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SUMMARY

The gravity assist (GA) plays an important role in space missions since it was first applied
by the Luna 3 vehicle in 1959. For preliminary trajectory design, the so-called patched-
conics model provides a simple model for a gravity assist. This approach, based on two-
body formulations, splits a multi-body problem into a succession of two-body problems.
This model has a fundamental assumption: the trajectory of the spacecraft is driven by
one celestial body only. A boundary for switching the driving bodies is defined by the
Sphere of Influence (SoI) of the GA body. The patched conics model cannot be used to
study low-energy trajectories. Moreover, it fails to describe special dynamics existing in
the multi-body regime, such as the invariant manifolds. The three-body formulation is
a logical choice to study the dynamics in the multi-body problem. In order to reduce
its inherent difficulty, the circular restricted three-body problem (CR3BP) formulation is
developed to study the behavior of the motion of a particle influenced by two massive
bodies simultaneously. Flybys in the CR3BP have been studied by many researchers, us-
ing a numerical or semi-analytical approach, e.g. the Flyby map (FM) and Keplerian map
(KM), respectively. Inspired by these approaches and the idea of artificial intelligence,
this thesis focuses on the investigation of flybys from a machine-learning perspective.

With this background, this thesis presents a method to quantify the changes in or-
bital elements after a GA: the Gravity Assist Mapping (GAM). The GAM model is based
on the Gaussian Process method, a supervised machine-learning technique. It can be
divided into two types: Gaussian Process Regression (GPR) for continuous outputs and
Gaussian Process Classification (GPC) for discrete outputs. Both types are employed to
solve a specific problem in this research: the GPR model is used for the quantification of
flyby effects, and the GPC model is used for the identification of collision trajectories.

The development of GAM models is done in the regime of the CR3BP. In order to re-
duce the complexity, a first development is made for the planar situation. In particular,
the first problem formulation considers the Sun-(Earth+Moon)-spacecraft system. It in-
vestigates the effect of a flyby that occurs anywhere above 300 km altitude at the Earth
i.e., the secondary, not restricted to the SoI or the Hill sphere. In contrast, the Keplerian
map, a semi-analytical method to describe dynamics in the CR3BP, focuses only on the
cases outside the Hill sphere with a Jacobi constant around 3.0 and has poor accuracy
for high three-body energies. Any GAM model is driven by such training samples; the
model learns the effects of flyby’s from training samples, which are generated by numer-
ical propagation here. The influence of the number of training samples and their distri-
bution on the quality of the prediction of post-flyby orbital states is analyzed. The results
show that the GAM model is able to make predictions of the post-flyby state of an object
with an arbitrary initial condition. It is demonstrated to be efficient and accurate when
evaluated against the results of numerical integration. The proposed method is appli-
cable to not only high-energy cases but also low-energy cases. The CPU time of a single
prediction using GAM is only 1.16×10−6 s, whereas the KM method costs 0.064 s (desk-
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top PC, Core i7 CPU and 8.00 GB RAM). For the Sun-(Earth+Moon)-spacecraft system,
the mean absolute error of predicting the variation of the semi-major axis is 3.86×10−5

AU (a typical range of changes is −0.0115 AU to 0.0163 AU).

After successfully constructing the GAM model for the planar case, the model is ex-
tended to the fully spatial (3-dimensional) CR3BP. In terms of input space, the complex-
ity of the problem is increased from three parameters to five parameters. A new map-
ping function for quantifying the flyby effects over one orbital revolution is defined. The
GPR model is established by proper mean and covariance functions. To improve the ef-
ficiency of this method, a criterion in terms of the mean absolute error is proposed to
determine the optimal size of the training dataset. Its robustness is investigated and dis-
cussed, to show the quality for practical usage. The influence of different input elements
(covariance function, training dataset size, quasi-random numbers) on the flyby effects
is studied. The accuracy and efficiency of the proposed model have been investigated
for different energy levels, ranging from representative high- to low-energy cases. The
corresponding value of the Jacobi constant, from 3.0012 to 0.5122, represents a wide en-
ergy range, underlying the broad pontential applications of the technique (unlike that
of previous research, such as by Ross & Scheeres (2007) and Alessi & Sánchez (2016)).
The GAM model shows significant improvements over an independent semi-analytical
method (the KM developed by Alessi & Sánchez (2016)): the accuracy of predicting the
variation of the semi-major axis is improved by a factor 3.3, whereas the efficiency goes
up by a factor 1.27×104.

The above GAM models for the planar and fully spatial cases both employ the GPR,
i.e., the output is a continuous function of flyby effects. The GPR makes a prediction
for any initial condition it receives. However, it is not possible for the GPR to identify
trajectories that lead to a collision with the secondary. Therefore, a classification tool is
necessary to identify such collision cases. The GPC model is developed for this purpose,
also based on the GP concept. When generating training samples using the numerical
propagation of the CR3BP equations of motion, the data contain both collision trajec-
tories and safe trajectories. At first, all training data are fed to the GPC model. After
training, this GPC model is able to identify the impact trajectories given an arbitrary ini-
tial condition. The accuracy of detecting impact trajectories using GPC is better than
90%. The GPC model can be used stand-alone for collision detection, or combined with
the GPR model. The distribution of collision cases predicted by the GPC model closely
resembles the results obtained by the CR3BP propagation.

The GPR model is further improved by introducing the Jacobi constant as an ex-
tra input feature. The Jacobi constant represents the three-body energy in the CR3BP
and provides valuable information about the dynamics of transfers. The performance of
the models is analyzed in three systems: Sun-(Earth+Moon)-spacecraft, Jupiter-Callisto-
spacecraft and Sun-Jupiter-spacecraft. With these cases, the value of the mass ratio µ in-
creases successively by a factor of about 10. The results demonstrate that the evaluation
of flyby effects can be efficiently and accurately made combining the GPC (i.e., classifi-
cation) and GPR (i.e., regression) models. The proposed GAM approach is proven to be
applicable to all studied CR3BP cases. For the regression part, more training samples are
required for the CR3BP with bigger µ. The mean absolute error of predicting the change
in semi-major axis is only 3.86× 10−5 AU with a computational cost of 5.8× 10−6 s per
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sample (the Sun-(Earth+Moon)-spacecraft problem). Adding the Jacobi constant as an
extra input element improves the accuracy of the prediction for all systems significantly
(typically by 20%). The uncertainty associated with the predictions is also analyzed. It
turns out that the outputs obtained by the CR3BP propagation are well included in the
95 % confidence intervals of the GPR predictions.

The GAM approach developed in this thesis can be used in the preliminary design of
space missions. The high accuracy and efficiency make it a useful tool for quantifying
flyby effects, especially if numerous initial conditions are to be evaluated.





