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SUMMARY

Large areas of the Netherlands are below the sea level, and a network of primary and
secondary (regional) dikes protect these areas from inundation. Regular assessments and
monitoring are implemented with the intention of ensuring the safety of the protected
areas. However these assessments usually ignore that these dikes are subject to various
climatic driving forces. This thesis demonstrates the effect of Soil-Vegetation-Atmosphere
(SVA) interaction via the use of an idealised example regional dike, and then introduces
up-to-date techniques that can lead to automated early warning systems and almost
real-time monitoring of the regional dikes.

The presence of vegetation cover on dikes influences the water balance in the root
zone and consequently the dike body. The stability is then affected by variations of
pore water pressure in soil body. Most geotechnical models simply ignore the effect
of vegetation on the soil surface; however, this research offers an integrated numerical
approach to simulate the dynamic effect of both vegetation and climate driving forces on
the (in)stability of the example dike. The vegetation growth and the real climate data in
the introduced integrated crop-geotechnical model are considered in order to enhance
the safety analysis and close the gap between simulations and reality. As these numerical
simulations are computationally expensive and rely on many input parameters, a data
driven approach is introduced to avoid repeating numerical analysis for a dike. The
approach is shown to be able to estimate the safety factor using easily observable pa-
rameters. Using supervised Machine Learning, showed that measurable parameters that
can observed remotely (including precipitation history, temperature, vegetation indices
and displacement) can be used to estimate the safety condition of dikes in real-time and
short-term prediction. From the investigated parameters, it is found that displacement
has the highest feature importance to estimate safety.

The numerical studies showed that vegetation and stability are responsive to the
climate driving forces, e.g. precipitation, radiation, temperature, wind spped. The interac-
tion between the vegetation, climate and stability is coupled and complex. The vegetation
and the state of the vegetation will affect the water balance, flow patterns, pore water
pressure distribution of the dike and then the factor of safety. The climatic conditions
will impact both the vegetation and dike stability on one hand, and on the other hand
vegetation state will affect the water balance and in turn it is affected by the amount
of water in the root zone. Cracks in the dike, caused by drought conditions, are both
affected by the vegetation and also affect the vegetation growth and hydraulic behaviour.
These cracks, which mostly affect the root zone, alter the water balance by increasing the
evaporation and preferential flow within the dike that leads to higher pore water pressures
in the dike body. This shows the importance of vegetation monitoring over the regional
dikes. Currently, in the Netherlands, dike observers do visual inspections twice per year
for the regional dikes by walking along dikes and undertaking a descriptive report. This
research tries to improve this conventional method of vegetation monitoring by use of
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xii SUMMARY

remote sensing monitoring tools that can observe a larger area and can be significantly
less expensive. Measurable indexes of vegetation can be measured by air-borne (e.g.
drones) or space-borne (e.g. satellites) instruments, instead of classifying the vegetation
condition qualitatively. In addition, it is suggested monitoring displacement regularly
using InSAR method will provide high precision (mm level) data that together with the
vegetation indices aids the estimation of the safety condition.

An integrated approach of real-time monitoring, using easily observable data and data
driven models, can assist dike managers to investigate the effect of climate driving forces
and vegetation on the temporal stability. This will improve the current visual inspection
of regional dikes and provide early warning of dikes which require further attention.



SAMENVATTING

Een groot oppervlak van Nederland ligt onder het zeeniveau en wordt beschermd tegen
overstroming door een netwerk van primaire en regionale dijken. Regelmatige beoordelin-
gen en monitoring worden uitgevoerd met de bedoeling de veiligheid van de beschermde
gebieden te waarborgen. Deze beoordelingen gaan echter meestal voorbij aan het feit dat
deze taluds onderhevig zijn aan verschillende klimatologische factoren. In dit proefschrift
is het effect van bodemvegetatie op een voorbeeld van een regionale dijk uitgewerkt en
zijn er moderne technieken toegelicht voor geautomatiseerde vroege waarschuwingen en
het real-time monitoren van de regionale dijken.

De aanwezigheid van vegetatiebedekking op dijken beïnvloedt de waterbalans in de
wortelzone en de dijkkern. De dijkstabiliteit wordt daarnaast ook beïnvloed door vari-
aties van poriewaterdrukken in de grond. De meeste geotechnische modellen negeren
simpelweg het effect van vegetatie op het dijkoppervlak. In dit onderzoek is echter een
numerieke benadering toegelicht om het dynamische effect van zowel de vegetatie op het
grondoppervlak als de invloed van het klimaat op de dijkstabiliteit van de voorbeelddijk
te analyseren. Het groeien van de vegetatie en de klimaatdata in het geïntroduceerde
geotechnische model zijn beschouwd om de veiligheidsanalyse te verbeteren en het gat
tussen een simulatie en de realiteit te dichten. Doordat deze numerieke simulaties reken-
kundig duur zijn en afhankelijk zijn van veel invoerparameters, is een benadering op basis
van data geïntroduceerd om herhalende numerieke analyses van een dijk te vermijden.
De geïntroduceerde rekenbenadering blijkt gemakkelijk de veiligheidsfactoren van dijken
op basis van makkelijk observeerbare parameters te kunnen bepalen. Uit het gebruik
van Machine Learning blijkt dat de meetparameters die op afstand afgelezen kunnen
worden (waaronder neerslaghistorie, temperatuur, vegetatie indexen en de verplaatsing)
gebruikt kunnen worden om de veiligheidssituatie van dijken in zowel real-time als op
korte termijn te bepalen. Uit de onderzochte parameters blijkt dat de verplaatsing de
hoogte invloed/prioriteit heeft om de veiligheid te bepalen.

Het numerieke onderzoek laat zien dat de vegetatie en stabiliteit verantwoordelijk zijn
voor de klimaat gestuurde krachten, zoals: neerslag, temperatuur en straling. De interactie
tussen de vegetatie, het klimaat en de stabiliteit is complex en aan elkaar gekoppeld. De
vegetatie en de staat hiervan zullen invloed hebben op de hydraulische prestatie van de
dijk en de veiligheidsfactor hiervan. De klimaatcondities zullen aan de ene kant invloed
hebben op de vegetatie én de dijkstabiliteit en aan de andere kant zal de vegetatiestaat
invloed hebben op de waterbalans. Dit is echter afhankelijk van de hoeveelheid water
in de wortelzone. Scheuren in de dijken door droge periodes zijn ook beïnvloed door
de vegetatie en de droogte heeft zelf ook invloed op de groei van de vegetatie en het
hydraulische gedrag. Deze scheuren, die vooral de wortelzone aantasten, veranderen
de waterhuishouding door de verdamping en preferentiële stroming binnen de dijk te
vergroten, wat leidt tot hogere poriewaterdrukken in het dijklichaam. Dit laat zien hoe
belangrijk vegetatiemonitoring is bij regionale dijken. Op dit moment worden de regionale
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twee keer per jaar visueel geïnspecteerd door de dijkbeheerders door eroverheen te lopen
en te rapporteren wat opvalt. Dit onderzoek probeert om dit proces te verbeteren door
de monitoring van vegetatie op basis van meetgereedschappen op afstand te gebruiken
die een groter oppervlak waarnemen en tegelijkertijd aanzienlijk goedkoper zijn om uit
te voeren. Meetbare indexen van de vegetatie kunnen worden gemeten door lucht- of
ruimteapparatuur zoals drones en/of satellieten in plaats van het kwalitatief classificeren
van de staat van de vegetatie. Daar aan toegevoegd wordt aanbevolen om de verplaatsing
regelmatig te monitoren aan de hand van de InSAR-methode. De methode levert accurate
data (tot op de mm) die samen met de vegetatie-indexen de veiligheidsverwachting
kunnen bepalen.

Het real-time monitoren aan de hand van gemakkelijk observeerbare data en data
gestuurde modellen kan de dijkbeheerder assisteren om het effect van het klimaat en de
vegetatie op de dijkstabiliteit te onderzoeken. Dit verbetert de huidige visuele dijkinspec-
tie van de regionale dijken en dit zorgt voor vroege waarschuwingen bij dijken die meer
aandacht nodig hebben.
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2 1. INTRODUCTION

1.1. BACKGROUND AND MOTIVATION

D IKES are predominantly earth structures, which create a noticeable part of existing
flood defence systems and their primary objective is to provide protection against

flood events (CIRIA, 2013). Failures of dikes often lead to significant losses. Natural or
human-induced driving mechanisms can cause dike failures due to either hydraulic or
geotechnical problems. Failure of dikes is often a time-dependent process that can initiate
from the deterioration or damage of dike components which ultimately results in a failure
mechanism forming (Cundill, 2016). A dike failure can be classified as either hydraulic
failure or structural failure. The former occurs when water reaches into the dike system,
e.g. by overflow or over-topping, while a structural failure occurs causing a breach in a dike
system. The two kinds of failure can induce each other (CIRIA, 2013). In Table 1.1, some
of the common failure mechanisms are shown including typical performance parameters
which impact that mechanism and visual indicators that the mechanism is occurring
or at risk of occurring. Dike inspectors use these visual indicators to detect vulnerable
sections of dike and to assess the condition of the slope. Overflow or over-topping occurs
when water enters the area protected by the dike, which may cause a change in the crest
height and cover quality over a dike. Rotational or horizontal sliding results from the poor
performance of the geometry, for instance cracking and slope movements are indicators
of shallow or deep soil movements. Internal erosion may be caused by piping or seepage
within the dike body, when fine soils are washed out and presence of altered vegetation
on the dike can be a sign of areas prone to failure.

The soil surface is the most dynamic part of a dike due to the interaction it has with
both weather conditions and vegetation in vegetation covered dikes. Vegetation interacts
with the atmosphere and the soil, and also reacts to those conditions. For example, the
current state of the vegetation determines how much water can evaporate from a dike
surface; however, the amount of precipitation and water in the soil strongly influences
the rate of growth of the vegetation. So-called Soil-Vegetation-Atmosphere (SVA) inter-
action on a dike surface, leads to water balance variation within the top soil through
evapotranspiration and infiltration, and further impacts the conditions of the whole dike
(Vardon, 2015; Pedone et al., 2016; Tsiampousi et al., 2016). SVA interaction is mobilised
by heat and water transfer between the soil surface and the atmosphere in the vicinity
of the soil surface. Some of the involved mechanisms in these heat and water transfer
processes are: radiation, conduction and advection of heat and infiltration, evaporation
or evapotranspiration and root-water-uptake (Hemmati et al., 2012). SVA interaction
refers to the process in which atmospheric conditions influence both the vegetation and
soil states. Water content variations within the root zone influence vegetation growth
and soil subsidence through shrinkage/swelling behaviour of the soil. This can directly
threaten dike structures by reducing lateral support, making the systems more vulnerable
to instabilities. In addition, a water deficit on the surface layer of dikes is a key cause of
crack development, which allow water infiltration during subsequent rainfall and can
lead to the development of a failure mechanism. The soil surface and vegetation are
the lower boundary of the atmosphere, and they are therefore actively affected by the
climate system. In particular, changes in albedo and precipitation (atmospheric parame-
ters) generate important changes in the soil and vegetation. Vegetation has impacts on
soil-atmosphere water fluxes regulating evapotranspiration.
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Evaporation from bare soil occurs from the top surface, whereas plant roots can
transport water from deeper in the soil and therefore can affect the water flux between
soil and atmosphere. It is therefore logical that the water availability for the vegetation
increases with root length. It was been observed, that larger plants have generally longer
roots, and they grow more as they can reach more water (Baudena et al., 2013). The
root zone thickness ranges from centimetres to several decimetres, depending on the
characteristics of the vegetation (TAW (Technical Advisory Committee for Flood Defence),
1996). The tensile strength of vegetation roots also influences slope stability. This is
affected by root type, geometry and spatial variation of the roots, which reinforce soil
in the root zone (Greenwood et al., 2007). Root length and density impact on the soil
shear strength of the root zone (Osman & Barakbah, 2006). For instance, grasses with their
dense network of shallow roots protects dikes from surface erosion (Stokes et al., 2008).

The characterisation of SVA can enable a better understanding of the safety of dikes
(Brooks et al., 1995). Prediction or early detection of the occurrence of low levels of safety
can assist dike managers in prioritising their inspection and upgrade/repair efforts. Items
checked during a dike inspection include cracking, seepage, settlements, saturation and
vegetation state. The investigation of vegetation patterns and utilising stressed grass
as indicators of subsurface condition of the levee are methods which have been used
successfully in Mississippi (Hasan et al., 2013). Vahedifard et al. (2017) investigated the
influence of rainfall on the shallow instability of several earthen levees (dikes). The results
showed that 9 out of 23 shallow failures happened in the peak rainfall month, 7 shallow
slides occurred one month after the peak rainfall month, and the remaining six slides
occurred two months after the peak rainfall month. Increased rainfall intensity can
surge the pore water pressure in soil causing significant reductions in the soil suction
and soil strength (e.g. Wang et al., 2018). On the other hand, drought conditions may
lead to instability in dikes by weakening processes such as soil-strength reduction, soil
desiccation cracking, soil subsidence and surface erosion, and microbial oxidation of
organic soil (e.g. peat) (Robinson & Vahedifard, 2016). For example, the Wilnis dike in the
Netherlands failed in summer 2003 due to dry condition that year, the warmest and driest
summer in the 50 years up to that time, which caused the translation of about 60 m of
dike almost 10 m (van Baars, 2005).
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1.2. RESEARCH OBJECTIVES
More than 50% of the Netherlands is below the river or sea level. To prevent these areas
from flooding, dikes are built along river banks and the coast. Inland waterways are
protected from flooding the land by so-called secondary dikes, of which in the Netherlands
there are about 14 000 km. Though dike failures are seldom, their consequences can be
substantial. For example, the peat dike in Wilnis failed in August 2003 when a weight
reduction of the dike, due to drought, led to a horizontal shear failure. Around 300 houses
were flooded as a result, and material damages amounted to around €10 million (Cundill,
2016). In the Netherlands, inspection and maintenance are essential for maintaining
stringent flood protection standards and to ensure that flood defences meet their safety
standards. Stability analysis of the dikes and regular monitoring are parts of the dikes
authorities’ regime to ensure safety. However, presently SVA interaction is not included in
stability analysis and the vegetation state is only qualitatively assessed. Regarding these
aspects, four research questions are defined and addressed in this thesis:

• Research question 1: How does the climate and vegetation condition affect the
temporal (in)stability of a regional dike?
The soil surface is the interface that is influenced by external actions; in other
words, the top surface of the soil receives the impact of weather conditions; char-
acteristics of the soil surface often control functions deeper in the soil. Although
clay itself is regarded as an appropriate material for the dike cover, it is usually
reinforced by a grass cover. The grass roots play an important role in keeping the
particles and small aggregates in the soil together. In the Netherlands, a top layer
consisting of clay with a grass cover is a simple and in many situations effective
construction, especially for river dikes (TAW (Technical Advisory Committee for
Flood Defence), 1996). The vegetation reflects various characteristics of the soil on
which it grows, e.g. the stressed vegetation is a sign of lack of water in the root zone,
or growth of spontaneous vegetation can be a sign of outflow over a dike (CIRIA,
2013). Commonly-used geotechnical models (e.g. Plaxis BV, 2018) do not simulate
the dynamic effects of vegetation on water fluxes (evaporation and influx) and there-
fore do not consider the influence that vegetation may have on soil-atmosphere
interactions and slope stability. Crop models, however, have been used to simulate
the interaction of vegetation and the upper soil layers (e.g. LINGRA (Bouman et al.,
1996)). In order to consider the dynamic effect of weather and vegetation condition,
a crop model is integrated with a geotechnical model and numerical analysis for an
example dike implemented to study the temporal dike stability.

• Research question 2: What is the effect of soil shrinkage behaviour on the tem-
poral (in)stability of a dike?
Soil shrinkage due to extreme dry conditions may result in the occurrence of shrink-
age cracks, which can provide favorable conditions for rain infiltration and reduce
the strength of the dike, and consequently cause failure. Most of the current hydro-
mechanical models for slope stability analysis are based on a continuum modeling
approach, as explicitly simulating the cracking process and preferential flow is diffi-
cult at a structure scale. To address this question, the integrated crop-geotechnical
model is adopted to tackle this limitation and by considering shrinkage behaviour
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in the safety calculation that allows temporal analysis to calculate the impact of
vegetation and climatic driving forces on the crack development and its effect on
stability.

• Research question 3: Can data-driven models emulate the expensive numerical
simulations to estimate real-time or short-term prediction of (in)stability?
Safety analysis of slopes can be computationally expensive, especially when consid-
ering transient behaviour, which makes real-time simulations almost impossible,
especially for large-scale areas. To emulate this time consuming numerical simula-
tion, it is investigated whether data driven models can provide a quick estimation
of the slope condition and hence speed up the assessment process. The approach
aims to provide a method to estimate the safety factor by only using observable
data.

• Research question 4: How can Earth observation be deployed as a monitoring
tool for the assessment of dikes?
Dike inspections usually involve visual examination of the dike, usually by walk-
ing along the dike. Various components of the dike are observed and details are
recorded focusing on indicators of weakness and damage. For instance, in the
Netherlands dike observers use Fig. 1.1 to assess cover quality of dikes. Accord-
ing to this guide, the cover quality is described in four classes: good, reasonable,
mediocre and bad. The description of each category can be found in Fig. 1.1. This
description is qualitative and not specific; however, by using more quantitative
measures (i.e. Vegetation Indices (VIs)) this description can be improved or aug-
mented. Additionally, VIs could be monitored remotely for dikes. The ability of
remote sensing to aid dike inspection is investigated, based on what can be ob-
served, the coverage and accuracy of available observations and the ability of these
observations to indicate weakness. The investigation introduces remote sensing as
a tool that could increase efficiency, coverage and objectivity of dike inspections.
Dike related remote sensing inspection indicators include measurable parameters
such as VIs, soil moisture and displacement.

1.3. THE RELIABLE DYKES PROJECT
This research is performed as a part of the Reliable Dykes project (Project No. 13864)
funded by the Netherlands Organisation for Scientific Research (NWO) domain Applied
and Engineering Sciences (TTW). The Reliable Dykes project aims to improve the un-
derstanding of analysing and quantifying the influence of uncertainties in the regional
dikes assessment in the Netherlands. This project is structured within 4 PhD projects
and 1 post-doctoral researcher; the first PhD project (de Gast, 2020), investigated how
to measure heterogeneity within and under dikes, undertook a large scale dike failure
experiment, and combined these two aspects to simulate the failure using the Random
Finite Element Method (RFEM). The second PhD project (Muraro, 2019) focused on the
behaviour of peat, a type of soil that can often be found in the regional dikes. The PhD
resulted in recommendations on how to carry out and interpret laboratory testing on
peat and on the selection of material parameters. The third PhD thesis (Varkey, 2020)
considered several improvements to the analysis of spatially variable dikes, including
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Figure 1.1: Grass cover quality in the Netherlands is assessed based on this table (Digigids (2019) translated
by Google Translate). Digigids (2019) aids inspectors by providing a database of reference figures to assess the
visually observed the cover quality based on them.

improving an analytical method and the use of deterministic methods and investigating
the 3D geometry variation of a dike. The fourth PhD project has resulted in this thesis.
The post-doctoral researcher (van den Eijnden & Hicks, 2017) developed several assess-
ments tools and developed the connection between these tools and industry for real
applications.

1.4. OVERVIEW OF THE THESIS

The overview of thesis outline is illustrated in Fig. 1.2. The thesis is introduced and
concluded at the beginning and end, respectively in Chapter 1 (Introduction) and Chap-
ter 6 (Conclusion and discussion), shown by green boxes. In the other four chapters,
the research questions are addressed. Chapters 2 and 3 utilise numerical simulation to
investigate the impact of SVA interaction on the dike stability and the impact of evap-
oration induced cracking, respectively – indicated by a blue box – in Fig. 1.2. The first
research question is treated in Chapter 2, which is based on a journal article published
in Environmental Geotechnics (Jamalinia et al., 2019). Chapter 3 focuses on a shrinkage
behaviour of a soil and drought conditions for an example dike. The adopted integrated
crop-geotechnical model simulates the temporal (daily) dike stability for 10 years; this
chapter is built based on an article published in Computers and Geotechnics (Jamalinia
et al., 2020). Chapters 4 and 5 investigate the potential of monitoring tools to enhance
stability assessments (shown by pink box in Fig. 1.2). In Chapter 4, the results of Chapter
3 are utilised to investigate the third research question; part of this chapter is written
based on a journal article published in Water (Jamalinia et al., 2021). In Chapter 5, the
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Chapter 1:
Introduction

Numerical Simulation

Chapter 2:
Soil-Vegetation-Atmosphere
Interaction in regional dikes

Chapter 3:
The impact of evaporation in-

duced cracks and precipitation
on temporal slope stability

Monitoring Tools

Chapter 4:
A data-driven surrogate approach
for the temporal stability forecast-

ing of vegetation covered dikes

Chapter 5:
Potential value of remote

sensing for dike inspection

Chapter 6:
Conclusion and discussion

Figure 1.2: Schematic outline of the thesis.

outcome of the previous chapters is utilised to introduce the possibility of using Remote
Sensing for dike monitoring to facilitate frequent monitoring over larger areas. Chapter 6
concludes the thesis by summarising the main contributions of this research, suggesting
possible future research and also providing recommendations.
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2
SOIL-VEGETATION-ATMOSPHERE

INTERACTION IN REGIONAL DIKES

The stability of a dike is influenced strongly by its water content, via changes in effective
stress and weight. While flow through porous media is relatively well understood, water
flux in and out of a dike through a vegetated surface is not as well understood. This
chapter presents a numerical study of the Soil-Vegetation-Atmosphere (SVA) interaction
and discusses how it influences the stability of dikes covered with grass. A crop model is
used to simulate vegetation growth, and infiltration in response to meteorological forcing.
The PLAXIS Finite Element Method (FEM) model is used to simulate the impact of this
infiltration on hydro-mechanical behavior and dike stability. Results from a four-year
analysis indicate a strong correlation between root zone water content (W Cr z ) and Factor
of Safety (FoS), although not a unique relationship; other parameters also have impacts on
FoS. For instance, Leaf Area Index (L AI ) was also found to have a strong, lagged correlation
with the water flux into the dike; therefore, it has an indirect influence on safety. This
suggests that monitoring LAI could be a useful tool to identify vulnerable locations along
dikes. It is therefore proposed that vegetation and root zone water content could be used as
an indication to detect vulnerable dikes in early stage.

