed underlying spectra. a, Schematic of the pulse sequence
used to perform the Ramsey experiment (equivalent to correlation spectroscopy). See Sec. 6.7.10 and Fig. 6.5
for details. b, Ramsey signal for C2 and the corresponding power spectral density (5 kHz detuning). The red
line represents the central frequency f0. Green lines are the 27 frequencies based on the 7 strongest coupling
strengths extracted from our high resolution double-resonance spectroscopy 1. These frequencies are given by
f0 ± f1 ± f2 ± f3 ± f4 ± f5 ± f6 ± f7, where f1 to f7 are the 7 largest measured coupling strengths for C2. c, The
same experiment for C3 (∼ 5 kHz detuning), d, for C15 (∼ 1 kHz detuning) and e, for C5 (∼ 2 kHz detuning).
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Figure 6.7: Strongly coupled subclusters. 3D plots showing the structure of two strongly coupled subclusters
(orange panels) within the larger cluster (shown in the centre). The positions of the subclusters within the
larger cluster are marked by the orange boxes and arrows. Ramsey measurements performed on spins within
these subclusters show clear beating signals within their T∗

2 dephasing time (see for example Fig. 6.6). Panel
a) shows an 8 spin subcluster, while panel b) shows a 4 spin subcluster. Couplings above 3Hz are marked
blue, above 20Hz green and above 50Hz red. Grey points show the 2D projections of the diamond lattice
coordinates.
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Figure 6.8: Finding the position of the NV centre. a, 3D plot showing the 27 nuclear spin cluster as shown in
Fig. 6.4, with the position of the nitrogen spin (green) and vacancy (purple) lattice sites calculated from the
measured nitrogen-13C couplings. The grey dots show the 2D projections of the diamond lattice coordinates.
b, Bar plot showing the measured couplings fi N between 13C spin i and the nitrogen spin (grey), as well as the
theoretically calculated couplings |Ci N |/4π (green). Error bars are one standard deviation. See supplemental
materials for the numerical values 1. c, Bar plots of ∆r for the fitted position for the nitrogen spin (black), as
well as fit errors δx (blue), δy (orange) and δz (green), where the 13C spins are fixed at the diamond lattice

solution. d, Plot of z vs. rx y =
√

x2 + y2 for all lattice positions used in the DFT calculation from Nizovtsev et

al. 34 (blue) and for the appropriately transformed 13C coordinates found in this work (orange). Spins 5, 6, 9,
12 and 19 match a DFT lattice position, while the rest of the spins identified are outside of the 510 lattice sites
simulated. e, Measured electron-13C parallel (top) and perpendicular (bottom) hyperfine couplings for the 5
spins that are within the DFT calculation volume (red, taken from Table 6.1), compared with the DFT results
from Nizovtsev et al. (blue).
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Figure 6.9: Aligning the magnetic field using a thermal echo sequence. a, Pulse sequence for the thermal
echo measurement 36. The electron spin is prepared in a superposition of the states ms = 0 and ms = −1 in
the first half of the sequence, and then swapped to a superposition of ms = 0 and ms =+1 for the second half,
using a sequence of three closely spaced π pulses. By sweeping τ, the average frequency fTE = ( f+1 + f−1)/2
is obtained, which is minimised when B⊥ = 0. f±1 are the ms = 0 ↔ ms = ±1 transition frequencies. The NV
nitrogen spin is initialised in mI = 0 35. b, Magnetic field alignment by scanning the magnet position in two
orthogonal directions. The obtained thermal echo frequencies are fitted to a parabolic function to find the
optimum position (i.e. minimal fTE). The plots show the frequency difference fTE −2.877652GHz. c, Placing
the magnet at the optimum position and repeating the measurement 200 times (over a 10-hour period). The
obtained average frequency difference is 0.13 kHz, with a standard deviation of 0.27 kHz, which is consistent
with the statistical measurement error. Therefore, the total uncertainty for the magnet alignment is ∼ 0.4 kHz
which corresponds to a perpendicular field of 0.5 Gauss or a misalignment angle of 0.07 degrees.
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6.8. PROPERTIES OF THE NUCLEAR SPIN CLUSTER

This section summarises the properties of the nuclear spin cluster that we retrieved from
the 3D spectroscopy. This knowledge will be utilised in Ch. 7 to develop a nuclear-spin-
based quantum simulator.

Table 6.1 gives the precession frequencies of the 27 spins that compose the cluster.
Table 6.2 summarises the retrieved couplings between these spins when the electron is
in the ms =−1 state.

Additionally, Table 6.1 gives estimates for the hyperfine couplings of the nuclear
spins to the electron spin. These electron-nuclear couplings play no role in retrieving
the structure of the cluster as our imaging method solely relies on the internal nuclear-
nuclear couplings. Instead, these couplings are used to estimate realistic bounds on
electron-mediated interactions 1 and to provide an independent comparison to DFT cal-
culations (see Sec. 6.7.12).

The hyperfine couplings are estimated as follows. Under the secular approximation
and assuming a perfectly aligned magnetic field, the nuclear spin precession frequencies
ωms for electron spin state ms are given by 37

ω0=ωL ,

ω±1=
√

(ωL ± A∥)2 + A2
⊥,

(6.4)

where ωL = γc Bz is the Larmor frequency, γc is the 13C gyromagnetic ratio and Bz is the
ẑ component of the externally applied magnetic field. Rearranging equations 6.4, we
obtain expressions for the electron-13C hyperfine parameters, given by

A∥ =
ω2
+1 −ω2

−1

4ω0
,

A⊥ =
√
ω2
+1 +ω2

−1 −2ω2
0 −2A2

∥
2

.

(6.5)

For spins C5, C6, C9, C10, C12, C14, C18 and C19, we measure the ms = 0 precession
frequencyω0, while for the rest of the spins we use the average of these measured values
(= 2π · 431.960 kHz). We observe a standard deviation of 6 Hz in the measured values
of ω0, which can be attributed to non-secular terms in the Hamiltonian in conjunction
with a slightly misaligned magnetic field (< 0.1 deg, see Fig. 6.9). For spins C24 to C27,
equations 6.5 give imaginary values for A⊥, which we attribute to shifts in ω0 that are
not captured in this approximate model. For these spins we set A⊥ = 0 in the table.
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ω−1/2π (kHz) ω+1/2π (kHz) A∥/2π (kHz) A⊥/2π(kHz) τr (µs) N
′

Sequence

C1 452.83(2) 411.40(2) -20.72(1) 12(1) 7.435 64 A

C2 455.37(2) 408.956(9) -23.22(1) 13(1) 8.92 62 A

C3 463.27(2) 400.79(2) -31.25(1) 8(2) 18.522 48 B

C4 446.23(4) 418.10(1) -14.07(2) 13(1) - - -

C5 447.234(1) 424.752(3) -11.346(2) 59.21(3) 16.480 20 A

C6 480.625(1) 383.48(4) -48.58(2) 9(2) 4.932 90 A

C7 440.288(6) 423.65(2) -8.32(1) 3(5) - - -

C8 441.77(1) 422.20(4) -9.79(2) 5(4) - - -

C9 218.828(1) 645.123(1) 213.154(1) 3.0(4) 16.204 48 B

C10 414.407(1) 449.687(2) 17.643(1) 8.6(2) 23.152 48 B

C11 417.523(4) 446.612(3) 14.548(3) 10(1) 10.812 58 A

C12 413.477(1) 454.427(1) 20.569(1) 41.51(3) 11.25 22 A

C13 424.449(1) 440.490(1) 8.029(1) 21.0(4) 10.682 36 A

C14 451.802(1) 412.175(5) -19.815(3) 5.3(5) 18.522 64 B

C15 446.010(5) 418.093(3) -13.961(3) 9(1) 8.444 72 A

C16 436.67(5) 427.35(3) -4.66(3) 7(4) - - -

C17 437.61(1) 426.38(2) -5.62(1) 5(2) - - -

C18 469.020(1) 396.542(1) -36.308(1) 26.62(4) 7.218 44 A

C19 408.317(1) 457.035(1) 24.399(1) 24.81(4) 6.540 32 A

C20 429.403(4) 434.782(6) 2.690(4) 11(1) - - -

C21 430.937(3) 433.36(1) 1.212(5) 13(1) - - -

C22 424.289(3) 439.655(7) 7.683(4) 4(3) - - -

C23 435.143(7) 428.789(5) -3.177(5) 2(4) - - -

C24 436.183(3) 427.732(7) -4.225(4) 0(6) - - -

C25 435.827(5) 428.079(9) -3.873(5) 0(4) - - -

C26 435.547(2) 428.31(1) -3.618(5) 0(2) - - -

C27 435.990(3) 427.910(9) -4.039(5) 0(3) - - -

Table 6.1: The 27 nuclear spins. Retrieved 13C spin precession frequencies ω−1, ω+1 for the ms = −1 and
ms = +1 electron spin projections respectively. Obtained by least-squares fitting the frequency scan signal in
double resonance experiments to a Gaussian function 1 or from fits of Ramsey signals to sinusoidal functions
with Gaussian decays. A∥ and A⊥ are estimates for the parallel and perpendicular components of the electron-
13C hyperfine interaction respectively, obtained from the measured frequencies ω−1, ω+1 and ω0 (see Eqs.

6.5). τr and N
′

are the half pulse delay and the total number of pulses used in the polarisation and detection
sequences (Fig. 6.5). The sequence column identifies whether sequence A or B was used to polarise/detect
the spin. The spins marked with “-" were detected as target spins (no initialisation or direct detection with the
electron spin required). The dephasing time, T∗

2 , for the spins in the cluster varies from 3 ms to 17 ms. The
measured coherence time (T2) using a single refocusing pulse is typically ∼0.5 s, corresponding to a FWHM
spectral resolution of ∼1 Hz in the double resonance experiments.
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Table 6.2: All measured coupling frequencies in Hz for the ms = −1 electron spin projection. To account for
the cases where pulse errors cannot be neglected, the coupling frequencies are extracted by fitting the time-

domain double resonance signals to S = a+A ·e−(t/T2)n
cos(2π f t +φ)+B ·e−(t/T2)n

, where T2 is the coherence
time and n, A and B are fit parameters that account for the signal decay shape, contrast and pulse errors. For
the couplings marked as < 1Hz in the tables, no oscillation was observed within the decay time. All couplings
in the table are measured using N = 1 (T2 ∼ 0.5 s) except for C19 - C12 (N = 256) and C9 - C18 (N = 32).
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7
A MANY-BODY-LOCALIZED TIME

CRYSTAL IN A SPIN-BASED

QUANTUM SIMULATOR

J. Randall∗, C. E. Bradley∗, F. V. van der Gronden, A. Galicia, M. H. Abobeih,
M. Markham, D. J. Twitchen, F Machado, N. Y. Yao, T. H. Taminiau

The discrete time crystal (DTC) is a recently discovered phase of matter that spontaneously
breaks time-translation symmetry. Disorder-induced many-body-localization is required
to stabilise a DTC to arbitrary times, yet an experimental investigation of this localized
regime has proven elusive. Here, we observe the hallmark signatures of a many-body-
localized DTC using a novel quantum simulation platform based on individually con-
trollable 13C nuclear spins in diamond. We demonstrate the characteristic long-lived
spatiotemporal order and confirm that it is robust for generic initial states. Our results
are consistent with the realisation of an out-of-equilibrium Floquet phase of matter and
establish a programmable quantum simulator based on solid-state spins for exploring
many-body physics.

The results of this chapter are undergoing peer review.
∗Equally contributing authors.
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7.1. INTRODUCTION

A time crystal spontaneously breaks time-translation symmetry 1. While time crys-
tals cannot exist for time-independent Hamiltonians 2, it is predicted that periodically
driven ‘Floquet’ quantum many-body systems can break discrete time-translation sym-
metry 3–7. Such a discrete time crystal (DTC) spontaneously locks onto a period that is
a multiple of that of the drive and is stable against perturbations. It represents a novel
phase of matter that only exists out of equilibrium and exhibits long-range spatial and
temporal order. Stabilising the DTC phase to arbitrary times requires disorder-induced
many-body-localization (MBL), which prevents heating from the periodic drive and in-
duces a breakdown of ergodicity 3–9.

Pioneering experiments have revealed signatures of time-crystalline order in a range
of systems including trapped ions 10,11, spin ensembles 12–15, ultracold atoms 16,17 and
superconducting qubits 18. However, none of these experiments satisfy the theoretical
requirements for MBL under periodic driving 6,19. The observed responses have instead
been attributed to a variety of fascinating critical and prethermal mechanisms that lead
to slow, but finite, thermalisation 6,7,11,19–22. Experimentally investigating the DTC phase,
stabilised by MBL, has remained an outstanding challenge 6,19.

