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Abstract— Several conflict resolution algorithms for airborne self-

separation rely on principles derived from the repulsive forces 

that exist between similarly charged particles. This research 

investigates whether the performance of the Modified Voltage 

Potential algorithm, which is based on this algorithm, can be 

improved using bio-inspired swarming behavior. To this end, the 

collision avoidance function of the algorithm is augmented with 

the velocity alignment and flock centering swarming traits 

displayed by animals such as birds and fish. The basic and swarm 

augmented versions of the algorithm were compared using large-

scale fast time simulations, for multiple traffic demand scenarios. 

For ideal conditions, the results show that the process of aligning 

with neighboring traffic triggered a large number of conflicts. 

However, when noise was added to scenarios, swarming led to a 

lower increase in the number of intrusions, which could indicate 

that it can be used to improve the robustness of the Modified 

Voltage Potential algorithm. Furthermore, the stability results 

suggest that both versions of the algorithm could reduce the 

number of conflict chain reactions with respect to simulations 

without resolution. Future research will further explore the effect 

of conflict resolution on airspace stability, as well as whether 

varying the relative weights of swarming elements can improve the 

safety of swarm augmentations. 

Keywords- Separation Management; Swarming; Modified 

Voltage Potential (MVP); Conflict Resolution; Self Separation; Free 

Flight; Airspace Stability; Domino Effect Parameter; BlueSky 

I.  INTRODUCTION 

Birds are often seen flocking, or swarming, together as this 

offers several advantages in terms of searching for food, 

improving efficiencies for long distance migratory flights 

(using V-formations) and for protection from predators. Several 

other animals, such as fish and cattle, also display similar 

behavior. In fact, the complex en-route swarming patterns 

displayed by these animals can be modelled as a combination 

of three simple behavioral traits exhibited by each individual 

member of the group, namely collision avoidance (to avoid 

crashes with neighbors), velocity alignment (to move in the 

same general direction as neighbors), and flock centering (to 

remain close to neighbors) [1]. These bio-inspired 

characteristics have been used in the past to design collision-

free path planning algorithms for systems with many 

interacting agents, such as formation flight of Unmanned Aerial 

Vehicles (UAVs) [2]. This study will investigate whether it is 

possible to use swarming traits to improve the performance of 

autonomous Conflict Resolution (CR) strategies for 

conventional aircraft.  

The goal of this work is to investigate the effect of 

swarming-inspired flight maneuvers on self-separation under 

Free Flight conditions, when a voltage potential based 

separation method is applied. Here, the Modified Voltage 

Potential (MVP) algorithm, initially developed during the 

NLR-NASA Free Flight study, will be used as an example of 

such voltage potential based CR methods [3]–[5]. It is 

hypothesized that augmenting the collision avoidance 

capability of MVP with velocity alignment and flock centering 

functions will help prevent some conflicts from occurring, by 

aligning and reducing relative velocities between neighboring 

traffic. This should, in turn, make it easier for the MVP 

algorithm to resolve any remaining conflicts. 

To investigate whether swarming can improve the 

performance of the MVP algorithm, a large-scale simulation 

experiment is performed, comparing the basic and swarm 

augmented versions of MVP. These simulations are performed 

using BlueSky [6], an open air traffic simulator developed at 

the Delft University of Technology. The two versions of MVP 

are subjected to multiple traffic demands, with heterogeneous 

Free Flight-like demand patterns. Performance of the CR 

algorithms is evaluated using safety, efficiency and stability 

metrics. To gain an understanding of the impact of 

uncertainties, the effect of measurement errors, turbulence, and 

the consequences of discrete state transmitting, is also studied 

in this work.  

This paper is organized as follows: The basic and swarm 

augmented version of MVP, including implementation details, 

are described in Section II. This is followed in Section III with 

the setup of the simulation experiment used to compare the two 

CR algorithms. The results of the experiment are presented and 

discussed in section IV. The main conclusions and 

recommendations are summarized in section V. 



II. CONFLICT RESOLUTION METHODS 

To observe the effect of swarming, two CR methods are 
selected for comparison: a Modified Voltage Potential (MVP) 
[7] method and a formation flying method using swarm 
intelligence (SW) [2]. The underlying algorithms are discussed 
in the following paragraphs. 

