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Working around the corner problem in numerically exact non-reflecting boundary condi-
tions for the wave equation

W.A. Mulder

Shell Global Solutions International BV & Delft University of Technology

Summary

Recently introduced non-reflecting boundary conditions are numerically exact: the solution on a given

domain is the same as a subset of one on an enlarged domain where boundary reflections do not have

time to reach the original domain. In 1D with second- or higher-order finite differences, a recurrence

relation based on translation invariance provides the boundary conditions. In 2D or 3D, a recurrence

relation was only found for a non-reflecting boundary on one or two opposing sides of the domain and

zero Dirichlet or Neumann boundaries elsewhere. Otherwise, corners cause translation invariance to be

lost.

The proposed workaround restores translation invariance with classic, approximately non-reflecting

boundary conditions on the other sides. As a proof of principle, the method is applied to the 2-D

constant-density acoustic wave equation, discretized on a rectangular domain with a second-order finite-

difference scheme, first-order Enquist-Majda boundary conditions as approximate ones, and numerically

exact boundary conditions in the horizontal direction. The method is computationally costly but has the

advantage that it can be reused on a sequence of problems as long as the time step and the sound speed

values next to the boundary are kept fixed.
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Introduction

Modelling seismic wave propagation in a subset of the Earth requires truncation of the computational

domain to the region of interest. The resulting artificial boundaries should not create reflections that

were absent in the original problem. The large number of papers on the subject suggests that this can not

be considered a solved problem.

Numerically exact non-reflecting boundary conditions produce a solution that is the same as a subset of

one obtained on an enlarged domain with boundaries moved so far away that their reflections do not have

time to reach the original domain (Mulder, 2020). In that sense, they differ from perfectly matched layers

(Berenger, 1994) or the exact conditions of Ting and Miksis (1986) that exploit Green’s second identity.

Givoli and Cohen (1995) showed that the latter suffer from a weak instability that can be suppressed by

adding some dissipation. Teng (2003) proposed a formulation based on boundary integrals, which after

discretization becomes the local condition of Engquist and Majda (1979).

The numerically exact non-reflecting boundary conditions are based on the boundary Green functions

computed for the discretized partial differential equation. In the one-dimensional case with a finite-

difference approximation of second or higher order, the boundary conditions obey a recurrence relation.

In the generalization to more than one space dimension and with a rectangular domain, the derivation

of a recurrence relation seems only to be feasible for a single non-reflecting boundary, or for two of

them at opposing ends of the domain. The other boundaries should then be zero Dirichlet or Neumann.

The reason is the assumed translation invariance in the direction perpendicular to the boundary. This

property is lost in the presence of a corner where two non-reflecting boundaries meet.

The workaround proposed here combines the exact boundary condition in one coordinate direction with

a classic, approximately non-reflecting boundary condition (Engquist and Majda, 1979; Higdon, 1986,

a.o.) in the other coordinate direction(s). This restores translation invariance at the expense of numerical

exactness. Still, the method can be useful if the approximately non-reflecting boundary conditions

produce too strong unwanted reflections in one coordinate direction. This can happen, for instance, when

modelling interbed multiples in marine examples with a shallow sea or in land examples with strong

surface waves.

The method is described for the simplest case of the 2-D constant-density acoustic wave equation

discretized with the lowest-order finite-difference scheme. Numerical tests are included.

Method

The constant-density acoustic wave equation in 2D is given by

1

22

m2D

mC2
=
m2D

mG2
+
m2D

mI2
+ 5 , (1)

with a solution D(C, G, I) depending on time C and position (G, I) in a given sound speed model 2(G, I)
for a source term 5 (C, G, I) typically of the form F(C)X(G − GB)X(I − IB) for a point source at (GB, IB)

with wavelet F(C). The rectangular computational domain is defined by [Gmin, Gmax] × [Imin, Imax] and

discretized on a grid with #G ×#I points: G8 = Gmin + (8− 1
2
)ΔG, 8 = 1, . . . , #G , and I 9 = Imin + (8− 1

2
)ΔI,

8 = 1, . . . , #I , with grid spacings ΔG = (Gmax − Gmin)/#G and ΔI = (Imax − Imin)/#I , respectively. The

standard second-order finite-difference scheme in space and time is

1

22
8, 9
ΔC2

(

D=+1
8, 9 −2D=8, 9 +D

=−1
8, 9

)

=
1

ΔG2

(
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)
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(
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)

+ 5 =8, 9 . (2)

Time is discretized by C= = C0 +=ΔC with a constant time step ΔC that should obey the CFL stability limit

ΔC
√

(ΔG)−2 + (ΔI)−2 max8, 9 (28, 9) ≤ 1.

In the example in the next section, a free-surface boundary condition is imposed at Imin = 0 and the other

boundaries should be non-reflecting. At Imax, the lowest-order Engquist and Majda (1979) boundary
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Figure 1 (a) Random sound speed model. (b) Wave field after 2s for the exact non-reflecting boundaries

at the left and right and the Enquist-Majda boundary condition at the bottom. (c) Difference between

the wavefield from (b) and one modelled on a domain enlarged at the left and right, but with the

Enquist-Majda boundary condition at the bottom, showing accumulated numerical round-off errors. (d)

Difference between this wavefield and one modelled on an enlarged domain.

condition, their equation (4.2), is imposed:

D=+1
8, 9+1 = D=8, 9 +U8, 9 (D

=
8, 9+1 −D=+1

8, 9 ), for 9 = #I , (3)

where U8, 9 = (1− a8, 9)/(1 + a8, 9) and a8, 9 = 28, 9ΔC/ΔH. This represents a second-order implicit time

discretization of the equation mD/mC = 2 mD/mG.