Here, we present an observation of the hallmark signatures of the many-body-
localized DTC phase. We develop a quantum simulator based on individually con-
trollable and detectable 13C nuclear spins in diamond, which can be used to realise a
range of many-body Hamiltonians with tunable parameters and dimensionalities. We
show that this simulator can be programmed to satisfy all requirements for a DTC, in-
cluding stabilising MBL under periodic driving. We implement a periodic Floquet se-
quence in a one-dimensional (1D) chain of L = 9 spins, and observe the characteristic
long-lived DTC response with twice the driving period. By combining the ability to pre-
pare arbitrary initial states with site-resolved measurements, we confirm the DTC re-
sponse for a variety of initial states up to N = 800 Floquet cycles. This robustness for
generic initial states provides a key signature to distinguish the many-body-localized
DTC phase from prethermal mechanisms, which only show a long-lived response for
selected states 6,11,19.

7.2. A QUANTUM SIMULATOR BASED ON SINGLE 13C SPINS

Our experiments are performed on a system of 13C nuclear spins in diamond close to
a nitrogen-vacancy (NV) centre at 4 K (Fig. 7.1A). The nuclear spins are well-isolated
qubits with coherence times up to tens of seconds 25. They are coupled via dipole-dipole
interactions and are accessed through the optically addressable NV electronic spin 23,25.
With the electronic spin in the ms =−1 state, the electron-nuclear hyperfine interaction
induces a frequency shift h j for each nuclear spin, which — combined with an applied
magnetic field Bz in the z-direction — reduces the dipolar interactions to Ising form (Sec.
7.5.2). We additionally apply a radio-frequency (rf) driving field to implement nuclear-
spin rotations. The nuclear-spin Hamiltonian is then given by H = Hint +Hrf, where Hint
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Figure 7.1: Programmable spin-based quantum simulator. (A) We program an effective 1D chain of 9
spins in an interacting cluster of 27 13C nuclear spins (orange) close to a single NV centre. Connec-
tions indicate nuclear-nuclear couplings |J j k | > 1.5Hz, and blue (red) lines represent negative (positive)

nearest-neighbor couplings within the chain 23. Magnetic field: Bz ∼ 403G. (B) Experimental sequence:
The spins are initialised by applying the PulsePol sequence 24, followed by rotations of the form R(ϑ,ϕ) =
exp

[
−i ϑ2 (sin

(
ϕ

)
σx +cos

(
ϕ

)
σy )

]
. After evolution under the Floquet sequence UF = [Uint(τ) ·Ux (θ) ·Uint(τ)]N ,

the spins are sequentially read out through the NV electronic spin using electron-nuclear and nuclear-nuclear
two-qubit gates (see text). Colored boxes with ‘I’ denote re-initialisation into the given state. (C) Coupling
matrix for the 9-spin chain. (D) Average coupling magnitude as a function of site distance across the chain.
Orange line: least-squares fit to a power-law function J0/| j −k|α, giving J0 = 6.7(1)Hz and α= 2.5(1). (E) Mea-
sured expectation values 〈σz

j 〉 after initialising the state |↑↑↑↑↑↑↑↑↑〉. The data is corrected for measurement

errors (Sec. 7.5.5).
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and Hrf describe the interaction and rf driving terms respectively:

Hint =
∑

j
(B +h j )σz

j +
∑
j<k

J j kσ
z
jσ

z
k

Hrf =
∑

j
Ω(t )σx

j .
(7.1)

Here σβj , β = x, y, z are the Pauli matrices for spin j , B = γc Bz /2 is the magnetic field

splitting, γc is the 13C gyromagnetic ratio, J j k is the zz component of the dipole-dipole
interaction between spins j and k,Ω(t ) is the applied time-dependent rf field and we set
ħ = 1. The system has previously been characterised in detail (Sec. 7.5.3) 23; for 27 13C
spins the hyperfine shifts h j , the spatial coordinates, and the 351 interaction terms J j k

are known.
To investigate the DTC phase, we apply a periodic Floquet sequence consisting of

free evolution Uint(τ) = exp(−i Hintτ), interleaved with global spin rotations Ux (θ) =
exp

(
−iθ

∑L
j σ

x
j /2

)
. To realise the global rotations, we develop multi-frequency rf pulses

that simultaneously rotate a chosen subset of spins (Hrf in Eq. 7.1) (see Sections 7.5.1 and
7.5.2). We symmetrise the Floquet sequence such that UF = [Uint(τ) ·Ux (θ) ·Uint(τ)]N ,
where N is the number of Floquet cycles (Fig. 7.1B). For θ ∼ π, this decouples the tar-
geted spins from their environment, while preserving the internal interactions (see Sec-
tions 7.5.3 and 7.5.7).

To stabilise MBL under periodic driving, the Hamiltonian must satisfy two require-
ments 5,6,19. First, the spin-spin interactions J j k must be sufficiently short-ranged. For
power-law interactions that fall off as 1/rα, it is believed that MBL requiresα> 2d , where
d is the dimension of the system† 19,27,28. For dipole-dipole interactions, α= 3. Because
the nuclear spins are randomly positioned in d = 3 dimensions, the short-ranged re-
quirement is not naturally met. To resolve this, we program an effective 1D spin chain
using a subset of 9 spins (Figs. 7.1A,C, see Sec. 7.5.3). As a function of site distance across
the chain, a fit to the averaged couplings falls of as 1/| j −k|2.5(1) (Fig. 7.1D), confirming
that the finite-sized chain maps onto an approximately 1D system whose interactions
fall off sufficiently fast to be compatible with MBL. Second, since the periodic rotations
in UF approximately cancel the on-site disorder terms h j , the system must exhibit Ising-
even disorder to stabilise MBL in the Floquet setting 5,6,19. This corresponds to disorder
in the couplings J j k , which is naturally satisfied here (Fig. 7.1C).

To reveal the signature spatiotemporal order of the DTC phase, one must prepare
a variety of initial states and perform site-resolved measurements 19. We use a com-
bination of new and existing methods to realise the required initialisation, single-spin
control, and individual single-shot measurement for all spins in the chain (Fig. 7.1B).

First, we initialise the spins through a recently introduced dynamical-nuclear-
polarisation sequence called PulsePol 24. This sequence polarises nuclear spins in the
vicinity of the NV centre and prepares the 1D chain in the state |↑↑↑↑↑↑↑↑↑〉. We ana-
lyze and optimise the polarisation transfer in Sec. 7.5.6. Subsequently, each spin can be
independently rotated to an arbitrary state by selective rf pulses (Sec. 7.5.1).

†We note that avalanche instabilities can also destabilise MBL in power-law interacting systems, and under-
standing the role of such processes is an important outstanding question 26.
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Figure 7.2: Isolating spin chains. (A) We test the programming of interacting spin chains for the first 4 spins
of the 9-spin chain (Figs. 7.1A,C,D). For θ ∼ π, the Floquet sequence UF decouples the spin chain from its
environment, but preserves the internal interactions. (B) Measured expectation values 〈σx

j 〉 after initialising

the state |++++〉 and applying UF with θ =π. Here t = 2τN is varied by fixing τ= 3.5ms and varying N . The blue
(orange) points show the evolution with (without) spin-spin interactions (Sec. 7.5.2). Blue lines: numerical
simulations of only the 4-spin system (Sec. 7.5.2). Measurements in this figure and hereafter are corrected for
state preparation and measurement errors.

Second, after Floquet evolution, we read out the spins by sequentially mapping
their 〈σz

j 〉 expectation values to the NV electronic spin (Sec. 7.5.5), and measuring the

electronic-spin state via resonant optical excitation 25. Spins j =2,5,6,8 can be directly
accessed using previously developed electron-nuclear two-qubit gates 25. To access the
other spins ( j =1,3,4,7,9), which couple weakly to the NV, we develop a protocol based on
nuclear-nuclear two-qubit gates through spin-echo double resonance (Sec. 7.5.5). We
use these gates to map the spin states to other, directly accessible, spins in the chain. Fig.
7.1E shows the measured 〈σz

j 〉 expectation values after preparing the state |↑↑↑↑↑↑↑↑↑〉.
We verify that we can isolate the dynamics of a subset of spins by studying the first

4 spins of the 9-spin chain (Fig. 7.2A). We prepare the superposition state |++++〉, where
|+〉 = (|↑〉+ |↓〉)/

p
2, and apply UF with θ = π. We first verify that the state is preserved

when each spin is individually decoupled to remove interactions (Fig. 7.2B, see Sec.
7.5.3). In contrast, with internal interactions, the four spins entangle and undergo com-
plex dynamics. The measured evolution matches a numerical simulation containing
only the 4 spins, indicating that the system is strongly interacting and protected from
external decoherence.
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Figure 7.3: Discrete time crystal in the 9-spin chain. (A) Sketch of the phase diagram as a function of τ and θ
when applying UF (Fig. 7.1B) 6. The yellow region indicates the many-body-localized DTC phase. The colored
points mark three combinations of {θ,τ} that illustrate the DTC phase transition. Additional data for other
values are given in Sec. 7.5.4. (B) Averaged two-point correlation χ as a function of the number of Floquet
cycles N , for θ = 0.95π and initial state |↑↑↑↑↑↑↑↑↑〉. Without interactions (purple), χ decays quickly. With
small interactions (τ = 1.55ms, green), the system is on the edge of the transition to the DTC phase. With
strong interactions (τ= 5ms, blue), the subharmonic response is stable and persists over all 100 Floquet cycles.
(C) The corresponding Fourier transforms show a sharp peak at f = 0.5 emerging as the system enters the DTC
phase. (D and E) Individual spin expectation values 〈σz 〉 for interaction times τ= 1.55ms (D) and τ= 5ms (E).
(F and G) Averaged two-point correlation χ (F) and coherence C (G) after preparing the superposition state
[cos(π/8) |↑〉 + sin(π/8) |↓〉]⊗9 and applying UF with τ = 5ms. The subharmonic response in χ is preserved,
while C quickly decays due to interaction-induced local dephasing. The dashed line in (G) indicates a reference
value for C measured after preparing the state |↑〉⊗9 (Sec. 7.5.4).
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7.3. EXPLORING THE DTC PHASE

With this capability confirmed, we turn to the 9-spin chain and the DTC phase. The
expectation for the DTC phase is a long-lived period-doubled response that is stabilised
against perturbations of UF through many-body interactions. To illustrate this, we set
θ = 0.95π, a perturbation from the ideal value of π, and tune the system through the
DTC phase transition by changing τ, which effectively sets the interaction strength (see
Figs. 7.3A-C).

We first investigate the state |↑↑↑↑↑↑↑↑↑〉 and consider the averaged two-point cor-
relation function χ = 1

L

∑L
j=1〈σz

j (N )〉〈σz
j (0)〉, where 〈σz

j (N )〉 is the expectation value at

Floquet cycle N for spin j . Without interactions, the deliberate under-rotations (θ < π),
in combination with naturally present noise in the applied control fields, lead to a rapid
decay (Figs. 7.3B,C). By introducing moderate interactions (τ= 1.55 ms), the system is on
the edge of the phase transition, and the interactions begin to stabilise the subharmonic
response (Figs. 7.3B,C,D). Finally, for strong interactions (τ = 5 ms), the subharmonic
response is stabilised despite the perturbations of θ (Figs. 7.3B,C,E). The individual spin
measurements confirm that the spins are synchronised and the signature long-lived spa-
tiotemporal response is observed (Fig. 7.3E).

To rule out trivial non-interacting explanations, we prepare the superposition state
[cos(π/8) |↑〉+ sin(π/8) |↓〉]⊗9 and perform full single-qubit tomography for each spin for
different values of N 3. The two-point correlation χ, shows a persistent subharmonic
response similar to the initial state |↑↑↑↑↑↑↑↑↑〉 (Fig. 7.3F). In contrast, the coherence

C = 1
L

∑L
j=1

√
〈σx

j 〉2 +〈σy
j 〉2 shows a quick decay on a timescale of approximately 10 Flo-

quet cycles, indicating rapid local dephasing due to internal many-body interactions
that generate entanglement across the system (Fig. 7.3G).

While the results shown in Fig. 7.3 are consistent with a DTC, these measure-
ments alone do not distinguish the many-body-localized DTC phase from prethermal
responses 6,11,19. In particular, the hallmark of the MBL DTC phase is robust spatiotem-
poral order for generic initial states. Conversely, prethermal responses only exhibit long-
lived oscillations for a particular range of initial states 6,19.

We study a range of generic initial states of the form
⊗L

j

∣∣m j
〉

, m j ∈ {↑,↓}, starting
with the Néel state |↑↓↑↓↑↓↑↓↑〉 (Fig. 7.4A). Like the polarised state, the Néel state shows
a stable, period-doubled response (Figs. 7.4B,C). Fig. 7.4D shows the decay of the DTC
response for the Néel state, the polarised state, and a further 9 randomly chosen initial
states. To illustrate that a variety of states with different properties are considered, we
evaluate their energy density E = 〈Heff〉/J0L (Fig. 7.4E), where J0 is the average nearest-
neighbor coupling strength (Fig. 7.1D) and Heff is the leading order term in the Floquet-
Magnus expansion of UF (Sec. 7.5.2). The selected initial states cover a range of energy
densities. The response shows no significant dependence on the initial state up to N =
800, consistent with a DTC stabilised by MBL.