SAMENVATTING

De gravity-assist (GA, jargon voor scheervluchten met een grote rol voor zwaartekracht-
interactie) speelt een belangrijke rol bij ruimtevaart missies. Deze techniek werd voor
het eerst toegepast bij Luna 3 in 1959. Een simpel model hiervoor kan worden beschre-
ven door opeenvolgende kegelsneden. Dit simpele model splitst het probleem van de
beweging onder invloed van de zwaartekracht van meerdere objecten op in een serie
van dergelijke problemen met ieder slechts twee objecten. Een fundamentele aanname
bij dit model is dat het traject van het ruimtevaartuig op ieder moment bepaald wordt
door slechts één hemellichaam. Welk hemellichaam dit is, wordt bepaald door zijn in-
vloedsfeer (in het Engels: ’sphere of influence’). Echter, het effect van een dergelijke GA
is klein, wanneer het verschil in snelheid tussen het ruimtevaartuig en het hemellichaam
ook klein is. Daarnaast lukt het ook niet om met dit model de bijzondere dynamica
van het meerlichamenprobleem te beschrijven. Om deze reden is het drielichamen-
probleem in het leven geroepen. Om het drielichamenprobleem te vereenvoudigen is
het beperkt drielichamenprobleem (CR3BP) ontwikkeld. Hiermee kan het gedrag van de
satelliet worden bestudeerd wanneer het krachten ondervindt van twee hemellichamen
tegelijkertijd. Scheervluchten in het CR3BP worden vaak in kaart gebracht door gebruik
te maken van een numerieke of semi-analytische aanpak (bijvoorbeeld de zgn. Flyby
Map en de Keplerian Map). De combinatie van kunstmatige intelligentie en de eerder-
genoemde aanpak vormt de basis voor dit proefschrift, dat focust op het onderzoeken
van scheervluchten vanuit een machine-learning perspectief.

Dit proefschrift presenteert een methode om de veranderingen in de baanelementen
na een GA te kwantificeren, genaamd Gravity Assist Mapping (GAM). De methode ach-
ter het GAM model is gebaseerd op Gaussische processen en is een zgn. geverifieerde
machine-learning techniek. Deze techniek kan onderverdeeld worden in twee types: re-
gressie van Gaussische processen (GPR), gebruikt voor continue output, en klassificatie
van Gaussische processen (GPC) voor discrete output. In dit onderzoek worden beide
types toegepast: de regressie wordt gebruikt voor de kwantificatie van flyby effecten en
het klassificatie model wordt gebruikt voor het klassificeren van botsingstrajecten.

De ontwikkeling van de GAM modellen wordt gedaan voor het beperkte drielicha-
menprobleem (CR3BP). Om dit probleem verder te versimpelen begint de studie met een
eenvoudige, 2-dimensionale situatie: het platte vlak. Deze situatie beschouwt een sys-
teem bestaande uit een zon, de combinatie van aarde+maan, en een satelliet. We kijken
naar de flyby’s op een hoogte van meer dan 300 km boven het aardoppervlak. De flyby’s
langs de aarde+maan (de zgn. secondary) zijn niet beperkt tot de invloedsfeer of de Hill
sphere. De Keplerian Map, een semi-analytische methode voor het CR3BP, focust zich
daarentegen alleen op de gevallen buiten de Hill sphere met een Jacobi constante van
ongeveer 3.0. Voor hogere waardes van de Jacobi constante is deze methode niet meer
nauwkeurig. Een GAM model wordt gestuurd door trainingsinvoer; het model leert de
dynamica van de flyby’s aan de hand van de effecten in de aangedragen invoer die door

xi
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middel van numerieke propagatie tot stand zijn gekomen. We analyseren de gevoelig-
heid van het aantal gesimuleerde voorbeelden op de kwaliteit van de voorspelde post-
flyby status. Uit de resultaten blijkt dat het GAM model nauwkeurige voorspellingen kan
maken van de post-flyby status van een satelliet, onafhankelijk van de beginvoorwaar-
den. Aangetoond wordt dat het model efficiënt en accuraat is door het te vergelijken met
resultaten verkregen door numerieke integratie. De voorgestelde methode is toepasbaar
voor gevallen met een hoge energie, maar ook voor gevallen met lage energiewaardes.
De rekentijd van een enkele voorspelling met GAM kost slechts 1.16×10−6 s, in tegen-
stelling tot methode van de Keplerian Map die 0.064 s kost (desktop PC met een Core
i7 CPU en 8.00 GB RAM). Voor het systeem zon-(aarde plus maan)-satelliet is de gemid-
delde waarde van de absolute fout in de voorspelling de halve-lange as 3.86×10−5 AU
(met typische waardes tussen -0.0115 AU en 0.0163 AU).

Nadat het model is opgebouwd voor deze 2-dimensionale situatie breiden we het uit
naar een volledig 3-dimensionaal CR3BP. Door dit te doen is het aantal vrije parameters
in dit probleem verhoogd van drie naar vijf. Een nieuwe afbeeldingsfunctie is gedefini-
eerd om de flyby effecten na één omloop te kwantificeren. Het GPR model is tot stand
gekomen door gebruik te maken van passende functies voor het middelen en het be-
rekenen van de covariantie. Om de efficiëntie van deze methode te verbeteren is een
criterium opgesteld voor de gemiddelde absolute waarde van de fout. Dit is gedaan om
de optimale grootte van de training dataset te vinden. De robuustheid hiervan is onder-
zocht en de toepasbaarheid voor realistische scenario’s is geanalyseerd. De gevoeligheid
van de verschillende input elementen (de covariantie functie, de grootte van de training
dataset, random getallen) op de flyby is onderzocht. De nauwkeurigheid en efficiëntie
van het voorgestelde model is onderzocht voor verschillende energie niveaus, van ge-
vallen met weinig energie tot gevallen met een hoge energie. De waarde van de Jacobi
constante varieert tussen 3,0012 en 0,5122, een groot bereik, en kan daarmee op veel
vlakken toegepast worden (in tegenstelling tot voorgaand onderzoek, zoals dat van Ross
en Scheeres (2007) en van Alessi en Sánchez (2016)). Het GAM model laat een signifi-
cante verbetering zien ten opzichte van de semi-analytische methode (de KM methode
ontwikkeld door Alessi en Sánchez (2016)). De nauwkeurigheid en efficiëntie van het
voorspellen van de variatie van de semi-lange as zijn verbeterd met een factor 3.3 en een
factor 1.27×104, respectievelijk.

De bovengenoemde GAM modellen voor het eenvoudige planaire model en het 3D
model maken beiden gebruik van de GPR methode, d.w.z. leveren continue output: de
GPR methode maakt een voorspelling voor iedere beginwaarde die aangeboden wordt.
Het is echter niet mogelijk voor de GPR methode om trajecten te klassificeren die leiden
tot een botsing met het tweede hoofdlichaam. Om die reden is het noodzakelijk om een
classificatie te maken. Hiervoor is de GPC methode ontwikkeld. Deze is net als de GPR
methode gebaseerd op Gaussische processen. Trainingsinvoer wordt gegenereerd door
middel van een numerieke propagatie van de bewegingsvergelijkingen voor het CR3BP.
De data binnen het model bevatten vervolgens zowel botsingstrajecten als veilige trajec-
ten. Als eerste wordt het GPC model gevoed met de training data. Hierna kan het GPC
model trajecten klassificeren voor iedere willekeurige beginconditie. De gevallen die niet
leiden tot een botsing worden doorgestuurd naar het GPR model. De nauwkeurigheid in
het detecteren van deze trajecten met de GPC methode is beter dan 90%.
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Het GPR model wordt verder verbeterd door de Jacobi constante als extra input toe te
voegen. Deze constante vertegenwoordigt de energie in het CR3BP en zorgt voor waar-
devolle informatie over de dynamica van overgangsvluchten. De prestatie van de mo-
dellen is geanalyseerd in drie verschillende systemen bestaande uit: zon-(aarde+maan)-
satelliet, Jupiter-Callisto-satelliet en zon-Jupiter-satelliet. De waarde van de massaver-
houding µ neemt hierbij toe met een factor 10. De resultaten demonstreren dat de effec-
ten van flyby’s efficient en nauwkeurig geëvalueerd kunnen worden door de GPC (classi-
ficatie) methode te combineren met de GPR (regressie) methode. De voorgestelde GAM
aanpak is aantoonbaar toe te passen op verschillende CR3BP systemen. Het GPC kan
zelfstandig gebruikt worden voor het detecteren van botsingen, of gecombineerd wor-
den met het GPR model. De verdeling van de gevallen met een botsing vertoont een
grote gelijkenis met resultaten verkregen door numerieke CR3BP propagatie. Wanneer
een CR3BP een grotere waarde voor µ heeft, zijn meer training samples nodig voor het
regressie onderdeel. De gemiddelde waarde van de absolute fout in de verandering in de
semi-lange as is slechts 3.86×10−5 AU met een rekentijd van 5.8×10−6 s per geval (bij het
zon-(aarde+maan)-satelliet probleem). Het toevoegen van de Jacobi constante als een
extra input verbetert de nauwkeurigheid van de voorspelling voor alle systemen signifi-
cant (rond de 20%).