This chapter is based on Jamalinia et al. (2019).
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2.1. INTRODUCTION

D IKES in the Netherlands are typically covered by clay and reinforced by grass. This
provides an effective covering to the construction, protecting from soil erosion, es-

pecially for river dikes (TAW (Technical Advisory Committee for Flood Defence), 1996).
Vegetation growth and health are influenced by the ground: soil texture, nutrient avail-
ability, hydraulic properties and moisture availability. They also depend on climatic
conditions: precipitation, radiation and temperature. A recent study from Vardon (2015)
identified the major climatic variations expected to influence geotechnical infrastructure:
increasing temperature (leading to soil drying), increasing average rainfall (leading to
lower soil suction), increasing drought events (causing drying and soil desiccation) and
increasing intense precipitation (leading to soil erosion, flooding and hydro-mechanical
failure).

Dike inspectors conduct visual inspections of the dike surface, including vegetation,
in order to identify deterioration or damage. Recent studies have highlighted the value
of using the vegetation condition as an indicator of subsurface conditions. For instance,
Hasan et al. (2013) concluded that grass growing over areas with cracks and fractures was
stressed due to a lack of moisture compared to grass over other areas, during winter and
early spring.

According to the Dutch guidelines (Digigids, 2019), vegetation is one of the factors
that dike inspectors should evaluate in their observation, by which the vegetation quality
for each location is assessed and classified as good, medium, poor or bad (Cundill, 2016).
However, these definitions are neither well defined nor specific. Using vegetation indices
would provide a more objective and quantitative indicator. Furthermore, using Earth
observation data, i.e. remote sensing, to map vegetation indices facilitates large-scale
monitoring and can be used to identify areas of interest for further investigation.

Few studies have investigated the impact of vegetation on the water fluxes into dikes
and its consequential effect on stability, for example, Hemmati et al. (2012), Tsiampousi
et al. (2016), Rahardjo et al. (2013) and Elia et al. (2017). This study aims to bridge this
gap by investigating the effect of vegetation in dike analysis assuming a typical regional
dike covered with grass. Here it is hypothesised that vegetation and the surface layer of
the soil act as a hydraulic buffer to the rest of the dike. Furthermore, vegetation responds
to water content variations in the root zone leading to the possibility of using it as a dike
health indicator. In the current chapter, a crop growth model is coupled to a geotechnical
model to enable the investigation of Soil-Vegetation-Atmosphere (SVA) interaction due to
the climatic conditions. The changes in the stability of a conceptional dike, based on the
geometry and materials of a regional dike in the Netherlands, is investigated. In this initial
study, cracking and desiccation of soil is not included, but proposed approach offers the
opportunity to do so in a further study.

2.2. METHOD
The system of interest is an idealised regional dike. The cross-section is illustrated in Fig.
2.1. The dike is 2 m high and 41 m wide and the water levels on the left and right sides
are 3 m and 2 m respectively. The dike’s surface is vegetated, with a permanent root zone
depth (ROOT DM) of 40 cm extended over the surface layer (red area in Fig. 2.1).
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Figure 2.1: Geometry representing boundary, root zone layers with the 40 cm depth, canal water levels, and
points in which following results are plotted.
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Figure 2.2: Flow chart for numerical solution procedure.

The modelling strategy is as follows: (i) A 1D crop model is used to simulate the
infiltration of water into and out of the root zone. This model uses weather data as input,
calculates the evaporation, transpiration, water interception by the vegetation, drainage
from the root zone layer and vegetation growth. (ii) A 1D geotechnical model is used to
simulate the hydraulic behaviour of the root zone, where only the calculated water in step
(i) entering the root zone is applied as a top boundary condition. The hydraulic material
properties of the root zone are optimised so that the drainage from the bottom of the
root zone matches in both models. (iii) A 2D geotechnical model is used to simulate the
hydro-mechanical behaviour in time, including both the displacement and the Factor of
Safety (FoS). An overview of this process is given in the flowchart in Fig. 2.2.

There are then three boundaries of interest in Fig. 2.1: (1) the soil surface; (2) the
bottom of the root zone (top of the dike body) which represent the coupling interface
between the crop model and the geotechnical model; and (3) the base boundary of the
dike that is assumed to be impermeable (due to underlying clay layers, a reasonable
alternative could be a fixed pore pressure where groundwater pressures are constant or
known and the underlying soil is permeable). Results are plotted at points A and B during
the analyses, which are representative locations in the root zone and the dike body. The
phreatic surface is calculated in the geotechnical model. The vadose zone is of limited
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thickness and consists mainly of the root zone.

2.2.1. CROP MODEL
The LINGRA (LINTUL GRAssland) (Schapendonk et al., 1998) model is used for simu-
lating the processes governing infiltration from the surface layer in response to climatic
conditions and the consequential vegetation growth. LINGRA was designed for applica-
tions such as yield forecasting, quantitative land use evaluation, and investigating the
effects of climate change on grass yields (Schapendonk et al., 1998). This model is based
on the LINTUL (Light INTerception and Utilization simulator) concept (Spitters, 1987),
which was designed to simulate crop growth under atmospheric conditions. LINGRA
is specifically for grass growth, and the model can account for growth in water-limited
condition which is the case for the grass on dikes. The main components of interest are
the water balance and leaf growth. A more complete description of the model is provided
by Shibu et al. (2010) and Bouman et al. (1996) and is summarised below.

2.2.2. WATER BALANCE EQUATION
LINGRA solves a 1D mass balance equation in the root zone using a tipping bucket
approach (Bouman et al., 1996). The soil water balance is calculated for the root zone
layer (Fig. 3.3), whose thickness is defined by the length of the root and has a predefined
water storage capacity (Shibu et al., 2010).
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Figure 2.3: Root zone water balance in LINGRA.

The daily changes in the amount of water stored in the root zone, ∆W A, is calculated
from the "effective precipitation" (precipitation (P ) minus interception (In)), minus bare
soil evaporation (E ) and transpiration (T ) (collectively referred to as evapo-transpiration,
ET ), minus drainage (DL) and run-off (Rn):

∆W A = P − In −ET −DL −Rn (2.1)

All quantities are in m d ay−1. The interception and evapo-transpiration are dependent on
the amount of vegetation, quantified as the Leaf Area Index (L AI , m2lea f m−2g r ound).
When the amount of water in the root zone reaches the field capacity, the excess water
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drains from the lower boundary of the root zone. This drainage flux (DL) is limited by the
maximum drainage rate (DR AT E) of the subsoil. Additional water leaves as run off (Rn).
In this crop model upward water flow (capillary rise) is disregarded and lateral influx or
outflux of water is not considered (Bouman et al., 1996). However, in the geotechnical
model these fluxes are included. This means that the impact of the water distribution
on safety is included, but the lateral distribution of vegetation cover is not. The impact
of the capillary rise not being considered in the crop model is considered to be minor
as permeability strongly reduces due to desaturation when capillary rise would occur.
Lateral flow being included in the geotechnical will create variations around the average
considered in a 1D model and allow the impact on safety to be included. An optimisation
routine (see below) ensures that there is mass balance between the two models. Both of
these impacts should be investigated further to quantify the impact.

2.2.3. LEAF GROWTH EQUATION
Leaf growth is calculated from the amount of assimilates (sugars and amino acids) avail-
able for growth due to photosynthesis (Bouman et al., 1996). Leaf death rate by senescence
is calculated by means of a relative death rate, which is computed from the leaf area index
and the ratio of the actual transpiration over the potential transpiration. A high leaf area
index (LAI) leads to internal shading of the lower leaves which results in leaf senescence.
Leaf area development is also affected by grassland management, e.g. mowing. In LIN-
GRA, two standard management options are implemented (to be selected by the user):
periodic mowing and mowing at a constant biomass level (Bouman et al., 1996).

L AI influences the water balance equation via both transpiration and interception.
Water demand for transpiration varies throughout the calendar year; peaking during
summer, when L AI increases, and reducing during winter, when it decreases. Vegetation
growth rate, here defined by leaves growth, calculates as Eq. 2.2:

∆L AI = SL A× f (l v)×∆W −∆L AId (2.2)

where ∆L AI is Leaf Area Index increase, SL A is Specific Leaf Area (m2g−1), f (l v) is the
fraction of dry vegetation matter to leaves (-), ∆W is the growth rate of crop dry (solid)
matter (g m−2 d ay−1), ∆L AId is death rate of leaf area (m2 lea f m−2g r ound d ay−1).

2.2.4. GEOTECHNICAL MODEL
The commercial finite element code, Plaxis 2D (Plaxis BV, 2018), was used in this study.
This geotechnical model is discretised with 15-noded plane-strain triangular elements.
The workflow is controlled via the Plaxis Python interface.

2.2.5. HYDRO-MECHANICAL ANALYSIS
A fully coupled flow-deformation analysis is used to simultaneously simulate pore water
pressure (pwp) and displacements of the dike under transient (saturated and unsatu-
rated) flow conditions. The formulation is based on Biot’s theory (Biot, 1941), ensuring
equilibrium and continuity of the soil-water mixture is satisfied. Stress equilibrium and
the Richard’s equation (Richards, 1931) are used to govern the mechanical and hydraulic
behaviour, respectively, with an extended effective stress used in the mechanical equation.
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The Richards’ equation can be used to describe unsaturated flow in a porous medium
and utilises an unsaturated form of Darcy’s law to calculate the fluid flux as:

q = kr el

ρw g
ksat (∇pw p +ρw g ) (2.3)

where q is the vector of specific discharge; ksat is the saturated hydraulic conductivity

matrix; ρw is water density; ∇pw p is gradient of the pore water pressure that causes the
water to flow; g is vector of gravitational acceleration; and kr el is relative permeability,
defined as the ratio of the hydraulic conductivity at a given saturation to ksat (Galavi, 2010).

The Mohr-Coulomb constitutive model is used to govern the mechanical behaviour and
the van Genuchten-Mualem model (van Genuchten, 1980) is used to govern the suctions
developed from the changes in water content. The van Genuchten-Mualem model is
defined as:

θ = θr + (θsat −θr )[1+|αh|n]−m (2.4)

where θ is water content at a given suction h; θr is residual water content; θsat is water
content at saturated conditions; n and m are soil water retention curve (SWRC) fitting
parameters; and α is a parameter related to the air entry value.

2.2.6. SAFETY ANALYSIS

To obtain the Factor of Safety (FoS) variation with time, a safety analysis was performed
at various (user defined) time steps after the coupled analysis. The strength reduction
technique was employed to calculate the FoS against macro-instability, where the shear
strength parameters tanφ and c of the soil are successively reduced until structure failure
occurs (Plaxis BV, 2018); the ratio of the parameters at failure to the defined parameters
gives the FoS:

FoS = tanφi nput

max(tanφr educed )
= ci nput

max(cr educed )
(2.5)

where φi nput and φr educed (ci nput and cr educed ) are input and reduced friction angle
(cohesion), respectively. Bishop’s stress is utilised, where suction is included into effective
stress, and therefore suction increases shear strength. A single FoS is calculated for
the entire dike. Other failure mechanisms, such as piping or uplift, are not included in
this assessment, nor is the possibility of cracking of the dike surface and consequential
changes in strength and permeability.

2.2.7. COUPLING CROP AND GEOTECHNICAL MODELS

The coupling between the crop model and the geotechnical model is illustrated in Fig. 2.2.
The geotechnical model does not include effect of vegetation, so the crop model is used
to simulate the growth and decay of vegetation in response to meteorological forcing, and
the available water amount in the root zone. The flux (Qnet ) that is applied to the surface
boundary in the geotechnical model is defined as:

Qnet = P − In −ET (2.6)
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and a zero pore pressure boundary condition is applied on the base, to (a) be consistent
with the crop model which is free draining from the base and (b) with the recognition that
the phreatic surface will be close to the base of the root zone in this application.

To ensure that the root zone moisture dynamics are consistent between the two
models, the hydraulic parameters in the root zone of the geotechnical model are optimised
to ensure that the drainage from the root zone in the crop model (DL) is equal to that from
1D geotechnical model (Dp ). At each time step, the hydraulic parameters are optimised
to minimise the Root Mean Square Difference (RMSD) between (DL) and (Dp ) - this is
done automatically using a Python script.

F (ksat ,α,n,m) = min(RMSD(DL ,DP )) (2.7)

A 2D hydro-mechanical model is then used to calculate pore water pressure (pwp)
and displacement over time. Finally the safety calculation is done as described in the
previous section to produce the FoS against macro-instability as a function of time.

2.2.8. CASE STUDY
Two experiments were performed. In the first, four years of climatic data were used to
obtain the FoS time series from 2009 to 2012 to understand the influence of meteorological
conditions on the dike safety. Second, to understand the effect of vegetation alone,
additional analyses of a single year was simulated for different (fixed) values of L AI .

2.2.9. GEOMETRY
The dike geometry used is representative of a regional dike in Amsterdam, the Netherlands,
studied in the Veenderij project (de Vries, 2012) and is shown in Fig. 2.1. The vegetation is
employed in this study is grass cover with a permanent root depth of 40 cm, equals to the
maximum root depth for the considered vegetation (Table 2.1).

2.2.10. METEOROLOGICAL DATA
Meteorological data, such as precipitation, solar radiation, average air temperature, wind
speed and vapour pressure taken in the early morning at Schiphol Airport (Amsterdam)
station (52◦ 19′ 04◦ 47′ OL) has been obtained from the The Royal Netherlands Meteoro-
logical Institute (KNMI) for 2009 to 2012 (Fig. 2.4). These data are used as inputs for the
crop model.

2.2.11. ROOT ZONE: CROP MODEL
The key parameters required by the crop model for both soil and vegetation are listed in
Table 2.1. The values are typical for Dutch soil conditions and typical grass cover, based
on reported values by Bouman et al. (1996). The listed parameters are divided into two
groups, soil and vegetation parameters. In soil parameters, water content at field capacity
(θ f c ) is the maximum water storage capacity of the root zone, which is defined as the
volumetric water content at a soil moisture suction of 10 kPa or pF 2.0. The water content
at field capacity is therefore lower than water content at saturation (van Laar et al., 1997).
The water content at the wilting point (θw p ) is the limit of water content, below which
plant water uptake ceases and plants start to wilt. Below the critical water content (θcr ),
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Figure 2.4: Daily values of inputs for the crop model from 2009 to 2012 (a) Precipitation; (b) Radiation; (c)
Average temperature; (d) Mean wind speed; (e) Vapour pressure in the early morning.



2.3. RESULTS AND DISCUSSION

2

21

transpiration is reduced by water stress. Drainage is limited by the maximum drainage
rate (DR AT E ) of the subsoil. Perennial ryegrass is considered as the vegetation cover and
has the majority (85%) of its root system in the shallow soil layer of 0-40 cm below soil
surface (Bouman et al., 1996), therefore the root depth for this permanent grassland is
considered fixed at 40 cm. The Specific Leaf Area (SL A; leaf area/ leaf mass) determines
how much new leaf area to deploy for each unit of biomass produced. Critical leaf area
beyond which death due to self shading occurs is defined as L AIC R (Wolf, 2006).

Table 2.1: Input parameters used for the crop model.

LINGRA Parameters Value

Soil

Water content at field capacity (θ f c ) 0.29 (cm3water cm−3soil)
Water content at wilting point (θw p ) 0.12 (cm3water cm−3soil)
Critical water content (θcr ) 0.005 (cm3water cm−3soil)
Maximum drainage (DR AT E) 50 (mm day−1)

Vegetation

Maximum root depth (ROOT DM) 40 (cm)
Specific Leaf Area (SL A) 0.025 (m2 g−1)
Remaining L AI 0.8 (m2 leaf m−2ground)
after cutting (C L AI )
L AI beyond that shading occurs (L AIC R) 4 (m2 leaf m−2 ground)

2.2.12. GEOTECHNICAL MODEL

The sample dike includes two types of soils: the root zone in which properties should be
consistent with the crop model, and the soil of the dike body. Constitutive and hydraulic
parameters for the two mentioned parts of the dike are listed in Table 2.2. The values are
based on the default soil properties from the Plaxis library for the root zone (silt clay) and
for the dike body (organic clay), except for the hydraulic values of the root zone which are
obtained from the optimisation code.

2.3. RESULTS AND DISCUSSION

2.3.1. TIME SERIES OF THE SVA INTERACTION VARIABLES

Figs. 2.5(a)-(d) show the temporal pattern of crop model outputs: Leaf Area Index (L AI ),
boundary net flux (Qnet ), root zone water content (W Cr z ) and drainage (DL); and in Figs.
2.5(e)- (g) the geotechnical model outputs are illustrated: pore water pressure (pwp),
magnitude of displacement and Factor of Safety (FoS) in the example dike from 2009 to
2012.

The L AI values in Fig. 2.5(a) reflect seasonal dynamics. The L AI is highest in spring
and summer, since vegetation growth is energy-limited rather than water-limited. Re-
duced solar radiation limits growth in the autumn and winter. Higher L AI values in the
summer lead to higher evapo-transpiration, and hence a reduction in the amount of
water flux into the dike. The sudden decreases in L AI on 15 June and 15 August are due
to grass mowing. These mowing events were imposed based on the mowing schedule for
regional dikes in the Netherlands (T. Reuzenaar, 2017, Private Communication).
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Figure 2.5: Daily values of (a) Leaf Area Index (L AI ); (b) Boundary net flux (Qnet ); (c) Root zone water content
(W Cr z ); (d) Drainage from root zone to lower layers (DL ); (e) Pore water pressure (pwp) at points A and B
(compression is positive); (f) Magnitude of displacement at points A and B; and (g) Factor of Safety (FoS), over
four years; (h) Phreatic line in a dry and wet condition.
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Table 2.2: Input parameters used for the geotechnical model.

PLAXIS Root zone Dike body
Constitutive model (Mohr-Coulomb)
Saturated unit weight (γsat ) 20 (kN m−3) 12 (kN m−3)
Friction angle (φ′) 23◦ 23◦
Cohesion (c ′) 2 (kPa) 2 (kPa)
Dilation angle (ψ) 0 ◦ 0 ◦
Young’s modulus (E ′) 10 (MPa) 20 (MPa)
Initial void ratio (ei nt ) 0.67 1.2
Hydraulic model (van Genuchten)
Hydraulic conductivity (ksat ) 0.14 (m day−1) 0.03 (m day−1)
Scale parameter α 1.47 (m−1) 1.38 (m−1)
Fitting parameter n 1.97 1.32
Fitting parameter m 0.87 1.24

In Fig. 2.5(b), positive Qnet values occur in response to precipitation events. On
days with near-zero precipitation and high L AI , Qnet is negative as evaporative demand
exceeds precipitation and then moisture in the root zone decreases, for example in April
and May 2011.

In Fig. 2.5(c), the water content in the root zone is seen to decrease during the summer
due to high levels of evapo-transpiration. It follows that during periods with a consistently
high Qnet , the root zone reaches the field capacity. At this moment drainage is able to
occur.

Drainage to the dike body (DL) is plotted in Fig. 2.5(d). As also seen in Figs. 2.5(b)
and (c), drainage occurs when there is a positive (downward) Qnet and W Cr z reaches the
field capacity. This can generally be seen in the winter months. A spike is also apparent in
August 2010 when a large precipitation event occurred while the L AI was low.

In Fig. 2.5(b), the maximum Qnet during these four years is in August 2010 (0.055 m
d ay−1) which leads to the maximum DL (0.034 m d ay−1). However the second largest
Qnet , 0.049 m d ay−1, is in Jul 2011 and it does not cause any drainage on the same day
(Fig. 2.5(d)). This comes from the fact that there is more available storage in the root zone
in the latter day (W Cr z = 0.16 (cm3w ater cm−3soi l )) relative to the former one (W Cr z =
0.23 (cm3w ater cm−3soi l )) as shown in Fig. 2.5(c). More limited drainage does occur in
the days after the large rainfall in July 2011 due to additional rainfall and the saturated
root zone.

In Fig. 2.5(e), the pore water pressure (pwp) at points A and B is shown. Positive and
negative indicate pressure and suction, respectively. Comparing Figs. 2.5(d) and (e), it
is clear that drainage from the root zone increases pwp. High drainage (August 2010),
or long periods of cumulative drainage (winter 2009-2010), leads to higher pwp (soil is
saturated) at points A and B. As expected, when the W Cr z decreases (e.g. during the
spring), the pwp decreases. The highest suction (negative pwp) is observed at points A
and B during the very dry spring 2011.