A. Modified Voltage Potential 

The principle of MVP is to model conflicting aircraft as 
identically charged particles, that repel each other away from 
their Closest Points of Approach (CPA), such that a Loss of 
Separation (LOS), or intrusion, is no longer predicted. The 
resulting displacement vectors are used to compute necessary 
changes in aircraft velocities. The three steps of the principle 
are illustrated in Figure 1. The second step of the MVP 
algorithm is illustrated with more detail in Figure 2.  

In Figure 2, a conflict situation is exaggerated for clarity 
purposes. The relative velocity of aircraft B with respect to 
aircraft A is pointing through the Intruder Protected Zone (IPZ) 
of A. The strategy is to find the closest point of approach, point 
C, and from this point find the closest distance out of the IPZ, 
to O. Since a straight line from B to O would still cross the IPZ, 
the line CO must be multiplied by a factor, computed by [7] as: 

|𝐶𝑂|

|𝐶𝑂′|
= |cos⁡(𝑎𝑟𝑐𝑠𝑖𝑛 (

𝑅

𝐴𝐵
) − 𝑎𝑟𝑐𝑠𝑖𝑛 (

𝐴𝐶

𝐴𝐵
))| (1) 

Once the distance vector 𝐶𝑂′ is determined, the resolution 
velocity vector is computed through Equation 2, where 𝑡𝐶 is the 
time at which point C is predicted.  

𝑣⃑𝑀𝑉𝑃 =
𝐶𝑂′⃑⃑ ⃑⃑ ⃑⃑ ⃑

𝑡𝐶
+ 𝑣⃑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (2) 

Conflict detection is executed with a linear extrapolation of 
the aircraft velocity vectors, for a look-ahead time of 5min. The 
separation requirements are 5nm horizontally and 1000ft 
vertically. Conflicts that are detected are solved with a safety 
margin of 5%. 

Conflict resolution by MVP is implicitly coordinated 
cooperatively; both aircraft in a conflict will take (opposite) 
measures in order to evade the other. Additionally, if an aircraft 
would encounter multiple conflicts at the same time, each 
conflict is resolved separately and the resolution vectors are 
summed together, resulting in a general steering action. 

B. Swarm Augmented Modified Voltage Potential 

This algorithm is based on a model for coordination of 
UAVs that fly in large groups [2]. The motion of UAVs in 
groups has been modelled as combinations of three behaviors: 
Collision Avoidance (CA), Velocity Alignment (VA) and 
Flock Centering (FC).  

1) Collision Avoidance  

CA is performed using the MVP resolution strategy. CA is 
always active: if no conflicts are detected, the resolution vector 
of CA points in the target heading of the aircraft. CA therefore 
always returns a resolution velocity vector. 

2) Velocity Alignment 

For VA, each aircraft will align its velocity vector to match 
the average velocity of the surrounding aircraft. In order to do 
so, the velocity vectors of all aircraft are summed together. The 
resulting velocity vector is scaled to match the average speed 
vector length of the swarm. This process is illustrated in Figure 
3.  

3) Flock Centering  

In FC, the aircraft flies to the center of the swarm. The goal 
of this is to reduce the size of swarms. This process also consists 
of three steps. In the first step, the swarm center is found by 

Figure 3: The three steps of VA 

Figure 2: Finding the displacement vector in MVP 

Figure 1: The three steps of MVP conflict resolution 



taking the average location of neighboring aircraft, expressed 
in Cartesian coordinates. The next step is to find the distance 
vector from the ‘ownship’ location to the swarm center. This 
distance vector is then scaled to match the current speed vector 
of the aircraft. These steps are illustrated in Figure 4.  

4) Swarming Weights 

The resulting action of the algorithm is a weighted 
combination of the three swarming elements. Each element 
results in a separate resolution vector. The total resolution 
vector is found by computing a weighted sum of the resolution 
vectors from each element. The weights of the three elements 
are determined by trial and error. This procedure aimed to find 
values for VA and FC as high as possible, to increase swarming. 
However, swarming should not be so strong that it is impossible 
for aircraft to leave a group. The resulting weights can be seen 
in Table I. 