De GAM aanpak die is ontwikkeld in dit proefschrift kan gebruikt worden voor het
ontwerpen van ruimtemissies. De grote nauwkeurigheid en efficientie van de methode
maken de tool een zeer aantrekkelijk instrument om flyby effecten te kwantificeren, met
name wanneer veel begincondities moeten worden geëvalueerd.





1
INTRODUCTION

I N this introductory chapter, first, the mechanism and application of a gravity assist
(GA) in space missions are introduced. The patched-conics model for designing GA

trajectories using a two-body framework is reviewed. The three-body problem (3BP),
which is used by the current research, as well as the associated Jacobi’s integral are elab-
orated upon. The numerical and semi-analytical tools that have been used to investigate
the (effects of a) GA are summarised. Inspired by these techniques, this thesis aims to
solve the problem by using machine learning, i.e., the Gaussian Process (GP) method.
The basic idea of a GP method is introduced, with particular attention paid to its appli-
cation in the field of celestial mechanics. Finally, the research questions are formulated
and the outline of this thesis is presented.

1.1. GRAVITY ASSIST
From the first spacecraft leaving Earth orbit (Luna 1, January 1959) to the recent three
Mars missions (Mars 2020, Tianwen-1 and Hope in July 2020), a great number of space
probes have been launched to explore the Solar System (Siddiqi 2018). These mis-
sions contribute to the assessment of the environment on other planets and moons,
searching for evidence of extraterrestrial life, our understanding of the origin of the So-
lar System, etc. (Ness et al. 1974, Broadfoot et al. 1976, Glassmeier et al. 2007, Hassler
et al. 2014). Typically, a mission targeted at the neighbour planets Mars or Venus em-
ploys a Hohmann transfer to reach them: the technique close to this kind of transfer
is performed by the recent Mars missions. For a destination beyond these planets, the
Hohmann transfer is not necessarily the first choice due to the large propellant require-
ment. In order to save propellant given a tight ∆v budget, the GA technique has been
commonly used by many space missions.

The GA, or flyby, is a mechanism to change the velocity of the spacecraft using the
gravity of a celestial body (e.g., Beutler 2004). The GA body can be either a planet or a
moon, for altering the orbit around the Sun or the target planet, respectively. In October
1959, a GA was first used by the Soviet mission Luna 3, photographing the far side of the

1
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Moon (Biesbroek & Janin 2000). The first application of GA in interplanetary missions
was Mariner 10 in November 1973 (Dunne 2011). The flyby at Venus changed the path of
the spacecraft so that the perihelion was decreased effectively to meet Mercury, shown
in Figure 1.1(a).

During the process of a GA, the sum of kinetic energy of the spacecraft and the GA
body remains constant. The momentum variation gained by the spacecraft equals that
lost by the GA body. The GA’s can be categorised into two types in terms of the change
in orbital energy: the first type increases the orbital energy by following the movement
of the GA body; the second type decreases the orbital energy by flying in front of the
GA body. A famous usage of the first type is the so-called ’Grand Tour’, performed by
Voyager 2 which visited Jupiter, Saturn, Uranus and Neptune. The combination of GA’s
made it possible to explore four planets in one mission given their perfect alignment,
which occurs once every 175 years only (Flandro 1966). Also, although not part of the
official mission plan, by means of GA’s, the Voyager 1 and 2 became the first two space-
craft to leave the Solar System (Gurnett et al. 2013, Gurnett & Kurth 2019). Figure 1.1(b)
shows the flyby trajectories of the two spacecraft. An example of the second type of GA
is BepiColombo. The energy relative to the Sun is to be decreased using Earth, Venus
and Mercury flybys (Benkhoff et al. 2010). The spacecraft is expected to insert in an orbit
around Mercury in December 2025.

(a) GA trajectory of Mariner 10. (b) GA trajectories of Voyager 1 and 2.

Figure 1.1: The trajectories of Mariner 10 and Voyager 1 and 2, redrawn based on the images from
https://www.nasa.gov/feature/45-years-ago-mariner-10-first-to-explore-mercury

https://www.jpl.nasa.gov/edu/news/2018/12/18/then-there-were-two-voyager-2-reaches-interstellar-space/

In the preliminary design of a GA mission, the patched-conics model is a useful tool
to simplify calculations (e.g., Bate et al. 1971). The simplification is made by dividing
a multi-body problem into several two-body problems. This model has a fundamental
assumption: the trajectory of the spacecraft is driven by one celestial body only. When
inside the Sphere of Influence (SoI) of a particular planet (or moon), it is only the grav-
ity pull of that body that drives the dynamics. Otherwise, it is the Sun (or planet) only.
With this, the patched-conics model is a succession of elementary two-body problem
formulations. The impact of the GA is considered as instantaneous and each segment
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is represented as an ideal Kepler orbit. These segments are patched together. Labunsky
et al. (2017) introduced methods and models of trajectory design using multiple grav-
ity assists based on the patched-conics model. Vasile & De Pascale (2006) proposed a
simplified model for powered-flyby that is sufficiently accurate for preliminary design.
The method preserved important classes of possible solutions and was verified for the
Cassini Mission and other typical missions to Jupiter and Asteroid.

The patched-conics framework becomes less effective for small relative velocities (at
infinity; v∞) between the spacecraft and the GA body. The two-body formulation has
a limitation in describing some dynamics in more detail, in particular for low-energy
cases with phenomena like invariant manifolds. In the physical reality of a multi-body
framework, the orbit of the spacecraft is continuously influenced by the smaller body.
Take the Sun-Jupiter-spacecraft problem as an example: studies have shown that the
gravitational attraction of Jupiter affects the trajectory of the spacecraft even in the ex-
terior realm of its SoI (Greenberg et al. 1988, Gawlik et al. 2009). The special dynamics
described by the three-body formulation has proven to be essential to design low-energy
trajectories or to study the motion of asteroids between Mars and Jupiter (Beutler 2004,
Campagnola et al. 2012, 2014). It is clearly worthwhile to investigate the dynamics of a
flyby in the three-body framework.