To highlight the importance of disorder, we perform a numerical investigation with
and without disorder (Sec. 7.5.8). For the parameters of the disordered 9-spin chain
without decoherence, we find a stable period-doubled response up to N ∼ 106 for all
initial states. For a hypothetical 9-spin chain without disorder, but with the same aver-
age couplings, there is no MBL and the time-crystalline response is state-dependent and
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Figure 7.4: Observation of the DTC response for generic initial states. (A) Individual spin expectation values
〈σz 〉 as a function of N after initialising the spins in the Néel state |↑↓↑↓↑↓↑↓↑〉 and applying UF for θ = 0.95π
and τ = 5ms. (B) Averaged two-point correlation function χ, corresponding to the data in (A). The DTC re-
sponse persists to similar high N as for the polarised state (Fig. 7.3B). (C) Fourier transform of the data in (B),
showing the period-doubled response. (D) Average correlation for even (upper curve) and odd (lower curve) N
for 9 randomly chosen initial states, plus the polarised state and the Néel state (indicated in (E)) with θ = 0.95π
and τ = 5ms. Each data point is the average over even/odd integers in the range N to N + 10. Three of the
states are measured up to N = 800, the others to N = 300. The dashed black line is a fit of |χ|, averaged over the
three states measured to N = 800, using a phenomenological function f (N ) = Ae−N /N1/e , giving A = 0.76(1)

and N1/e = 472(17). (E) Calculated energy density E for all possible states of the form
⊗L

j

∣∣∣m j

〉
, m j ∈ {↑,↓}

(black lines). The initial states measured in (D) are indicated by the corresponding colors.
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fully decays within 300 Floquet cycles for some states. These simulations show that ro-
bust spatiotemporal order associated with the many-body-localized DTC phase can be
distinguished from disorder-free prethermal responses within the experimentally acces-
sible timescales.

While the DTC phase in an ideal isolated system is predicted to persist to arbitrary
times, environmental decoherence inevitably causes decay in any experimental imple-
mentation. We observe a 1/e decay value of N1/e = 472(17) — corresponding to a time
∼ 4.7s — highlighting that our platform is highly isolated. However, understanding how
the DTC response is affected by different decoherence mechanisms is an outstanding
challenge. While the dominant decoherence mechanism for the spins is dephasing with
a timescale on the order of seconds 25, the DTC phase is expected to be particularly ro-
bust to its effects 19. This suggests that the observed decay arises from a more subtle
interplay between the Floquet sequence and the environment, which might be sup-
pressed using future optimised decoupling sequences. Crucially, the numerical calcu-
lations without decoherence show that the finite size of the spin chain does not limit the
observed DTC response.

7.4. CONCLUSION

In conclusion, we present an observation of the hallmark signatures of the many-body-
localized DTC phase. Unlike previous experiments, our quantum simulator operates in
a regime consistent with MBL and the DTC response is observed to be stable for generic
initial states. This result highlights the importance of both many-body interactions and
disorder for stabilising time-crystalline order. The developed methods provide new op-
portunities to investigate Floquet phases of matter, including topologically protected
phases 6, and time-crystalline order in a variety of settings complementary to MBL, such
as open systems where the interplay between dissipation and interactions leads to dis-
tinct DTC phenomena 29–31.

From a broader perspective, this work introduces a programmable quantum simu-
lator based on solid-state spins. By connecting different subsets of spins, larger one-
dimensional chains and two- and three-dimensional systems can be realised. The com-
bination of excellent coherence, individual control and site-selective measurement en-
ables the programming of a wide variety of many-body Hamiltonians. Future scalability
beyond tens of spins might be achieved by exploiting spins external to the diamond 32,33,
by linking multiple electronic-spin defects through dipolar coupling 34, by photonic re-
mote entanglement 35, or by combinations of these methods.

7.5. SUPPLEMENTARY MATERIALS

7.5.1. EXPERIMENTAL SETUP

SAMPLE AND NV CENTRE

The experiments are performed on a naturally occurring NV centre using a home-built
confocal microscope based on a 3.7 K cryostat (Montana Cryostation). The diamond was
homoepitaxially grown using chemical vapor deposition and cleaved along the 〈111〉 axis
(Element Six). There is a natural abundance (1.1%) of 13C. The NV centre was selected on
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the absence of strongly coupled 13C spins (> 500kHz hyperfine coupling), but without
any other criteria on the spin environment. An external magnetic field of Bz = 403.553G
is applied along the NV-axis (the z-axis) using a permanent neodymium magnet, which
is temperature stabilised using a feedback loop 25. The field is aligned to within 0.1 de-
grees using a thermal echo sequence 23. The NV electron spin has a dephasing time
of T ∗

2 = 4.9(2)µs and a spin echo time of T2 = 1.182(5)ms, which can be extended to
T DD

2 > 1s using dynamical decoupling 36. The electron relaxation (T1 > 1h) at this tem-
perature is negligible 36. We measure the NV electron spin state in a single shot using
spin-selective optical readout 37. The readout fidelities are 0.905(2) (0.986(2)) for the
ms = 0 (ms = −1) state with an average fidelity of F = 0.946(1). All measurements are
corrected for readout in order to provide a best estimate for the actual state.

MICROWAVE PULSES

We apply microwave pulses to drive the NV electron spin transition ms = 0 ↔ ms =−1 at
1.746666(3)GHz using single-sideband modulation. IQ signals are generated at 250MHz
using an AWG (Tektronix 5014C) and upconverted using a vector RF source (Rohde &
Schwarz SGS100A). The output of this source is then amplified (AR 25S1G6). Microwave
amplifier noise is suppressed by 40 dB using a fast microwave switch (TriQuint TGS2355-
SM). Video leakage noise generated by the switch is filtered with a high pass filter. For
the PulsePol sequence used for initialisation of the simulator (Sec. 7.5.6), square pulse
envelopes are used with duration 30ns (15ns) for a π (π/2) pulse. During dynamical
decoupling gates for nuclear-spin readout (Sec. 7.5.5), Hermite pulse envelopes 38,39 are
used to obtain high-fidelity rotations of the electron spin independent of the 14N nuclear
spin state, with peak Rabi frequencies of 35 MHz (23 MHz) for a π (π/2) pulse. Pulse
errors during dynamical decoupling are mitigated using the XY8 scheme 40.

RADIO-FREQUENCY PULSES

We apply radio-frequency (RF) pulses in the frequency range 400− 500kHz (see Table
7.1) to directly and selectively drive the 13C spins. To prepare initial states of the form∣∣m j

〉⊗N , m j ∈ {↑,↓}, and for the rotations used in the nuclear-nuclear readout method
(Sec. 7.5.5), we use single-frequency pulses with an error-function envelope 25. For the
x-rotations in the Floquet sequence, and the global basis rotations used to initialise the
states |++++〉 (Fig. 7.2B) and [cos(π/8) |↑〉+ sin(π/8) |↓〉]⊗L (Figs. 7.3F,G), and to read out
〈σx

j 〉 / 〈σy
j 〉, we use multi-frequency pulses. This allows us to rotate all 9 spins in the

1D chain simultaneously and independently of other spins in the environment, which is
crucial for realising the Floquet sequence in these experiments. To reduce crosstalk be-
tween spins, we use a sin2 pulse envelope for the multi-frequency pulses. The waveform
for a pulse containing L frequency components is therefore given by

V (t ) = sin2
(
πt

tp

) L∑
j

V j cos

(
2π f j (t − tp

2
)+φ j

)
, (7.2)

where tp is the pulse length, V j , f j and φ j are the amplitude, frequency and phase of
frequency component j , respectively, and t runs from 0 to tp .

In order to generate the multi-frequency pulses with sufficient power, we amplify the
signal from an AWG (Tektronix 5014C) using an RF amplifier (Analog Devices ADA4870,
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gain +12dB), and apply filtering to reduce additional noise on the signal (3rd-order But-
terworth high-pass filter, 52 kHz, and 7th-order linear-phase low-pass filter, 850 kHz,
both home-built). Additionally, we stagger the phases φ j of each pulse to ensure that
the frequency components do not constructively interfere at the centre of the sin2 pulse
envelope.

Applying multiple frequency components to the nuclear spins simultaneously can
cause AC Stark shifts if two spins are close in frequency. To minimise coherent pulse
errors from such shifts, we iteratively calibrate the pulse parameters for each spin (fre-
quency and amplitude). The resulting calibrated frequency components for each spin
are given in Table 7.1.

7.5.2. DERIVATION OF H AND UF

INTERACTION HAMILTONIAN

The Hamiltonian of the ground-state NV electron spin coupled to a bath of interacting
13C nuclear spins is given by

H =∆ZFS(Sz )2 +γe Bz Sz +∑
j
γc~B ·~I j +

∑
j

~S ·A j ·~I j +
∑
j<k

~I j ·C j k ·~Ik , (7.3)

where ∆ZFS is the zero-field splitting, γe (γc ) is the electron (13C nuclear) gyromag-
netic ratio, Bz is the externally applied global magnetic field along the z-axis, A j is the
electron-13C hyperfine tensor for nuclear spin j and C j k is the 13C-13C dipole-dipole

coupling tensor between nuclear spins j and k. Here ~S = (Sx ,S y ,Sz ) and~I j = (I x
j , I y

j , I z
j )

are the spin vectors for the electron and nuclear spins, respectively, where Sα are the
spin-1 matrices representing the electron spin ground state levels ms = {0,±1} and
Iαj =σαj /2, where σαj are the Pauli spin matrices. In the experiments described through-

out the text, the electron spin is prepared in the ms = −1 eigenstate for the duration of
the quantum simulation part of the sequence (UF in Fig. 7.1B). We therefore only need
to consider the nuclear spin Hamiltonian for the ms =−1 state, given by

H−1 =
∑

j

[
(γc Bz − A∥

j )I z
j − A⊥

j (cos
(
ϕ⊥

j

)
I x

j + sin
(
ϕ⊥

j

)
I y

j )
]
+ ∑

j<k

~I j ·C j k ·~Ik , (7.4)

where A∥
j = Azz

j is the parallel hyperfine component, A⊥
j =

√
(Azx

j )2 + (Az y
j )2 is the per-

pendicular hyperfine magnitude andϕ⊥
j is the perpendicular hyperfine azimuthal angle.

Other hyperfine interaction terms have been neglected in the secular approximation.
This Hamiltonian is used for the numerical simulations presented in Fig. 7.2. The hy-
perfine and nuclear-nuclear interactions for the 9 spins are given in Tables 7.1 and 7.2,

while the azimuthal angles ϕ j
⊥ are approximated from the known spatial angles relative

to the position of the vacancy lattice site† (Table 7.1).
In our experiments we apply a strong magnetic field of Bz ∼ 403G. In this case, we

can further simplify H−1 by using the fact that (γc Bz − A∥
j ) À A⊥

j and |A∥
j − A∥

k |ÀC zz
j k for

†Note that these angles are only equal under the approximation that the electron is a point dipole located at
the vacancy, and therefore the actual hyperfine azimuthal angles may differ due to the finite size and shape
of the electron wavefunction.
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all j ,k. This allows us to neglect non-secular terms and therefore obtain the interaction
Hamiltonian Hint presented in Eq. 7.1, given by

H−1 ≈ Hint =
∑

j
(B +h j )σz

j +
∑
j<k

J j kσ
z
jσ

z
k , (7.5)

where B +h j = 1
2

√
(γc Bz − A∥

j )2 + (A⊥
j )2 and J j k = C zz

j k /4. For B +h j we have here in-

cluded the contribution from A⊥
j to the precession frequency 41. This Hamiltonian is

used for the numerical simulations presented in Sections 7.5.7 and 7.5.8.

SPIN ROTATIONS

As described in Sec. 7.5.1, the spin rotations in the Floquet sequence are imple-
mented using multi-frequency rf pulses. With a general time-dependent voltage V (t ),
the nuclear-spin Hamiltonian has an additional term

Hrf(t ) =∑
j
Ω(t )σx

j , (7.6)

whereΩ(t ) = γcβV (t ) with β being a conversion factor from applied voltage to magnetic
field at the NV centre. We assume that the field is polarised in the x-direction*. Together
with Eq. 7.5, this term gives Eq. 7.1, H(t ) = Hint +Hrf(t ).