 

5) Swarming Criteria 

For VA and FC, all aircraft that are within predefined 
swarming criteria are considered. These criteria are defined 
from an aircraft perspective: each aircraft defines a swarm 
around itself. The criteria are defined as: 

 Horizontal distance     < 7.5nm 

 Vertical distance      < 1500ft 

 Difference in heading < 90 degrees 

C. Qualitative Analysis 

It is noted that the SW algorithm approaches the problem of 
CR from a fundamentally different concept than the MVP 
algorithm. Although the CA algorithm is identical, the SW 
algorithm can provide steering resolutions even if no conflicts 
are detected. If this is effective, conflicts will be prevented from 
even occurring, as aircraft are flocking together with other 
aircraft flying in the same direction. 

 

III. EXPERIMENT DESIGN  

This part contains a description of the experiment. This is 
found in four sections: the simulation platform, the construction 
of traffic scenarios and the dependent and independent 
experiment variables.  

A. Simulation Environment 

The experiment of comparing the CR methods was 
performed using BlueSky. BlueSky is an open-source air traffic 
management simulator, written in Python, capable of 
simulating thousands of simultaneous aircraft. The program 
contains a graphical user interface that allows for real-time 
controlling of the air traffic, as well as logging facilities for 
post-analysis of the results. 

1) Traffic Modelling  

In the current version of BlueSky, several default 
constraints to the aircraft performance are present. These are 
the following: 

 When making corners, the bank angle is 25 degrees 

 If no vertical speed is specified, aircraft climb and 
descend with 1500 feet per minute 

 Horizontal acceleration is equal to one knot per second 

 Vertical acceleration is instantaneous to the desired 
vertical Speed 

2) Noise 

In order to observe the performance of the CR methods 
under imperfect circumstances, simulations with and without 
noise will be performed. The implementation of noise consists 
of three different elements, discussed in the following 
paragraphs. A summary of the noise is given in Table II. 

1. Measurement Noise: The measurements of relative 
positions of aircraft, expressed in polar coordinates to 
each other are distorted. 

2. Turbulence: Turbulence is added for flights as an 
additional velocity vector in the aircraft reference frame. 
Since turbulence is a continuous phenomenon, the 
magnitude of the turbulence is multiplied with the 
square root of the simulation time step. 

3. Sampling Effect: Each aircraft is not aware of the current 
position of the other aircraft. Aircraft transmit their 
exact locations once every time period. When 
performing conflict detection, aircraft compare their 
own real positions to the last transmitted positions of the 
surrounding aircraft. The transmission period is 
modelled to be constant. 

Swarming element Weight value 

Collision avoidance (CA) 10 

Velocity alignment (VA) 3 

Flock centering (FC) 1 

 

TABLE I: SWARM WEIGHTS 

Figure 4: The three steps of FC 



 

B. Traffic Scenarios 

A program has been developed which is capable of 
generating and saving simulation scenarios, for testing the 
performance of the CD&R algorithms. Several elements of the 
software design are discussed. These scenarios are developed 
offline by the program, in advance of performing the 
simulations. By doing so, each tested CD&R method will be 
subjected to the same traffic scenario and therefore tested under 
the same conditions. 

1) Testing Region 

A circular airspace is constructed for simulating the air 
traffic. Around the airspace, a circular initialization region is 
formed. Aircraft are generated at the outer edge of the 
initialization region, and conflicts that occur outside the test 
area are neither detected nor solved. The radii of the concentric 
regions are 45 nm and 68 km. An indication of the size of these 
regions is given in Figure 5. Vertical limits on the airspace are 
not implemented, so as to give aircraft freedom for vertical 
resolution maneuvers. Aircraft are deleted when they are 
outside the testing area and flying away from the circle center. 
It is possible that aircraft do not enter the test area at all, as they 
might deviate before entering the circle. This is saved in the 
logs and aircraft that do not enter the test region are filtered out 
of the results. The aircraft which are generated outside of the 
logging hour are not considered in the results. 

2) Aircraft Parameters 

The aircraft in the simulation fly with different horizontal 
and vertical velocities. Aircraft were created randomly on the 
outer range of the initialization region. All headings are 
possible as long as the aircraft trajectory is planned to cross the 
test region, with a 5% margin in order to prevent flight plans 
that are almost tangent to the test region edge. The remaining 
aircraft parameters follow a normal distribution and are 
summarized in Table III. 