1.2. CIRCULAR RESTRICTED THREE-BODY PROBLEM
After an analytically successful investigation of the two-body problem, scientists
switched their interest to the n-body problem. Many attempts have been made to obtain
closed-form solutions for the full dynamics in this n-body problem. It was found that
analytical solutions are only available under certain very specific conditions. Scientists
who have worked on this include Clairaut, Euler and Lagrange (Clairaut 1747, Euler 1772,
Lagrange 1772). The three-body problem is a logical choice to start the investigation of
the n-body problem, for which a general closed-form solution does not exist. Yet, the
three-body researches contributed to many practical astrodynamics problems. For in-
stance, the application to the Sun-Jupiter-asteroid situation shed light on the formation
of main-belt asteroids. The Sun-Earth-Moon problem gives insight into the evolution of
the Moon.

In order to reduce the degree of difficulty of the problem, Euler introduced the Re-
stricted Three-Body Problem (R3BP). The R3BP assumes that one of the bodies is small
and has negligible mass compared to the other two. This small body is under the in-
fluence of the gravitational attraction of the two massive bodies. To further simplify the
R3BP, the two massive bodies are assumed to have circular orbits and rotate around their
barycenter. Although the Circular Restricted Three-Body Problem (CR3BP) is simplified,
it still contains some special properties of the 3BP, and is relevant in practice (Beutler
2004). In the Solar System, the assumption of circular orbits can be met because a large
number of planets and moons (revolving around a specific planet) have very small ec-
centricity, which can be considered as nearly zero in the preliminary design.

By definition, the CR3BP describes the dynamics of three point masses: two massive
bodies P1 and P2 and a third body P3 with masses M1, M2 and M3, respectively, which
meet the condition M1 > M2ÀM3. P1 and P2 rotate around each other in circular orbits.
Their orbital plane is typically taken as the plane of reference. In the rotating reference
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frame, the origin is set at the barycenter of P1 and P2, and the X-axis is aligned with the
direction to P2. The primaries P1 and P2 rotate around the Z-axis in counterclockwise
direction. The orthonormal reference frame is completed by the Y-axis. The equations
of motion for the spacecraft are described as (e.g., Szebehely 1967)

ẍ −2ẏ = x − (1−µ)

r 3
1

(x +µ)− µ

r 3
2

(x −1+µ)

ÿ +2ẋ = y − (1−µ)

r 3
1

− µ

r 3
2

y

z̈ =− (1−µ)

r 3
1

z − µ

r 3
2

z

(1.1)

where x,y and z represent the normalized position coordinates in the barycentric Carte-
sian co-rotating reference frame. The normalization uses the distance RP1,P2 between

P1 and P2 for length, (M1 +M2) for mass, and
√

R3
P1,P2/(G(M1 +M2)) for time. G is the

universal gravitational parameter. µ is defined as the mass ratio which specifies a CR3BP
system. r1 and r2 are the distances between P3 and the primaries P1 and P2, respectively.
These parameters are defined as

µ= M2/(M1 +M2)

r1 =
√

(x +µ)2 + y2 + z2

r2 =
√

(x −1+µ)2 + y2 + z2

(1.2)

µ is a key factor that defines the structure of the CR3BP. Three CR3BP systems are in-
vestigated in this dissertation. For the system of Sun-(Earth+Moon)-spacecraft, µ equals
3.036× 10−6. The Earth and Moon are considered as one point mass. µ of the Jupiter-
Callisto-spacecraft and the Sun-Jupiter-spacecraft systems has a value of 5.667× 10−5

and 9.537×10−4, respectively. In order to investigate the motion of P3, we can introduce
the Jacobi’s integral, which is time-independent. The value of Jacobi’s integral is con-
stant along the trajectory of P3; it is the only known constant integral of the CR3BP. In a
specific CR3BP system (i.e., with fixed µ), its value C J is fully determined by the position
and velocity of P3.

In the rotating reference frame, the Jacobi constant is defined as (Poincaré 1899, Sze-
behely 1967):

C J = x2 + y2 + 2(1−µ)

r1
+ 2µ

r2
− (ẋ2 + ẏ2 + ż2)+µ(1−µ). (1.3)

The Jacobi constant reflects the energy level of the trajectory of the spacecraft. A high
value of C J represents a low energy level. Given an initial condition, the motion of P3 is
constrained by C J . For some values of C J , there are inaccessible regions with bound-
aries called zero-velocity surfaces. Given a mass ratio µ, the structure of the accessible
regions, known as Hill’s regions, can be categorised into five cases. Each category is ob-
tained by using C J associated with the Lagrange libration points.

Figure 1.2 shows the first four cases in the XY-plane using non-dimensional units.
The fifth case is not presented here because the entire space is accessible to P3. To arrive
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at this illustration, a hypothetical value of 0.2 is taken for µ such that the inaccessible
regions (blue area) are clearly noticeable. In this case, the values for the Jacobi constant
of the Lagrange points are CL1 = 3.9709, CL2 = 3.7124, CL3 = 3.3573, CL4 =CL5 = 3.0000.

Case 1: The value of C J is larger than CL1. The accessible regions are divided into
three parts: the vicinity of P1, the vicinity of P2 and the exterior region. If the initial
location of P3 is somewhere in the exterior region, it cannot access the neighbourhood
of any of the two primaries. Also, it is not possible for a particle in the vicinity of one
primary to reach the other one.

Case 2: CL1 >C J >CL2. When C J decreases, the accessible regions around P1 and P2

become bigger. At the L1 Lagrange point, the regions connect when CL1 > C J . If P3 is
located in the vicinity of one of the primaries, it is possible to move to the vicinity of the
other one. Transitions between the interior and exterior regions are not possible yet.

Case 3: CL2 > C J > CL3. If C J is further decreased, the inaccessible region obviously
shrinks. The interior and exterior Hill’s regions are connected starting from the L2 La-
grange point. If the initial location of P3 is in the exterior Hill’s region, it might travel
into the neighbourhood of P2 or even P1, being trapped temporally before escaping or
staying there for a long time.

Case 4: CL3 >C J >CL4/L5. The inaccessible region is split into two lobes and becomes
smaller and smaller as C J is being reduced.

If C J is smaller than CL4/L5, the symmetrical inaccessible regions vanish at the L4 and
L5 Lagrange points, which turns out to be case 5. When talking about the initial condi-
tion of P3 in this thesis, the initial location is somewhere in the exterior Hill’s region, as
illustrated in all individual plots in Figure 1.2.
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(a) case 1: C J >CL1. (b) case 2: CL1 >C J >CL2.

(c) case 3: CL2 >C J >CL3. (d) case 4: CL3 >C J >CL4/L5.

Figure 1.2: Regions of possible motion for a particle P3 given a Jacobi constant C J
in the rotating reference frame. Inaccessible regions are indicated in blue.

1.3. METHODS TO STUDY FLYBYS
There have been many attempts to study the third-body effects in the CR3BP regime.
The previous research that inspired this study consists of semi-analytical and numerical
methods, featuring the Keplerian Map (KM) and Flyby Map (FM), respectively (Ross &
Scheeres 2007, Campagnola et al. 2012). Including this research, the typical works that
will be mentioned in Chapters 2-4 are covered here in more detail.

1.3.1. SEMI-ANALYTICAL METHODS

Petrosky & Broucke (1987) and Chirikov & Vecheslavov (1989) first developed the KM
based on the theory of nonlinear area-preserving maps. This technique is actually a
mapping function used to update the energy variation of a particle. In terms of the Ke-
plerian orbital elements, the energy is proportional to 1/a. The mapping function is
formulated using the phase angle between the particle and the secondary. This research
shed light on the distribution and escape of particles in the CR3BP. The results obtained
by the KM indicate that the motion of the particle in the CR3BP is sensitive to initial con-
ditions. While applying the map to investigate the long-term motion of comets in nearly
parabolic orbits, it was found that this motion can become chaotic. For instance, the
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dynamics of comet Halley is proven to be chaotic on the long time-scale given the initial
conditions taken from real data of 46 revolutions.