Comparing Figs. 2.5(d), (e) and (f), it is clear that drainage into the dike body increases
pwp, which in turn increase (upwards) magnitude of displacement at points A and B. The
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Figure 2.6: Deviatoric strain predicted during the failure calculation on the wet day, representing the failure
mode.

displacement peaks following large precipitation events and recovers between events,
showing a mainly elastic response. A slight accumulation of displacement over time is
observed, due to plastic displacement.

In Fig. 2.5(g), the temporal variation of FoS is shown, which derived from the com-
bined effect of precipitation and L AI that influence Qnet . A similar temporal pattern can
be seen as exhibited in Figs. 2.5(f) and (g). The largest decrease in FoS corresponds to the
maximum drainage, in August 2010. While, during dry periods when suction increases,
the FoS tends to increase as well, for example in March-May 2011. However the relation is
not fully proportional and further investigation is needed. It is noted that in extremely dry
conditions, cracking in the surface of the dike could occur. This is not taken into account
in the model.

Fig. 2.5(h) shows the phreatic line of the dike on two selected days. The sub-figure
on the left represents a day where the dike is in a dry condition (in June 2011) with the
very low W Cr z , thereby also a low pwp and high FoS. In comparison, on the right, is a
sub-figure representing the dike in a wet condition (in July 2011) in which the saturation
increased and the phreatic line rose in the soil body and reaches the surface on the
downstream side.

In Fig. 2.6, the predicted failure mode is shown for the wet day mentioned earlier. The
failure is circular and it fails into the water retaining side due to the asymmetric geometry
of the dike.

2.3.2. W Cr z INFLUENCE ON FOS
In order to study how the soil water content in the root zone influences the dike safety, FoS
values are plotted against WCr z in Fig. 2.7. During the simulated period, results suggest
that a drier root zone (lower W Cr z ) leads to higher safety in the dike. This was expected,
since the drier root zone leads to higher suction and then higher strength. However, it
is also clear that it is not a unique relationship. To understand L AI effect on the SVA
interaction the results in Fig. 2.7 are shaded by the L AI , with values increasing from white
(low L AI ) to black (high L AI ). It can be seen that, generally, a dry root zone leads to low
L AI values; however, low L AI does not correspond to low values of W Cr z in mowing
and winter times. The minimum FoS values seem to occur at a mid-range value of L AI
and high W Cr z , probably caused due to high antecedent water content, which leads
to increased grass growth, but with a limited evapo-transpiration rate (caused at high
L AI values).Neither W Cr z nor L AI have a unique relation with FoS, despite the strong
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Figure 2.7: The FoS against the water content in the root zone (W Cr z ) during a simulation of four years. Points
are shaded by the L AI .

trend. While the root zone is saturated, the FoS varies with the range of 2.1 to 1.2, and
the difference between the situations can be understood by considering both LAI and
drainage to the dike body in Fig. 2.5(d). When there is a noticeable drainage from root
zone to the dike body, the FoS drops rapidly, as the overall pore-pressure distribution is
dependance on the (history of) precipitation and vegetation/drainage conditions.

2.3.3. CORRELATION AMONG SELECTED SVA VARIABLES

Correlation coefficients between pairs of key variables have been calculated considering
time, and are presented in Fig. 2.8. If the maximum absolute value of correlation occurs
with a positive lag it means that the second term leads the first. If the peak correlation
value occurs at a negative lag then the first term leads the second one.

The peak correlation coefficient between L AI and W Cr z (R= 0.31), Fig. 2.8(a), is
obtained with a 15 day lag, which means W Cr z affects the L AI the most after 15 days.
This reflects that the vegetation grows in response to water content availability. The weak,
though positive, correlation increases from a lag of -30 days, reaching a maximum at 15
days, and is still positive after 30 days. It is due to the fact that L AI is a result of W Cr z

over a relatively long time. The amount of water in the root zone is not the only factor
which influences the L AI , mowing and radiation have key roles in vegetation growth.

The correlation between W Cr z and FoS, Fig. 2.8(b), is negative, with no time lag. This
agrees with the previous physical argument, that more available water in the root zone
increases the mass of the dike (and the overturning moment) and decreases the strength.

In contrast to W Cr z there is a generally positive correlation between L AI and FoS,
with 15 days lag, which is shown in Fig. 2.8(c). A high L AI results increased transpiration,
leaf interception and reduced drainage into the dike (see next section).
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Figure 2.8: Correlation coefficient (R) between two parameters with time lags up to 30 day during four years. A
positive lag means that the second variable leads the first.

In Fig. 2.8(d) the correlation coefficient between the average water content in the
dike body (W Cbod y ) and FoS is plotted which has the strongest correlation of all of the
considered parameters. The water content in the dike body is calculated as a spatial
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average of the whole body. It is shown that a higher W Cbod y leads to a lower FoS with no
time lag, in other words they are negatively correlated. As with the water content in the
root zone, the increased weight and reduced strength with an increase in water content is
the cause of the negative correlation.

Water moves downwards through the dike, reducing effective stress thereby also
reducing the strength; after water has passed through the dike, if there is no further rain
the strength can recover. In the conditions when the ratio of shear strength to shear stress
is the lowest the dike may fail.

Drainage from the root zone into the dike body, causes decreasing in FoS at the same
day (Fig. 2.8(e)). DL is the key driver for W Cbod y , drainage variations makes W Cbod y

changes and then negatively affects FoS (Fig. 2.8(d)).

2.3.4. L AI EFFECT
As discussed in the previous section, the L AI varies due to multiple reasons including
radiation, precipitation, root zone water content and mowing. Hence, it is difficult to
explore the impact of solely the vegetation. To study the impact of the L AI , different
constant values have been selected and the simulation re-run for a single year, i.e. 2010.
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Figure 2.9: For different constant L AI s over 2010 (a) Precipitation (m day−1); (b) Cumulative boundary net flux
(m); (c) Fos.

Fig. 2.9(a) shows the precipitation over the year and in Fig. 2.9(b) the cumulative
boundary net flux (see Eq. 2.6) is plotted to describe how the L AI affects the Qnet .
The differences between the values of Qnet stem solely from the differences in L AI , i.e.
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changes in evapo-transpiration and leaf interception. Higher values of L AI lead to higher
plant transpiration and leaf interception rate, but lower evaporation. As presented in Fig.
2.9(b), the case with no vegetation yields the highest Qnet throughout the whole year. The
impact on FoS for 2010 is shown in Fig. 2.9(c). Since, Qnet for L AI = 0 and L AI =1 is very
similar, the safety calculation has been done only for the latter case. As expected, the
wetter the dike (higher Qnet ), the lower the FoS . This occurs with a lower L AI , and so less
vegetation, causes lower FoS; whereas, the case with the highest L AI generally leads to
higher FoS over the year. This argument proves the positive correlation between L AI and
FoS that has been shown in Fig. 2.8(c).

In a nutshell, presence of vegetation improves dike’s safety since it decreases the water
that reaches the root zone and consequently dike body. If L AI is 1, it represents very
patchy vegetation, almost bare soil, and it is seen that in this case the FoS generally is less
than the other two cases. This demonstrates the importance of including vegetation in
regional dikes analysis.

2.4. THE POSSIBILITY OF USING VEGETATION AS A SAFETY IN-
DICATOR

Vegetation is strongly coupled to the moisture available in a dike, and particularly in
the root zone. Other meteorological aspects also govern this value, therefore a seasonal
change is also seen. The vegetation responds to moisture in the root zone, which means
that the vegetation follows the precipitation (most strongly after 15 days); therefore, it is
likely that it could be used as an indicator of safety. Additionally, the lagged correlation
between L AI and FoS meaning that it may be possible to utilise the L AI as a predictive
tool. A reduced L AI will increase the boundary net flux (Qnet ) and reduce the FoS.

What is attractive is that the vegetation could quite easily be monitored remotely,
i.e., via satellites or drones, rather than having to install physical sensors, which are
extremely expensive with a limited coverage. A complicating factor is dike maintenance,
i.e. mowing, which dramatically alters the L AI over a very short period of time, as well as
the complex history dependent factors that affect the L AI and FoS. With a knowledge of
the meteorological conditions, maintenance and the evolution of the vegetation, it may
be possible to carry out history matching modelling on identified vulnerable areas to give
a better insight into the conditions of the dike. It may be possible to have a staged process,
where (i) vulnerable dikes are identified, using vegetation and root zone water content
monitoring; (ii) numerical history matching is carried out to identify at-risk dikes; and
(iii) the at-risk dikes are physically inspected. In each stage a more limited length of dike
is considered.

One limitation of this work is the lack of consideration of surface cracking of the soil,
which occurs in very dry conditions. Vegetation has been observed to reduce around
cracks (i.e. Hasan et al., 2013), probably due to enhanced drainage and evaporation.
A lower L AI in this case will also indicate a weaker dike but for different reasons that
previously discussed. The history matching will be complicated by this aspect.

To the author’s knowledge, neither comprehensive field nor laboratory data are avail-
able to validate this numerical research and it is suggested for the future studies. The
individual components which has been used in this study, LINGRA and PLAXIS, are
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validated by Schapendonk et al. (1998) and Plaxis BV (2018).

2.5. CONCLUSION
In this chapter, the Soil-Vegetation-Atmosphere (SVA) interaction of an example dike
covered with grass is investigated along with how this interaction governs a dike’s hy-
groscopic condition and macro-stability. Two numerical models, a crop model and a
geotechnical model were coupled to simulate SVA interaction over a period of four years.
In the current chapter, the impact of surface cracking of the soil is not considered and
the approach is yet to be validated with experimental data. It is shown that the amount
of vegetation strongly affects the water flux into the dike and consequently impacts the
factor of safety (FoS). The FoS is mostly dependent on the water content in both the root
zone and the dike body, but that is affected by the vegetation. Moreover, the history of
the precipitation and water content have an impact on both the FoS and the vegetation.
It is therefore proposed that vegetation and root zone water content could be used as
indicators to detect vulnerable dikes at an early stage.
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3
THE IMPACT OF EVAPORATION

INDUCED CRACKS AND

PRECIPITATION ON TEMPORAL

SLOPE STABILITY

This chapter presents a numerical study of stability of dikes covered with grass, including
both weather and drying driven cracking, building on the approach of Chapter 2. As before,
an existing crop model is used to simulate vegetation growth and infiltration/evaporation
in response to meteorological forcing. The model is modified to consider preferential flow
due to cracking. An existing Finite Element Method (FEM) model is used to simulate the
dike stability and hydro-mechanical behaviour, with the material properties modified to
simulate the impact of cracks. The models are coupled together using an optimisation
method to ensure mass balance and consistency. Results simulating a ten-year period
indicate a strong impact of cracking on the factor of safety. The vegetation was found to be
responsive to both crack presence and an increase in the amount of cracks. This suggests
that monitoring vegetation could be a useful tool to identify cracked (dry) locations along
dikes.

This chapter is based on Jamalinia et al. (2020)
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3.1. INTRODUCTION

T HE majority of secondary dikes have a vegetated surface which significantly affects
the water infiltration and evaporation into and out of the dike (Vardon, 2015; Elia

et al., 2017). During extended periods of drought, significant water loss can occur which
can significantly impact the mechanical stability of the dike. For example, peat levees
that become dehydrated can shrink and lose a significant portion of their self-weight, a
situation that can predispose them to instability (due to uplift or low shear strength due
to low confining pressure) or overtopping and ultimately lead to a breach (CIRIA, 2013).
Dikes which have other swelling and shrinking soils (soils which change in volume in
response to a change in water content) will not lose as high a proportion of mass, but
may suffer from cracking. The amount of volume change depends on the amount and
type of clay minerals and water content change. In addition, as with all soils, the stress
history affects the volume change behaviour. In dikes, shrinkage due to extreme drying
may result in the occurrence of shrinkage cracks, which can weaken the soil structure and
provide favorable conditions for rain infiltration. As a result, the overall shear strength
of the soil and the factor of safety (FoS) of the slope can drop significantly (Zhang et al.,
2014). Additionally, rainfall infiltration into a dike body through surface fractures will
occur faster and will increase the weight (and overturning forces) of the dike and reduce
shear strength derived from soil suction. Assessing the impact of cracks on the infiltration
at the soil surface and subsequent redistribution of water within the soil is important
to characterise hydro-mechanical behaviour. Both processes are different compared to
non-shrinking soil, for example, due to changes in surface runoff and preferential flow in
the cracks (Cornelis et al., 2006).

Most of the current hydro-mechanical models for slope stability analysis are based
on the continuum modeling approach, as explicitly simulating the cracking process and
preferential flow is difficult at a structure scale. However, some numerical analyses have
been undertaken on a smaller scale to study details of the cracking process in soil, for
example using the finite element method (FEM) (e.g., Shen, 2006; Trabelsi et al., 2012;
Sánchez et al., 2014), the discrete element method (e.g., Péron et al., 2009; Sima et al.,
2013) and the universal distinct element (e.g., Gui et al., 2016). These studies focused
on various aspects of the cracking, including the initiation, development and pattern of
cracks, and the mechanical properties of the cracked soil (Li et al., 2017).

In the previous chapter (Chapter 2), a crop growth model was used to simulate the
growth of grass cover on a dike surface, and this was integrated with a FEM model to
quantify the influence of vegetation on the FoS. It was shown in Chapter 2 that vegetation
is strongly coupled to the moisture available in a dike, and particularly in the root zone.
Meteorological aspects also govern this value, therefore a seasonal change is also seen.
Some studies have highlighted the value of using the condition of the vegetation as an
indicator of subsurface conditions. For instance, Hasan et al. (2013) concluded that grass
growing in areas with cracks and fractures was stressed during winter and early spring
due to a lack of moisture compared to grass in adjacent areas.

The FEM model used in this study is a fully coupled hydro-mechanical model. The
crop model, utilises meteorological data (e.g. precipitation and radiation) to simulate the
root zone water balance and vegetation growth. The two models are one way coupled
together, i.e. the output of the crop model is used as an input into the FEM model. Other
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models, e.g., Sedighi et al. (2018), include tightly coupled Thermo-Hydraulic surface
boundary conditions and model in a tightly coupled manner, although they do not
consider the effect of vegetation on the boundary fluxes. This current work follows the
one-direction coupled approach.

One of the limitations of the simulation in the previous chapter was that it did not
account for cracks. The objective of this chapter is to further develop the approach of
Chapter 2 to account for both the development of cracks and their impact, i.e., preferential
flow and the reduction in strength of the soil. As in the previous chapter, a crop model
and a geotechnical model have been integrated together, resulting in a quantification of
the Soil-Vegetation-Atmosphere (SVA) interaction and the temporal FoS. Both the crop
model and geotechnical model have been modified to allow for consideration of cracks
and cracking. A case study is then provided, with real atmospheric data and an idealised
dike, to demonstrate the performance of the model.

3.2. METHOD
The idealised regional dike is used in this study is shown in Fig. 2.1. The description of
the model and general workflow are described in detail in the previous chapter.

The modelling strategy and sub-models have been updated from Chapter 2, so that
the crop model predicts when the root zone cracks, tracks the amount of cracks and
calculates the drainage through both the cracks and the soil; the 1D geotechnical model
is optimised based on total drainage from the crop model at different stages for each
cracking event; and the soil shear strength is dependent on the amount of fractures in
the root zone. It is assumed that cracking only occurs in the root zone with a constant
thickness over the full depth of the root zone. The overview of this process is given in the
flowchart in Fig 3.1.

The outputs from the model (shown in the flow chart) are: drainage from the root
zone (from the crop model (DL) and 1D geotechnical model (DP )); the leaf area index
(L AI ): a measure of the amount of vegetation; crack area in the root zone (Acr ack ),
shown in a different color in Fig. 3.1 since it is a new output of the workflow rather than
the one used in Chapter 2; boundary net flux (Qnet ) which is ‘effective precipitation’
minus evapotranspiration (explained in Chapter 2); displacement and FoS which are
outputs from the 2D geotechnical model. The workflow of integrating these two models
is controlled via Python. In the following sections the updates for simulating cracks in
both the crop model and the geotechnical model are described.

3.2.1. CROP MODEL

The crop model LINGRA (Schapendonk et al., 1998) is used to solve the water balance in
the root zone of a grass cover. In this chapter, LINGRA has been adapted to incorporate
the development of cracks and the impact of cracks in the water balance in the root zone,
and consequentially the leaf growth.
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Meteorological Data

(i) 1D Crop Model

DLAcr ackL AI Qnet

Hydraulic parameters Soil parameters

(ii) 1D Geotechnical Model

Optimisation code

Dp

(iii) 2D Geotechnical Model

2D Hydro-
mechanical

analysis

2D Safety
analysis

Displacement FoS

Outputs

Inputs

Models

Figure 3.1: Flow chart of the numerical modelling procedure, modified from Chapter 2 to include the effect of
shrinkage behaviour. The only added output parameter compared to the workflow shown in Fig. 2.2 is crack
area (Acr ack ), shown in a different color.

SIMULATING CRACK DEVELOPMENT IN THE CROP MODEL

It is assumed that the cracking occurs in the upper layers of the soil, and therefore the
soil is under very low confining pressure and any potential volume loss results in either
cracking or subsidence, rather than volume expansion of the soil matrix, which would
cause tension. This assumption is not valid at greater soil depths and therefore is limited
to the root zone. Also, it is assumed here that there are no initial cracks or macropores
due to worm and root holes.

The intact soil is considered to be composed of solid material and pores (see Fig. 3.2).
As a soil shrinks, the solid particles stay the same size, move and rearrange so that the
void space is reduced and the soil shrinks (Fig. 3.2(a)). Soil shrinkage can occur in both
the vertical and horizontal direction. Vertical shrinkage generally causes soil surface
subsidence and horizontal shrinkage results in cracks, as shown in the right hand side
image of Fig. 3.2(a).

The volume fractions are shown in Fig. 3.2(b). In an intact soil, the total volume is
made up of pores and solids. When a soil shrinks due to moisture loss (see Fig. 3.2(b) right
hand side), the solid volume fraction (Vsol i d ) remains the same in reference to the original
volume and a portion of the pores reduces in volume, i.e. shrinks. Note, that it would
also be possible to consider volume fractions in respect to the soil matrix, or the original
volume soil matrix including the fractures and subsidence. The crack volume fraction
with respect to the original volume is calculated from overall and vertical shrinkage as:

Vcr ack =Vshr i nkag e −Vsubsi dence (3.1)

where Vshr i nkag e , Vcr ack and Vsubsi dence (all in m3 m−3) are the volume fraction of overall
matrix shrinkage, the crack volume fraction and the subsidence volume fraction respec-
tively, as shown in Fig. 3.2(b).
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Figure 3.2: Soil matrix components before (intact soil) and after (cracked soil) shrinkage. Vshr i nkag e includes
both Vsubsi dence and Vcr ack .

It is also useful to calculate the volume fraction of the cracks in reference to the soil
matrix and cracks volume, as this is also equal to the area fraction of fractures on the
surface of the dike and therefore can be used to calculate flow through the fractures. This
can be calculated as:

Vcr ack,new = Acr ack = Vshr i nkag e −Vsubsi dence

1−Vsubsi dence
(3.2)

The relation between the proportion of soil shrinkage that results in cracking and subsi-
dence can be governed via:

Vsubsi dence = 1− (1−Vshr i nkag e )(1/rs ) (3.3)

where rs is a dimensionless geometry factor which determines the partition of total
volume change over change in layer thickness and change in crack volume (Bronswijk,
1988). For isotropic three-dimensional shrinkage, rs = 3; and in the case of subsidence
only, rs = 1. If cracking dominates subsidence, then rs > 3, and if subsidence dominates
cracking 1 < rs < 3.

The shrinkage volume fraction, Vshr i nkag e , is equal to the fraction loss of the pore
volume, which can also be calculated from the void ratio (e = Vpor es /Vsol i d ) and the
volumetric water content at saturation:

Vshr i nkag e =∆Vpor es =∆eVsol i d (3.4)
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SHRINKAGE CURVE

The matrix shrinkage is a function of volumetric moisture content and material shrinkage
behaviour. A shrinkage curve or shrinkage characteristic curve describes the relationship
between soil volume and soil moisture content (Cornelis et al., 2006). Initially, a very loose
saturated soil may shrink and remain almost fully saturated. As the amount of water in
the soil reduces, the soil will typically shrink less in proportion to the amount of water
reduction, resulting in de-saturation.

Starting from a completely saturated shrinking soil and following a drying path, Bron-
swijk (1991) distinguished these four stages: (1) structural shrinkage; (2) normal shrinkage;
(3) residual shrinkage, and (4) zero shrinkage. According to Bronswijk (1991), the first stage
only happens in well-structured soils, when the macropores empty without noticeable
change in aggregate volume, and air enters the macropores.

Many forms of shrinkage curve exist. A convenient one relates the void ratio to the
moisture ratio (µ= Vw ater /Vsol i d ), i.e. both the amount of water and voids are related
to the solid soil volume as a reference. The moisture ratio can also be calculated from
the more well recognised volumetric moisture content (θ =Vw ater /Vsoi l ), by dividing by
(1+e).

In this work, the approach for the shrinkage curve of Kim et al. (1992) and Kroes et al.
(2017) is followed:

e = e0 ×exp(−βKµ)+γKµ, for 0 <µ<µsat (3.5)

where e0 is the void ratio at µ= 0, βK and γK are dimensionless fitting parameters and
µsat is the moisture ratio at saturation.

It is assumed that cracking occurs when the soil shrinks and it does not recover or seal.
Therefore, the shrinkage curve is only used for drying, and the void ratio is only updated
when the moisture ratio is lower than that which the soil has previously experienced.