3) Traffic Scenarios Creation 

A genetic algorithm is used to create random traffic 
scenarios with as much conflicts as possible. Each scenario is 
constructed with random numbers that specify the planned 
flight paths through the airspace. 

Scenarios are evaluated for comparison. The number of 
conflicts is predicted by the scenario generator, and counted as 
positive score. Negative points are rewarded for the root-mean-
squared error between the predicted and theoretical 
distributions of specific parameters, expressed in 10-binned 
histograms. The specific parameters are the locations of aircraft 
at start and end of the flight, and the locations of the predicted 
conflicts. 

Each scenario is evaluated and an evolutionary principle is 
applied. This principle consists of 1000 iterations of survival, 
parenting, inheritance, mutation and again evaluation. 
Afterwards, the best evaluated scenario is saved to be used as 
test scenario in the experiment. An example of a saved scenario 
is given in Figure 6, where the resulting flight paths through the 
airspace are indicated.  

C. Independent Variables  

One independent variable has already been introduced: the 
CR method that is used. CR method is a factor with three levels: 
no conflict resolution, and resolution by MVP or swarming. 
Traffic demand, defined as the rate at which new aircraft are 
generated at the edge of the test region, is a factor with 5 levels. 
The traffic demand can be 50, 125, 200, 275 and 350 aircraft 
per hour. This results in 15 (3x5) conditions. For each 

Type of Noise Standard Deviation 

Measurement error (bearing) 1o 

Measurement error (distance) 100 m 

Measurement error (altitude) 100 ft 

Lateral turbulence 0.1 m/s2 

Vertical turbulence 0.1 m/s2 

Sampling period 1 s 

 

TABLE II: NOISE MAGNITUDES 

Figure 6: Horizontal aircraft trajectories without resolution after a traffic 
scenario of 125 ac/hr traffic demand 

Figure 5: Size of the test and initialization region compared to the Netherlands 

Parameter Mean value Standard Deviation 

TAS 140 m/s 10 m/s 

CAS 109 m/s 8 m/s 

Altitude 5000 m  305 m (1000 ft) 

Climb rate 0 m/s 0.5 m/s 

 

TABLE III: NORMAL AIRCRAFT PARAMETERS 



condition, 5 repetitions are made with different scenarios. This 
is done by running the scenario generator with different random 
seeds. 

D. Dependent Variables  

The dependent variables of this research are sorted in three 
categories: safety, efficiency and airspace stability. These are 
logged during the 1-hour experiment, which starts after 35 
minutes of initialization time, and is followed by 35 minutes of 
cooling-down time.  

Safety is expressed in numbers of intrusions and conflicts 
per flight. Definitions of flights, intrusions and conflicts are 
determined as: 

 A flight is a simulation of an aircraft which does enter 
the test region at any moment in its lifetime. 

 An intrusion is a violation of separation requirements 
between two simulated aircraft at any time when at least 
one of the two is in the test region. 

 A conflict is a prediction of an intrusion within the set 
look-ahead time as a consequence of linear trajectory 
propagation of actual states of simulated aircraft. 

Additionally, the proportion of intrusions that were 
successfully avoided, the Intrusion Prevention Rate, is 
computed:  

𝐼𝑃𝑅 = ⁡
𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 − ⁡𝐼𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛𝑠

𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠
 (3) 

For each intrusion, the intrusion severity is measured. 
Intrusion severity is defined using Equation 4. In this equation, 
d and R are the distance between two aircraft and the separation 
requirement, respectively. Subscripts h and v denote horizontal 
and vertical variables. 

𝑖𝑛𝑡𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = 𝑚𝑖𝑛 (1 −
𝑑ℎ
𝑅ℎ

, 1 −
𝑑𝑣
𝑅𝑣

) (4) 

Efficiency is monitored through the route efficiency metric, 
i.e., the ratio between the shortest and the actual route flown, in 
the horizontal plane: 

𝜂𝑟𝑜𝑢𝑡𝑒 =⁡
𝑑𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡
𝑑𝑓𝑙𝑜𝑤𝑛

 (5) 

Airspace stability is observed using the Domino Effect 
Parameter (DEP) [8]. The DEP is computed by comparing the 
number of conflicts in simulations with and without Conflict 
Resolution (CR), as indicated in Equation 6: 

𝐷𝐸𝑃 = ⁡
𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠𝑤𝑖𝑡ℎ𝐶𝑅

𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝐶𝑅

− 1 (6) 

IV. RESULTS AND DISCUSSION  

In this section, data obtained from the simulation 
experiments are used to compare the MVP and SW CR 
algorithms in terms of safety, efficiency and stability metrics. 
Additionally, the impact of noise on the safety of the two CR 
algorithms, as well as the effect of varying the relative 
importance of the three components of the SW method, are also 
discussed.  