Using the KM, Ross & Scheeres (2007) investigated specifically the distant GA’s in the
planar CR3BP. Based on Picard’s iteration, an energy kick function was built to approxi-
mate the variation of orbital elements over one revolution. The approach is applicable
to near-Keplerian elliptical orbits of low energy levels, for a wide range of eccentricities.
These orbits have periapse or apoapse touching the Hill sphere of the secondary. For the
Jupiter-Callisto-spacecraft system, the evolution of the semi-major axis estimated by the
KM shows a behavior that matches the results of a full CR3BP numerical propagation. In
the phase space, the approach gives insight into the identification of transfer trajectories
between orbits with different semi-major axes. It also allows for a fast approximation of
possible orbits, which might yield ballistic transfers or escape trajectories. The accuracy
of this method is found to be reasonably good only for very low three-body energy levels
(Lantoine et al. 2011).

Grover & Ross (2009) applied the KM to design propellant-efficient trajectories in
multiple three-body problems. The patched three-body systems are Jupiter-Europa-
spacecraft and Jupiter-Ganymede-spacecraft. In order to obtain low-energy trajectories
with a short time of flight, a controlled KM was developed by introducing a manoeuvre
∆V during the flyby. Jerg et al. (2009) used the KM to design optimal capture trajectories.
The multi-flyby trajectory connects a large orbit relative to Jupiter and a capture orbit
around Callisto. For an asteroid retrieval mission, the KM was used to update the or-
bital elements of a target asteroid encountered with the Earth (Sánchez et al. 2013). The
attention focused on the Amor asteroids, assessing the retrieval opportunities of six can-
didates. When Peñagaricano Muñoa & Scheeres (2010) analysed two-point boundary
value problems, they took the perturbation on the periapse into account for the con-
struction of their KM. In addition, the map was improved to quantify the flyby effects in
the fully spatial CR3BP.

Further on the spatial CR3BP, Alessi & Sánchez (2016) derived a formulation to esti-
mate the variation of the Keplerian orbital elements due to a distant encounter. Based
on perturbation theory, a kick map was developed which shows the variations of differ-
ent elements as a function of the phasing angle. This angle is determined by the relative
position between the secondary and particle at periapsis passage. The kick maps for the
orbit of asteroid 2009 BD have almost identical behavior compared to the map gener-
ated by the CR3BP propagation. This method assumes a sufficiently small mass ratio,
and may suffer from singularity problems for low eccentricity and inclination. A limita-
tion is that the accuracy is very good for encounters taking place outside the Hill sphere.
The obtained formulation is semi-analytical and not applicable to the cases of tempo-
rary capture (and subsequent escape).

Neves et al. (2018) analysed various approaches to model the third-body effect and
tried to obtain a fully analytical solution. These approaches include: 1) the KM used
by Alessi & Sánchez (2016); 2) the Periapsis-Apoapsis-Periapsis KM, replacing the inde-
pendent variable true anomaly by the eccentric anomaly; 3) an Euler KM, employing
the Euler method to numerically integrate the KM equations. They showed the accu-
racy of these models within their fields of application. An attempt was made to find the
closed-form analytical solutions for the variation of the orbital elements of the massless
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body under specific conditions in the CR3BP. For orbits of low eccentricity, an analytical
approximation was formulated for the semi-major axis evolution.

The semi-analytical methods present concise formulations to approximate GA ef-
fects, but need numerical methods to generate the solutions. Generally, the computa-
tional effort is almost the same as that of a fully numerical approach.

1.3.2. NUMERICAL METHODS

In the CR3BP, Villac & Scheeres (2003) investigated the trajectories escaping the sec-
ondary, inspired by the Europa Orbiter mission. In order to simplify the analysis, a
Poincaré map was used to reduce the dimension of the dynamics. The analysis con-
centrated on a set of values of the Jacobi constant. The map allows the characterization
of the escape trajectories, which determines the bounds for initial conditions in terms
of radius, longitude of periapsis and inclination. For a spacecraft initially located in a
circular orbit around the secondary, the minimum total velocity increment ∆V required
for a low-energy escape was obtained. Due to the symmetry properties of the system,
the method can also be applied to the design of capture trajectories.

Villac & Scheeres (2004) analysed the planar Hill’s problem using a numerical
method. Different from the CR3BP, the Hill’s problem is also a three-body problem,
which assumes that the secondary and third bodies are both small with non-negligible
masses. For the trajectory of two small bodies, the position space is partitioned into pe-
riapsis and apoapsis regions. This contributes to the qualitative analysis of the dynamics
of the Hill’s problem. The method was used to define regions of escape and capture for
low-energy cases.

Campagnola & Russell (2010) developed a Tisserand-Poincaré (T-P) graph for the
problem of endgame. The endgame focuses on the final phase of the trajectory design
before the spacecraft enters the target orbit. The study was performed in the context of a
multi-body problem, patching different CR3BP systems, for instance Jupiter as primary,
and Europa and Ganymede as secondaries, respectively. The T-P graph is based on the
Tisserand graph, which was developed in the two-body regime using a patched-conics
model. For the CR3BP in this work, a Poincaré section was placed at the negative X-axis
of the rotating reference frame. The advantage of using this method is that the Tisserand
level sets are extended compared to that using a patched-conics model. From an energy
point of view, the ballistic transfers between moons are demonstrated to be possible
by the T-P graph. The applications include finding a transfer trajectory from Europa to
Ganymede with about 1 km/s lower ∆V than the Hohmann transfer. It is worth noting
that the T-P graph can not be used to estimate the flyby effect of a single encounter.

Campagnola et al. (2012) presented a FM inspired by the KM and T-P graph. The FM
was developed in the framework of the planar CR3BP. The phase space of the spacecraft
trajectory was parametrized using the semi-major axis a, the Tisserand parameter T ,
the true anomaly f and the longitude of the periapsis. An illustration of an FM is shown
in Figure 1.3. The FM defines a mapping function between the states of the spacecraft
before (subscript A) and after (subscript B) a flyby. The Poincaré section

∑
is selected fol-

lowing the work of (Campagnola & Russell 2010), with a particular definition of boundary
conditions R2 > R2mi n ensuring the validity of the Tisserand condition. R2mi n is a spec-
ified minimum distance between the spacecraft and the secondary. The FM effectively
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extended the applicability of the Tisserand graph over using the patched-conics model.
It identified two types of flybys and showed that one type is more efficient than the other.
In the Jovian system, a low-energy trajectory from Callisto to Europa saving 150 m/s ∆V
is found.

The semi-analytical and numerical methods offer valuable insight into the effect of
flybys in the three-body problem. Motivated by these methods, an attempt is made in
this thesis to quantify these flyby effects from a machine-learning perspective. Rather
than finding the analytical solutions for the variation induced by the flyby, the machine
learning-based approach is expected to achieve three main goals: 1) applicable for a
wide range of three-body energies; 2) a reasonable accuracy for preliminary design; 3)
time-saving, i.e., faster than the semi-analytical and numerical methods.