WATER BALANCE IN CRACKED MATRIX

LINGRA uses a tipping bucket approach to solve water balance in the root zone (Schapen-
donk et al., 1998). Hence, ponding in the cracks is disregarded. A fraction of precipitation
infiltrates into the crack matrix (IP,cr ack ) and goes directly to the lower layers, and the rest
infiltrates into the soil matrix (IP,matr i x ) or runs off, if the flow capacity is exceeded. The
daily changes in the amount of water stored in the soil (matrix) is therefore:

∆W Amatr i x = IP,matr i x − In −ETmatr i x −Dmatr i x −Rnmatr i x (3.6)

where In is leaf interception, ETmatr i x is the evapotranspiration, Dmatr i x is the drainage
rate and Rnmatr i x is the runoff, all from the soil matrix. All quantities are in m d ay−1 (due
to the model being 1D). These are quantified using the approach of LINGRA (Schapendonk
et al., 1998).

The proportion flowing into the cracks is assumed to be equal to the surface area of
the cracks, which in turn is equal to the volume fracture, as the cracks are assumed to be
only vertical. Horizontal flow and evaporation from the macropores are disregarded and
only infiltration and drainage are considered. The crack infiltration, IP,cr ack (m d ay−1),
and the soil matrix infiltration, IP,matr i x (m d ay−1) are:

IP,cr ack = Acr ack ×P , IP,matr i x = Amatr i x ×P (3.7)
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Figure 3.3: Updated root zone water balance modified from Jamalinia et al. (2019) for cracked soil matrix to
include water flux in cracks.

where Amatr i x is the surface area of the soil which is equal to 1− Acr ack .
When the amount of water in the soil matrix reaches the field capacity (θ f c ), the excess

water drains from the lower boundary of the root zone. The total amount of drainage (DL)
to the layer below the root zone, as shown in Fig. 3.3, includes drainage from both the soil
matrix (Dmatr i x ) and cracks (Dcr ack ), calculated as:

DL = Dcr ack +Dmatr i x = (Acr ack ×P )+Dmatr i x (3.8)

Due to cracking, the field capacity changes. Here, as the computational domain
remains the same size, the field capacity relates to the total (original) volume. The field
capacity for the cracked soil matrix (θ f c(matr i x)) is calculated assuming that the degree
of saturation (Sr = Vw ater /Vpor es ) at field capacity for the soil matrix (Fig.3.2) remains
constant in the intact and cracked soil:

Sri nt act = Srmatr i x (3.9)

where Sri nt act and Srmatr i x are the degree of saturation in the intact and cracked soil,
respectively. The field capacity is related to the degree of saturation by:

θ f c =
Sr f c ×Vpor es

Vtot al
(3.10)

and therefore,

θ f c(cr acked) = θ f c(i nt act )
Vpor es(cr acked)

Vpor es(i nt act )

= θ f c(i nt act )
Vpor es(i nt act ) −Vshr i nkag e

Vpor es(i nt act )

= θ f c(i nt act )
θsat (i nt act ) −Vshr i nkag e

θsat (i nt act )

(3.11)

where the subscripts (i nt act) and (cr acked) related to the intact and cracked soil, re-
spectively.
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3.2.2. GEOTECHNICAL MODEL
The commercial finite element code, PLAXIS 2D, was used in this study. The workflow is
controlled via the PLAXIS Python interface. Further information on hydro-mechanical
and safety analysis of this model can be found in Chapter 2 and Plaxis BV (2018).

Cracks, in addition to providing preferential flow channels which increase the soil
permeability, also decrease the soil strength (Wang et al., 2011). Furthermore, cracks
can form a part of the critical surface and therefore can ultimately influence the stability.
In this chapter, the impact of cracks is considered on the boundary net flux, hydraulic
parameters and as a bulk effect via a change in the shear strength parameters. This allows
for a relatively simple method of quantifying the impact of cracks, without predicting
complex crack patterns, orientations or very local changes in the critical failure surface.
Moreover, cracks are considered to only extend over the root zone. The calculated crack
volume from the crop model is used in this geotechnical model to update the mechanical
strength of the cracked root zone. The shear strength parameters, cohesion (c ′) and
friction angle (φ′) have been reduced according to the crack volume, using as a first
approximation, a linear relationship. The values of c ′ and φ′ for an intact soil and the
minimum value of c ′ and φ′ for a maximum Vcr ack are input by the user.

3.2.3. CASE STUDY
The example dike, shown in Fig. 2.1, has been investigated. The numerical experiment
was performed for ten years with climatic data, from 2009 to 2019, used to obtain a
time series of FoS to investigate the influence of meteorological conditions on the soil
shrinkage and cracking behaviour and, consequently, the dike safety. Furthermore, the
impact of cracking on vegetation growth was investigated.

INPUT DATA

The meteorological data were obtained from the The Royal Netherlands Meteorological
Institute (KNMI) station at Schiphol Airport (Amsterdam) (52◦ 19′ 04◦ 47′ OL), the same
location used in Chapter 2. In Figs. 3.4(a)-(d) precipitation, average air temperature, wind
speed and solar radiation for the 10 years simulation period is shown. These data are
used as inputs for the crop model.

The key material parameters used by the crop model for both the soil and vegetation
are listed in Table 2.1. The soil and vegetation parameters are equal to those chosen in
Chapter 2. Additionally, parameters for the shrinkage curve (Eq. 3.5) are needed and were
obtained from literature (van Dam, 2000; Kroes et al., 2017): βK = -1.11, γK =−0.91 and
e0 = 0.4. In Fig. 3.5 the calculated shrinkage curve for this study is shown by the solid
blue line; the two dashed lines are selected measured shrinkage characteristics of clay
and peaty soils in the Netherlands, as described by Bronswijk & Evers-Vermeer (1990) and
Hendriks (2004), respectively; and the dotted green line is the saturated line. In this study,
the isotropic shrinkage has been considered, so rs = 3.

As shown in Fig. 2.1 the example dike consists of the root zone and the soil of the dike
body. Constitutive and hydraulic input parameters for those parts of the dike are listed
in Table 3.1 for the intact soil matrix. The values are based on the default soil properties
from the PLAXIS library for the root zone (silt clay) and for the dike body (organic clay),
except for the hydraulic values of the root zone which are obtained from the optimisation
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Figure 3.4: Daily values of inputs for the crop model from 2009 to 2019 (a) Precipitation; (b) Average temperature;
(c) Average wind speed; (d) Radiation.
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Figure 3.5: Shrinkage curve used for this study for the root zone compared with the measured shrinkage
characteristics for dutch clay (Bronswijk & Evers-Vermeer, 1990) and peaty clay (Hendriks, 2004) soil.



3

42
3. THE IMPACT OF EVAPORATION INDUCED CRACKS AND PRECIPITATION ON TEMPORAL

SLOPE STABILITY

Table 3.1: Input parameters used for intact soil in the geotechnical model.

Parameter Root zone Dike body
Constitutive model (Mohr-Coulomb)
Saturated unit weight (γsat ) 20 (kN m−3) 12 (kN m−3)
Intact friction angle (φ′

i nt act ) 23◦ 23◦
Minimum friction angle (φ′

mi n) 4.5◦ -
Intact cohesion (c ′i nt act ) 2 (kPa) 2 (kPa)
Minimum cohesion (c ′mi n) 0.6 (kPa) -
Dilatancy angle (ψ) 0 ◦ 0 ◦
Young’s modulus (E ′) 10 (MPa) 20 (MPa)
Poisson’s ratio (ν′) 0.3 0.2
Initial void ratio (ei nt act ) 0.67 1.2
Hydraulic model (van Genuchten) for intact soil
Hydraulic conductivity (ksat ) 0.14 (m day−1) 0.03 (m day−1)
Scale parameter α 1.47 (m−1) 1.38 (m−1)
Fitting parameter n 1.97 1.32
Fitting parameter m 0.87 1.24

code. The initial parameters optimised for intact soil are shown here. Since the cracking
occurs only in the root zone, the dike body parameters do not change as Acr ack increases.
The shear strength parameters (c and φ) and the hydraulic parameters change for the
root zone as cracks grow. To decide on a minimum value for shear strength parameters,
the crop model was first run without the geotechnical model, and the maximum crack
area (Acr ack,max ) was extracted (10 %). Then shear strength values were picked to ensure
that the model had a FoS > 1, so that it would continue to run. The value of shear strength
parameters were selected for demonstration purposes and for more realistic analyses
they should be calibrated for real cases.

3.3. RESULTS AND DISCUSSION
In Fig. 3.6, temporal results from the crop model for soil which is able to crack are
compared with soil which cannot crack, i.e. the model presented in Chapter 2. As shown
in Fig. 3.6(a), the cracks cannot seal during wet periods, but only increase in conditions
drier than previously encountered. This assumption ensures that the worst-case scenario
has been considered. In Fig. 3.6(a) the crack area increases from spring 2009 and gradually
increases from 0 to 6 % by May. Wet days from May - August 2009 ensure that the crack
amount remains constant until the next dry period in June - July 2010 during which
cracks increase to 7.5 %. During summer 2011, cracks grow again (9.3 %) and the soil
experiences the next drier condition in the summer 2018, when cracks again grow (10%).
As the crack expands only in drier conditions than have been previously encountered, the
time between cracking events gets longer as the analysis progresses.

In Fig. 3.6(b), temporal variations in L AI are shown. The L AI is highest in spring and
summer, since reduced solar radiation limits growth in the autumn and winter. Higher
L AI values in the summer lead to higher evapotranspiration, and hence a reduction in
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Figure 3.6: Daily values of crop model outputs from 2009 to 2019 for the case without cracks and with cracks in
the root zone area (a) Crack area; (b) Leaf Area Index (L AI ); (c) Boundary net flux (Qnet ); (d) Root zone water
content (θr z ); (e) Drainage from root zone to lower layers (DL ).

the amount of water flux into the dike (Fig. 3.6(c)). The mowing events on 15 June and
15 August were imposed in the crop model based on the mowing schedule for regional
dikes in the Netherlands (see Chapter 2), which can be seen by the sudden decrease in
L AI . The vegetation growth can be seen to be influenced by the presence of cracks, due
to a portion of the precipitation draining directly to the lower soil layer and a reduction in
the maximum stored water (seen in Fig. 3.6(d)). In the case of a cracked soil, the L AI is
lower or equal at almost all times than the case without cracks.

Positive Qnet values occur in wet periods when precipitation exceeds evapotranspira-
tion demand. When there are cracks, the boundary net flux (Qnet ) is seen to be higher
than for the non-cracked soil (Fig. 3.6(c)). In the cracked soil, the combined effect of drier
root zone and lower L AI cause lower evapotranspiration and leaf interception.

In Fig. 3.6(d) it is shown that the water content in the root zone (θr z ) decreases
during the summer due to high levels of evapotranspiration. On the other hand, during
wet periods with a consistently high Qnet , the root zone reaches the field capacity, and
extra water drains to the lower layer. In the cracked matrix, θr z is lower as some rainfall
passes directly through the cracks and does not enter the soil root zone. Additionally,
the field capacity is reduced, therefore the maximum amount of water stored is reduced.
In summer 2010, the crack area increases due to the dry period which influences the
vegetation growth, i.e. after first mowing in June 2010, due to the very low water content
in the root zone (Fig. 3.6(d)), vegetation cannot recover in the growing season. The same
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Table 3.2: Evolution of the hydraulic parameters with crack area used in the geotechnical model.

Acr ack (%)

Hydraulic parameters (van Genuchten model)

ksat (m day−1) a (m −1) n (-) m (-)

10 0.316 3.55 2.49 0.96
9.3 0.31 3.47 2.48 0.95
8.5 0.30 2.15 1.92 0.90
7.5 0.26 2.08 2.01 0.86
6 0.18 2.05 1.82 0.84
< 6 0.15 1.47 1.97 0.87

situation happens in May - June 2011 and June - August 2018, when the average L AI is
very low over almost 3 months in both cracked and non-cracked cases.

Drainage (DL) occurs when there is a positive (downward) Qnet and θr z reaches the
field capacity (Fig. 3.6(e)). This can generally be seen in the winter months. For example,
spikes in DL in August 2010 and 2017 correspond to the heavy rainfall and therefore high
Qnet . Infiltration of precipitation through cracks and the reduction in the field capacity in
cracked soil, which both increase with Acr ack rising, causes DL to increase.

The results of the optimisation procedure for the hydraulic parameters of the geotech-
nical model are shown in Table 3.2. For each new crack area, the optimisation procedure
repeated. It is seen that, in general, as the crack area increases, the hydraulic conductivity
increases. In addition, different soil water retention curves (SWRC) for each crack area
have been plotted based on the hydraulic model values. These are shown in Fig. 3.7, in
which Sr is the degree of saturation, and h is the suction height above the phreatic level.
In general, more cracks are associated with a drier root zone.

In Fig. 3.8 the geotechnical model outputs are illustrated. Fig. 3.8(a) shows the crack
percentage (from the crop model) for convenience. Fig. 3.8(b) and (c) show the pore
water pressure (pwp) at points A (in the root zone) and B (in the dike body), shown in
Fig. 2.1, respectively. Positive values are for compressive pressures and negative values
indicate suction. As expected, high levels of drainage (August 2010 and 2017), or long
periods of cumulative drainage (winter 2009 - 2010), lead to higher pwp in the root zone
and dike body. In both locations (A and B) pwp is higher in case of cracked soil as more
water reaches the soil system via the higher Qnet and more DL in the cracked soil. As
Acr ack increases, pwp rises and decreases more slowly.

In Figs. 3.8(d) and (e) the magnitude of total displacement of points A and B is shown.
The displacement rises following large Qnet and recovers between precipitation events. A
slight accumulation of displacement over time is observed, due to plastic displacement.
The displacement of the points increase as crack grows during time, which depicts the
effect of shrinkage behaviour in the root zone (where cracks exist) and more drainage into
the dike body. By increasing the crack area the difference in displacement between the
crack and non-crack condition gets more noticeable.

The temporal variation of FoS is shown in Fig. 3.8(f) from 2009 to 2019. Safety in the
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Figure 3.7: Variation of soil water retention curve for the root zone for different crack area.

dike is responsive to the climate and vegetation condition. The safety of the dike in the
cracked condition is significantly lower than the case without cracks under the combined
effect of more infiltration into the dike (Fig. 3.6(e)) and lower shear strength induced by
modified cohesion and friction angle. The maximum crack area leads to the minimum
shear strength parameters (Table. 3.2), thereby generally lower FoS. During the simulated
period, results from Figs. 3.6 and 3.8 suggest that more cracks lead to a lower amount
of vegetation (L AI decreases) and a lower amount of stored water in the root zone. In
general, this leads to lower safety in the dike. As seen in the results, heavy rainfall events
cause a dramatic decrease in the safety. Therefore, it is the combination of cracking, due
to drought, which reduces the strength and general level of safety, and heavy rainfall
events, which significantly lower the safety temporarily.

3.4. USING VEGETATION AS AN INDICATOR FOR DIKE HEALTH
In the current chapter, it is shown that vegetation responds to the presence of cracks,
which influences the available water in the root zone and therefore makes more cracking
likely.

Consistent with visual observations from dike inspectors in the Netherlands, in sum-
mer 2018 the water content in the root zone was extremely low and the L AI was low for
an extended period of time (Figs. 3.6(b) and (d)). Visually it was seen that a substantial
amount of the grass cover died and took several months to recover, this is shown in the
simulation (Fig. 3.6(b)). In the analysis, it was also shown that Acr ack increased in August
2018, Fig. 3.6(a), after about 7 years of no increase. This summer was the warmest summer
during the simulation period. After the mowing events in 2018, the vegetation is seen to
be able to partially recover in the simulations without cracks, whereas it cannot in the
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Figure 3.8: Daily values of outputs from 2009 to 2019 for the case without cracks and with cracks in the root
zone area (a) Crack area; (b) and (c) Pore water pressure (pwp) in points A (in the root zone) and B (in the dike
body); (d) and (e) Absolute value of displacement in points A and B; (f) Factor of Safety.

cracked root zone (Fig. 3.6(b)). Therefore, it is proposed that vegetation indices (e.g. L AI )
could be used as an indicator of crack presence, also indicated by Hasan et al. (2013).

The cumulative precipitation, root zone saturation and L AI for 2017 and 2018 for the
cracked soil are plotted in Figs. 3.9(a)-(c), respectively. The former year considered as a
‘wet’ year and the latter one is the driest year in the 10-year simulation. Before the first
mowing, the amount of precipitation and consequentially the available water in the root
zone was similar. However, in the summer, growing season, the precipitation in 2018 was
less than 2017 which led to a dry condition and consequently the crack volume grew in
July 2018 (red line in Fig. 3.9). The difference in vegetation growth is significant and seen
by the difference between L AI in the following months. In first days of September, the
rainfall event for both years is almost the same and in both case the water content reaches
the field capacity in the root zone (Fig. 3.9(b)), but due to the larger crack area in 2018,
the vegetation cannot recover as much as in September 2017. This indicates that the L AI
could also be used directly to identify cracked dikes which need maintenance. However,
this does not seem to occur consistently throughout all years (see Fig. 3.6).

To further investigate the use of vegetation as an indicator in more detail, two differen-
tial LAI values are shown in Fig. 3.10. The first differential, i.e. the velocity or growth rate,
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Figure 3.9: Comparison between a wet year (2017) and a dry year (2018): (a) cumulative precipitation, (b) root
zone saturation, (c) leaf area index. Mowing times in both years and crack propagation in summer 2018 is shown
by dotted green line and red line, respectively.

is di f [L AI ] = L AIt −L AIt−x (the value is not divided by the time window), where t is the
current day and x is the time window (Fig. 3.10(a)). The absolute of the second differential,
i.e. the absolute value of vegetation growth acceleration or rate of change of growth rate
(again, note that the value is not divided by the time window), with a time window of 15
days, is shown in Fig. 3.10(b). Initially, when there is no or very limited crack area, the
first and second differential L AI values (di f [L AI ] and |accel .[L AI ]|) are identical for the
cracked and non-cracked cases. As the crack area increases over time, the differential
L AI time series (Fig. 3.10) can be categorized into periods where: (1) the two lines are
virtually indistinguishable; (2) the cracked simulation exhibits a lower acceleration; or (3)
the cracked simulation exhibits more variability in both cases of velocity and acceleration
growth. These categories occur at different times of year and under different degrees of
water stress, as highlighted in Fig. 3.10, for example:

1. Time series of L AI , di f [L AI ] and |accel .[L AI ]| are virtually indistinguishable
(highlighted in blue in Fig. 3.10) in the following periods: January - August 2009,
January - April 2010, January 2012 - January 2013, January - August 2016. This is
observed to be when either the crack area is starting to grow (January - August
2009) or there is a moderate amount of L AI and the root zone water content is
reasonably high. In particular, in the whole year 2012 and the June - July 2016, the
water content of the root zone remained higher than other years, and it is high
enough for the vegetation to grow even over cracked areas.

2. Lower variability in the di f [L AI ] (lower |accel .[L AI ]|) from the cracked simulation
results (highlighted in green in Fig. 3.10) occurs within the following periods: April -
August 2011, June - October 2013, July - September 2015, June - September 2017,
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Figure 3.10: L AI (a) growth rate (di f [L AI ]) and (b) acceleration growth, with a time window of 15 days from
2009-2019.

April 2018 - January 2019. These are seen to be in situations with a low water content
in the root zone, and low values of L AI , which implies dry periods. In particular,
between mowing times, there seems to be significant differences between cracked
and non-cracked simulation results in dry years (2011, 2014, 2015, 2018). In dry
periods, less water is available in the root zone in the cracked area than in the non-
cracked area (Fig. 3.6(d)). Therefore, vegetation cannot regrow after mowing over
the cracked area as much as it regrows over the healthy areas. This low variability
mainly occurs in the summer, and depending on the extent of the drought extends
through the following year. However, this does not happen in the wet years (2012,
2013, 2016) as explained in the previous paragraph.

3. Higher variability in the di f [L AI ] (higher |accel .[L AI ]|) from the cracked simula-
tion results (highlighted in orange in Fig. 3.10) usually happens in the following
periods: September - December 2011, April - June 2014, October 2014 - June 2015,
August 2016 - January 2017. At the times there is generally a moderate amount of
L AI and the root zone water content is relatively quickly increasing or decreasing
due to heavy rainfall after a dry period and couple of days in a row with the neg-
ative Qnet , respectively (Fig. 3.6(c)). This is generally observed in the spring and
autumn periods, when the energy for vegetation growth is limited and LAI variation
is mainly responsive to the SMr z variation.

This suggests that monitoring to investigate the dike should be timed accordingly. In
periods of moderate L AI and precipitation (generally winter), almost no differences are
likely to be observed. In the summer periods there are more significant differences in dry
years and in the spring and autumn much more variability is seen in the cracked soils
in almost all years. Therefore, monitoring prior to the summer (when more cracks may
occur) or prior to the winter (when the lowest safety is seen) is advisable.

Results in Figs. 3.9-3.10, support the argument that vegetation could be used as an
indicator to distinguish whether a dike is significantly cracked. By observing anomalies
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in vegetation, further more targeted investigation can be planned. In addition, results
suggest that displacement can be used as an indicator for both saturation (short term
changes) and for accumulation of cracks (long term changes), although long term changes
may also indicate subsidence or other processes. Displacement and vegetation indices
can be obtained from Earth observation data. Interferometric Synthetic Aperture Radar
(InSAR) (Hanssen, 2001; Ferretti et al., 2001) is a technique that maps millimeter-scale
deformations of the Earth’s surface from satellite images. Vegetation indices can be
measured from both optical and radar images with fine resolution provided by satellites
(Colombo et al., 2003; Hasan et al., 2013, e.g.), this will be discussed in detail in Chapter
5. While no absolute value of vegetation indices can be predictive of cracking, anomaly
detection identify vulnerable areas that warrant further investigation.