We apply multi-frequency pulses of the form given in Eq. 7.2. For the simulations
presented in Fig. 7.2, the unitary evolution during the pulses is calculated by numeri-
cally integrating the time-dependent Hamiltonian H−1 + Hrf(t ), with V (t ) given by Eq.
7.2, using the QuTiP Python package 42. To arrive at the Floquet operator UF , we can
simplify H(t ) under the approximation that the spin-spin interactions can be neglected
during the pulse, which is valid in the regime Ω j À J j k , where Ω j = γcβV j . In this case,
after transforming to the interaction picture with respect to H0 =∑

j (B +h j )σz
j and set-

ting each frequency component in V (t ) (Eq. 7.2) equal to one of the spin precession
frequencies (2π f j = 2(B +h j )), the Hamiltonian becomes

H ′(t ) = e i H0t H(t )e−i H0t −H0

= sin2
(
πt

tp

) L∑
j

Ω j

2

(
cos

(
φ′

j

)
σx

j + sin
(
φ′

j

)
σ

y
j

)
,

(7.7)

where φ′
j = φ j − (B + h j )tp and we have neglected off-resonant terms. Since

[H ′(t1), H ′(t2)] = 0, we can use the fact that∫ tp

0
sin2

(
πt

tp

)
d t = tp

2
, (7.8)

*In reality the polarisation is not known, however field components in the z-direction will cancel in the ro-
tating wave approximation as long as they oscillate sufficiently fast, and therefore the only effect would be a
reduction in the experimentally determined parameter β for all spins. Field components in the y-direction
will add a global phase shift, which can be neglected without loss of generality for the experiments described
in this work.
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to calculate the unitary operator at t = tp in the rotating frame, given by

U ′(tp ) = exp

(
−i

∫ tp

0
H ′(t )d t

)
= exp

(
i

tp

2
H0

)
·exp

(
−i

tp

2

L∑
j

Ω j

2

(
cos

(
φ j

)
σx

j + sin
(
φ j

)
σ

y
j

))
·exp

(
−i

tp

2
H0

)
,

(7.9)

where in the second line we have used the identity

e−iθ(cos(φ0+φ1)σx+sin(φ0+φ1)σy ) = e−iφ1σ
z /2e−iθ(cos(φ0)σx+sin(φ0)σy )e iφ1σ

z /2. (7.10)

Finally, we can revert to the lab frame, giving

U (tp ) = e−i H0tp U ′(tp )

= exp

(
−i

tp

2
H0

)
·exp

(
−i

L∑
j

θ j

2

(
cos

(
φ j

)
σx

j + sin
(
φ j

)
σ

y
j

))
·exp

(
−i

tp

2
H0

)
.

(7.11)

The effect of the multi-frequency pulse under these approximations is therefore equiv-
alent to instantaneous rotations of each spin by an angle θ j =Ω j tp /2 around an axis at
angle φ j in the x − y plane, between two periods of free precession under the Hamilto-
nian H0 for time tp /2.

For short pulse times and setting φ j = 0 and θ j = θ, we can approximate that U (tp ) ≈
Ux (θ) = exp

(
−iθ

∑L
j σ

x
j /2

)
. Combining with Uint(τ) = exp(−i Hintτ), we therefore arrive

at the ideal Floquet sequence UF = [Uint(τ) ·Ux (θ) ·Uint(τ)]N .

EFFECTIVE HAMILTONIAN

For θ =π−ε, the Floquet sequence unitary operator over two periods is given by

e−i 2τHeff =U 2
F =Uint(τ) ·Ux (π−ε) ·Uint(2τ) ·Ux (π−ε) ·Uint(τ)

=U0(τ) ·Uzz (τ) ·Ux (−ε) ·X ·U0(2τ) ·Uzz (2τ) ·X ·Ux (−ε) ·U0(τ) ·Uzz (τ)

=U0(τ) ·Uzz (τ) ·Ux (−ε) ·U0(−2τ) ·Uzz (2τ) ·Ux (−ε) ·U0(τ) ·Uzz (τ),
(7.12)

where X = (σx
j )⊗L is a global x-rotation of the spins and we have split Uint(τ) into

single-spin terms U0(τ) = exp
(
−iτ

∑
j (B +h j )σz

j

)
and pairwise interactions Uzz (τ) =

exp
(
−iτ

∑
j<k J j kσ

z
jσ

z
k

)
. To leading order in ε (valid for ε¿π), the effective Hamiltonian

is given by the time-average of the exponents in Eq. 7.12 6,21, given by

Heff ≈
1

4τ

[
4τ

∑
j<k

J j kσ
z
jσ

z
k −ε

∑
j
σx

j

]

= ∑
j<k

J j kσ
z
jσ

z
k −

ε

4τ

∑
j
σx

j .

(7.13)

This effective Hamiltonian is used to calculate the energy density E = 〈Heff〉/J0L for dif-
ferent initial product states in the diagram in Fig. 7.4E. The wide range of energy den-
sities serves to illustrate the variety of initial states considered, despite Heff not being a
conserved quantity of the dynamics.
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Spin A∥ (kHz) A⊥ (kHz) f−1, j (Hz)
1 -5.62(1) 5(2) 437665(12)
2 -19.815(3) 5.3(5) 451816(5)
3 -13.961(3) 9(1) 445960(6)
4 -4.66(3) 7(4) 436606(8)
5 17.643(1) 8.6(2) 414367(3)
6 -11.346(2) 59.21(3) 447450(11)
7 -14.07(2) 13(1) 446627(7)
8 -48.58(2) 9(2) 480667(7)
9 -9.79(2) 5(4) 441763(17)

Table 7.1: Measured parameters for the 9 13C nuclear spins used in this work. A∥ (A⊥): Parallel (perpendicular)
hyperfine couplings. f−1, j : Calibrated frequency components for each spin for the 9-frequency pulse (Eq. 7.2).

UF WITHOUT INTERACTIONS

In Figs. 7.2B and 7.3B,C, we apply the Floquet sequence with the interactions turned off.
This is achieved by individually applying the sequence to each spin in turn. For θ ∼ π,
this decouples each targeted spin from the others and is therefore equivalent to evolving
under UF with J j k = 0 for all j ,k.

7.5.3. PROGRAMMING THE 1D CHAIN

IDENTIFYING THE CHAIN

As discussed in Sec. 7.2, many-body-localization (MBL) is only stabilised if the spin-
spin interactions J j k are sufficiently short-ranged. We have a system of nuclear spins
randomly positioned in 3 dimensional space, that interact through dipolar interactions
which exhibit a power-law scaling 1/r 3. This power-law exponent, α= 3, is thus equal to
the system dimensionality, d = 3, whereas MBL is compatible with α> 2d 19,28.

To resolve this challenge, we use a decoupling sequence to isolate a subset of spins
which have a smaller effective dimensionality. In previous work, we characterised 27
individual 13C spins surrounding this NV centre 23: their coupling matrix of 351 mutual
interaction strengths are known. In principle, complex decoupling sequences can be
used to realise any type of effective coupling matrix. Here, we consider a sequence that
decouples 9 spins from the other spins, and look for a combination of spins that naturally
forms an effective 1D chain. We thus perform a numerical search for a suitable effective
1D system (a spin chain) using those known parameters.

Starting from each of the 27 spins, we consider links to any other spin in the system,
and accept all cases where the nearest-neighbor coupling exceeds |J j k | = 2.5Hz. We then
try to add a third spin, which must again exhibit a nearest-neighbor coupling > 2.5Hz
to either end of the chain, but additionally must not have any non-nearest-neighbor
coupling > 2 Hz. We iteratively add further spins which satisfy these requirements to
identify a suitable spin chain. For the 9-spin chain we selected, we fit an average power-
law exponent of α= 2.5(1) (Fig. 7.1D).
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Spin x (nm) y (nm) z (nm)
1 0.000 0.000 0.000
2 -0.126 -0.073 0.669
3 -0.504 0.582 0.669
4 -0.378 1.092 0.618
5 -0.631 1.092 1.699
6 -0.631 0.655 2.317
7 -0.757 0.437 2.934
8 -0.126 0.073 2.729
9 0.126 0.364 3.295

1 2 3 4 5 6 7 8 9
1 - -10.8(2) -0.52 0.28 -0.19 -0.20 -0.12 -0.19 -0.10
2 -10.8(2) - 4.44(4) 1.0(1) -0.08 -0.39 -0.23 -0.4(1) -0.19
3 -0.52 4.44(4) - 12.3(2) -1.8(2) -0.95(5) -0.31 -0.33 -0.17
4 0.28 1.0(1) 12.3(2) - -2.5(5) -0.60 -0.22 -0.20 -0.14
5 -0.19 -0.08 -1.8(2) -2.5(5) - -3.88(2) -0.90 -0.18 -0.30
6 -0.20 -0.39 -0.95(5) -0.60 -3.88(2) - -9.48(5) 1.2(4) -0.4(1)
7 -0.12 -0.23 -0.31 -0.22 -0.90 -9.48(5) - 3.5(5) 1.25
8 -0.19 -0.4(1) -0.33 -0.20 -0.18 1.2(4) 3.5(5) - -6.32(2)
9 -0.10 -0.19 -0.17 -0.14 -0.30 -0.4(1) 1.25 -6.32(2) -

Table 7.2: Coordinates (left, relative to Spin 1) and spin-spin interactions J j k (right, in Hz) for the 9 spins,

taken from Abobeih et al. 23. Interactions given with uncertainties were directly measured for the electron
state ms =−1, while values without uncertainties are calculated from the coordinates using Eq. 7.14.
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Figure 7.5: Additional DTC data. Additional data showing individual spin magnetisations for different param-
eters {τ,θ}. (A) Phase diagram as shown in Fig. 7.3A, with an additional point shown (red, τ = 7.5ms). (B)
Individual spin results underlying the averaged plot shown in Figs. 7.3B, C for the case of no interactions (Sec.
7.5.2). (C-E) Additional datasets for τ= 7.5ms (red point in (A)) for an initial polarised state (C), Néel state (D)
and 10 of the initial states measured in Fig. 7.4D (E).
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Figure 7.6: Individual spin data for Figs. 3F,G (A) Measured coherence for each spin after preparing the state
|↑↑↑↑↑↑↑↑↑〉 (dark colored bars). The light shaded bars indicate the contribution from shot noise in the un-
derlying measurements of 〈σx

j 〉 and 〈σy
j 〉. The residual measured coherence is likely due to pulse errors in

the π/2 basis rotations. The blue bar shows the average of the orange bars over all spins. The dark blue bar
is used to indicate a baseline in Fig. 7.3G. (B) Individual spin magnetisations (top) and coherences (bottom)
after preparing the superposition state [cos(π/8) |↑〉+ sin(π/8) |↓〉]⊗9.

1D CHAIN SPIN PARAMETERS

Table 7.1 gives the parameters for the 9 13C spins used in this work. The first two columns
give the electron-nuclear hyperfine couplings A∥ and A⊥ (Abobeih et al. 23), which are
extracted from the measured precession frequencies for different NV electron ms states.
The final column gives the calibrated frequency components used for the 9-frequency
pulse (Eq. 7.2), which includes small frequency shifts due to couplings to other polarised
spins and Stark shifts from off-resonant frequency components.

Table 7.2 gives the coordinates and spin-spin interactions J j k for the 9 spins (Abobeih
et al. 23). Interactions with uncertainties given in parentheses are measured values for
the NV electron state ms = −1. Interactions shown without uncertainties were not di-
rectly measured, but can be calculated from the known spin coordinates 23 using the
dipole-dipole formula, given by 43

J j k =
C zz

j k

4
= C0

4∆r 3
j k

(
1− 3(z j − zk )2

∆r 2
j k

)
, (7.14)

where ∆r j k =
√

(x j −xk )2 + (y j − yk )2 + (z j − zk )2, C0 = µ0γ
2
cħ/4π, µ0 is the permeability

of free space, and ħ is the reduced Planck constant.

7.5.4. ADDITIONAL DATA

Fig. 7.5 shows individual spin magnetisation data underlying Figs. 7.3B,C, as well as
additional datasets for τ= 7.5ms. Fig. 7.6 shows the underlying data for Figs. 7.3F,G.

7.5.5. READOUT OF THE FULL NUCLEAR-SPIN CHAIN

One of the key requirements for the experiments presented in this work is the ability to
read out all individual spins within an interacting system. We develop a readout scheme
in which some of the nuclear spins are directly read out through the NV electron spin,
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Figure 7.7: Nuclear-nuclear readout. (A) Quantum circuit for readout via nuclear-nuclear two-qubit gates.

R
β

θ
denotes a rotation by an angle θ around an axis β = x, y, z. (B) Compilation of the ideal controlled-phase

gate using the native nuclear-nuclear interactions. U−1(τ) denotes free evolution for a period, τRO = π/8Jt p ,
during which time the electron is in the ms = −1 state. (C) Compilation of (A) using the native interactions.
(D) Evolution of the probe spin at the optimal read-out point (τRO = π/8Jt p ). Orthogonal states of the target
spin are mapped into orthogonal states of the probe spin. (E) Characterisation curves for all probe-target spin
combinations used in this work. The solid lines are a fit to Eq. 7.25, with resulting fit parameters given in Table
7.3.

while other, not directly accessible, nuclear spins are first mapped to other nuclear spins
that are accessible.