Figure 1.3: Schematics of the Flyby Map.
After (Campagnola et al. 2012).

1.4. MACHINE LEARNING BASED ON GAUSSIAN PROCESS
The Gaussian Process (GP) method is a supervised machine-learning method based on
Bayesian inference (Rasmussen & Williams 2006). According to different practical prob-
lems, the method can be used for regression and classification, known as GPR and GPC,
respectively. The GPR model was developed based on the method of kriging, which was
first proposed by Krige (1951) for mine valuation in South Africa. Given samples from
several boreholes, a prediction of the distribution of gold was obtained using GPR. In re-
cent years, the Deep Neural Network (DNN) is very popular for its excellent performance
on speech recognition, visual object recognition and object detection, etc. (LeCun et al.
2015). The 2018 Turing award went to three pioneers in DNN (Hinton & LeCun 2019). In
order to train the internal parameters and achieve accurate predictions, a DNN model
commonly needs a large amount of training data. Unlike the DNN, a GP method typically
works well for a small dataset already, and provides information of uncertainty about the
prediction. Rasmussen & Williams (2006) presents a systematic introduction to the GP
method. The main concepts of a GP method are clearly covered here: it introduces the
construction, model selection, training and prediction of GP models. It also analyses the
difference between a GP method and other machine-learning tools such as the Support
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Vector Machine.
The main concept of any GP model is the Gaussian process, which is defined as a col-

lection of random variables. Any finite collection of these variables has a joint Gaussian
distribution (Rasmussen & Williams 2006). When we are using a machine-learning tool
to learn a model (e.g., a process in the real world), this model can be defined by a simple
mapping function:

f (x) : x 7→ y (1.4)

The relationship between the input x and the output y is described by the mapping
function f (x). Depending on the type of output, a problem is defined as regression for
continuous outputs or classification for categorical outputs. Taking weather forecast as
an example, assuming x to be the date, the problem is regression if y = amount of pre-
cipitation, and classification if y = Sunny or Rainy. The property of a GP method allows
it to solve both types of problems, which will be shown in Chapter 4.

Figure 1.4 presents an example of using GPR to make predictions. In Figure 1.4(a),
the blue ’plus’ symbols represent hypothetical training data (x, y), which do not have a
physical meaning. Assuming that (x, y) is empirical information observed from a real
process f (x), the red curve represents the GPR predictions after a process called train-
ing. See Chapter 2 for more details about this training process. Given a new test input
x∗, the prediction y∗ can be obtained from the corresponding value on the red curve.
Making predictions for a test dataset using a machine-learning tool inherently involves
some level of uncertainty. An assumption is made in the application of the GPR model,
the uncertainty is in a form of Gaussian distribution containing standard deviation in-
formation. A specific advantage of the GPR approach is the fact that it is able to quantify
this uncertainty, which is detailed in Chapter 4. It is obtained directly from the training
process. The shaded area in Figure 1.4(a) denotes twice the standard deviation. Typically,
dense observations in the input space lead to lower standard deviation, and the opposite
is the case for regions with sparse training data. Therefore, the left and right input space
have a higher standard deviation than the central part. Figure 1.4(b) presents the uncer-
tainty of predicting a single sample (x∗, y∗)=(-0.347,-0.746). The Gaussian distribution
describes the confidence of predicted outputs.

Figure 1.5 illustrates an application of the GPC model for the binary classification
problem. The training samples are shown in points, each of which has two input param-
eters x1 and x2. The training outputs are labelled as ’positive’ (’star’ patterns) or ’nega-
tive’ (’plus’ patterns). Using the GPC model, the prediction over the whole input space
is presented by the contour lines. The colour bar corresponding to the contour lines
presents the GPC prediction in terms of the possibility of a sample being predicted as
positive. The orange lines near the ’star’ patterns indicate that a new sample taken from
this area has a possibility of more than 50 % to be positive. When this colour changes to
green or even blue, the prediction would be negative.

Based on the idea of GP, the model provides a practical and probabilistic approach
to learning (Rasmussen & Williams 2006). This gives advantages to the interpretation of
a prediction model. Also, the required amount of training data is small and the training
procedure is simple. The GP method was applied to solve robot inverse dynamics prob-
lem for robot model-based control on a Barrett WAM robot arm (NguyenTuong et al.
2009). He & Siu (2011) addressed the problem of producing a high-resolution image
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from a single low-resolution image based on GPR. THe GPR model is used to produce
soft clustering of pixels based on their local structures.

It is of interest to use a GP method in the field of astrodynamics for solving some
practical problems. Shang & Liu (2017) developed a GPR model to efficiently assess the
accessibility of main-belt asteroids. The training dataset consists of 1500 training sam-
ples only, generated by globally optimal two-impulse or Mars gravity-assist transfers.
The model costs only several minutes to estimate the total velocity increment ∆V for
a probe to reach 600,000 asteroids. From a propellant point of view, about 4000 of them
are selected as candidates for future asteroid exploration. Gao & Liao (2019) modeled
the gravity field of small celestial bodies based on the GPR. The relative error of calcu-
lating the acceleration at a particular position is 1.27 % compared to the high-precision
polyhedron modeling method. The efficiency is improved by a magnitude of 105. Bouw-
man et al. (2019) constructed a GPR model to replace the sequential quadratic program-
ming for the low-thrust trajectory design. The model learns information from a training
dataset obtained from shape-based methods and differential evolution. Given a condi-
tion such as departure time and time of flight, the model made accurate predictions on
∆V and propellant mass fraction. Moreover, a GPC model was built to identify infeasible
trajectories for certain combinations of input parameters.

(a) Prediction using GPR. (b) Uncertainty of prediction.

Figure 1.4: Illustration of a prediction using Gaussian Process Regression.
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Figure 1.5: Illustration of a prediction using Gaussian Process Classification.

1.5. RESEARCH MOTIVATION
Although many studies on GA’s have been done, either analytically or numerically, this
thesis presents a new topic: quantification of GA effects in the three-body problem
using a Gaussian Process method. Instead of attempting to solve the problem in an
analytical formulation, we use a machine-learning tool to investigate the flyby effects.
As introduced in the previous sections, the flyby is of significant importance for space
missions. In the 3BP regime, understanding the dynamics of flyby’s for a wide range of
energies sheds light on the chaotic nature of the problem. The low-energy cases like
ballistic capture and low-energy transfers between moons of a planet play an important
role in propellant-saving exploration missions. For high energy levels, the analysis
of third-body perturbations that result in chaotic transfers are beyond the scope of
two-body regime and the patched-conics models (Petit & Henon 1986). Given an initial
condition, an accurate and efficient way of quantifying the flyby effects is crucial to
mission analysis, especially if a large number of initial conditions needs evaluation or
a multi-flyby situation is involved. For instance, a collision probability analysis with
respect to Europa has been performed for the Jupiter Icy Moons Explorer (Boutonnet
et al. 2014). An attempt has been made to look for analytical solutions for the variations
due to a flyby in the CR3BP, leading to semi-analytical formulations (Ross & Scheeres
2007, Alessi & Sánchez 2016, Neves et al. 2018). It is very interesting to investigate the
flyby effects using a new machine-learning-based approach, the GP method.

The research questions are formulated as follows:

(RQ.a) Can a machine-learning method be used to quantify the GA effects in the three-
body regime?