3.5. CONCLUSION
The integrated model framework composed of a crop model and a geotechnical model
including the impact of cracking was used to illustrate the sensitivity of the factor of safety
to root zone soil moisture and vegetation cover in an idealised dike. The simulation in
this chapter extended a method in the previous chapter to include the effects of cracking.
In this chapter, simple modifications or parameterisation was included in both sub-
models to account for the formation of cracks. This provides a means to account for
the preferential flow into the dike that is associated with cracks in the cover layer and a
reduction in shear strength. This represents a step forward to understand soil-vegetation-
atmosphere interactions in grass-covered dikes. Simulations with the new integrated
model were used to compare vegetation growth and safety under intact and cracked soil
conditions. In this chapter the impact of the presence of cracks on the water flux into the
dike and the shear strength is investigated, and both of them affect the Factor of Safety
(FoS). The history of the precipitation, root zone water content and L AI have an impact
on crack propagation. Therefore, vegetation condition (Leaf area index or comparable
indicator) and root zone water content could be useful as indicators to detect cracked
areas along a dike and also of increasing crack volume at an early stage. Results suggest
that monitoring in the spring or autumn may provide the most reliable and useful results,
since in these months much more variability in rate of vegetation growth over the cracked
soils is predicted.
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4
A DATA-DRIVEN SURROGATE

APPROACH FOR THE TEMPORAL

STABILITY FORECASTING OF

VEGETATION COVERED DIKES

A comprehensive numerical simulation is computationally too expensive to be used for near
real-time analysis of a dike network under climate and vegetation conditions. Therefore,
this chapter investigates a Random Forest (RF) regressor to build a data-driven surrogate
for a numerical model to forecast the temporal macro-stability of dikes. To that end,
daily inputs and outputs of a ten-year coupled numerical simulation of an idealised dike
(2009-2019) are used to create a synthetic dataset, comprising features that can be observed
from a dike surface, with the calculated Factor of Safety (FoS) as the target variable. The
dataset before 2018 is split into training and testing sets to build and train the RF. The
predicted FoS is strongly correlated with the numerical FoS for data that belongs to the
test set (before 2018). However, the trained model shows lower performance for data in the
evaluation set (after 2018) if further surface cracking occurs. This proof-of-concept shows
that a data-driven surrogate can be used to determine dike stability for conditions similar
to the training data, which could be used to identify vulnerable locations in a dike network
for further examination.

This chapter is based on Jamalinia et al. (2021), Jamalinia et al. (2020a) and Jamalinia et al. (2020b).
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VEGETATION COVERED DIKES

4.1. INTRODUCTION

D IKES and embankments are important geo-structures that provide protection against
inundation or flooding (CIRIA, 2013). In the Netherlands, dikes form a large part of

the existing flood defence systems, with a total length of about 18 000 km, of which 14 000
km are regional (secondary) dikes. Therefore, the continuous assessment of dikes is one
of the main challenges that civil works managers and geotechnical engineers are dealing
with in the Netherlands (de Vries, 2012; Cundill, 2016; Ozer, 2020). This is primarily due
to the fact that the failure of these geo-structures, like other engineered and natural
slopes, may have significant economic, social and environmental consequences (van
Baars, 2005). Therefore, the timely analysis and prediction of stability of these slopes
allow decision makers to adopt appropriate measures to minimise the risk of slope failure
in hazard-prone areas.

Rainfall-induced slope failure typically happens due to the reduction of the matric
suction near the slope surface and/or elevated ground water level that leads to an increase
in pore water pressure (pwp) and a decrease in effective stress. Hence, the reduction of
the shear resistance of the soil, and an increase in the weight of the slope, increase shear
stress on the soil. Depending on the type of slope and the scale of the analysis, different
methods are used for slope stability assessment.

In the context of natural slopes, where landslide forecasting is the main goal, these
methods target both spatial and temporal forecasting. They range from data-driven ap-
proaches such as statistics-based methods which are typically used for regional to global
slope stability analysis (Ada & San, 2018; Pourghasemi & Rahmati, 2018), to simplified
physics-based methods often used on a local scale (e.g., infinite slope analysis Baum et al.,
2010; Conte & Troncone, 2011, 2012) and advanced numerical analysis methods such as
the finite element method (FEM) at the site-specific scale (e.g., Conte et al., 2018).

For engineered slopes, physics-based numerical and analytical methods prevail due
to the higher accuracy of these approaches, and the typical high consequence of their
failure. Physics-based models, however, require a broad range of geotechnical and hydro-
geomechanical in-situ data for the accurate estimation of the state of individual slopes.
Although in-situ data are typically available for the analysis of engineered slopes, prac-
tically speaking, it is impossible to have accurate slope data with very high spatial and
temporal resolutions and coverage. This results in considerable uncertainty on the inputs
and outputs of numerical models for analysing slope stability. Moreover, analysing the
transient stability of slopes is usually computationally expensive, such that real-time sim-
ulations are virtually impossible, especially if incorporating climatic data or calibrated to
observed data. Therefore, an efficient approach for slope stability prediction can provide
a quick estimation of the slope condition and hence speed up the assessment process.
Data-driven approaches, such as Machine Learning (ML), have the potential to fulfil this
purpose. ML algorithms have been used at the regional scale to estimate slope stability.
The majority of work on landslide susceptibility mapping uses variants of ML algorithms
(e.g., Yilmaz, 2010; Mokarram & Zarei, 2018; Raja et al., 2017; Chen et al., 2017; Youssef
et al., 2016; Steger et al., 2016; Reichenbach et al., 2018; Pradhan, 2013; Pourghasemi
et al., 2018; Goetz et al., 2015). In these studies, historical slope failures were linked with
associated pre-disposing factors such as terrain features, landcover, and shallow lithology
to derive a pattern (model) that link these factors to the occurrence of landslides.
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In recent years, static susceptibility maps have been combined with dynamic data for
forecasting rainfall-induced landslides (e.g., Rossi et al., 2012; Kirschbaum et al., 2015;
Kirschbaum & Stanley, 2018; Hartke, 2019; Jia et al., 2020). For instance, Segoni et al. (2015)
used a susceptibility model, constructed using Random Forest (RF) classification, rainfall
measurements and empirical rainfall thresholds to predict potential rainfall-induced
landslides in northern Italy. A similar approach has been used for landslide ‘now-casting’
at the global level (Kirschbaum & Stanley, 2018).

Recently, several studies have employed data-driven methods for evaluating the sta-
bility of slopes (Tien Bui et al., 2016). Wei et al. (2021) used historical rainfall records and
pwp measurements from a slope in Hong Kong to train ML-based prediction models.
Chakraborty & Goswami (2017) estimated the factor of safety (FoS) of 110 slopes with
various geometric and shear strength parameters using ML. They compared the obtained
results with a finite element (FE) model, and an acceptable rate of accuracy was observed
for the predicted FoS. Pei et al. (2019) used RF and regression tree predictive models in
soil-landscape modeling for predicting the depth of the failure plane on a regional basis.
They developed a classification for detecting the safe and hazardous slopes by aid of FoS
calculations. Qi & Tang (2018) used different ML classification algorithms including RF
(with the highest accuracy among all models) to forecast the slope stability for 148 slopes,
using geometric characteristics (slope angle and height) and soil parameters (cohesion,
internal friction angle and unit weight). While these studies were successful in identifying
vulnerable slopes, temporal changes in the FoS were not identified. Among the different
algorithms used in predicting slope stability conditions, ensemble tree-based methods
such as RF classifiers and regressors proved to be promising (Pourghasemi & Rahmati,
2018; Ada & San, 2018; Lin et al., 2018; Qi & Tang, 2018). These methods are known to be
robust against over-fitting, in which case the model performs well on training data, but
performs poorly on the test set. Moreover, as the number of trees increases, the generali-
sation error (a measure for the algorithm accuracy in predicting target values/class for
previously unseen data) converges to a limit (Breiman, 2001).

While static slope parameters (e.g., layering, cohesion, internal friction angle and unit
weight) can be measured, a high degree of accuracy at the regional scale is challenging,
and temporal changes (e.g., degree of saturation, suction, bulk density) are generally
neither known nor feasible to measure at the regional scale, without cost-prohibitive
extensive monitoring. Continuous analysis and prediction of dike stability (and any other
slope stability), however, is not possible without proper physical inspection and mon-
itoring. This is because the slope failure is a time-dependent process that causes the
deterioration or damage of slope components and ultimately leads to failure (Cundill,
2016). Periodic inspections are often used to assess the overall condition of dike systems,
and detect vulnerable areas, which generally use surface conditions, e.g., cracks and
vegetation, to imply the dike condition. Dike inspection procedures, regulations and
processes (e.g., frequency and criteria) vary between countries (CIRIA, 2013). There are
in-situ monitoring systems, such as electrical resistivity tomography, by which the dike
condition can be assessed through, for instance, crack openings and water infiltration
(Hojat et al., 2020). In the Netherlands, the current monitoring methods of dikes usually
consist of infrequent ground-based visual inspections (typically twice per year for regional
dikes (Chapter 2)), which rely highly on expert judgement. Thanks to (low cost or free)
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satellite images that have become available in recent years, there is a potential to use
large (global) data sets to inspect slopes from space. For instance, vegetation indices (VIs)
are accessible through both optical and radar remote sensing, and surface displacement
can be measured with the interferometric synthetic aperture radar (InSAR) techniques
(Hanssen, 2001; Ferretti et al., 2001). InSAR deformation/displacement analysis tech-
niques provide surface deformation with high spatial and temporal resolution, e.g., 5 m
by 20 m at every 6 day repeat cycle for the Sentinel-1 satellite (ESA, 2020). In Chapter 5
this topic is discussed in more detail. InSAR techniques have been shown to be able to
quantify the movements of unstable slopes, and it has been shown to be highly effective
in mapping slow landslides (Carlà et al., 2019).

In the previous chapters it is showed that transient surface displacement and vegeta-
tion condition have strong correlations with the slope FoS, due to their correlation with
the moisture content of the slope. In Chapters 2 and 3, the meteorological data combined
with soil parameters were used as input for the numerical model to estimate the change
in FoS and the non-linear hydro-mechanical behaviour of a dike under various weather
and vegetation conditions. The results of numerical study are qualitatively validated
using in-situ data from an instrumented dike of the Veenderij project (de Vries, 2012)
in this chapter. The same temporal signature and strong correlation in key parameters
have been observed in the real dike. As both the transient surface displacement and
vegetation condition are observable features, they can be used for dike inspection, and
for calculating the FoS to predict the macro stability of dikes.

In this chapter, we present a proof-of-concept that a data-driven approach can be
used to emulate expensive numerical simulations, to calculate the factor of safety of
dikes utilising only Earth observation (EO) data. First, the slope surface parameters most
closely related to the FoS are identified. These parameters, together with results from a
detailed numerical model, are then used to train an RF regression model to predict the
slope stability state. Results of the prediction models are validated with the calculated FoS
from the numerical simulations to evaluate the performance of the data-driven method.
The factor of safety (or other measures of safety) are not measurable quantities, and even
dike failure would also be a single data point, i.e., the factor of safety would be known to
be below 1. Therefore, the step towards validation of the method with field data has not
been made. However, numerical models have been substantially validated (e.g., de Gast
et al., 2020); therefore, such a model is used here to trial our proof-of-concept model.
This chapter aims to investigate if data-driven methods can be applied to assess a dike
condition using EO data, which is not currently used in monitoring vegetation covered
dikes. To the author’s knowledge, this is the first time that data-driven methods have
been applied to dike stability calculations, only considering parameters which can be
obtained from EO and the first time in which vegetation and climatic conditions have
been considered. Therefore, one illustrative case study is utilised to show the application
of this methodology, highlighting its potential strengths and limitations.

4.2. METHOD
The integrated crop-geotechnical model that proposed in previous chapters for the nu-
merical simulation of dikes under hydro-meteorological conditions and the influence
of vegetation, provide detailed hydro-geomechanical and safety analysis of an idealised
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Figure 4.1: Flow chart of numerical modelling procedure.

dike in order to create a 10-year-long time series of synthetic data of the dike behaviour.
These results are analysed to identify the observable features of the model that have the
strongest influence on FoS. As the intention here is to estimate the transient FoS from the
dike surface, only superficial transient features are investigated. The features are used to
train an RF algorithm to predict the stability/safety of the dike.

4.2.1. INTEGRATED CROP-GEOTECHNICAL MODEL
Commonly used geotechnical models (e.g., PLAXIS (Plaxis BV, 2018)) do not simulate
the dynamic effects of vegetation on water flux (evaporation and influx) and therefore
do not consider the influence that vegetation may have on soil–atmosphere interactions
and slope stability. Crop models, however, have been used to simulate the interaction
of vegetation and the upper soil layers (e.g., LINGRA (Bouman et al., 1996)). In Chapter
2, the two models (LINGRA and PLAXIS) were coupled together to assess the effect of
variable climatic and vegetation conditions on dike stability. As evaporation-induced
cracks alter the water balance in a dike by increasing flow through the cracks and at the
same time reducing the shear strength of the root zone, the model was further modified
to include the effect of surface cracks in Chapter 3. Here, it is assumed that the cracks do
not seal (close) in the wet periods, but only expand during unprecedented dry conditions.
For example, if a crack is developed when root zone soil moisture (SMr z ) is 0.2 (cm3 water
cm−3 soil), it will expand when SM drops below 0.2. However, the crack area does not
change if SM reverts above 0.2. The key inputs and outputs of the model are shown in Fig.
4.1. The outputs are explained further in Section 4.3.1, and the outputs of the integrated
crop-geotechnical model used to provide synthetic data in the current chapter.

4.2.2. MACHINE LEARNING METHOD
The synthetic data set, from the integrated crop-geotechnical model, is used to build
and train an RF algorithm to predict the safety/stability condition (i.e., FoS) of the vege-
tated dike. The main idea here is to estimate the stability of the dike, without repeating
expensive numerical simulations, using data that can be potentially observed without
physical contact measurements. The general procedure for the ML model in this research
is shown in Fig. 4.2. The input features of the RF model include rain and temperature
values obtained from the meteorological data, as well as L AI and displacement, which
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Figure 4.2: Flow chart of machine learning (ML) procedure.

are readily observable using remote sensing. The chosen parameters are also those with
the highest impact on the target value, i.e., the FoS. For instance, rain and air temperature
have a higher influence on FoS rather than other meteorological parameters used in the
numerical study. In addition, the importance of Acr ack as an input feature is investigated,
as it is in theory observable from the dike surface, but there are no methods to do so
remotely yet available. The target (output) variables of the RF model are the FoS values
predicted by the numerical model. The temporal resolution is 1 day for all of the features;
L AI , di f [L AI ] and Acr ack are averaged over the surface. Displacement is retrieved for
one location (one point) on the surface. The target value, FoS, is considered for the whole
dike geometry.

RANDOM FOREST ALGORITHM

The random forest (RF) method, which was introduced by Breiman (2001), is an ensemble
learning method used for classification and regression. The RF algorithm is based on an
ensemble of decision trees (DT) for classification or regression trees (RT) for regression.
In this study, we use RTs, since the target outputs are quantities (not classes) that need to
be predicted. The Python library ‘Scikit-learn’ (Pedregosa et al., 2011) has been used here
for the RF regression analysis.

The RF is a series of tree-like graphs, as shown schematically in Fig. 4.3. A deci-
sion/regression tree (DT/RT) is a set of decision boundaries (yes/no questions or thresh-
olds) regarding every feature in the training data that eventually leads to a predicted class
or value for classification or regression, respectively. For regression, this threshold is
obtained by scanning through all the values of that feature in the training data and finding
the threshold (called the optimal threshold here) that results in the minimum sum of
square of the difference between the predicted target value and the actual target value.
A root node is the entry node on top of the RT, where a first decision boundary is set by
asking if the first selected feature (can be any feature in the context of random forest) is
less than or greater than an optimal threshold. This action divides the data into smaller
subsets, where the action is repeated for other features (intermediate nodes) and the tree
is expanded until the decision is made about the target value in the last node (leaf node).
More information on DTs can be found in Breiman et al. (1984).

For regression, RF builds a number of regression trees (N ) and the final predicted
values are obtained by the aggregation of the results of all individual trees. The random
forests regression predictor is described by the following equation (Zhou et al., 2019):
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Figure 4.3: Basic structure of RF regressor: x = {x1, x2, ...} are features, n is the number of trees, l is the target
value (after Verikas et al. (2016)).

l (x) =
∑N

n=1 ln(x)

N
(4.1)

where l is the output, in this case the FoS, x is the input vectors for the RF model, n
denotes the tree number and N is the number of regression trees in the forest.

Compared to other tree-based algorithms, e.g., those constructed based on boosting
(e.g., XGboost), RF is less affected by noise and can generalise better. This improves the
stability and accuracy of the model, reduces variance and helps to avoid over-fitting. In
addition, RF has fewer parameters (known as hyper-parameters (HPs)) to tune, and it
is easier to visualise and understand. Hastie et al. (2009) show that RFs do remarkably
well, with very little tuning required compared to other tree-based models. One of the
limitations of RF regressors, similar to many other ML algorithms, is that they are not able
to extrapolate. In other words, the range of predictions an RF can make is bound by the
highest and lowest target and feature values in the training set.

BUILDING AND TRAINING THE RF MODEL

The data set, including features and corresponding target values, is divided into training
and test sets. During training, each tree in the RF ‘sees’ the answers, and can learn how
to predict the target from the features. The RF model learns the relationship between
features and the target in training. When testing, the RF is asked to make predictions
based on features in a test set. Finally, the model performance is evaluated by comparing
the predicted target values and actual values in the test set.

The RF building and learning algorithm has several HPs that have to be defined by the
user. For example, the number of observations drawn randomly for each tree, the number
of features drawn randomly for each split (branch), the splitting rule, the minimum
number of samples that a node should have, and the number of trees must be defined.

The basic steps for forming a RF algorithm are (after Hastie et al., 2009):
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• A section of training data (with replacement) is selected. This is made up of a number
of samples (the full set of observable features associated with each time point).

• For each selection, a regression tree is constructed, constrained by the user-defined
hyper-parameters. At each node, a threshold is determined for a single (randomly
selected) feature. The data are then partitioned until a best estimate of the output is
calculated.

• The target value from every decision tree is predicted.

• Voting of predicted results is conducted to achieve the terminal predicted results. In
a regression RF, voting means using the mean value of results.

In ML, tuning refers to the task of finding the optimal HPs from candidate hyper-
parameters for a considered data set (Probst et al., 2019), that results in the best perfor-
mance. Here, k-fold cross validation (Stone, 1974) is used, as it is one of the most common
methods of hyper-parameter tuning. The data in the training set are randomly divided
into K roughly equal-sized groups. For the kth group, the model is then trained over the
remaining K −1 groups. Then, the prediction error of the fitted model on the kth group is
calculated. This iteration is repeated K times and the prediction errors are averaged. This
cross-validation procedure gives more reliable results as the variance of the estimation is
reduced (Hastie et al., 2009).

FEATURE IMPORTANCE

It is useful to know the relative importance or relevance of each feature (input variable) to
the predicted response (target variable). This helps the user to understand the important
drivers for RF to reach its prediction.

In each tree from an RF model, every node implements a condition on a single feature.
In other words, that feature is used to make a decision on how to divide the data set into
two separate sets (e.g., feature x1 in Fig. 4.3) which have similar responses. The features for
nodes in regression trees are selected based on variance reduction in ‘impurity’. Impurity
is a measure of how badly the target data (here FoS) at a given node fits the built model.
During the training of a regression tree, it can be computed how much each feature
decreases the impurity by variance reduction in a tree. For a forest, the ‘impurity’ decrease
from each feature can be averaged across the forest and the features are ranked according
to this measure. In this study, the RF regressor calculates variance reduction using the
mean squared error (MSE) to measure the quality of a split (selecting the optimal value)
in intermediate nodes (Pedregosa et al., 2011).

4.2.3. CASE STUDY

NUMERICAL MODEL

The same example dike used in the previous chapters is also used for this data driven
study (Fig. 4.4). The points that data will be showed later in Section 4.3.1 are presented in
Fig. 4.4. The data from the adopted version of the integrated crop-geotechnical model
that introduced in Chapter 3, for 10 years of climate data for cracked soil is used in this
chapter.
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Figure 4.4: Example dike simulation geometry.

RF MODEL

The RFs are built and trained on the synthetic data set generated using the integrated crop-
geotechnical model of the example dike for cracked condition. The data are presented in
Chapter 3. The predictive performance of RF regression is investigated in two scenarios.

• Real-time assessment (RFr t a): the dike safety (FoS) is assessed in real-time based on
the observable data. The features are selected from the same day on which the FoS
is estimated by the RF model.

• Short-term prediction (RFst p ): the dike safety is calculated for some days in the
future. This time lag gives dike managers enough time to take necessary actions
before the occurrence of potential catastrophic events. All features except rainfall
and temperature are for some days prior to the day that FoS is estimated. Rainfall
and temperature correspond to the day on which FoS is calculated by the RF model.