A. Traffic Volume 

Before analyzing the dependent variables mentioned above, 
it is first necessary to consider the traffic volumes that were 
actually realized during the experiment, see Figure 7. Here it 
can be seen that the MVP and SW methods resulted in slightly 
more aircraft in the simulations compared to no conflict 
resolution, even though all CR methods were subjected to the 
same traffic scenarios. This is because resolution maneuvers 
increase flight distances, and therefore cause aircraft to exist for 
longer durations within the experiment area (see Efficiency 
section below). To account for these differences in density, and 
thus to allow for a fair comparison between the two CR 
methods, whenever appropriate, dependent variables are 
computed relative to the number of flights simulated during the 
logging hour.   

B. Safety 

The number of conflicts and intrusions per flight are 
displayed in Figures 8 and 9 respectively. Here it can be seen 
that the MVP algorithm resulted in the lowest number of 
conflicts and intrusions. Although SW caused significantly 
higher number of conflicts, in terms of intrusions, the difference 
between these two CR methods is small. This is because the CA 
component of SW also used the MVP algorithm for avoiding 
intrusions. For the same reason, no noticeable differences 
between MVP and SW were found in terms of intrusion 
severity, see Figure 10.   

It is interesting to note that the MVP algorithm resulted in 
even fewer conflicts than the no resolution setting, see Figure 
8. This was an unexpected trend; as resolution maneuvers 
increase flight distances and the consequent probability of 
encountering other aircraft, both MVP and Swarming were 
expected to cause an increase in the number of conflicts 
compared to simulations without resolutions, as already 
described in [8]. This unusual result is further analyzed using 
stability metrics. 

Given the similarity and the low number of intrusions for 
MVP and SW, it is not surprising that both CR methods 
achieved high IPR scores for all demand scenarios, see Figure 
11. While IPR for the no resolution case was low, it was not 
equal to zero. This means that not all conflicts resulted in 
intrusions, even though aircraft did not maneuver during 
simulations without resolutions. A detailed analysis revealed 
that this effect was caused by atmospheric variations of air 
density with altitude, and the ensuing differences between True 
Air Speed (TAS) and Calibrated Air Speed (CAS). This caused 



prediction errors for aircraft positions, which adversely affected 
the Conflict Detection (CD) process; as aircraft flew using 
constant CAS, altitude changes would result in 
acceleration/decelerations, while CD was performed assuming 
constant TAS. Consequently ‘false conflicts’ would be 
predicted, particularly for climbing/descending traffic, due to 
differences between the actual and predicted flight paths. When 
simulations were performed with a modified atmosphere 
model, where the density at all altitudes was equal to sea-level 
density, the number of intrusions without resolutions exactly 
equaled the number of conflicts (not shown). This example 
illustrates the need to take notice of ‘small’ details in 
simulations of conflict detection and resolution. 

Based on the safety results, it can be concluded that the 
MVP algorithm results in a higher safety under ideal 
conditions. This is because the MVP method solves conflicts 
with minimal steering resolutions and only when intrusions are 
predicted. On the other hand, the VA and FC components of the 
SW algorithm caused aircraft to group together in the air. For 
the traffic densities simulated, this resulted in significantly 
higher number of conflicts and degrading safety. 

C. Efficiency 

The route efficiency results are displayed in Figure 12. As 

expected, simulations without resolutions resulted in optimal 

efficiency. As MVP used minimal steering maneuvers and 

suffered a lower number of conflicts, it resulted in shorter 

routes, and therefore, better efficiency than SW. It is also noted 

that the efficiencies of both CR methods are not significantly 

affected by demand changes. This suggests that the airspace did 

not reach saturation levels with the current demand scenarios.  