In previous work utilising 13C spins in diamond 25,41, single-spin readout was
achieved via dynamical decoupling sequences utilising individual electron-nuclear hy-
perfine interactions. However, these approaches require that the interactions are si-
multaneously strong (enabling fast, high fidelity gates), and spectrally heterogeneous
(avoiding unwanted entanglement with non-targeted spins). This requirement is not
generically met when considering larger nuclear spin systems, where some spins are
only weakly coupled to the NV centre. To overcome this challenge, we developed a new
technique to read out nuclear spins that are more weakly coupled to the NV centre elec-
tron spin, leveraging our knowledge of the spatial environment of the spin system and of
the nuclear-nuclear couplings 23. In particular, we isolate individual nuclear-nuclear in-
teractions which can be used to map the state of a weaker coupled ‘target’ nuclear spin to
a stronger coupled ‘probe’ nuclear spin. The stronger hyperfine interaction between the
probe spin and the NV centre then enables readout using previously established tech-
niques 25.
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NUCLEAR-NUCLEAR READOUT

The desired quantum circuit to map the state from one nuclear spin to another is shown
in Fig. 7.1B. Both the Hadamard and controlled-phase gates are not native to our system
and must be compiled from native operations. Fig. 7.7A shows the compilation of the
circuit replacing the Hadamard gates by native single qubit rotations. In Fig. 7.7B we
show the compilation of the controlled-phase gate. The central feature is the ‘interac-
tion’ block, where we interleave two periods of free evolution with concurrent spin-echo
pulses applied to the target and probe spins (spin-echo double-resonance, SEDOR), with
the electron spin in the state ms = −1. These echo pulses serve to decouple the target
and probe from all other spins while preserving their mutual interaction 23. Under this
condition, we can neglect the presence of other nuclear spins. From Eq. 7.5, we have

H−1 ≈ Hint = (B +ht )σz
t + (B +hp )σz

p + Jt pσ
z
t σ

z
p , (7.15)

with the parameters defined after Eq. 7.5. The subscripts t and p denote the target and
probe spins, respectively. The unitary evolution during the interaction block is given by

USEDOR(τ) =Uint(τ) ·Rx
p (π) ·Rx

t (π) ·Uint(τ). (7.16)

Here, Uint(τ) = exp(−i Hintτ) and Rφ

j (θ) = e
−iθ(cos(φ)σx

j +sin(φ)σy
j )/2

is a rotation of spin j

by an angle θ around an axis φ. In the case that τ = τRO ≡ π/(8Jt p ), this block realises a
maximally-entangling operation.

In Fig. 7.7C we show the compiled readout circuit as implemented in the experi-
ment. Note that this sequence incurs an additional π-rotation to the target spin which
we do not rectify, as the state is discarded after the measurement. The unitary evolution
describing the full sequence is given by

URO = Rx
p (−π/2) ·USEDOR(τRO) ·R y

p (π/2). (7.17)

We first initialise the probe spin in the state |↑〉, while the target spin is in an unknown
state which is to be read out in the σz -basis. The initial state of the system is therefore
given by

ρi =
(
1 0
0 0

)
⊗

(
a b
c d

)
, (7.18)

where 〈σz
t 〉i = a−d is the expectation value we would like to read out. After applying the

nuclear-nuclear readout sequence (Eq. 7.17), and tracing over the target spin, we find
the final state and associatedσz -basis spin projection of the probe spin as desired, given
by

ρp, f = Trt (UROρ f U †
RO) =

(
a 0
0 d

)
, (7.19)

〈σz
p〉 f = Tr(ρp, f σ

z
p ) = a −d = 〈σz

t 〉i . (7.20)

The state of the probe spin can then be read out via the electron spin using previously
developed approaches 25,44. Importantly, after this measurement, the probe spin can
be reinitialised via a swap operation with the electron spin 25,44, and can then be fur-
ther used to probe the state of additional target spins. Readout of other bases can be
achieved via single-qubit rotations of the target spin prior to the nuclear-nuclear read-
out sequence.
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QUANTIFYING NUCLEAR-NUCLEAR READOUT IN THE PRESENCE OF EXPERIMENTAL ER-
RORS

While the above analysis shows that the readout scheme effectively maps the state of
a target spin onto a probe spin via their mutual coupling, the measured signal may be
affected by a number of experimental imperfections. These imperfections typically lead
to two effects. First, pulse errors on the target spin can cause the readout sequence to fail.
Second, the measurement contrast can be reduced due to decoherence of the probe spin
or imperfect mapping of the probe spin state to the electron spin. Here we show that we
can use the signal obtained via an orthogonal measurement basis to characterise these
imperfections and thereby extract the underlying 〈σz

t 〉i .
In Eq. 7.17, the final rotation Rx

p (−π/2) maps 〈σy
p〉 to 〈σz

p〉. If we instead apply a

rotation R y
p (−π/2), we can measure the expectation value 〈σx

p〉. We can calculate 〈σφp〉 f

for φ ∈ {x, y} as a function of τ to get

〈σx
p〉 f (τ) = cos

(
4Jt pτ

)
, (7.21)

〈σy
p〉 f (τ) = 〈σz

t 〉i sin
(
4Jt pτ

)
. (7.22)

PULSE ERRORS ON THE TARGET SPIN

First, we consider the effect of pulse errors on the target spin. In particular, we denote
a probability, ε, with which the pulse fails to invert the target. In such cases, the probe
spin coherence is preserved by its own inversion pulse, but the target spin is decoupled,
turning off the interaction. Thus we have 〈σx

p〉 = 1 and 〈σy
p〉 = 0. Taking a statistical

average according to the failure rate, we arrive at the expectation values

〈σx
p〉 f (τ,ε) = ε+ (1−ε)cos

(
4Jt pτ

)
, (7.23)

〈σy
p〉 f (τ,ε) = (1−ε)〈σz

t 〉i sin
(
4Jt pτ

)
. (7.24)

AMPLITUDE DAMPING

Second, we consider effects which result in a dampened signal. These include imperfect
mapping from the probe spin to the electron spin, pulse errors on the probe spin (re-
sulting in dephasing on a timescale T ∗

2 ¿ τRO), and T2-timescale dephasing of the probe
spin. All of these effects can be encapsulated by a constant factor δ, alongside a time-
dependent function f (t ) = exp[−τ/τ0]n . Here, τ0 and n are the characteristic timescale
and exponent for the decay of the signal. Applying these terms to Eqs. 7.23, 7.24, we find

〈σx
p〉 f (τ,δ,ε,n,τ0,β) = δ exp

[−(τ/τ0)n]
(ε+ (1−ε)cos

(
4βJt pτ

)
), (7.25)

〈σy
p〉 f (τ,δ,ε,n,τ0,β) = δ exp

[−(τ/τ0)n]
(1−ε)〈σz

t 〉i sin
(
4βJt pτ

)
. (7.26)

Here β is a multiplicative factor to account for small changes in coupling frequency due
to unwanted couplings to other spins.

MITIGATING EXPERIMENTAL IMPERFECTIONS

Considering Eq. 7.25, we note that the 〈σx
p〉 f readout signal is dependent on all of the

discussed experimental imperfections, but critically does not depend on the initial target
spin polarisation. Therefore, we can use this signal to characterise those parameters. Fig.
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7.7E shows characterisation curves for all probe-target spin combinations used in this
work. We fit the data using Eq. 7.25 and the resulting fit parameters are given in Table
7.3. Once β, δ, ε, τ0, and n have been identified, these values can be used to obtain 〈σz

t 〉i

by performing the 〈σy
p〉 f measurement at τRO and inverting Eq. 7.26 to give

〈σz
t 〉i =

〈σy
p〉 f

δsin
(
4βJt pτRO

)
exp[−(τRO/τ0)n] (1−ε)

, (7.27)

READOUT FOR THE 1D CHAIN

To read out the spins making up the 1D chain, we use a combination of previously devel-
oped electron-nuclear two-qubit gates 25 and our new nuclear-nuclear readout method.
The circuits used for initialisation and readout via electron-nuclear two-qubit gates are
shown in Fig. 7.1B. The compilation of these circuits using native gates is given in Bradley
et al. 25. The method used for readout for each spin, as well as the associated parame-
ters, are given in Table 7.3. We read out the spins sequentially according to the sequence
shown in Fig. 7.1B, where the electron spin and any required probe spins are reset before
each readout sequence using optical spin pumping and dynamical decoupling based se-
quences, respectively 25. Due to the close spectral proximity of spins 3 and 7, which can
cause additional errors in the nuclear-nuclear readout sequence, we read out spin 7 in a
separate run of the experiment, while the remaining 8 spins are read out sequentially in
a single run.

To account for readout imperfections and thereby accurately estimate the expec-
tation values, we correct the results for readout errors using separate characterisation
measurements. For the spins that are read out directly via the electron spin, we fol-
low the method described in Bradley et al. 25, while for spins that are read out using the
nuclear-nuclear readout sequence, we use Eq. 7.27.

7.5.6. INITIALISING THE QUANTUM SIMULATOR: DYNAMIC NUCLEAR PO-
LARISATION

This section describes the initialisation of the spin chain with the PulsePol sequence, a
recently developed dynamic nuclear polarisation method 24. We summarise the theo-
retical background, with a focus on the differences compared to previous studies. We
then discuss the optimisation of the sequence. In contrast to previous studies, the indi-
vidual control and measurement enables us to track the polarisation dynamics quantita-
tively and on the single spin level. This reveals that the polarisation dynamics themselves
present an interesting, and not yet fully understood, many-body problem.

HAMILTONIAN

Dynamic nuclear polarisation (DNP) methods encompass a variety of techniques to re-
alise hyperpolarisation of the nuclear spin bath via polarisation transfer from a central
well-controlled electron spin 24,45,46. While the intrinsic energy scales of the differing
spin species forbid natural flip-flop interactions between them, the use of Hamiltonian
engineering can overcome this barrier. If this process can be made to occur much faster
than nuclear spin diffusion, and is combined with fast and high-fidelity electron spin
reset, repeated application can lead to large-scale nuclear spin bath polarisation 47.
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Figure 7.8: PulsePol characterisation. (A) Schematic representation of the PulsePol sequence. The purple
pulses are microwave pulses that act on the electron spin. tr = 10 µs is the reset time (the total time for which
the reset laser is applied) and tw = 14 µs is a waiting time that was included due to hardware restrictions. (B)
Polarisation of each spin (1-9 from top left to bottom right) as a function of the number of repetitions R for
τ = 0.412 µs and N = 4. The red, orange and green solid lines are simulations of the 13C spin of interest, the
14N spin, and an additional 0, 1 or 5 spins included in the environment respectively, which were chosen using
the method described in the text. (C) Polarisation of each spin (1-9 from top left to bottom right) as a function
of the parameter τ of PulsePol with N = 4 and R = 5000. Solid lines are the results of simulations including 5
environmental spins. The dashed vertical line represents the value of τ employed in the DTC experiments and
the horizontal line at a polarisation value of 1 is included as a guide to the eye.
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Spin Gate Type τ (µs) N CQ

2 DDrf 37.04 32 0.65(3)
5 DDrf 37.04 32 0.64(3)
6 DD 16.48 20 0.91(1)
8 DD 4.932 90 0.88(2)

Spin Probe τRO (ms) β δ ε τ0 (ms) n
1 2 5.76 0.92(1) 0.52(2) 0.09(2) - -
3 2 14.06 0.90(1) 0.48(2) 0.12(2) - -
4 5 25.00 1.06(2) 0.43(3) 0.11(3) 65(4) 3(1)
7 8 17.86 0.88(1) 0.57(2) 0.04(2) - -
9 8 9.89 0.95(1) 0.57(2) 0.09(1) - -

Table 7.3: Readout parameters for the spins in the 1D chain. Left: Readout parameters for the spins that are
directly read out using electron-nuclear gates. We use either the DD or DDrf sequence 25, with N pulses in a
CPMG-type sequence with pulse spacing τ. Following Ref. 25, the parameter CQ is measured by initialising the
spin in |↑〉 and reading out 〈σz 〉, and subsequent measurements are readout corrected so that 〈σz 〉′ = 〈σz 〉/CQ .
Right: Readout parameters for spins that are read out using the new nuclear-nuclear readout method (Sec.
7.5.5). The spin state is mapped to a probe spin using a SEDOR sequence with interaction time τRO. The last
five columns give the fit parameters for a characterisation measurement using Eq. 7.25, from which we can
estimate 〈σz 〉 of the target spin using Eq. 7.27. Dashed lines indicate spins where no decay was observed on
the timescale of the characterisation measurement, and therefore the exponential function in Eq. 7.25 was set
to 1.