In both scenarios, three data sets are formed from the 10-year synthetic data. The data
before 2018 will be used for training and testing the RF models: 80% of data are randomly
selected as a training set and the remaining 20% as a test set. The data after 2018 are used
for independent evaluation of the trained and tested model to check the performance of
the trained model on data that it has never ‘experienced’. This set is called the evaluation
set, and is useful to explore the generalisation of the model.

RF MODEL HYPER-PARAMETERS TUNING

To choose the best HPs for the two RF regressors, a 10-fold cross validation (10-CV) was
performed on the corresponding training data. The impact of three different values of K
(5, 10 and 15) was tested for the RFr t a model. As the influence of the K within this range
was found to be negligible, 10-CV was selected for all RF models. The HPs tuned here are
as follows: (i) The number of trees in the forest (n-estimator); (ii) The maximum depth
of the trees, which is the maximum number of splits until the leaf node; (iii) The min-
samples-split which represents the minimum number of samples (observations) in a node
which undergoes splitting, this can vary between one sample to all of the samples at each
node. When this parameter is increased, each tree in the forest is increasingly constrained;
(iv) The min-samples-leaf parameter specifies the minimum number of samples required
to be at a leaf node. The considered candidates for each hyper-parameter are listed in
Table 4.1; the chosen candidates are within the reasonable range that usually are used in
RF models.
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Table 4.1: List of candidate values for hyper-parameter for all RF models

Parameter Tested value
n-estimator [10, 50, 100, 200, 300, 500, 700, 1000, 1500, 2000]
max tree-depth [10, 30, 50, 70, 100, 150, 200]
min-samples-split [2, 3, 4, 5, 8, 10]
min-samples-leaf [1, 2, 3, 4, 5]

4.3. RESULTS AND DISCUSSION

4.3.1. INTEGRATED CROP-GEOTECHNICAL MODEL SIMULATIONS
The outputs of the numerical simulations using the integrated crop-geotechnical model
are shown in Fig. 4.5. The temporal variation in the crack area is shown in Fig. 4.5(a). As
mentioned in Section 4.2.1, it is assumed that cracks do not seal, and that crack formation
is therefore irreversible. Most cracking occurs in the first year (2009) after the analysis
starts. During wet periods in 2009 (May–August), the crack size remains constant until
the next drier period in June 2009. Then, again in the summer of the next two years,
the soil experiences the next drier condition, and as a result, cracks expand. The time
between cracking events gets longer as the crack expands, only in conditions drier than
the previously experienced ones. After 6 years, there is almost no additional cracking until
summer 2018, when the driest conditions occurred and Acr ack reached the maximum
value in the studied period. Temporal variations of L AI are shown in Fig. 4.5(b). The
sudden decrease in L AI on mid-June and mid-August every year is due to mowing events,
indicated by vertical dashed lines. These were introduced into the crop model based on
the mowing schedule of regional dikes in the Netherlands (Chapter 2). In Fig. 4.5(c), the
change of vegetation growth (di f [L AI ]) in a time window of 15 days is plotted.

The presence of cracks is seen to decrease the change of vegetation growth after
mowing (demonstrated by the di f [L AI ]), because less water is available in the root zone.
Vegetation can re-grow between mowing events when a substantial amount of rainfall
happens in this period (e.g., summer 2014); however, di f [L AI ] is almost zero when there
is a dry period between mowing events (e.g., summer 2018).

The ground water level (GW L) measured relative to the base boundary at point A
(see Fig. 2.1), is shown in Fig. 4.5(e). During wet periods, the water level in the example
dike increases, when the soil moisture in the root zone SMr z reaches the field capacity.
As the spring starts and SMr z reduces, the GW L A typically decreases and reaches the
minimum value in July 2018 when SMr z has the lowest value during the studied period.
Fig. 4.5(f) shows the magnitude of the surface displacement at point A (|UA |), which
follows a pattern similar to GW L A in Fig. 4.5(e). The seasonal cycle in |UA | is caused
by variations in SMr z and GW L A ; in the winter period, the magnitude of displacement
increases, while in the summer, it reduces. A slight accumulation of |UA | over time is seen
due to plastic displacement and growing cracks due to shrinkage behaviour in the root
zone. Finally, the temporal variation of FoS is shown in Fig. 4.5(g), which is the result of the
combined effect of rainfall, change in L AI and crack area variation from 2009–2019. The
maximum crack area, and therefore the minimum shear strength parameter (cohesion
and friction angle), lead to a minimum FoS in August 2018 when there is a heavy rainfall
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event and very low L AI (almost bare soil), due to an extremely dry summer. The results
show that the vegetation and dike condition are responsive to the climate condition and
there is a similar temporal signature in all the plotted results.

Figure 4.5: Time series outputs from the coupled model for 10 years; (a) crack area percentage (Acr ack ); (b) Leaf
Area Index (L AI ); (c) rate of L AI change over 15 days (di f [L AI ]); (d) average soil moisture in the root zone
(SMr z ); (e) ground water level at point A (GW L A); (f) magnitude of total displacement at point A (|UA |); (g)
Factor of Safety (FoS).
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Figure 4.6: Lag correlation between FoS and (a) root zone saturation (Satr z ); (b) magnitude of total displacement
(|UA |); (c) ground water level at point A (GW L A); (d) L AI ; (e) rate of L AI change over 15 days (di f [L AI ]); (f)
temperature (T MP ); (g) crack area (Acr ack ), (h) rain; (i) cumulative rainfall during the last 65 days.

4.3.2. CORRELATION BETWEEN POTENTIAL FEATURES AND THE FACTOR OF

SAFETY
Fig. 4.6 shows the correlation between pairs of FoS and selected features considering a
time lag for the simulation data. A positive time lag means that the selected parameter
leads the FoS (either positive or negative correlation).

As shown in Fig. 4.6(a), the root zone saturation Satr z is negatively correlated with the
FoS, with the highest correlation at the same day that FoS is calculated. A higher amount
of water in the root zone causes a higher pwp, thereby lowering the effective stress and
then lowering the stability of the whole dike. This correlation is not strong, since if the
root zone experiences very dry conditions, the cracks expand (explained in Section 4.3.1),
which decreases FoS. Although Satr z is a good potential indicator for variation of FoS in
time, it is not easily observable. Root zone soil moisture could be inferred from surface
soil moisture, but cannot be monitored from space unless very long wavelengths are used,
which will not be available in the near future (Entekhabi et al., 2014).

There is a negative correlation between FoS and |UA | and GW L A represented in
Fig. 4.6(b)-(c), respectively. This trend can be seen from the temporal variations in Fig.
4.5(e),(g). The temporal variation of surface displacement is linked to the variation of
water level in the dike. Shrinkage/swelling behaviour of the soil is due to the available
water in the soil or ground water level variations, which both affect the dike safety by
altering effective stress. To validate this relation, the in-situ data from a regional dike in
Amsterdam, the Netherlands, that was studied in the Veenderij project (de Vries, 2012),



4.3. RESULTS AND DISCUSSION

4

65

�$�
����	

$�
����	

��#
����	

���
����	

���
����


 !
����


�$�
����


$�
����


��#
����


���
����


���
�����

 !
�����

'���


'�
��

'���


'����

�$
!�
��
��
��
" 
��
��
�
��
#��
�
�
�

����

���


����

���


��	�

��	


�
��
#�&
��
��
%
�#
�!
��
��
#�
�#
���
�

Figure 4.7: Time series of surface displacement and water content in the root zone (June 2014- April 2016).

R
R

Figure 4.8: Correlation coefficient (R) between: (a) displacement and SM , (b) displacement and GW L in the
root zone with time lags as much as 30 day during 4 years at Veenderij dike.

are analysed to confirm the simulated behaviour. Fig. 4.7 shows the temporal variation of
root zone water content and displacement for a nearly two-year period (June 2014- April
2016). The shallow displacement and root zone water content have the same temporal
variations. Strong positive correlations between the SM and displacement, and between
GW L and displacement in the root zone for four years (January 2012-January 2016) are
shown in Figs. 4.8 (a)-(b). Displacement is observable remotely; however, GW L is not,
and due to the existing link between these two parameters, monitored displacement
can be best used as a feature. Displacement can be measured with InSAR techniques,
currently with a resolution that it cannot be assigned to a specific location on a dike.
However, the displacement of the entire dike is highly correlated, as demonstrated by
comparing the displacement of two points (point A and point B) in Fig. 4.9. Therefore,
having the displacement of any point on a slope is useful.

There is a weak lagged correlation between FoS and L AI or rate of L AI change over 15
days (di f [L AI ]), shown in Fig. 4.6(d),(e). The overall correlation is low because vegetation
growth is affected by multiple factors including Satr z , available energy, and mowing. The
presence of vegetation influences stability through water balance. When rainfall occurs,
vegetation reduces the amount of water that reaches the dike body; the lower pwp (higher
suction) causes higher FoS. On the other hand, as cracks expand, vegetation growth is
lower compared to uncracked areas. In rainfall events, preferential flows reach the soil
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R

Figure 4.9: Lag correlation between magnitude of surface displacement at points A and B.

body (more pwp) and shear strength reduces. These factors together lead to a reduction
in FoS.

It was also shown that crack presence affected the di f [L AI ]. Evapotranspiration from
the root zone increases due to the crack growth and less water is available for the grass to
grow, thereby di f [L AI ] is reduced as crack area increases. L AI can easily be monitored
using space-borne instruments.

Temperature has a weak correlation with FoS (Fig. 4.6(f)) due to the indirect relation it
has on dike stability. In the growing seasons, air temperature is high and vegetation grows.
Without rainfall, this causes soil drying, which results in soil cracking and reduction of
the L AI . In addition, the air temperature influences the evapotranspiration demand,
which influences the Satr z variations, already discussed above. The temperature is most
strongly correlated with FoS at the maximum time lag considered (30 days) before the
FoS. Temperature is measured via existing weather stations, and does not have significant
local variations. Therefore, temperature can be used as a feature for an indirect way of
assessing the FoS.

The strong negative correlation between crack area and dike safety, shown in Fig.
4.6(g), is the consequence of reduction in the shear strength, and preferential flows
through the cracks that cause an increase in pwp in the dike body, thereby lowering
effective stress and FoS. While the maximum correlation is with a zero time lag, a positive
time lag retains a high correlation. Although Acr ack has a strong correlation with FoS, it is
impractical with current methods to measure the crack area remotely.

Rainfall has a negative correlation with FoS mostly with 1 day lag, max R =−0.24 (Fig.
4.6(h)), indicating that rain causes a change in FoS after one day, with a low correlation
outside of a single day. To consider the effect of antecedent rainfall on dike stability, the
correlation between cumulative rainfall with the different time windows and FoS was
tested and a 65-day window (Rai n.cu-65) in Fig. 4.6(i) was found to have the strongest
correlation with FoS.
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Table 4.2: Tuned hyper-parameters for constructed RF models.

RF model n-estimator max tree-depth min-samples-split min-samples-leaf
RFr t a 700 200 2 1
RFr t a,Rai n-1d 700 70 2 1
RFr t a,Acr 2000 200 2 1
RFst p,15d 700 30 2 1
RFst p,15d ,Acr 1500 30 2 1
RFst p,5d 1000 100 2 1

4.3.3. RF REGRESSION
The results from the previous section are used to build a predictive model. Firstly, an
RF is built, tuned and tested using easily observable features available at the time where
the output (FoS) is required, i.e., a real-time assessment (RFr t a and RFr t a,Rai n-1d ). This
analysis is then extended utilising crack area as an important feature, which is not, at
this present time, considered observable (RFr t a,Acr ). Secondly, an RF is built, tuned and
tested using easily observable features available 15 days prior to when the FoS is required,
i.e., a short-term assessment (RFst p,15d ). This analysis is then extended in two ways, using
the same additional feature (RFst p,15d ,Acr ) and reducing the time period of the short-term
prediction to 5 days (RFst p,5d ). For all the RF models that have been built and used in this
study, the tuned values for HPs are listed in Table 4.2.

FEATURE SELECTION

The feature selection was based on the available EO data that have high spatial/temporal
resolutions and relatively good precision, and a good correlation with the FoS. Soil mois-
ture and ground water level influence dike safety strongly (Figs 4.6 and 4.8), but they are
difficult to observe without ground-based monitoring. Therefore, the selected features
for FoS prediction in this study are L AI , di f [L AI ], displacement, daily rainfall, cumula-
tive rainfall and temperature. For the short-term predictions, data related to the slope
for the days before the FoS is needed are selected and meteorological data (cumulative
rainfall and temperature) are used on the event day, as reliable short term meteorological
predictions are available.

To avoid a complex model and over-fitting, uncorrelated features should be used as
inputs. Therefore, the selected features are tested to examine if they are highly correlated
or not. In Fig. 4.10, the correlations between the selected features for all RF regressors
are plotted. The features are not highly correlated and can therefore be used as candi-
date features to build the models for real-time assessment (Fig. 4.10(a)) and short-term
prediction (Fig. 4.10(b),(c)).

REAL-TIME ASSESSMENT

The RFr t a model is built and trained based on the selected hyper-parameters and features.
The feature importance values constitute the relative predictive power of the features
and are shown in Table 4.3, where surface displacement (|UA |) is seen to have the highest
importance, 0.42. It is also shown in Section 4.3.2 that |UA | has a strong correlation with
FoS. Cumulative rainfall during the last 65 days (Rai n.cu-65) has the second highest
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Figure 4.10: Correlation between features for (a) real-time assessment, (b,c) short-term prediction RF models
with 15 days and 5 days lag, respectively.

importance, with a feature importance of 0.22, and L AI at the event day has a lower im-
portance of 0.17. The feature importance of both vegetation growth over the past 15 days
(di f [L AI ]) and temperature (T MP ) are low, 0.1 and 0.07 respectively. The displacement
is the most direct proxy for the water effect within the dike, whereas the rainfall amount
and amount of vegetation and temperature influence the water flux, therefore it is logical
that they have a lower importance. The rate of vegetation growth is influenced by various
climatic variables, and was seen previously in chapter 3, Fig. 3.10, to have a different
response at different times of the year, therefore it is reasonable for it to have the lowest
importance.

Figs. 4.11(a),(b) show the predicted FoS versus the numerically calculated FoS for the
test set and the evaluation set, respectively. The points in these two plots are colourised
based on Acr ack . The coefficient of correlation (R) between the predicted and calculated
FoS in the test data set is 0.94 and RMSE = 0.05. It is clear that the model performs well on
the unseen data (test set) that is within its training sample space (Fig. 4.11(a)). However,
when it comes to the evaluation set, the model performance deteriorates (Fig. 4.11(b));
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Table 4.3: Feature importance for real-time assessment RF models.

RF model Acr ack |UA | Rai n.cu-65 L AI di f [L AI ] T MP Rai n-1d
RFr t a - 0.42 0.22 0.17 0.1 0.07 -
RFr t a,Rai n-1d - 0.40 0.21 0.16 0.09 0.06 0.06
RFr t a,Acr 0.47 0.25 0.11 0.07 0.04 0.03 -

R = 0.31 and RMSE = 0.1. The latter value is considered a high error, since the range
of calculated FoS in 2018 is from (almost) 0.8 to 1.4 (although both the R and RMSE
are affected by the lower range of values). The variation of predicted and calculated
FoS in 2018 is shown by the left-hand side y-axis and the dashed and dotted lines, and
precipitation in the same period is shown by the right-hand side y-axis and starts in Fig.
4.11(c). The low performance of the RFr t a on the evaluation set can be explained based
on the latter figure; until further crack growth takes place, the predicted FoS is very close
to the calculated FoS (before 22 July 2018) (R = 0.82; RMSE = 0.04). This is also reflected
on Fig. 4.11(b) by orange markers close to the diagonal line. Once cracks start growing
after 22 July 2018, the predicted FoS deviates from the calculated FoS (red markers on Fig.
4.11(b)). This is particularly clear on the day with the heaviest precipitation in September
2018 (see Fig. 4.11(c)), which causes a large drop in calculated FoS. The (red) markers with
the highest distance from the diagonal line correspond to rainy days after crack growth in
July 2018. The RFr t a cannot capture the response to the heavy rainfall which occurs in
this period.

As explained in Section 4.3.1, when cracks grow, the calculated FoS is affected by
Acr ack and precipitation events (drop in FoS in August 2018). This shows that the model
could not generalise (extrapolate) well on the training data before 2018. Since, the RF
model is not trained over the data with 10% crack area. This is mainly attributed to the
combination of rainfall intensity and unprecedented crack area. In order to investigate
the effect of rainfall intensity on the same day that FoS is calculated, this parameter was
also included as a feature in building the next predictive model, RFr t a,Rai n-1d . The feature
importance of this model is similar to RFr t a (Table 4.3), except that the added feature
(Rai n-1d) has a very low impact on generally predicting FoS. Since the general results of
these two models are almost the same, only the time series plot is shown in Fig. 4.11(d).
The R value between the predicted and calculated FoS in the test data set is 0.96 and RMSE
= 0.05 for RFr t a,Rai n-1d , and in the evaluation data set, R = 0.32 and RMSE = 0.10. Using
Rai n-1d , the performance of the predictive models improves on days with heavy rainfall,
e.g., in April and October 2018, where example results are emphasised with the blue box
around them. In these periods, the predicted FoS using RFr t a,Rai n-1d is responsive to
significant rainfall events, where the predicted FoS drops, following the trends in the
calculated results, which is significant for predicting unsafe situations.

In an attempt to improve RF performance, a new model (RFr t a,Acr ) is built using
Acr ack as a feature, along with other features. The feature importance is shown in
Table 4.3. Acr ack has the highest importance among the other features (0.47). |UA |
has the second highest feature importance (0.25) and then it is followed by other features.
The importance order of the observable features follows RFr t a .
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Figure 4.11: RFr t a model performance, over (a) testing data set and (b) evaluation data set, and (c) time series
of calculated and predicted FoS in the evaluation data set; (d) time series of calculated and predicted FoS in the
evaluation data set using RFr t a,Rai n-1d .

In Fig. 4.12(a),(b), the predicted FoS from the testing and evaluation data set using the
RFr t a,Acr model is plotted against the calculated FoS in the corresponding data set, respec-
tively. The R value between the predicted and calculated FoS in the test data set increased
to 0.98 and the RMSE decreased to 0.03 (in respect to R = 0.96 and RMSE = 0.05 for RFr t a).
For the evaluation data set, R = 0.56 and the RMSE = 0.07, an improvement compared to
the RFr t a model performance over the evaluation data set (year 2018). According to the
time series plot (Fig. 4.12(c)), the overall performance of RFr t a,Acr is improved compared
to RFr t a . Yet, the predicted values over-estimate the FoS after the crack expands on 22 July
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2018, mostly due to the unprecedented low values, as explained before. In addition,
the RFr t a,Acr model has a significantly smaller response to the heavy rainfall events in
August–September 2018 than observed. According to Table 4.3, Rai n.cu-65 has relatively
low influence (feature importance = 0.11) on the FoS prediction. This causes a deviation
in the predicted FoS for results after crack growth from the calculated FoS (red points in
Fig. 4.12c). However, when there is no heavy rainfall, e.g., in October 2018, RFr t a,Acr

performs well.
In total, when including the crack area as an input feature, in addition to those in

the previous model, the model performance improves. It remains a difficult feature to
observe, but warrants further investigation given its importance.

Results of this section show that the built RF models have low accuracy after the new
trend takes place after growing cracks in summer 2018, because the RF model is not
trained for the maximum crack area period. If an RF algorithm was trained over more
diverse data of different cases, the RF models may have better performance.
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Figure 4.12: RFr t a,Acr model performance, over (a) the testing data set and (b) the evaluation data set; and (c)
time series of predicted and calculated FoS in the evaluation data set (year 2018).

SHORT TERM PREDICTION

In this section, it is investigated whether an RF algorithm can give a short-term forecast
for the dike safety. The used features are the same as before but for an earlier time. L AI ,
di f [L AI ] and |UA | are selected 15 days before the event day. It is known that these have a
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Table 4.4: Feature importance for short term prediction RF models

Features Acr ack -15/5d |UA |-15/5d Rai n.cu-65 L AI -15/5d di f [L AI ]-15/5d T MP

RFst p,15d - 0.32 0.23 0.22 0.10 0.08
RFst p,15d ,Acr 0.48 0.17 0.13 0.11 0.05 0.05
RFst p,5d - 0.36 0.23 0.19 0.12 0.08

lower correlation (see Fig. 4.6), however this gives sufficient time to undertake further
inspection and take action. To enhance RF performance, the meteorological data are
used based on the event day, assuming that the climate data are predicted from different
climate models which are quite reliable. The time of 15 days is selected as a period, where
both the meteorological predictions may be reasonably accurate and which gives the dike
managers enough time to take emergency inspection and remedial actions.

In Table 4.4, the feature importance for short-term prediction (15d) is shown. Like
the previous analysis of RFr t a , |UA |, 15 days before the event day (i.e., |UA-15|), it has the
maximum effect on FoS prediction, with the feature importance of 0.32. This is because,
even with a 15-day lag, the correlation between displacement and FoS is relatively strong,
−0.44 (Fig. 4.6(f)). Rai n.cu-65 places in the second rank with the feature importance
of 0.23, which does not have the 15 days lag, and the data up to the event day are used,
considering the earlier assumption of meteorological data for the next 15 days. L AI -15
has the feature importance of 0.22. The feature importance of di f [L AI -15] and T MP
have the least impact on the FoS prediction, like the previous analysis in Section 4.3.3,
since these two features have a very low correlation with FoS (Fig. 4.6(e),(f)).