The boundary conditions at Gmin and Gmax are numerically exact. Only the one at G = Gmax is reviewed,

since the other follows in a similar way. The boundary Green functions �=
#G , 90; 8, 9

are defined as the

wavefield generated by a unit spike at time zero (= = 0) and position (G#G
, I 90), evaluated at later time C=,

= > 0, and position (G8 , I 9), 8 > #G , while setting the wavefield to zero at G = G#G
for = > 0. This means

that �=
#G , 90;#G , 9

= X 9 , 90X=,0, using the Kronecker delta. With these Green functions, the wavefield just

outside the domain can be predicted from earlier values on the boundary:

D=#G+1, 9 =

=
∑

<=1

#I
∑

90=1

D=−<#G , 90
�<

#G , 90;#G+1, 9 . (4)

Note that this expression only holds for the lowest-order discretization. For higher orders, additional

points for some values of 8 < #G are involved.
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Figure 2 (a) Sound speed model. (b) Seismogram. (c) Difference between the seismogram displayed in

(b) and one obtained on an enlarged domain, showing only reflections from the bottom. (d) Difference

between a seismogram for Enquist-Majda conditions at all sides except the free surface and one obtained

on the enlarged domain.

The boundary Green functions �=
#G , 90; 8, 9

at 8 = #G +1 follow from the discrete wave equation (2) with

zero source term 5 =
8, 9

= 0. Constant extrapolation in the direction perpendicular to the boundary is

applied to the sound speed: 28, 9 = 2#G , 9 for 8 > #G . Initially, �0
#G , 90;#G+1, 9

= 0 and �1
#G , 90;#G+1, 9

=

(2#G , 9ΔC/ΔG)
2X 90, 9 . The boundary at the free surface can be modelled by anti-symmetric extrapolation:

�=
#G , 90;#G+1,0

= −�=
#G , 90;#G+1,1

. At the bottom ( 9 = #I), the Enquist-Majda condition furnishes the

extrapolated values �=
#G , 90;#G+1,#I+1

. At the left (8 = #I), all values are zero except for time = = 0. At

the right (8 = #I +2), equation (4) provides

�=
#G , 90;#G+2, 9 =

=−1
∑

<=1

#I
∑

:=1

�<
#G , 90;#G+1,:�

=−<
#G ,:;#G+1, 9 , = > 1. (5)

Its earlier values are zero. Note that the last equation assumes translation invariance in the direction

perpendicular to the boundary.

Results

As a proof of principle, the random velocity model shown in Figure 1a is considered with a source placed

at GB = 400m and IB = 100m and a wavelet F(C) = − d
dC
[4(C/)F ) (1− C/)F )]

12 for 0 ≤ C ≤ )F = 0.325s
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and zero otherwise. The grid spacing is ΔG = ΔI = 5m. A free-surface boundary condition is present at

Imin = 0m. Figure 1b displays the wavefield after 2s. Figure 1c shows the difference of the wavefield

with one computed on a domain that is enlarged at Gmin and Gmax to avoid any boundary reflections

but uses the Enquist-Majda condition at Imax. The sound speed in the enlarged domain is obtained by

constant extrapolation in the direction perpendicular to the boundary. If this is performed in sequence

per coordinate, corner values are dealt with automatically. The effectiveness of the exact boundary

conditions is obvious: only accumulated numerical round-off errors are visible. The comparison to a

solution on a domain that is also enlarged at Hmax shows the result of boundary reflection at the bottom,

caused by the approximate character of the Enquist-Majda condition.

Figure 2a shows a velocity model for a second example of a salt diapir in a marine environment with

a shallow sea. A seismogram for a shot at GB = 1495m and IB = 5m is displayed in Figure 2b, for the

same wavelet as in the previous example but now with )F = 1.625/ 5peak, 5peak = 12Hz. Receivers were

placed at a depth of 10m between GA = 1600 and 4600m at a 25-m interval. The grid spacing was 10m.

Figure 2c shows the difference between this seismogram and one computed on an enlarged domain.

Only reflections from the bottom, caused by the approximate character of the Enquist-Majda boundary

conditions, are visible. For reference, Figure 2c plots the difference between a seismogram determined

with Enquist-Majda boundary conditions at all sides except the free surface and the one obtained on

the enlarged domain. The reflections from the vertical boundaries stand out. This demonstrates the

usefulness of the method in cases where reflections in one coordinate directions are much stronger than

for the other, for instance, with the shallow sea used here, or with strong surface waves in land seismic

examples. A step further is the independent use of these boundary conditions per side, which will leave

only corner reflections.

Conclusions

Numerically exact non-reflecting boundaries in only one coordinate direction can be advantageous in

the presence of a shallow water layer or with strong surface waves. The convolutions in equations (4)

and (5) are the most costly part of the method. However, the boundary Green functions can be reused

for a several problems as long as the grid size, time step and sound speed values next to the boundaries

do not change. Higher-order finite-difference discretizations are feasible, as well as a combination with

higher-order approximately non-reflecting boundary conditions.
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