D. Stability 

The results for the Domino Effect Parameter (DEP), which 

is used to assess airspace stability, are shown in Figure 13. It is 

seen that for each simulated traffic density, the resulting DEP 

for MVP is lower than zero. Here, a negative DEP implies a net 

stabilizing effect of tactical CR whereby conflict chain 

reactions are outweighed by those that are solved without 

pushing aircraft into secondary conflicts. On the other hand, 

positive DEP values indicate the opposite: airspace instability.  

As expected, the DEP for simulations with no resolutions is 

always zero as these simulations are compared with 

themselves. For the MVP method, the DEP was consistently 

negative, and also decreased with demand. This indicates that 

MVP is actually improving the stability of the airspace at higher 

densities, corresponding with the lowest number of conflicts for 

all CR methods noted earlier in the safety analysis. Although 

the DEP for SW is positive for all demand conditions, at higher 

demands, a negative trend is also observed for this CR method.  

 

Figure 8: Number of conflicts per flight (mean + 
standard deviation) 

Figure 12: Route efficiency 
(mean + standard deviation) 

Figure 9: Number of intrusions per flight 

(mean + standard deviation) 

Figure 10: Intrusion severity 
(mean + standard deviation) 

Figure 11: Intrusion Prevention Rate (IPR) 
(mean + standard deviation) 

Figure 7: Traffic volume 
(mean + standard deviation) 



To analyze these unexpected trends in the DEP, particularly 

the reduction of DEP with increasing demand, several potential 

explanations have been put forth. These are discussed in the 

following subsections.  

1) Three-Dimensional Simulations 

Due to the three-dimensional nature of the simulations, 
aircraft could have used vertical CR maneuvers to 'escape' other 
traffic, reducing the total number of conflicts relative to the no 
resolution setting. To verify this hypothesis, additional 
simulations were performed for the MVP algorithm during 
which all flights were created at the same altitude, with aircraft 
constrained to use only horizontal resolution maneuvers. This 
test was performed for a traffic demand of 200 ac/hr, using a 
single scenario repetition. If this hypothesis is true, the DEP for 
flights constrained to a single altitude should be higher than the 
DEP for three-dimensional flights. It was also assumed that this 
effect is independent of CR method, hence separate simulations 
were not performed for SW. 

The results of this test, see Figure 14, show that the two-
dimensional flights resulted in an even lower DEP. However, 
this is not because MVP was better at resolving conflicts when 
constrained to using horizontal resolutions, but because the 
number of conflicts without resolution increased by a much 
greater amount compared to the number of conflicts with the 
MVP algorithm, for the two-dimensional simulation. Thus, the 
three-dimensional nature of the simulations is not the cause of 
negative DEP values. 

2) Influence of Logging Period 

Because conflicts increased flight distances, it is possible 
that some conflicts, which took place during the experiment 
hour for the no resolution case, occurred after the experiment 
time for the MVP and SW methods. This would lead to a 
reduction in the number of conflicts logged for both CR 
methods, leading to a negative DEP. To verify this hypothesis, 
the DEP was recomputed using conflicts from the entire 
duration of each simulation. This DEP showed very little 
differences with the original logging procedure (not shown), 
thus the logging method did not affect the DEP. 

3) Effect of Scenario Generation 

As mentioned earlier, experiment scenarios were generated 
using a genetic algorithm script that aimed to maximize the 
number of conflicts per flight. It is hypothesized that this design 
choice could have created scenarios in which several conflicts 
line up one after another. For such 'conflict lines', resolving the 
first conflict could also solve the remaining conflicts, as 
illustrated in Figure 15. This would, in turn, reduce the number 
of conflicts relative to the no resolution setting, and cause a 
negative DEP. Furthermore, it is reasonable to expect that these 
'conflict lines' grow in size at higher demand levels, explaining 
the decrease of DEP with demand. To verify this hypothesis, 
the goal of maximizing the number of conflicts was removed 
from the GA's objective function, and new scenarios, with one 
repetition per traffic demand volume, were created.  