In this work, we employ the recently developed PulsePol sequence which is schema-
tised in Fig. 7.8A 24. For values of the characteristic timescale τ close to τ0 ≡ (3π/8γc Bz )
= 0.434 µs, the effective system Hamiltonian is given by

Heff =
∑

j
∆ω j I z

j −
∑

j
αA⊥

j

(
S+I−j +S−I+j

)
, (7.28)

where ∆ω j ≈ [γc Bz − (A∥
j /2)− (3π/8τ)] and α = (2/

p
12π) ≈ 0.184. I±j and S± are spin-

1/2 ladder operators for the j -th nuclear spin and the electron spin respectively (the
unoccupied ms = +1 level is neglected), and the sum is over all the nuclear spins of the
environment. Importantly, this Hamiltonian differs from that given in Schwartz et al. 24

by the term
∑

j ∆ω j I z
j . This term, arising at first order from the individual hyperfine

couplings A∥
j , introduces z-disorder between nuclear spins which plays a central role in

the polarisation transfer process.
As described in Villazon et al. 48, Hamiltonians which do not exhibit z-disorder host

dark states which prevent complete polarisation of the system, even after an infinite
number of DNP cycles. The origin of this z-disorder in our Hamiltonian (in contrast
to Ref. 24) is due to the different choice of electron effective-spin-1/2 basis states. Using
the ms = 0 and ms = -1 levels (rather than ms =±1/2), the bare system Hamiltonian from
which the effective Hamiltonian is derived is

H =∑
j
γc Bz I z

j −|−1〉〈−1|∑
j

(
A⊥

j I x
j + A∥

j I z
j

)
, (7.29)

where |−1〉〈−1| is the projector on the ms =−1 state of the electron spin.
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EXPERIMENTAL OPTIMISATION AND NUMERICAL SIMULATIONS

The polarisation dynamics under PulsePol are dependent on a number of parameters of
the sequence: the characteristic timescale τ, the number of applications of the Pulse-
Pol primitive between electron resets, N , and the total number of polarisation cycles, R
(see Fig. 7.8A). Based on preliminary simulations of the system, we identified N = 4 as a
suitable working point. In Fig. 7.8B we show the measured polarisation of each nuclear
spin in the 9 spin chain as a function of R, for τ = 0.412 µs. We observe that the system
polarisation continues to increase up to at least R = 5000 iterations of PulsePol, which is
the value used throughout the presented experiments. In Fig. 7.8C we show the depen-
dence of the polarisation on τ. For this choice of R, the maximal mean polarisation for
the 9 spin chain, 〈σz〉 = 0.75(2), is obtained at τ= 0.412 µs, corresponding to an average
single-qubit initialisation fidelity of Finit = 0.88(1) (Fig. 7.1E). This value of τ is detuned
from the centre of the expected resonance: at τ0 ≈ 0.436 µs we find 〈σz〉 = 0.64(2). The
mechanism behind the reduced polarisation rate at the resonant value is not yet well
understood, but may arise due to the simultaneous addressing of a larger number of
spins in the environment, leading to slower polarisation for the targeted spins used in
this work.

To explain the observed polarisation, we compare the results to numerical simula-
tions for the same conditions, using the Hamiltonian of Eq. 7.29, and taking into account
experimental imperfections. In particular, electron π (π/2) rotations are modelled by fi-
nite square pulses with a duration of 30 ns (15 ns). Furthermore, we account for the finite
waiting time of ∼24 µs spent in ms = 0 between the electron reset — which is expected
to occur in ∼500 ns for the 30 nW optical power used here 49 — and the start of the next
PulsePol cycle. We further include the nitrogen spin, which adds Hamiltonian terms:

HN =Q(I z
N )2 +γN Bz I z

N −|−1〉〈−1|⊗
(

A∥
N I z

N + A⊥
N I x

N

)
, (7.30)

where Q/2π=−4.945MHz is the quadrupole splitting, γN is the gyromagnetic ratio of the
nitrogen, A∥

N (A⊥
N ) is the parallel (perpendicular) electron-nuclear hyperfine component

and IαN are the spin-1 matrices for the nitrogen spin.
One challenge is that it is not possible to numerically simulate a large number of

spins using exact diagonalisation. In the course of investigation through simulations, it
became apparent that including particular subsets of the 27 known 13C spins 23 could
lead to vastly different polarisation dynamics. In the present approach, for each spin
shown in Fig. 7.8, we first simulate the result when combined pairwise with each of the
other known spins. We then select the 5 13C spins (alongside the target and the nitrogen
spin) which have the largest impact, as quantified by

ξ j k =
5000∑
R=1

∣∣PP1( j ,τ, N ,R)−PP( j ,k,τ, N ,R)
∣∣, (7.31)

where τ, N and R are the PulsePol parameters, PP1( j ,τ, N ,R) is the polarisation of the j -
th 13C spin after PulsePol without including any other spin in the simulation (red line in
Fig. 7.8B)) and PP( j ,k,τ, N ,R) is the polarisation of the j -th 13C spin when including also
the k-th spin (orange line in Fig. 7.8B). ξ j k is the integral of the absolute area between the
red and orange solid lines in Fig. 7.8B. These sets of spins, shown in Table 7.4, are used
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Spin Env. 1 Env. 2 Env. 3 Env. 4 Env. 5
1 6 12 13 14 11
2 15 11 12 10 6
3 6 12 13 7 11
4 6 12 13 11 10
5 6 12 13 7 11
6 7 12 3 13 11
7 6 13 12 11 10
8 6 10 12 13 11
9 6 12 5 13 11

Spin A∥ (kHz) A⊥ (kHz)
10 213.154(1) 3.0(4)
11 -36.308(1) 26.62(4)
12 20.569(1) 41.51(3)
13 24.399(1) 24.81(4)
14 14.548(3) 10(1)
15 -20.72(1) 12(1)
16 -4.039(5) 0(3)

Table 7.4: Parameters for the simulations used in Fig. 7.8. Left: Five most relevant spins (Env. 1-5) for each
simulated spin according to Eq. 7.31. Simulations which incorporated only one environmental spin use Env.
1. Right: Measured parameters for the Spins 10-16 that were employed in the simulations, taken from Abobeih
et al. 23 (Spin 16 is used in simulations in Sec. 7.5.7). A∥ (A⊥) is the parallel (perpendicular) hyperfine coupling.
The parameters for Spins 1-9 are given in Table 7.1.

for the simulations shown in Fig. 7.8. Typically, spins found to have the largest impact
were those with similar A∥ to the target, and those with generally large A⊥. However, a
more comprehensive study of these effects is needed to realise a general framework.

Despite the inclusion of all of these effects, there remains a discrepancy between the
experimentally measured values and the simulation results. While there is reasonable
qualitative agreement, the absolute achieved polarisation is lower in experiment than
that reached in simulation (which is uniformly close to unity). This does not appear to
be explained by spin diffusion: the inclusion of a depolarising channel between resets,
∆λ(ρ) = λρ+ (1−λ) I

Tr{I} , with λ= exp(−8τN /T1), requires a relaxation timescale of 1-10
ms (dependent upon the investigated spin) to induce any noticeable effect. This is at
least an order of magnitude shorter than the fastest known relaxation timescales within
our system. A second possible cause is the inability to include the full set of known spins
in simulation, along with a wider spin bath. The effects of a large number of additional
spins are not yet well understood.

Importantly, to our knowledge, our experiment is the first in which DNP techniques
have been combined with individual nuclear-spin read-out. Our methods therefore of-
fer new opportunities to study polarisation transfer in complex spin systems, and to im-
prove their efficacy.
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Figure 7.9: Decoherence from the environment. Numerical simulation of UF (Sec. 7.5.2) showing the aver-
aged two-point correlation χ as a function of the number of Floquet cycles N for the first 4 spins of the 1D
chain after initialising in the state |↑↑↑↑〉. Columns are for different rotation angles θ (indicated at the top) with
τ = 5ms in all cases. (A) Result with only the 4 targeted spins included in the simulation. (B) Result with 4
additional spins from the environment included (not part of the spin chain, parameters given in Tables 7.4 and
7.5). These additional spins are initialised in the maximally mixed state. (C) Difference between the two cases.
(D) Purity (= Tr

[
ρ2]

) of the four-spin reduced density matrix after taking the partial trace over the additional
spins.

7.5.7. DECOHERENCE FROM THE ENVIRONMENT

In this work, we isolate a targeted subset of spins, enabling the realisation of an effective
one-dimensional chain in a three-dimensional system. For rotation angles θ ∼π, we can
symmetrise the Floquet sequence to resemble a CPMG sequence in order to simultane-
ously provide the required decoupling, thereby simplifying the experiment. In Fig. 7.9,
we investigate the effect of the spin environment on the dynamics for different rotation
angles. We numerically simulate the Floquet sequence UF (Sec. 7.5.2) up to N = 300
cycles for two cases. First, we include only the first 4 spins of the 1D chain to obtain
the ideal dynamics in a perfect closed system. Second, we additionally include 4 spins
that are not part of the chain, but couple strongly to the 4 targeted spins (see Table 7.5
for the parameters of the additional spins). It can be seen that the difference in average
two-point correlation between the two cases increases as θ moves away from π. For the
value of θ = 0.95π used in the experiments, the difference remains less than 0.1 over all
Floquet cycles simulated. The additional spins can cause shifts in the individual on-site
disorder strengths, which can change the measured signal even if the quantum state of
the targeted spins remains completely pure. To distinguish these effects, in Fig. 7.9 we
also plot the purity (= Tr

[
ρ2

]
) of the four-spin reduced density matrix after tracing over
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the additional spins. For θ = 0.95π, there is a small loss in purity, although this is sup-
pressed compared to larger values of π−θ. In future experiments, the decoupling pulses
and the rotations in the Floquet sequence could be separated so that the rotation angle
for the decoupling is always equal toπ, allowing lower values of θ to be investigated while
ensuring good isolation from the spin bath. This would further improve the coherence
of the effective 1D chain.

10 11 14 16
1 -0.55(2) -1.21(1) -0.23 6.34
2 -1.885(8) 0.7(2) -0.07 -3.15(5)
3 -1.05(8) 0.3 -0.36 -1.1(2)
4 -0.09 0.75(2) -2.35(2) 0.05

Table 7.5: Interactions between the four targeted spins (1, 2, 3, 4) and the four additional spins included in
the simulation (10, 11, 14, 16). Interactions with uncertainties given in parentheses are measured values for
the NV electron state ms = −1, while interactions shown without uncertainties are calculated from the spin
coordinates according to Eq. 7.14. Hyperfine parameters for the additional spins are given in Table 7.4.

7.5.8. INITIAL STATE DEPENDENCE

In Sec. 7.3 we present the evolution of 11 initial bitstrings, of which 9 are randomly cho-
sen, for up to N=300-800 Floquet periods. The long-lived subharmonic response ob-
served for all states is consistent with the many-body-localised DTC phase and provides
a mechanism to distinguish it from a prethermal response. Here, we present numerical
simulations that show clear differences between our system Hamiltonian and a simi-
lar Hamiltonian without disorder 6,19. These differences manifest themselves within the
timescales accessed by our experiments.

We again simulate the Floquet sequence UF (Sec. 7.5.2) for two scenarios, using θ =
0.95π and τ = 5 ms. In the first scenario, we use the measured system parameters, with
the hz

j given by the values of A∥ in Table 7.1, and the J j k given by the values in Table 7.2.

In the second scenario, we consider the absence of both onsite disorder (all hz
j = 0) as well

as the Ising-even disorder terms which can stabilise MBL 5,6,19. That is, we homogenise
the J j k as given in Table 7.6. We set all the nearest-neighbour couplings equal to the
mean magnitude measured across the chain: J0 = 6.67 Hz, with the remainder of the
couplings falling off as a function of distance with an exponent of α= 2.5.

In Figs. 7.10E,F, we show the simulation results for up to N = 108 Floquet periods.
Crucially, in the disorder-free case, we see strong variations between differing initial
states within ∼100-1000 periods. In the presence of disorder, these discrepancies are
suppressed up to ∼ 106 periods. The two scenarios can be distinguished within the ex-
perimentally accessed timescales (N = 300-800 periods, Figs. 7.10C,D). While we do ob-
serve some state-dependence at late times even in the disordered scenario, this is at-
tributed to finite-size effects 3,6. Extending to larger system sizes is expected to stabilise
the DTC phase for all bitstrings at increasingly larger times.
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1 2 3 4 5 6 7 8 9
1 - 6.67 1.18 0.43 0.21 0.12 0.07 0.05 0.04
2 6.67 - 6.67 1.18 0.43 0.21 0.12 0.07 0.05
3 1.18 6.67 - 6.67 1.18 0.43 0.21 0.12 0.07
4 0.43 1.18 6.67 - 6.67 1.18 0.43 0.21 0.12
5 0.21 0.43 1.18 6.67 - 6.67 1.18 0.43 0.21
6 0.12 0.21 0.43 1.18 6.67 - 6.67 1.18 0.43
7 0.07 0.12 0.21 0.43 1.18 6.67 - 6.67 1.18
8 0.05 0.07 0.12 0.21 0.43 1.18 6.67 - 6.67
9 0.04 0.05 0.07 0.12 0.21 0.43 1.18 6.67 -

Table 7.6: Pairwise spin-spin interactions J j k (Hz) for a theoretical homogeneous 9-spin 1D chain, as used for
simulations which are free of disorder.