The results in Fig. 4.13(a), which are coloured by Acr ack , show that for RFst p,15d ,
R = 0.94 and RMSE = 0.06. The results for the evaluation data set (Fig. 4.13(b)) show
poor performance, i.e., R = 0.06 and RMSE = 0.14. As discussed before for RFr t a , in
the evaluation data set, after cracks grow, the red markers diverge from the diagonal
line, showing the deviation of predicted FoS from calculated FoS after 22 July 2018. The
markers that have the highest error in prediction correspond to heavy rainfall after crack
expansion and cause reductions in calculated FoS, while RFst p,15d cannot predict these
values. In Fig. 4.13(b),(c), the predicted FoS over 2018 is plotted against the calculated FoS
in the independent data set. As before, it is seen that after the crack growth, the RFst p,15d

model cannot predict FoS accurately.

In an attempt to improve the results, two other analyses are tested. Firstly, as in the real-
time assessment, the crack area is also considered as one of the features (RFst p,15d ,Acr );
secondly, the period of the short term prediction decreased to 5 days (RFst p,5d ). For the
former option, Acr ack is selected from 15 days before the event day, and the other features
remain as in the RFst p,15d model.

As expected from previous analyses, Acr ack has the highest impact on the RF perfor-
mance (0.48); this is followed by |UA-15| with a feature importance of 0.17. Again, the
order of the feature importance for the rest of the features is the same as in the previous
analysis. Rai n.cu-65 has the relative importance of 0.13, then followed by L AI -15 with
the relative importance of 0.11. The lowest relative importance is again for di f [L AI -15]
and T MP .
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Figure 4.13: RFst p,15d model performance, over (a) the testing data set and (b) the evaluation data set, and (c)
time series of predicted and calculated FoS in the evaluation data set (year 2018).

The results of RFst p,15d ,Acr are shown in Fig. 4.14. The performance of the RFst p,15d ,Acr

model is increased compared to RFst p,15d over both testing and evaluation data sets.
Adding Acr ack leads to a higher correlation between predicted and calculated FoS in the
testing data set; R increased in order of 0.04 (R = 0.98) and RMSE is reduced by 0.02 (RMSE
= 0.04) for the evaluation data set. Again, it can be inferred that after additional crack
growth, the model cannot extrapolate FoS values for the heavy rainfall events, since the
relative power of antecedent rainfall in predicting FoS is relatively low (feature importance
Rai n.cu-65 = 0.13).

In another attempt to improve the short term prediction models, the lag is reduced
to 5 days, which means that |UA |, L AI and di f [L AI ] are selected from 5 days before
the event day, while Rai n.cu-65 and T MP are selected from the same day that FoS is
predicted; Acr ack is no longer considered. This period can be considered as sufficient to
take emergency actions before a dike fails, e.g., evacuating a residential area.

The feature importance of RFst p,5d model is shown in Table 4.4. Like the previous
models, |U A −5| has the highest importance among other features, 0.36; this is between
feature importance for |UA | in real-time assessment and |UA-15| for short-term prediction
(15 days). The reason can be also concluded from Fig. 4.6(b): as the time lag increases, the
correlation between FoS and |UA | decreases. The ranking order for other features for the
RFst p,5d is the same as short-term prediction with 15 days lag. However, the correlation
between predicted and calculated FoS is increased in RFst p,5d , R= 0.24 and RMSE= 0.12,
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Figure 4.14: RFst p,15d ,Acr model performance, over (a) the testing data set and (b) the independent data set,
and (c) time series of predicted and calculated FoS in the evaluation data set (year 2018).

compared to RFst p,15d . As the lag decreases, the correlation between FoS and |U A | and
Rai n.cu-65 increases, which leads to an increase in the power of the features in predicting
the FoS. The time series plot for 5 days’ prediction is shown in Fig. 4.15(c) (again like
the previous analysis), the predicted FoS after crack growth in July 2018, which deviates
from the calculated FoS. Although in RFst p,5d , the deviation is less from the actual FoS
compared to the results of RFst p,15d , it still performed poorer than RF15d ,Acr .

A summary of the build RF regressor ability to predict the FoS is given in
Table 4.5, for the training data set, testing data set (which are randomly selected over the
years 2009–2017) and the evaluation data set (year 2018). In both scenarios (real-time
assessment and short-term prediction), if the crack area is used as one of the features, the
model performance improves both in the testing data set and in the evaluation data set.
In short-term prediction, when the time window is shortened from 15 days to 5 days, the
RF model performance improves, since there is a higher correlation between the features
that have the highest impact (Acr ack , |UA | and Rai n.cu-65) and FoS at the shorter lag.
Currently, it is not feasible to measure the crack area, but there are ongoing studies to
simulate the crack volume, e.g., Li & Zhang (2010).

As shown in the results, using a RF regressor, the predicted values are never outside
the range of training set values for the target variable (FoS). One of the RF regressor
limitations is that it cannot extrapolate, because in the test set, it predicts an average of
the values seen previously in the training. Therefore, the predicted FoS is bound to the
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Figure 4.15: RFst p,5d model performance, over (a) the testing data set and (b) the independent data set, and (c)
time series of predicted and calculated FoS in the independent data set (year 2018).

Table 4.5: Summary of RF models performance on all datasets

Scenarios
training testing evaluation

R RMSE R RMSE R RMSE

Real-time
assessment

observable features
(5 features)

0.99 0.01 0.96 0.05 0.31 0.1

observable features
(6 features)

0.99 0.01 0.98 0.05 0.32 0.1

observable and crack
area as features

1 0.01 0.98 0.03 0.56 0.07

Short-
term
prediction

observable features
(15 days lag)

0.99 0.01 0.94 0.06 0.06 0.14

observable and crack
area as features
(15 days lag)

0.99 0.01 0.98 0.04 0.44 0.08

observable features
(5 days lag)

0.99 0.01 0.96 0.05 0.24 0.12

minimum and maximum values of the build RF models seen in the training set. In the
evaluation data set RF cannot, therefore, predict the minimum FoS values of the whole
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timeseries (2009–2018) that occurred after the training data set where the maximum
Acr ack occurs. To overcome this limitation, other algorithms can be used, e.g., deep
learning, or combining predictors using stacking (Pedregosa et al., 2011). An alternative
could be to undertake more numerical simulations of potential future scenarios to allow
the RF regressor to ‘see’ potential future results. This research introduces that using a
combination of EO data and predictive models can have a significant potential in the
context of dike monitoring. This helps dike managers to be able to undertake real-time
assessment and short-term predictions.

4.4. CONCLUSION
This proof-of-concept study investigates the potential use of observable data in predicting
temporal changes in slope stability due to climatic forcing and includes the impact of
vegetation and surface cracking. This study focused on making an ML-based surrogate
for an FEM model. The underlying assumption is that the FEM model can emulate reality.
Therefore, the validation against the ground truth data should be first reflected in the
FEM model evaluation. Using such an approach can provide experts with a monitoring
tool where they can assess a significant length of dikes relatively easily. A random forest
machine learning approach was adopted, with features used in the model (L AI , surface
displacement, cumulative rainfall and temperature) selected based on correlations with
the FoS and that were potentially observable using satellite earth observation. This has
advantages over using other features which require on-site investigation or the installation
of permanent sensors. The results from the predictive model used in this study show that
displacement has the highest feature importance for both cases of real-time assessment
and short term prediction. It is recognised that, for other situations, slightly different
features may be required. The approach resulted in an accurate prediction of the temporal
FoS before new cracking events for the example dike. Over the ’unseen’ data and after
a crack expansion, the model performance is weak, as an RF model cannot extrapolate
results and estimation is bound to the range of data over which the model has been trained.
The results of this study show the potential use of EO data for real-time assessment and
short-term prediction of an example dike condition. This method shows the potential
of predictive models to support the assessment of a dike condition (stability), but not to
replace more in-depth geotechnical site investigation and analysis.
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5
POTENTIAL VALUE OF REMOTE

SENSING FOR DIKE INSPECTION

Assessing slope conditions and risk management is often hindered by lack of data. In
the Netherlands, dike managers typically assess the condition of a dike by walking along
a dike, which is costly and infrequent. Remote Sensing (RS) can provide experts with a
frequent large-scale monitoring tool with high spatial resolution. This chapter discusses
the possibility of using the available RS data to monitor condition of regional dikes in the
Netherlands. Vegetation condition and surface displacement of an example regional dike
are extracted from publicly available RS data. The time series of those data is shown to be
suitable to aid dike managers to detect anomalies and weak spots along a dike, that can be
used to inform further investigation.
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5.1. INTRODUCTION

T HE integrity and reliability of earthen flood control infrastructure are essential to
ensure safe residential, industrial and commercial activities. Structural health and

cover quality monitoring and reliability-updating based on performance observations
contribute to a better dike condition assessment (Jonkman et al., 2018). In the Nether-
lands, the inspection methods rely largely on expert observers, who walk along a dike to
record the condition, guided partially by static data, e.g. the material used to construct
the dike. For example, the cover quality assessment was reported to be done twice a
year for secondary dikes by a specific waterboard (Chapter 2). These time consuming
observations are infrequent, subjective, qualitative and expensive which can be improved
by Remote Sensing (RS) data. In Chapter 4 it is argued that remote monitoring of slopes
could provide valuable information about their performance under various climate driv-
ing forces conditions. RS methods include active and passive sensors. Active sensors are
LiDAR and Radar, while passive sensors includes optical RS that can be implemented
using aerial photography (e.g. drones) and satellite imagery. In this work, the emphasis
is on satellite imagery and in the following sections RS refers to monitoring dikes from
space.

The availability of satellite data provides fine spatial resolution with high revisit times
that enables real-time monitoring of earthen flood-control structures, such as dikes.
Compared to manual observation, where data are collected at irregular time intervals
(or even not at all), RS can allow for a more accurate and objective characterisation of
slope status and behaviour. Manual collection of ground data provides information
at infrequent intervals and at a limited number of locations, whereas remote sensing
provides increased spatial and temporal coverage (Dunbar et al., 2017).

Chapter 4 and recent studies (e.g. Hasan et al., 2013), have highlighted the potential
of using ‘Vegetation Indices’ (VIs) from RS data as a tool to assess the slope condition.
The Copernicus program introduced by European Space Agency (ESA) provides a unified
system of satellites named Sentinels through which vast amounts of open access RS data
are provided to monitor the globe (Copernicus, 2021). For instance, displacements and
cover quality of slopes prior or after a failure were monitored using Sentinel data in recent
studies (Bonforte & Guglielmino, 2015; Intrieri et al., 2018; Kim & Lee, 2020; F. Gama et al.,
2020; Yang et al., 2019b).

The Netherlands Space Office (NSO, 2020) also purchases commercial satellite imagery
which cover the Netherlands until at least the end of 2023, and makes them publicly
available (open access) to complement the range of open data available from the various
space agencies. Collectively, these data provide a great opportunity for managers to
monitor Dutch dikes.

The purpose of monitoring slopes is to measure changes in relevant parameters as in-
dicators for slope failure, slope deterioration through time, and/or provide early warning
capabilities, as well as providing valuable input data for regular assessments. In geotech-
nical applications, parameters of interest in monitoring typically include water table
elevation, movement of water through soil, displacements, water pressures, temperature
changes, or detection of voids and conduits within slopes (Dunbar et al., 2017). In the
previous chapters, results of numerical simulation showed that surface displacement and
Leaf Area Index are highly correlated with the Factor of Safety (FoS) of an example dike
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under climatic driving forces and that these parameters had the potential to be monitored
by observing the dike surface.

This chapter provides an overview of the state-of-the-art in using RS for dikes monitor-
ing, as a method of complementing or partially replacing existing monitoring approaches
and assessment. The potential use of RS for slope monitoring, using the link between mea-
surable parameters and FoS is discussed in the next sections. In particular, the potential
of RS to provide data with sufficient spatial and temporal resolution is investigated. After
a brief introduction to relevant remote sensing techniques, some examples of Sentinel
imagery will be presented, and temporal data of Leaf Area Index (L AI ) and displacement
for an example regional dike will be shown and discussed.

5.2. VEGETATION MONITORING
Vegetation influences the water balance in the root zone, through rainfall, evapotran-
spiration and leaf interception, and thereby can highly influence the stability of slopes.
Moreover, roots can mechanically reinforce soil and increase shear strength of soil com-
pounded by increasing the matrix suction (CIRIA, 2013). In addition, vegetation responds
to climatic conditions (as well as maintenance actions), and therefore, can provide a proxy
sensor for (recent) past climatic conditions and the current dike (internal) conditions.
In general, vegetation sparsity can be considered as an indicator of an increase in the
susceptibility of slope instability (Chapter 3). In the Netherlands, vegetation is one of the
factors that dike inspectors evaluate in their ground-based observation (Digigids, 2019).
The vegetation quality for each location is assessed and classified as good, medium, poor
or bad (Cundill, 2016). However, these definitions are neither well defined nor specific.
Using RS can facilitate large-scale monitoring to map vegetation cover. Anomalies in RS
data products could provide a more objective and quantitative indicator for experts to
evaluate cover quality status. For example, it is shown in Chapter 3 that the variation of
the grass L AI over cracked areas is lower in the growing season, specifically after mowing
events, than in non-cracked areas. Hasan et al. (2013) used satellite data to show that
grass growing over the cracked areas were stressed due to a lack of moisture compared
to healthy areas. This argument was corroborated by the numerical results using the
integrated crop-geotechnical model developed in Chapter 3. In cracked areas, more
evaporation occurs from the exposed root zone which leads to the lower available water
for vegetation to grow, causing water-stressed vegetation, and therefore lower L AI . In
stressed vegetation, the ratio between area of leaves over area of ground decreases.

L AI is typically estimated using optical RS imagery. Satellite-derived L AI products
provide observations of seasonal and inter-annual vegetation growth in response to
climate forcing. The basic assumption behind the development and use of remotely-
sensed VIs is that some algebraic combination of reflectance in different spectral bands
can reveal valuable information of dynamic vegetation variations (Yengoh et al., 2015).
Vegetation cover is often monitored in terms of L AI , i.e., the area of the leaves over area
of the ground. L AI was used in the numerical simulations and the results are shown in
Chapters 2 and 3. However, remotely sensed L AI are empirically estimated from VIs like
N DV I (Fan et al., 2009; Punalekar et al., 2018). The Normalized Difference Vegetation
Index (N DV I ) quantifies vegetation health/vitality by measuring the difference between
near-infrared light (N I R), which is strongly reflected by vegetation, and red (visible) light
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(RED), which is strongly absorbed by vegetation. N DV I is calculated per pixel of an
image as a function of the red and near infrared bands:

N DV I = N I R −RED

N I R +RED
(5.1)

Healthy, active vegetation has low red light reflectance and high near infrared reflectance
that produce high N DV I values. When the available water in the vegetation is low, the
N DV I is lower (in bare soil N DV I is zero) (Choubin et al., 2019).

The availability of the optical VI products varies in space and time as a result of how
frequently satellites pass over the area, and spatial and seasonal variations in cloud cover.
Regions with significant cloud cover, like the Netherlands, are often unable to acquire
timely satellite imagery. Van der Wal et al. (2013) used 20 years of climate data from a
Royal Netherlands Meteorological Institute (KNMI) weather station data at Eelde (the
Netherlands) to show that satellite optical images have a 20% probability of producing an
adequate image during the growing season. In Fig. 5.1, optical imagery for the same area
is shown in a cloud- free condition and a cloudy day (5 days later). These optical images
from Sentinel-2 illustrate that on cloudy days, it is impossible to retrieve optical VIs.
Radar RS can also be used for vegetation monitoring without the limitation on weather
condition, but it is beyond the scope of the current study.

(a)

(b)

Figure 5.1: Optical imagery from Sentinel-2 on (a) 15th July 2018, cloud free; (b) 20th July 2018, cloud covers the
area.
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A list of optical images that are available on the NSO portal (NSO, 2020) for the
Netherlands, with some of their specifications, is shown in Table 5.1. According to this
table, the highest spatial resolution is 2 m which is very promising for monitoring cover
quality over dikes but the temporal availability of this fine resolution data is usually
for every 6 weeks of the growing season. Coarse resolution optical data (10 m spatial
resolution) are available every 5 days. However this availability is based on cloud free
conditions. Obviously, on the cloudy days monitoring is not possible.
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Swelling-shrinking phenomena in soils (in particular clays and peats) are associated with
changes of moisture content which can be driven by climatic conditions. In particular,
both a succession of dry periods and intense rainfall, can be responsible for dike failures
(van Baars, 2005; Tohari et al., 2007; Andrieux et al., 2011; Wang et al., 2018). Changes in
moisture content lead to changes in pore water pressure, and subsequently changes in
effective stresses leading to soil deformation and dike displacements. Wetting a soil in a
dike, generally increases the pore water pressure, decreasing the effective stresses and
therefore also decreasing the strength, making the dike less stable. In addition, increasing
the water content increases the weight, which increases the shear stresses, also making
the dike less stable.

Drying a soil in a dike, generally decreases the pore water pressure which increases
effective stresses and strength, and decreases the weight and therefore the shear stresses.
In cases when the strength is largely determined by friction, e.g. in peats, the shear
strength can decrease. In shrinking soils, volume changes due to water content reduction
can result in the appearance of shrinkage cracks and surface subsidence (Cornelis et al.,
2006; Vardon, 2015). The cause of soil drying is a thermodynamic imbalance between the
soil moisture and its surroundings. This then causes evaporation and a consequential
fluid movement within the soil (Driebergen, 2019). Cracks provide preferential flow,
which significantly increases the hydraulic conductivity and, after rainfall, also pore
water pressures in the soil (Zhang et al., 2018). As a result, the shear strength of the soil
decreases, thereby can induce slope instability. As discussed in Chapter 3, desiccation
cracks on the soil surface can cause rapid rainfall infiltration, leading to increases in
pore pressures within the dike body. Therefore, soil shrinkage behavior and desiccation
cracking (followed by rainfall) can lead to more significant instabilities in dikes.

These displacements of a dike surface can be measured by in-situ measurements, e.g.
extensiometers (de Vries, 2012), or by RS, which provides large scale information about
a dike displacement. The Current Dutch Elevation (Actueel Hoogtebestand Nederland,
AHN (AHN, 2020)) map is a digital elevation map of the whole of the Netherlands. This
map is updated every few years. The latest version is AHN4 that was released in 2021. The
AHN data are acquired by means of aerial LiDAR scanning, where laser pulses are send
from an aeroplane or helicopter, to measure the surface elevation (AHN, 2020). Although,
the spatial resolution is suitable for dike monitoring, it is not possible to have a time series
of data for a displacement over a dike, since it happens every few years. For instance
AHN3 data were acquired during the period 2014-2018 for the whole country. Therefore,
satellite monitoring using radar is very useful to measure the surface displacement, the
method called InSAR which is discussed in the next section.

5.3.1. DEFORMATION MONITORING USING INSAR
Interferometric Synthetic Aperture Radar (InSAR) can be used to estimate the displace-
ment on a dike surface (Hanssen, 2001). Synthetic Aperture Radar (SAR) is a microwave
imaging technique, in which the motion of the platform (aircraft or satellite) is used
to synthesise a large antenna. The radar system transmits multiple, successive pulses
toward targeted objects on the earth and the returned signals are synthesised into a single
image (Khorram et al.). Interferometric SAR (InSAR) is based on the interference of two
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synthetic aperture radar (SAR) images, acquired from different positions or at different
times (Esfahany, 2017). This technique has the potential to measure millimetre surface
displacements along the radar Line-Of-Sight (LOS) direction (Ferretti et al., 2006).

From 1992 to the present, SAR satellites have provided radar images for monitoring
surface motion. ESA launched its first SAR instrument in 1991, on the ERS-1 (European
Remote Sensing Satellite), which operated until 2000. In Table 5.2, some of the recent
SAR satellites are listed. From this list, imagery from Sentinel-1 can be obtained through
Copernicus. RadarSat-2 images are not generally free; however, NSO (2020) purchases
some imagery over the Netherlands and distributes them via the Satellite Data Portal.
Data from the Satellite Data Portal are expected to be available until at least March 2023.
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5.3.2. INSAR TIME SERIES
Time series of displacement are very important for dike monitoring applications. Per-
sistent Scatterer Interferometry (PSI) is an advanced InSAR method that use a temporal
series of SAR images over the same area, and was first developed by Ferretti et al. (2001).
Persistent Scatterers are pixels of SAR imagary that have objects with high reflectance to
the satellite and are consistent in time, it means that the reflectance remains high in all
SAR images for InSAR processing (Pepe & Calò, 2017). In fact, these objects reflect the
most part of the signal received by SAR satellite from a pixel. PS points are commonly
found on pixels containing structures like houses, bridges and roads. On the contrary,
low reflectance over water or vegetation toward the satellite, means that there are no PS
points in these pixels. Therefore, in case of dikes, on parts which covered with vegetation,
no InSAR measurement can be obtained. This can be overcome by placing a metal corner
reflectors in the study area to create persistent scatterers (Yang et al., 2019a). For instance
Fig. 5.2 shows an InSAR map over an urban area next to agricultural fields. It can be seen
that there are no InSAR points present on vegetated lands. Although there are studies
about exploiting deformation data over vegetated fields (Morishita & Hanssen, 2015),
currently there is no comprehensive method for generate it in all vegetated fields.

The rectangular box in Fig. 5.2 shows the location of the Veenderij dike, where the
geometry and weather station of KNMI near its location used in the previous chapters
for numerical analysis. It can be seen that by using InSAR, no data can be obtained for
the dike itself. This is most likely due to the coherence of scatters being very low due
to vegetation. This grass-covered dike is located in an area where persistent scatterers
cannot be found and therefore does not exhibit high radar coherence. However, artificial
reflectors, e.g. corner reflectors, can be placed in areas where the coherence are weak, to
generate persistent scatterers.