Figure 13: DEP, original simulations    
(mean + standard deviation) 

Figure 16: Effect of scenario generation on 

the Domino Effect Parameter (DEP) 

Figure 15: Negative DEP example: a line of 
conflicts solved by one resolution 

  

Figure 17: Effect of noise on the  

Intrusion Prevention Rate (IPR) 
 

Figure 18: Effect of noise on the  
number of intrusions per flight 

Figure 14: Effect of three-dimensional 
simulations on the Domino Effect Parameter 

(DEP)   



The DEP results for these new simulations are displayed in 
Figure 16. While numeric values have changed, the updated 
scenarios have not changed the major trends noted earlier for 
the original scenarios; MVP still displays negative DEP values 
with a negative trend, and the SW causes the DEP to decrease 
at higher traffic demand volumes (compare Figure 13 with 
Figure 16). Thus, while the scenario generation does affect the 
DEP results, it is not the predominant cause of the negative 
DEP values or negative DEP gradient. 

4) Inherent Behaviour of CR Methods 
Given that the three previous explanations do not fully 

explain the unexpected DEP trends observed, it is hypothesized 
that these characteristics are inherent to the CR methods 
considered. The methods could cause an implicit restructuring 
of the randomly distributed traffic in such a way that the DEP 
reduces for higher traffic demands considered here. For MVP, 
it is expected that the charged particle behavior used to resolve 
conflicts will also disperse aircraft over the available airspace, 
both vertically and horizontally. This greater utilization of the 
airspace would reduce the chance of aircraft encounters and 
lead to a reduction in the number of conflicts. For SW, grouping 
aircraft with similar directions does cause problems during the 
alignment process, but it is possible that the benefits of 
swarming pay off for higher densities. While these effects are 
likely to improve stability at relatively low densities, at 
extremely high traffic demand levels, the congestion of the 
airspace, would make it progressively more difficult to solve 
conflicts without triggering additional conflicts. Preliminary 
results of a study focusing on the relation between stability and 
CR can be found here [9]. 

E. Effect of Noise and Swarming Component Weights on CR 

Performance 

To study the effect of uncertainties on safety, the CR 
methods were subjected to the three forms of noise mentioned 
in section IIIA2, at a traffic demand of 200 ac/hr. Figure 17 
shows that the intrusion prevention rate is increased by the 
presence of noise for all CR methods, as the number of false 
alerts increases significantly with noise. This is particularly true 
for the no resolution setting, where the number of conflicts with 
noise was thirteen times greater than without noise. In terms of 
the number of intrusions per flight, Figure 18 shows that 
swarming (SW) actually benefits from the presence of noise. It 
is believed that flocks of aircraft maintain more separation 
inside the group when noise is present, and therefore less 
intrusions take place. On the other hand, as (Modified Voltage 
Potential) MVP only uses the minimum resolutions needed to 
resolve conflicts, noise increases the number of intrusions. 

To gain an initial understanding on the effects of varying 
the weights of the three SW components, additional simulations 
were performed with greater emphasis on VA and FC, 
separately, at a traffic demand of 200 ac/hr. However, these 
simulations did not reveal any significant differences when the 
relative weights of VA and FC were changed. A more detailed 
analysis is needed to arrive at a conclusive verdict on this. 

V. CONCLUSIONS 

This study focused on the effect of swarming for free flight. 
The algorithm is tested in large-scale traffic simulations created 
with a focus on having as many conflicts as possible. The 
results of swarming are compared to results when no swarming 
is performed and to results when no steering is performed at all.  

The best results of safety, efficiency and airspace stability 
are achieved for self-separation performed without swarming. 
The safety of the methods decreases when turbulence and 
position uncertainties are added to the simulation, but 
swarming appears to increase the robustness of the resolution 
strategy with respect to noise. Airspace stability is influenced 
by the way in which the traffic scenarios are generated. The 
performance of the swarming algorithm is also altered by 
tuning the method’s parameters. 

It is found that airspace stability, measured by the Domino 
Effect Parameter, can become negative. This indicates a 
stabilizing effect caused by the conflict resolution strategies. 
Research should be performed to explain why the resolution 
methods stabilize the airspace. 

This study has shown that decentralized conflict resolution 
strategies have potential in delivering safety and efficiency in 
complicated three-dimensional traffic situations. More 
resolution strategies should be tested and compared to each 
other. Also, research should be done to the phenomenon of 
negative airspace stability observed in the project.  
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