Figure 7.10: Initial state dependence (A and B) Calculated energy densities E for all possible states of the form⊗L
j

∣∣∣m j

〉
, m j ∈ {↑,↓} (black lines), for the disordered experimental Hamiltonian (Table 7.2, A) and a theoretical

disorder-free Hamiltonian (Table 7.6, B). The initial states measured in Fig. 7.4D are indicated by the corre-
sponding colors. (C and D) Simulated values of the correlation function χ for the 11 initial states used in the
experiments, up to N = 1000 Floquet periods, with (C) and without (D) disorder. The simulated results are mul-
tiplied by the decay function f (N ) = Ae−N /N1/e , with N1/e = 472(17) extracted from a fit to the experimental
data (Fig. 7.4D). Clear behavioural differences can be observed within the experimentally accessed timescales.
(E and F) Simulated values of the correlation function χ up to N = 108 Floquet periods, with (E) and without
(F) disorder.
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8
CONCLUSIONS AND OUTLOOK

In this chapter, I summarise the findings of this thesis. I then discuss open questions from
this research, and near-term improvements which may enable the next generation of ex-
periments. Finally, I provide an outlook towards large-scale quantum information pro-
cessing using spin systems associated with optically-active solid-state defects.
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8.1. SUMMARY

In this thesis, we developed novel techniques that allow for the control and understand-
ing of both electronic and nuclear spin systems associated with single NV centres in di-
amond. Building upon these advances, we implemented protocols related to quantum
networks (Ch. 4), quantum computation (Ch. 5), quantum sensing (Ch. 6), and quantum
simulation (Ch. 7). Here I summarise the conclusions of each chapter:

• In Chapter 3, we used resonant excitation spectroscopy to reveal the fine struc-
ture of the NV0 centre. With time-resolved fluorescence measurements, we char-
acterised its orbital- and spin-dynamics for the first time. We developed novel
heralding schemes, with which we demonstrated high-fidelity initialisation and
single-shot read-out of the NV0 spin-state. This work elucidates a number of key
properties of the NV0 centre, which will play an important role in large-scale NV-
based quantum networks.

• In Chapter 4, we characterised a 13C quantum-network memory in isotopically-
engineered diamond. We demonstrated a two order-of-magnitude improvement
in memory robustness upon the state-of-the-art, and further showed that the
memory can be protected from NV centre ionisation. Finally, we numerically in-
vestigated the performance of such a memory for future quantum-network exper-
iments, and found that key primitives for distributed quantum information pro-
cessing are now within reach.

• In Chapter 5, we developed novel two-qubit gates, and employed them to realise
a fully connected 10-qubit register with coherence times of up to one minute. Fur-
thermore, we showed genuine multipartite entanglement of 7 spin qubits. Our
findings demonstrate that this spin system is a promising platform for quantum
information processing.

• In Chapter 6, we demonstrated atomic-scale magnetic resonance imaging of a
cluster of 27 13C nuclear spins surrounding a single NV centre in diamond. This
experiment provides detailed knowledge of the nuclear spin environment of a sin-
gle electron spin, and serves as a proof-of-principle towards the goal of imaging
single molecules or spin complexes outside the diamond.

• In Chapter 7, we built upon the knowledge obtained in Ch. 6 to develop a quantum
simulator based on 13C spins. We implemented the driven-Ising model in a chain
of 9 spins. Using novel control techniques to initialise and measure this system, we
synthesised and characterised the many-body-localised discrete-time-crystalline
phase. This work gives insights into thermalisation in many-body quantum sys-
tems and establishes nuclear spins in diamond as a powerful quantum simulation
platform.

In the remainder of this chapter, I will discuss both the near-term and longer-term
outlook of this work. While there are many exciting avenues based on optically-active
defects which are likely to develop in the coming years, for the long-term outlook I will
focus on large-scale quantum information processing (QIP) architectures.
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8.2. NEAR-TERM ADVANCES

In this section, I will address three distinct topics arising from this thesis for which near-
term advances now appear feasible. First, I will discuss the challenge of ionisation in
NV-based quantum networks, an issue which must be overcome in order to scale that
approach further. Second, I will review avenues for improving two-qubit gate fidelities,
which are perhaps the most immediate obstacle in developing a quantum information
processing platform based upon nuclear spins in diamond. Finally, I will explore po-
tential quantum simulations with tens of nuclear-spin qubits and a possible pathway
towards a 50-qubit system of 13C spins for this purpose.

8.2.1. OVERCOMING IONISATION IN NV-BASED QUANTUM NETWORKS

In Chs. 3 and 4, we first investigated the properties of the neutrally-charged nitrogen
vacancy centre, and then showed that a sufficiently weakly-coupled 13C could be made
robust to a (deliberate) ionisation and recharging event. Such ionisation events are an
important error-channel that will have to be overcome to realise large-scale quantum
networks based on NV centres. While the results of Ch. 4 show promise, here I discuss
some of the outstanding questions from these works.

First, there is a discrepancy between the measured NV0 spin-T1 time found in Ch.
3 (1.5 s) compared with that inferred in Ch. 4 (0.6 ms). This is likely explained by the
differences between these works, in particular that Ch. 3 used high magnetic field (1850
G) and a much reduced nitrogen impurity concentration (<5 ppb), compared with 50 G
and ∼75 ppb in Ch. 4. However, confirmation of this requires further studies. This has
some challenges: the techniques developed in Ch. 3 utilise spectral isolation of individ-
ual optical transitions, which becomes poor at low magnetic fields. Nevertheless, it may
be that polarisation-addressing alone gives sufficient contrast. Alternatively, the T1 time
can be estimated from Ramsey measurements on sufficiently weakly-coupled nuclear
spins which are not decohered by the ionisation and recharging processes (as in Ch. 4).

The NV0 spin-T1 time has an important consequence, namely that short T1 (A∥ ¿
1/T1) adds a dissipative decoupling effect which extends the nuclear spin coherence
(Ch. 4), whereas long T1 can enable single-shot read-out (Ch. 3), from which the post-
ionisation spin state could be detected, and the acquired nuclear spin phases appro-
priately compensated. Thus, understanding the mechanisms which set this timescale
could allow selection of the desired regime. Alternatively, the effective NV0 spin-T1 time
might be reduced by driving its ground state spin transitions (in both orbitals) to realise
a form of continuous dynamical decoupling 1,2. A first step here is to actually observe
these microwave transitions. Armed with high-fidelity spin initialisation and single-shot
read-out, this appears to be relatively straightforward. However, a technical challenge is
that the short orbital-T1 necessitates fast driving, but current devices are not designed
to operate in the 10-15 GHz frequency band where the transitions are expected to lie.

A more open question is how to ultimately overcome charge-state conversion in a
large-scale quantum network. The more effectively the data qubits can be decoupled
from ionisation processes of the communication qubit, the more freedom given here.
One option is to continuously apply a recharging laser during all optical processes 3,
but this may lead to unwanted spectral diffusion. Adding regular charge-state measure-
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ments and feedback may be less intrusive, but comes at the cost of a time overhead.
In the long-term, a defect hosting a completely stable charge-state would alleviate this
concern.

8.2.2. IMPROVED CONTROL FIDELITIES FOR NUCLEAR-SPIN REGISTERS

In Ch. 5, we developed techniques for quantum information processing using a 10 qubit
register associated with a single NV centre. This work significantly advanced our experi-
mental capabilities, but it is clear that there is still much to improve. Within our platform,
the building-blocks of any quantum circuit — state preparation†, conditional logic and
measurement — rely on electron-nuclear gates. This is a simultaneous hindrance and
benefit: two-qubit gate errors impact all these processes, but improvements in those
gates consequently advance them. In this section, I will discuss pathways for improving
dynamical-decoupling-based two-qubit gates (DD and DDrf). All given metrics are as
measured in natural-abundance (1.1% 13C) devices 4,5.

At present, our two-qubit gates are limited by two main factors. The first is decoher-
ence (of both spin species). For the electron spin, this occurs on a timescale of up to
T N=100

2 ∼30 ms for the O(100) decoupling pulses used for such gates 4. T2 has been seen
to be reduced by high-power RF electronics, due to low-frequency noise which is not
easily filtered when using resonant drives at f ∼400 kHz 5. A carefully designed RF deliv-
ery system (including an AWG with lower 1/f noise) would aid this. Alternatively, higher
magnetic fields would increase the 13C frequencies, facilitating low-frequency filtering.
The residual T2 decoherence is thought to originate from distant 13C pairs 4,6–8. Ideally,
tailored spin environments would remove the spin-bath while maintaining a spin regis-
ter around the defect. Delta-doping may partially achieve this, but methods for precise
3D localisation are currently lacking 9–11.

For the nuclear spins, our gate schemes do not incorporate coherence-protection.
As the duration of a (selective) nuclear spin-echo is comparable to the two-qubit gate
duration itself, echoes cannot be incorporated analogously as for the electron spin. Re-
sultingly, the nuclear spins undergo T ∗

2 dephasing due to ZZ interactions with other 13C
spins. Typical T ∗

2 times are in the region of 3-20 ms 5. These dephasing timescales can
be improved by polarising the local spin environment (Fig. 8.1(a)) 12, and then choosing
weakly-interacting spins for a given algorithm. Further improvement could be achieved
by designing novel gate schemes which do incorporate nuclear spin decoupling 13.

The second limitation for our present gate schemes is crosstalk: unwanted driv-
ing of non-targeted spins. As each controllable nuclear spin is addressed via a unique
precession frequency, selective spectral windows are desired which do not affect other
spins. There is a trade-off between gate speed and coherence time: slower gates can
have higher spectral selectivity, but the constituent qubits experience additional deco-
herence during this time. Of course, even in the absence of decoherence, arbitrarily slow
gates would be impractical. A general strategy to address this challenge is to modify the
control sequences to engineer spectral windows which minimise the time-bandwidth
product and cancel unwanted harmonics. For DD gates, a number of schemes have
been designed towards this goal, and further optimisation is likely 14–16. Moreover, such

†Alternatively, dynamic nuclear polarisation (see Ch. 7) can be used for state initialisation, but its limitations
are not yet well understood, and fidelities are yet to match the gate-based approach.
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Figure 8.1: Extending nuclear spin capabilities: Preliminary data (a) 13C T∗
2 measurements after spin-bath

polarisation. The mean T∗
2 time increases from 10.5(3) ms to 21.2(6) ms after 10000 PulsePol repetitions (τ =

0.412 µs, N = 4, Ch. 7). C19 shows no improvement as it is limited by C9, which does not polarise for these
PulsePol parameters (see below). (b) Initialisation and read-out of a 21 nuclear spin register using PulsePol
and either DD/DDf-based read-out (Ch. 5) or NNRO (Ch. 7). The data is corrected for read-out errors. The
mean single-qubit initialisation fidelity with | ↑〉 is 0.882(6) after 10000 PulsePol repetitions (N = 4, τ=0.412 µs).
C9 does not polarise for these parameters due to its large A∥ = 213 kHz. Carbon indices follow the labelling of

Ch. 6. For further measurement details see the M.Sc. thesis of Asier Galicia 12. Measurements performed by
AG and CEB.

approaches can likely be applied to the DDrf gates developed in Ch. 5. A drawback
of these techniques is that they typically incorporate a larger number of decoupling
pulses and/or sub-nanosecond temporal resolution, imposing additional technical re-
quirements 17.

A complementary approach is to leverage the precise knowledge of the system
Hamiltonian (Ch. 6). Most simply, this means judiciously selecting gate parameters to
minimise crosstalk to other known spins. More sophisticated approaches could use this
Hamiltonian in novel gate designs built upon methods such as optimal control 18–20.

8.2.3. QUANTUM SIMULATIONS WITH TENS OF NUCLEAR SPIN QUBITS

In Chs. 6 and 7, we characterised a system of 27 13C nuclear spins, and then performed
a quantum simulation of a many-body-localised discrete time crystal (MBL DTC) us-
ing a 1D chain of 9 of those spins. Here I will discuss immediate opportunities for this
platform, and avenues to reach ∼50 spins: a regime in which numerical simulations of
quantum dynamics can approach intractability 21–24.

Considering the range of implementable Hamiltonians in this experiment, we may
now be able to investigate a number of open questions. For example, some regimes of
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the driven Ising model have yet to be experimentally accessed, such as the topologically-
protected 0π-Paramagnet phase 25,26. Considering discrete time crystals, MBL is thought
to be the only mechanism which can stabilise a DTC to arbitrary times (Ch. 7). However,
disordered systems in the critical regime† are speculated to exhibit some robustness, due
to slow power-law thermalisation arising from rare resonant spin exchange 27,28. This
regime can be accessed by using the full d = 3 dimensionality of our system. Many
aspects of the critical DTC remain unexplored, with previous experiments being per-
formed on ensembles which were unable to address individual spins 29–31.