Figure 5.2: Available InSAR data for points from the Bodemdalingskaart (Open surface and object motion map
v2, 2020) for an example area containing the Veenderij project.

PSI data processing and analysis procedures are required to separate the displacement
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phase from the other phase components in SAR images. The data processing steps are: (i)
first the Persistence Scatters candidate selected, these are points in a resolution cell that
yields coherent reflectors. There are different methods to select the PSI candidate (for
detailed information see Ferretti et al., 2001; Bovenga et al., 2002; Humme, 2007; (ii) Then,
their interferometric phase is used to estimate the deformation phase; (iii) Finally the
results obtained from PSI can be validated by GNSS (Global Navigation Satellite System)
or field measurements (Yalvac, 2020; Aobpaet et al., 2013). A detailed description of
the processing approach of several PSI techniques can be found in Ferretti et al. (2001),
Kampes et al. (2003), Costantini et al. (2009), Ketelaar (2009), Van Leijen (2014), and
Esfahany (2017).

5.4. CASE STUDY

To illustrate the value of remote sensing data, some data have been extracted for a regional
dike near Delft (Latitude: 51.97, Longitude: 4.38) that is located along a river canal, Fig.
5.3. This dike was also studied in Özer (2020), and is used here as an example to show the
application of RS data for monitoring dikes subject to climatic conditions. The considered
dike, including the points at which displacement was determined, are shown on Fig. 5.3
by the red line and three points, respectively. In this chapter, only data from Sentinel
satellites are included because they are publicly available and are widely used.

Figure 5.3: An image of the case study regional dike segment near Delft. The figure is generated using Google
Earth pro. A red line drawn along the area shows where vegetation is monitored; and points A, B and C represents
the locations where displacements are measured.
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5.4.1. VEGETATION CONDITION

L AI has been used in the numerical study in the previous chapters and the impact of
vegetation status and L AI on the dike condition is discussed in Chapters 2 and 3. For L AI
retrieval from the Sentinel-2 satellite (publicly free available data source), a rectangular
polygon with the size of 3 km by 0.034 km over the dike has been selected. The selected
length is long enough to include 3 InSAR points over the area. N DV I and L AI data
retrieved from optical images that are acquired from a platform developed by VITO
(Terrascope, 2020) on which Sentinel images are processed and time series data are ready
to use interactively. Here, only optical images with cloud cover less than 10 % are included.

N DV I is calculated using the algorithm from TerraScope and plotted in Fig. 5.4(a).
The Sentinel−2a & b satellites were launched in June 2015 and March 2017, respectively.
Therefore, data acquisition starts from summer 2015, and the revisit time increases after
spring 2017, which results in more frequent data from spring 2017 onwards. The seasonal
cycle can be detected from this figure. Mostly in the growing seasons the N DV I increases
and during the winter it decreases. To see how N DV I is shown from the satellite images,
two images at two different days are selected from the Terrascope (2020) website on 25th
June 2018 and 15th July 2018. The geometry that N DV I value for the dike is averaged
over a black polygon shown by in Figs. 5.4(b) and (c). The area of the polygon is almost
0.1 km2. For the shown polygon on Figs. 5.4(b) and (c) the color of the map changes from
green (higher N DV I ) on 25th June to yellow (lower N DV I ) on 15th July. Please note that
N DV I values over the area of the canal has negative values.

L AI is also calculated for the same region and the time series of L AI is plotted in Fig.
5.5. The data are available from Sentinel-2 at the same days that N DV I is calculated.
As mentioned in Chapters 2 and 3, L AI has an annual cycle, it generally reduces in the
autumn and stays at low values during winter periods and increases in spring and summer
seasons as the grass grows. This pattern can be seen in Fig. 5.5(a). The mowing schedule
for the secondary dike, once at mid−June and again in mid−August, also affects the L AI
values. This leads to an abrupt decrease in LAI in mid−June and mid−August.

In Figs. 5.5(b) and (c), the maps of L AI for 25th June and 15th July 2018 are shown.
There is a decrease shown in L AI from 25th June to 15th July 2018, this can be seen from
the changing color in the drawn polygon from more green and yellow color to brownish
color at the later period. According to the legend, L AI decreases as the color changes
from the green to brown.

From Figs. 5.4(a) and 5.5(a), it can be seen that generally N DV I and L AI is lower in
summer 2018 than other years. The summer of 2018 was very dry in the Netherlands
and the impact of this dryness is apparent in the vegetation condition over the dike. In
addition, comparing two dates in Figs. 5.4(b)-(c) and 5.5(b)-(c), it is shown that vegetation
coverage is lower (consistent with being a bit drier) on 15th July compared to 25th June.
However, be aware that most of the dike is a mixture of grass and road, so the reflectances
from the surface are mixtures of a response from road path and vegetation. The informa-
tion is still useful, as the difference in values between two dates at the same location is
significant if the road condition remains constant.

According to Table 5.1, the resolution of the Sentinel-2 images are 10 m which could
be sufficient to assess the average cover quality over a large area of a dike. However, this
spatial resolution is not suitable to find small patches or cracks on a dike. Finer resolution
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data could be obtained by flying a drone fitted with an optical sensor over the dikes, which
would also circumvent the limitations posed by cloud cover.
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5.4.2. DEFORMATION DATA FROM INSAR PROCESSING
The Netherlands Center for Geodesy and Geo-informatics (NCG, 2020), provides the Open
surface and object motion map v2 (2020) that shows the displacement of more than 40
billion measurement points across the whole Netherlands. The deformation data for
this map are obtained from InSAR method using Sentinel-1 images. In this section the
data from this publicly available map will be used, where the point measurements are
processed and can be used interactively.

The deformation data for three points over the dike in Delft was obtained from Open
surface and object motion map v2 (2020), where displacement data are available for
coherent points on the selected dike. These data are plotted in Fig. 5.7, for points A
(Lat: 51.975, Lon: 4.383), B (Lat: 51.974, Lon: 4.384) and C (Lat: 51.970, Lon: 4.386) on
Fig. 5.3. Fig. 5.6, shows these three points on the image of Open surface and object
motion map v2 (2020), where by clicking on every points (here point B), the time series
data (blue markers) and more information will be shown. The red line is the linear fit to
the data which yields the rate of displacement per year. Again, it can be seen that over
vegetated area there are no coherent points to retrieve the displacement. These data
are obtained from Sentinel-1 a&b. It can be seen that the temporal resolution increased
after spring 2016, after Sentinel-1b was launched. The rate of settlement is different
along the dike, Point A settles with the velocity of 1 mm/year, the rate of settlement at
Point B is 8.3 mm/year and at Point C it is 3.3 mm/year. These values are calculated
based on a linear fit applied to the data, further details can be found in Open surface
and object motion map v2 (2020). The difference in displacement velocity depends on
various conditions including soil type, ground water level, etc. According to Özer (2020),
the soil type of the dike at Point A and B is mostly clay and for point C is sand and clay.
The shrinkage/swelling behaviour of soil can be seen in the three points. In summer,
the soil settles and in the following winter it swells. The overall trend is a downwards
displacement at all three points. This may be due to settlement of the whole dike, but all
the parameters including the underlying geology should be considered before drawing a
general conclusion.

Figure 5.6: A screenshot from Open surface and object motion map v2 (2020), shows available InSAR data on
the case study. The InSAR time series of points A, B and C are shown in Fig. 5.7.
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Figure 5.7: Deformation time series for three points on an example dike, data from Open surface and object
motion map v2 (2020).

The measurements from Open surface and object motion map v2 (2020) can be a
useful free source of data for PS points on a dike. However, it is important to note that
data are not available for vegetated areas unless there is a persistent scatter such as a bike
path/road or other object on the dike. Alternatively, Persistent Scatterers (e.g. corner
reflectors) can be introduced at locations of interest.

Visual inspection of dike inspections is done in the Netherlands usually by walking
along the dike. Observable components of the dike are can assist to find weakness and
damage. Remote sensing will provide dike observers with a promising tool to monitor
vegetation cover quality and displacement of dikes. This chapter introduces RS as a tool
that could increase efficiency, coverage and objectivity of dike inspections to find anomaly
over the dike. In practice, L AI can be monitored and use as an input for the crop model,
then the water balance in the root zone will be simulated based on the real L AI values.
Having displacement measurements from RS also can be feed into stability models to
estimate the safety of dikes. Besides, as mentioned in Chapter 4 RS data can be used in
data-driven models to estimate the dike condition without the need to repeat numerical
analysis.

5.5. CONCLUSION

Continuous dike monitoring is crucial to avoid flood defence failures. Traditionally, dikes
are monitored by in-situ instruments, or by visual inspection (walking along the dikes)
to detect weak or at-risk locations. These methods are expensive, difficult, localised,
and only possible at certain times. However, remote sensing can be used to provide
continuous useful information on vegetation condition and displacement on dikes at
a large scale. This can be used to inform dike managers of locations that may warrant
additional visual inspection. In this chapter, it has been argued that L AI and N DV I can
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provide information on grass cover over an example dike. On cloudy days, optical data are
not available. This limitation can be circumvented by mounting optical sensors on drones
for occasional flights at key times, or by using data sources from techniques that are not
limited by cloud cover e.g. SAR. The other important parameter that can be observed
remotely is surface displacement over a dike. InSAR is a promising tool to measure
deformation of PSI points on a dike with a mm level precision (Ferretti et al., 2007).
However, it is not possible to retrieve many PSI points over vegetated dikes. To solve this
issue, fixed objects can be placed on the dike of interest, e.g. corner reflector. Monitoring
dikes using remote sensing data will help dike managers with real-time assessment of
dikes in the Netherlands, where some commercial satellites images are bought by the
governments and are free to access.
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6.1. CONCLUSION

T HE overall idea of this research is to contribute towards improving the current mon-
itoring and assessment of dikes in the Netherlands, by first understanding the be-

haviour and stability of regional dikes under various climate and vegetation condition and
secondly, using technology and methods which can enable real-time monitoring and as-
sessment. An integrated crop-geotechnical model is introduced in this thesis to overcome
one of the limitation of the existing numerical models to simulate vegetated dikes, since
most of the numerical models for slope stability do not tackle the impact of vegetation
in their boundary conditions analysis. Then this integrated crop-geotechnical model is
adopted to consider the effect of cracking of the upper soil layer in dikes. Furthermore, a
data driven approach is used to investigate the potential use of Machine Learning (ML) in
dike assessment having the remotely sensed data which provides frequent monitoring
over larger scale.

In this chapter the conclusion are discussed for each research question that men-
tioned in Chapter 1 forms each chapter of this thesis.

Research question 1: How the climate and vegetation condition affect a regional dike
temporal (in)stability?

The integrated model framework composed of a crop model (LINGRA) and a geotech-
nical model (PLAXIS 2D) was used to demonstrate the sensitivity of the factor of safety
to root zone soil moisture and vegetation condition in an idealised regional dike. It is
demonstrated that Soil-Vegetation-Atmosphere (SVA) interaction influences the macro
stability of a slope by altering the water balance in the root zone. It is showed that the
condition of vegetation (grass in our study) governs dike’s hygroscopic condition and
therefore controls the temporal dike stability. Lower L AI within the same time with the
same weather condition leads to the lower FoS for the example dike. Safety of the example
dike is mainly dependent on the water content in both the root zone and the dike body,
which is affected by the vegetation. It is also mentioned that the precipitation history and
water content memory have an impact on both the FoS and the vegetation. Therefore, in
Chapter 2 it is proposed that vegetation and root zone water content could be used as
proxies to detect vulnerable dikes at an early stage.

Research question 2: What is the effect of shrinkage behaviour on the temporal stabil-
ity of a dike?

Cracking causes preferential flows from the soil surface into the dike body which
cause a quick transfer of precipitation in to the dike body.

In Chapter 3 the integrated model was modified to account for the formation of
cracks. The simulation of Chapter 2 is then extended to consider the impact of cracking.
Considering the preferential flow into the dike that cause by cracks in the root zone,
enables the numerical model to simulate drought in dikes, for instance during the drought
in the summer of 2018. This represents a further step towards reality of dike safety
calculations, including conditions that the typically modelling approaches ignore. To the
author’s knowledge so far, neither comprehensive field or laboratory data are available to
validate this numerical research and it is suggested to be undertaken in future studies.

It is shown that due to cracking, vegetation dries out in the summer and lower L AI is
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expected over the cracked area rather than a non-cracked area of a dike. The history of
the precipitation, root zone water content and L AI have an impact on crack propagation.
Therefore, vegetation condition can be used in remote monitoring of dikes to estimate
cracked area in larger scale instead of walking along dikes for visually inspection. The
results of Chapter 3 suggest that monitoring in the spring or autumn may provide the
most reliable and useful results.

Research question 3: Can data-driven models facilitate the expensive numerical sim-
ulations to estimate real-time or short-term prediction of (in)stability?

Numerical analysis are expensive and time consuming for large scale assessments. In
Chapter 4 a supervised ML model is used for the proof-of-concept study to investigate
the potential use of RS data in estimating temporal changes in a dike’s stability under
the impact of climate, vegetation and cracking. This approach can enable experts to
assess a significant length of dikes relatively easily and quickly by benefiting from real-
time monitoring. A random forest ML approach was adopted, with features that can be
measured by satellite remote sensing and do not require visual inspection and in-situ
instruments, i.e. L AI , surface displacement, cumulative rainfall and temperature.

Based on the results of the predictive model for real-time monitoring and short-term
prediction (5 and 15 days before the safety assessed), surface displacement has the high-
est impact on FoS of the example dike. Including crack area as a feature, improves the
model performance in predicting stability of the dike; however, this parameter is not
easy to observe. However in the Netherlands, for example, Waterboard Delfland provides
a database of cracks observations in the dry seasons (Chotkan, 2021). Having drought
induced cracks included in the model will boost the predictive performance to estimate a
dike’s stability.

Research question 4: How can Earth observation be deployed as a monitoring tool for
the assessment of dikes? In Chapter 5 the application of dikes monitoring is discussed
considering a regional dike near Delft. Free (open source) satellite data is used to monitor
vegetation cover and settlements of the example dike for a period of almost 4 years (2015-
2020). Vegetation is monitored using two different vegetation indices L AI and N DV I .
The seasonal trend can be easily seen in the results of this optical sensing; however, for
cloudy days results cannot be retrieved as optical RS is used. This limitation can be
overcome using other methods, for example flying drones over a dike to monitor VIs or
using satellite radar. The former option is practical for small scale monitoring, i.e. over
tens of km of dikes; while the latter option can provide large scale geospatial data, i.e.
hundreds of km of dikes. In Tables 5.1 and 5.2 a compilation of satellite images that are
available publicly for users in the Netherlands is provided.

Remote sensing data, in particular from satellite imaging, is ready to be used for con-
tinuous dikes monitoring, for instance using InSAR technology surface displacements can
be monitored every few days with mm-level precision in all weather conditions, day and
night. Having the historical deformation data (from 1992 to today), can be helpful to study
trends in dikes behaviour and get a deeper insight into failure mechanisms. Vegetation
cover layer on a dike’s surface also can be monitored frequently to detect vulnerable areas
along a dikes. It has been shown in this study that lower L AI or N DV I in the growing
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seasons can be due to the crack presence which affect the stability. Moreover, in data
driven analysis the importance of vegetation and displacement monitoring is investigated
to have a real-time estimate of a dike condition. Currently, satellite monitoring has moved
towards becoming an operational slope monitoring system, with increased efficiency and
quality, in terms of spatial and temporal resolution.

6.2. CONTRIBUTIONS
The main contributions of this research are outlined as follows.

• A numerical workflow is developed to include the effect of vegetation on the safety
analysis of dikes. A 1D crop model called LINGRA is integrated (one way coupled)
to a 2D FEM model, called PLAXIS2D, using Python (Chapter 2).

• The integrated crop-geotechnical model is adopted to tackle drought conditions
when evaporation induced cracks generated on the soil surface to the root zone
depth. The new approach enables more realistic simulation for slope analysis
(Chapter 3).

• Analysing the dike example for a 10 years period, using the real, dynamic climate
data, shows that dike stability responds to effective precipitation as well as veg-
etation condition. The results showed that a lower L AI over a dike causes lower
stability under the same weather condition. Having VIs, make dike managers aware
of vulnerable areas, so that they can take appropriate action (Chapter 3).

• From the same results, it has been shown that vegetation (grass in our case) dies
over cracked areas, while over the non-cracked areas the vegetation are healthy.
This helps dike managers to identify potentially cracked areas. Since, measuring
soil moisture with fine resolution and observing cracks are not practical, VIs can
be used as indicators to find such areas (Chapter 3). Hanssen (2001) and Chotkan
(2021) suggest that during winter and spring time the vegetation over cracks are
stressed compared to vegetation over non-cracked area.

• A data-driven model is developed to estimate a dike (in)stability using remotely
observable data. The built Random Forest model was trained and then tested
over the synthetic data generated from the numerical model. Machine Learning is
introduced as a tool for real-time or short-term prediction of the dike condition,
which can avoid repeating numerical simulation for the same dike (Chapter 4).

• Displacement has been shown to have a major impact on the estimation of the con-
dition of a dike. It is therefore advised to monitor surface displacement frequently,
which can provide a promising tool as an early warning system (Chapter 4).

• It is shown that the history of precipitation and soil moisture memory affect the
performance of the ML model. To investigate the condition of a dike at a certain
day, it is always important to consider the history of events before the ‘event’ day.
For example for the dike in our simulation, cumulative precipitation 65 days before
the day that safety is estimated to have the most influence on the built ML model.
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The lag correlation needs to be considered in analysis of the relation between
parameters (Chapters 2, 4).

• It is proposed to improve the current dike visual inspection in the Netherlands,
by using satellite RS, that provides high spatial and temporal resolution data. The
practice is shown as a proof of concept on a dike example, where the combination
of ML and RS method could enable experts to have an early stage warning system
of a dike’s condition (Chapter 5).

6.3. RECOMMENDATIONS FOR FUTURE STUDIES
To further improved the concepts developed in this work, and move towards implementa-
tion in practice further research is needed, including the following.

• Validation of the modelling methods and results: The following aspects could be
investigated: (i) cracking of a vegetated embankment surface, (ii) the consequen-
tial additional inflow, (iii) impact on the bulk shear strength, and (iv) the overall
influence on the stability. A number of these aspects are scale dependent and are
therefore difficult to observe in laboratory experiments; for example, the cracking
is influenced by the vegetation rooting depth, the soil grain size and the root zone
properties, which themselves are governed by the atmospheric conditions. The bulk
reduction in shear strength properties, while convenient for numerical analysis, is
difficult to validate as it relies on knowing the failure surface size, orientation and
interaction with individual cracks. The influence on the overall stability of cracks
could be validated via either scale model tests in the laboratory, or via full scale fail-
ure tests (e.g. de Gast, 2020). The qualitative behaviour is well supported by, albeit
limited, literature. One important field test was the BIONICS research embankment
(Hughes et al., 2009) which provided a full scale test where the hydro-mechanical
behaviour was monitored, although it was not brought to failure. The additional
inflow into cracked vegetated embankments by the use of Electrical Resistivity To-
mography was investigated by Stirling et al. (2018), and for the same embankment
fractures were shown to be limited approximately to <400 mm (Eminue, 2018),
almost the same depth as the root zone (Stirling et al., 2018). It is clear that further
experimental validation is needed.

• Implement the integrated numerical workflow for more cases: Flood defense in
the Netherlands are mainly constructed from peat and clay. This research focused
on one example dike as a proof of concept for introducing a numerical approach
that is able to simulate the effect of vegetation as well as atmospheric interaction.
Therefore, it is advised to expand this numerical approach for various dikes with
other materials and geometries. In the current study, cracks are considered not
to close in wet periods and extend in the next drier condition, in order to tackle
the worst case scenario. Further investigation is needed to establish whether this
assumption is valid. Besides, cracks considered to only grow vertically, 3D simula-
tion of cracking is advised for future studies. Moreover, current study focused on
macro-stability analysis, it is suggested to study the impact of vegetation condition
on other failure mode, e.g. overtopping.
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• Automate dike condition assessment: A single example dike was used as a case
study to demonstrate the potential value of machine learning in general to circum-
vent the computational burden of modeling and taking an important first step
towards large-scale monitoring of dike stability with RS data. It is suggested for
future studies to include various real case studies to investigate the effectiveness
of different ML algorithms for assessing a slope condition. The current research
focuses on the using satellite remote sensing for monitoring dikes; however, other
available options can provide dike inspectors a finer spatial resolution. Drones
can overcome the limitation of optical RS in cloudy days for vegetation monitoring.
Radar images can obtained by putting a radar antenna on the airborne equipment
(e.g. airplane) to capture the radar images that can processed for settlements mea-
surements. Currently there are airborne data collection in the Netherlands for
digital elevation measurements, called AHN (Actueel Hoogtebestand Nederland)
(AHN, 2020), and these flights could be used to measure more dike settlements
more frequently.

As mentioned in Chapter 5, InSAR cannot measure deformation over the grass
covered regional dikes, since growing vegetation and mowing hampered having
the persistence points over time. It is suggested for future studies on the stability
and deformation monitoring of the regional dikes, artificial ground control points,
e.g. corner reflectors, are installed (temporally or permanently) over the desire dike
(Yang et al., 2019), then coherent measurements can be derived for a point (where
the corner reflector is) on the dike.
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