This is the main research question of the current thesis. A framework for model-
ing the variation of flyby effects needs to be defined. The CR3BP regime is employed
to describe the motion of a particle with negligible mass under the influence of a flyby.
In this regime, numerical methods have shown excellent performance but require ex-
pensive computational time, especially for numerous numbers of candidate initial con-
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ditions. Semi-analytical methods capture the dynamics of flyby effects well. However,
these methods require a computational time comparable to that of the numerical ap-
proach, and the accuracy is commonly good at low energy levels only (Ross & Scheeres
2007, Alessi & Sánchez 2016, Neves et al. 2018). The current study is inspired by these
studies, particularly the KM and FM (Ross & Scheeres 2007, Campagnola et al. 2012).
We are interested in the performance of the quantification of flyby effects by means of
machine learning.

Machine learning is drawing much attention in recent years, showing strong
predictive ability in various fields. The tool we select for solving the CR3BP issue is
a probabilistic model. A GP method is a supervised learning technique, based on
Bayesian principles. ’Supervised’ indicates that we need to provide the model empirical
information, i.e., training data, to learn a specific process (Mohri et al. 2018). The
GP method uses the training data not only in the training procedure, but also in the
prediction. In order to predict the flyby effects, the generation of training data and
model construction play an important role, which will be investigated throughout this
thesis.

(RQ.b) How can the Gaussian Process method be used to learn the effects of flyby’s in
a planar CR3BP framework?

For investigating the possibilities of modeling the flyby effects, the framework is first
simplified in order to reduce the difficulty. A planar CR3BP regime is employed, reducing
the mapping dimension from five to three. The GP method has one basic assumption:
the points with closer inputs are likely to have similar outputs. Different sampling
methods are compared to determine the best way of generating training inputs. For
the training outputs, the numerical propagation of the CR3BP equations of motion is
used to serve as the benchmark for the GP model. The GP model selection considers
various covariance functions that look promising to capture the characteristics of flybys
in the planar CR3BP. The performance of GP models will be analysed by comparing its
accuracy and efficiency to a previous semi-analytical method, the Keplerian Map (Ross
& Scheeres 2007).

(RQ.c) Can a Gaussian Process Regression model predict the flyby effects in a fully spa-
tial CR3BP for a wide range of three-body energies, and if so, with what accuracy?

This research question is based on the research question RQ.b. Provided that the
GP method can be applied to the planar CR3BP, some modifications are needed for
generalisation to the spatial case. The boundary of the input space needs to be defined
corresponding to the increased dimensionality. In order to obtain an informative
training dataset, a larger data size is expected because of the larger dimension of the
input space. It has to be determined which covariance function works best for the
3D scenario. The Sun-(Earth+Moon)-spacecraft system is considered to develop the
proposed method.

(RQ.d) Can the performance of GP models be improved by using specific characteris-
tics of the CR3BP? What classification model can be used to identify collision trajec-
tories?
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An advantage of the machine-learning tool is that its flexibility allows to incorporate
new features as inputs. The mapping function of input-output is not necessarily fixed.
The machine-learning approach has the potential to learn the underlying relationship
of a mapping, though the inputs and outputs are not directly connected. The Jacobi
constant is selected to be an additional input feature. The accuracy after adding this fea-
ture is compared to that of the original model. It is also necessary to assess the validity of
GP models in different CR3BP systems. In addition to the Sun-(Earth+Moon)-spacecraft
system, the Jupiter-Callisto-spacecraft and the Sun-Jupiter-spacecraft systems with a
bigger mass ratio µ are investigated. The values of µ differs by a factor of about 10. Still,
the GPR model cannot identify trajectories crashing into the secondary. To this end, a
GPC model is developed for the identification of collision trajectories, complementary
to the function of the GPR.

1.6. OUTLINE
All research questions are addressed in Chapters 2-4. Each chapter mainly focuses on
one research question from RQ.b to RQ.d. The main research question RQ.a is addressed
gradually.

Chapter 2 focuses on the development of Gravity Assist Mapping (GAM), a GPR
model to quantify the flyby effects. First, it is presented how the GAM learns the features
of flybys from training samples generated by planar CR3BP equations of motion. The
covariance function, the key module of the GPR approach, is optimized according to the
analysis of flyby dynamics. The number and distribution of training samples are selected
by taking the Root-Mean-Square Error (RMSE) and the Mean-Absolute-Percentage Error
(MAPE) of test samples as criterion. At last, the performance of the GAM technique is as-
sessed. The computational effort is evaluated for different numbers of initial conditions.

Chapter 3 extends the model used in the previous chapter in order to quantify flyby
effects in a full three-dimensional situation. The complexity of the CR3BP increases sig-
nificantly when going from a planar model to a full spatial model. A new GPR-based
GAM model is developed to solve this. The model aims at a wide range of energy levels.
The energy of the considered cases ranges from values lower than that associated with
the L1 libration point to values larger than that associated with L4/L5. Several thousands
of training samples are required for the GPR model to learn the flyby effects . The predic-
tion of output given an arbitrary input will be compared with a previous semi-analytical
method and numerical integration methods.

Chapter 4 develops two GP models: a classification model for detecting collision tra-
jectories, and a regression model for calculating flyby effects. The GPC model is trained
in a sub-space of the input space for the GPR. The training outputs are labeled as ’im-
pact’ or ’no-impact’, according to the numerical propagation result of the CR3BP. The
collision-filtered training samples are forwarded to the GPR model. Based on the GPR
model developed in Chapter 3, this chapter introduces the Jacobi constant as a sup-
plementary feature for training. The performance of the GP models is assessed based
on three systems: Sun-(Earth+Moon)-spacecraft, Jupiter-Callisto-spacecraft and Sun-
Jupiter-spacecraft.

Chapter 5 concludes this thesis and makes a number of recommendations for future
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work.





2
A GRAVITY ASSIST MAPPING

BASED ON GAUSSIAN PROCESS

REGRESSION

Abstract We develop a Gravity Assist Mapping to quantify the effects of a flyby in a two-
dimensional circular restricted three-body situation based on Gaussian Process Regres-
sion (GPR). This work is inspired by the Keplerian Map and Flyby Map. The flyby is
allowed to occur anywhere above 300 km altitude at the Earth in the system of Sun-
(Earth+Moon)-spacecraft, whereas the Keplerian map is typically restricted to the cases
outside the Hill sphere only. The performance of the GPR model and the influence of
training samples (number and distribution) on the quality of the prediction of post-flyby
orbital states are investigated. The information provided by this training set is used to
optimize the hyper-parameters in the GPR model. The trained model can make predic-
tions of the post-flyby state of an object with an arbitrary initial condition and is demon-
strated to be efficient and accurate when evaluated against the results of numerical in-
tegration. The method can be attractive for space mission design.

2.1. INTRODUCTION
In the past decades, valuable insight about celestial bodies in our Solar System has been
gained using spacecraft, such as Jupiter visited by Galileo (D’Amario et al. 1992). Pro-
vided the payload capacity of launch vehicles is sufficient, it is possible to fly a direct
transfer to the above destination. However, it is not necessarily the first choice due to
the required propellant mass. In order to reduce the propellant consumption, typically
a gravity assist (GA) technique is used. For instance, a combination of flybys at Venus
and Earth was performed by Galileo before arriving at the final target Jupiter. In the pre-
liminary design, the patched conics approach is commonly used to investigate flybys,

This chapter has been published in Astronautical Sciences 68, pages:248–272(2021).
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which splits a multi-body problem into a succession of two-body problems (Broucke
1988, Longuski & Williams 1991, Strange & Longuski 2002, de Almeida Prado & de Fe-
lipe 2007). This model has a fundamental assumption: the trajectory of the spacecraft is
driven by one celestial body only. In addition to traditional GA’s, distant encounters can
be used to construct low-energy trajectories between the moons of giant planets (?Ross
& Scheeres 2007, Whiffen 2003). However, the patched conics model cannot be used to
study low-energy trajectories or describe the phenomena such as the invariant mani-
folds. The Circular Restricted Three-Body Problem (CR3BP) framework is typically used
to conduct these studies (Koon et al. 2000, 2001, Howell et al. 2001).