A range of further Hamiltonians may be engineered through Floquet engineering
and/or isolating chosen subsets of spins 32–34. For example, we may be able to shed new
light on spin diffusion in disordered dipolar systems and the resulting emergent hydro-
dynamics 35–37. In general, single-spin control allows for complex state preparation and
the measurement of selected multi-qubit operators, which could be used to witness en-
tanglement dynamics 38,39.

I now consider a path to extend the system size. This requires identifying further
spins which are weakly coupled to the NV centre (and hence were not detected in Chs.
5 and 6). Such weak couplings currently preclude high-fidelity control via the electron
spin, but nuclear-nuclear read-out (NNRO, Ch. 7) provides an alternative avenue for
spin detection and read-out. Furthermore, the use of dynamic nuclear polarisation tech-
niques (Ch. 7) allows for wide-scale initialization 12,40–43. As a first step towards this goal,
Fig. 8.1(b) shows the initialisation and read-out of a 21 spin system.

In principle, concatenating multiple rounds of NNRO enables iterative state map-
ping from a distant target using a chain of spins (repeater-like). A challenge is that —
due to their weak coupling to the electron — those distant spins have increasingly de-
generate resonance frequencies. Although the individual nature of spectrally degenerate
spins can be confirmed by their nuclear-nuclear couplings (Ch. 6), degeneracy intro-
duces challenges for selective control. However, with careful optimisation, an increase
in the system size by at least a factor ∼2 appears feasible. This would place the system
in a fascinating regime where numerical simulation of the complete quantum state is
essentially intractable for classical computers 21–24.

8.3. LARGE-SCALE QUANTUM INFORMATION PROCESSING

WITH DEFECT-BASED QUANTUM NETWORKS

In the previous section I described near-term experiments which build upon the results
of this thesis. Here I will consider the longer-term prospects for distributed quantum
information processing (DQIP) using defect-based quantum networks.

In Sec. 8.2.3, I argued that a 50+ spin quantum simulator is feasible using a ‘single
NV-many 13C’ system (Chs. 5, 6, 7). However, it is unlikely that this approach will realise
scalable, error-corrected computation. An inevitable bottleneck is that only the electron
spin can be directly initialised and read-out, meaning that the system read-out dura-
tion increases with size (a major issue for error correction). An alternative approach —
widely studied within the community and discussed within Ch. 4 — is to build a modular

†The critical regime is characterised by interactions that fall off as 1/r d for a system of dimension d 26.
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system (Fig. 8.2(a)), in which each module (or ‘node’) contains one or more communi-
cation qubit (here, the electron spin) alongside a number of data qubits (or ‘quantum
memories’, 13C nuclear spins). All nodes can run on a parallel clock cycle, such that
adding further modules does not increase the cycle time. Spatially-separated nodes can
be interfaced (‘linked’) through photonic entanglement, realising a quantum network
for distributed computation 44–47.

DQIP can be broken down into two key aspects: the processing and storage of quan-
tum states within each module, and the distribution of high-fidelity entanglement be-
tween nodes (‘remote’ entanglement). Alongside spins in diamonds, a number of ex-
perimental platforms have demonstrated key building blocks towards quantum net-
works 48–57. Theoretical work has shown that universal fault-tolerant quantum compu-
tation is possible in such a network using a distributed surface code 44,45.

Quantum networks based on NV centres in diamond are currently among the most
advanced. Recent work has demonstrated deterministic entanglement delivery 3 and
entanglement distillation 58 within a two-node network, and entanglement swapping 59

and teleportation 60 in the first three-node network of its kind. However, further progress
is needed to enable scalable DQIP with this platform. Two key challenges are that the op-
tical interface is inefficient, and the data qubits are either fragile or have slow associated
gate durations 61.

8.3.1. DISTRIBUTING ENTANGLEMENT BETWEEN NETWORK NODES

At present, generating remote entanglement is the slowest process in NV-based quan-
tum networks. As outlined in Ch. 4, this process relies on the emission and subsequent
detection of indistinguishable photons from each node. There are two key inefficien-
cies. First, the NV centre Debye-Waller factor is only 0.03, meaning that the vast major-
ity of emitted photons are emitted incoherently in the phonon-sideband 62,63. Second,
collection efficiencies for solid-immersion lens devices are typically ∼5% 64. Therefore,
the probability that an optical excitation of the NV centre results in the detection of a
coherently emitted photon (‘coherent collection efficiency’, CCE) is only ∼1/1000 3,59,64.
While low success probabilities for remote entanglement do not (directly†) impact the
fidelity of a heralded link, decoherence of data qubits during this slow process is one of
the major error channels in the system. Increasing the remote entangling rates would
thus improve both the speed and performance of NV-based DQIP.

A promising route is to couple the NV centre to an optical cavity. This addresses both
of the aforementioned inefficiencies: Purcell enhancement leads to a higher emission
fraction in the ZPL, and the cavity preferentially emits in a well-defined spatial mode
which can be efficiently collected 66,67. There are challenges, however. Charge noise in-
duces spectral diffusion of near-surface NV centres, obstructing integration in nanopho-
tonic devices 68,69. A widespread effort is focused on mitigating this surface noise 70–72,
but at present, optically coherent NV centres have only been observed in bulk-like ma-
terial 69. Fortunately, Fabry-Pérot micro-cavities can accommodate this, using few-µm-
thick diamond membranes 69,73–75. In a recent breakthrough, this approach has shown
Purcell enhancement of optically coherent NV centres 76, but performance-limiting sys-

†Indirectly, low success probabilities necessitate single-photon protocols to achieve practical entangling rates,
at the cost of intrinsically reduced fidelities 3,65.
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tem vibrations must be overcome. Feasible system improvements are anticipated to in-
crease the CCE to ∼1/10 75,76. Combined with the results of Ch. 4, this would give a
network number Nnetwork ∼1000, an exciting regime for high-fidelity DQIP.

Ultimately, however, nanophotonic cavities may be preferable to micro-cavities.
Their compatibility with photonic integrated circuits provides a compelling route to-
wards chip-scale devices hosting many emitters 77–79. To follow this approach, surface-
effects must be mitigated for NV centres, or alternative defects can be used which are
amenable to such integration. Here, group-IV colour centres in diamond have emerged
as promising candidates 61,80. Alongside good intrinsic optical properties, they show
no first-order sensitivity to electric fields due to inversion-symmetry 81–85. Recent work
has shown strong-coupling to photonic crystal cavities — with coherent cooperativi-
ties ∼100 for the SiV− centre 86,87 — and integration of single defects in 128 waveguides
on a photonic chip (albeit without demonstrating interactions between them) 79. The
strong-coupling regime of cavity quantum electrodynamics offers new prospects using
reflection-based spin-photon entangling schemes 86,88, which led to the demonstration
of memory-enhanced quantum communication using the SiV− centre 87.

To employ group-IV defects for DQIP, the next challenge is to obtain spin properties
matching their exciting optical properties. Compared with the NV centre, the increased
complexity of their ground-state spin structure 61,80,89 imposes complications such as di-
lution refrigerator operation or all-optical control 90–92. Moreover, their spin-1/2 nature
hinders DD-based two-qubit gates 5,86. Thus, in the coming years, novel control tech-
niques and device designs must be investigated. Alternatively, a wide variety of other
defects are being investigated, and perhaps one will be discovered which brings the ‘best
of both worlds’: combining the spin properties of the NV− centre with the optical prop-
erties of the group-IV colour centres 93,94. It should be mentioned that this might not be
in diamond: recent work on defects in silicon carbide 95–97, and rare-earth ions in other
solid-state crystals 98,99 show promise. Silicon carbide is a particularly interesting host
material due to its use in the electronics industry, with well-developed techniques for
wafer production, controlled doping and integrated circuit processing 100.

8.3.2. INTRA-NODE QUANTUM INFORMATION PROCESSING

In Sec 8.2.2, I discussed routes which may enable higher two-qubit gate fidelities within
our platform. Here, I will focus on another major challenge for the network-based ap-
proach: robust data qubits.

While exceptional coherence properties have been demonstrated for nuclear-spin
qubits 1,5,101–103, in a network setting, the stochastic nature of remote entanglement adds
an extra challenge. With ‘always-on’ interactions, uncontrolled dynamics of the commu-
nication qubit induce data qubit dephasing. In Ch. 4, we utilised isotopic engineering to
reduce the NV-13C coupling, such that a 13C data qubit was made more robust to those
stochastic dynamics. However, further improvements to the robustness and operation
speeds are likely possible.

First, the entanglement generation sequence can be optimised to minimise both the
stochasticity and the effect this has on the data qubit. For example, recent work used
high magnetic fields to reduce the duration per entangling attempt (limited by the 13C
Larmor period), decreasing the time for which the 13C was sensitive to stochastic events
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(alongside the absolute time per successful link) 59. Increasing the speed and fidelity of
NV reinitialisation would be similarly beneficial, and may be achieved by tuning of the
excited state energy levels 104–106. Finally, the fidelity of echo pulses can be improved by
optimal control and active MW power stabilisation 18–20,107.

Second, alternate approaches can be taken to achieve reduced couplings between
the communication and data qubits. In Ch. 4, we saw that reducing this coupling to
A∥ ∼80 Hz through isotopic purification allows for ∼105 entangling attempts before de-
coherence of an arbitrary quantum state encoded into the 13C spin. This constitutes a
major improvement on the prior state-of-the-art, paving the way for deterministic non-
local two-qubit operations and parity measurements. There are caveats to isotopic pu-
rification, however. In particular, electron-nuclear gates are slow, as they are limited
by the perpendicular hyperfine coupling, A⊥, which is typically comparable to A∥ (two-
qubit gate duration of ∼25 ms in Ch. 4). While those gate speeds can be tolerated in
smaller demonstrations, they will ultimately limit achievable computation rates.

Ideally, weak-couplings would be combined with fast two-qubit logic. While this
seems somewhat paradoxical in a system with always-on interactions, there are mech-
anisms which allow this. For example, decoherence-protected subspaces (DPS) sup-
press dephasing of an encoded qubit while maintaining the operation speeds of the con-
stituent qubits 108. Thus, few-kHz effective couplings could be achieved even in natural
abundance 13C devices 109. The major challenge here is that each node must yield 3-5
well-controlled DPS for error-correction 44,45. Using current methods for device fabrica-
tion and qubit control, this would be highly probabilistic.

A more radical approach is to use pairs of electron spins (‘coupled defects’) 110,111

(Fig. 8.2(b)). The first electron spin acts as the communication qubit, while the sec-
ond spin — at a distance of ∼10 nm — is a ‘bus qubit’ which hosts a register of nuclear
spins. These data qubits would exhibit O(100) Hz couplings to the optically-active qubit,
but the electron spin couplings are a factor ∼3000 larger (γe/γ13C). Thus, the bus qubit
could mediate fast operations between the communication qubit and the data qubits.
A further benefit is that it could also be used to create a frozen core for the data qubits
during remote entanglement generation 5,112,113.

The major challenges for this approach are the creation of optically coherent coupled
defects, and the independent control of those defects. Independent MW control of a
pair of NV centres might be achieved by either using different defect orientations 110,
or creating large magnetic field gradients 114. However, achieving sufficient isolation of
the optical transitions appears challenging 115,116. Furthermore, current implantation
techniques — the most obvious path for creating coupled defects — do not routinely
create NV centres with good optical properties 117.

An appealing approach is to use different electron spin species for each role. For ex-
ample, a group-IV colour centre acting as a communication qubit, which is magnetically
coupled to an NV bus qubit. The different addressing frequencies for each species would
prevent crosstalk. Importantly, lifetime-limited linewidths have been observed for im-
planted group-IV colour centres 79,86,118, while the optical coherence requirements for
the bus qubit are not as stringent. It may even be possible to use a bus qubit without an
optical interface, such as a P1 centre 119.
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Figure 8.2: DQIP using defect spins. (a) Individual modules host a communication qubit which facilitates
remote (inter-node) entanglement via photons, alongside data qubits to store and process quantum states.
Fault-tolerant quantum computation is possible using a distributed surface code for quantum error correction,
for which the four nodes shown here act as a unit cell 44,45,120. (b) Envisioned quantum network node utilising
coupled-defect spins in photonic crystal cavities. The communication qubit (red electron spin) is coupled to
the cavity, providing an efficient optical interface. A bus qubit (purple electron spin) is magnetically coupled
(purple lines) by at least tens-of-kHz to a register of proximal 13C data qubits (yellow spins), enabling quantum
control. Importantly, the two electron spins are also magnetically coupled by ∼100 kHz (dark red line), such
that the bus qubit can mediate entanglement between the communication qubit and the data qubits. However,
the data qubits have sub-kHz couplings (faded red lines) to the communication qubit, such that they are robust
to stochastic dynamics during remote entanglement generation. As the communication and bus qubits are of
different species (e.g. group-IV and NV−, respectively), they can be independently addressed, and the bus
qubit is also unaffected by the remote entanglement sequence.
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