Unlike the patched-conics model, the secondary keeps affecting the spacecraft in
the CR3BP model. Distant encounters can be modelled in the CR3BP. However, there
is no clear boundary condition for such a flyby because the motion of the spacecraft is
always affected by the secondary. The Keplerian map is a useful tool to study the flyby
effects in the CR3BP. This concept was first introduced by Petrosky and Broucke to study
the chaotic behavior of comets near Jupiter (Petrosky & Broucke 1987). They studied
perturbation theory in the CR3BP framework to investigate the energy change of a par-
ticle with negligible mass after each flyby. The Keplerian map was further improved by
Shevchenko with quite elementary methods (Shevchenko 2011). Ross and Scheeres ex-
ploited the concept of the Keplerian map to investigate semi-analytically high-altitude
flybys in the Planar Circular Restricted Three-Body Problem (PCR3BP) (Ross & Scheeres
2007). It can predict well the variation of Keplerian energy during a flyby by calculat-
ing quadratures of energy-kick functions. However, the assumption of constant orbital
elements using Picard’s method fails if the spacecraft is very close to the secondary. It
focuses only on the cases of a Jacobi constant around 3.0 and has poor accuracy for high
three-body energies. Later, the Keplerian map for the fully spatial case was developed for
the initial-value problem, which allows for applications to low-energy spacecraft mission
design (Peñagaricano Muñoa & Scheeres 2010). In order to model the variation of the or-
bital elements of a massless particle in the CR3BP, Alessi and Sánchez developed a type
of Keplerian map, called Kick map, based on semi-analytical formulations in the spatial
CR3BP (Alessi & Sánchez 2016). It is worth noting that the integration of this formulation
is done numerically, which requires a computational effort similar to that of the propa-
gation in the CR3BP. Moreover, this estimation is prone to higher error when the massless
particle reaches a distance to the secondary smaller than the Hill radius (typically, about
0.01 AU in the Sun-(Earth+Moon)-spacecraft system). Motivated by the Keplerian map
and the Tisserand-Poincaré graph, Campagnola et al. developed a flyby map to study
flybys in the PCR3BP (Campagnola et al. 2012). The flyby map has a wider domain of
applicability than the Keplerian map. It found two types of flybys and illustrated that the
direct type exists at all energies and is more efficient than the retrograde type. The GPR-
based Gravity Assist Mapping aims at developing an accurate and efficient method of
quantifying the flyby effects. This method holds the advantage of a prominent accuracy
at the cost of a low computational efficiency, because the state of the particle must not
be integrated during the encounter.

Inspired by the Keplerian map and the flyby map, we develop a Gravity Assist Map-
ping (GAM) based on Gaussian Process Regression (GPR), a machine-learning tech-
nique. The method is used for quantifying flyby effects in the PCR3BP. It works for a
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broad range of energy levels, i.e., beyond the domain of applicability the Keplerian map,
and requires smaller computational cost.

In this research, the dynamical model of a PCR3BP is presented first in Section 2.2.
In Section 2.3, it is described how the GPR model is to learn the features of flybys from
training samples generated by PCR3BP equations of motion. The covariance function,
the key module of the GPR model, is improved based on the analysis of flyby dynamics.
The number and distribution of training samples are selected by taking the Root-Mean-
Square Error (RMSE) and the Mean-Absolute-Percentage Error (MAPE) of test samples
as criterion. In Section 2.4, the performance of the mapping technique is assessed. By
training the model with the information provided by hundreds of training samples, the
GPR-based approach can accurately capture the features of flybys. Finally, the conclu-
sions are drawn in Section 2.5.

2.2. PLANAR CIRCULAR RESTRICTED THREE-BODY PROBLEM
In the preliminary design of a space mission, simplified dynamical models are com-
monly used to reduce the computational effort. In this research, the PCR3BP model is
used for constructing GA trajectories.

The PCR3BP assumes a system with three bodies: a massless particle and two mas-
sive primaries P1 and P2 with mass M1 and M2, respectively. Generally, we refer to body
P2 with the smaller mass as the secondary. The motion of the particle is driven by the
simultaneous gravitational pull of both primaries. The primaries are assumed to rotate
around the barycenter of the system in circular orbits. The orbital plane of these two
massive bodies is taken as the reference plane. Characteristic quantities are commonly
defined such that a normalized model can be applied to any three-body system.

In the rotating reference frame, which has the barycenter as origin, the frame rotates
at the same angular velocity as the primaries do around this barycenter. The equations
of motion in non-dimensional units for the particle (spacecraft) are given as (Szebehely
1967) ẍ −2ẏ = x − (1−µ)

r 3
1

(x +µ)− µ

r 3
2

(x −1+µ)

ÿ +2ẋ = y − (1−µ)
r 3

1
y − µ

r 3
2

y
(2.1)

where µ = M2/(M1 +M2) represents the mass parameter, and r1 and r2 the normalized
distances between the particle and the primary and secondary respectively. In this pa-
per, the Sun-(Earth+Moon)-spacecraft system is used with a mass ratio of 3.036×10−6.
Obviously, Equation 2.1 is analytically unsolvable. Moreover, the trajectory solutions are
very sensitive to the initial conditions. This leads to the difficulty of assessing flyby ef-
fects accurately. Given an initial condition, the flyby effects can be calculated using the
numerical propagation of the CR3BP equations of motion.

2.3. GRAVITY ASSIST MAPPING
GPR is a regression method to estimate the relation between inputs and outputs in terms
of a specific model. Krige first developed GPR for the estimation of the distribution of
gold (Krige 1951). For astrodynamics purposes, GPR was adopted to efficiently assess
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the accessibility of main-belt asteroids and found thousands of potential mission tar-
gets (Shang & Liu 2017). It has also been used for modelling the gravity field of small
bodies or the optimization of low-thrust trajectories (Gao & Liao 2019, Bouwman et al.
2019). GPR is able to learn effectively the correlation between inputs and outputs of a
process. A GPR-based method will be developed here to evaluate the post-flyby state of
the spacecraft in a PCR3BP system.

2.3.1. GPR FUNDAMENTALS
As a supervised learning tool, GPR is used to predict the output at arbitrary input based
on empirical information. Such information is obtained by observing the output of a
group of independent input data in a specific input space. In this section, we will dis-
cuss the elementary aspects of GPR; the interested reader is referred to (Rasmussen &
Williams 2006). In this work, both input and output are the Keplerian elements of the
spacecraft state in an inertial reference frame. The origin is centered at the largest pri-
mary and all the bodies are contained in the X-Y plane. The connection between the
state of the spacecraft before flyby and after flyby can be described by a mapping func-
tion:

F : [aA ,e A ,ωA] 7→ [aB ,eB ,ωB ] (2.2)

where a is the semi-major axis, e the eccentricity and ω the argument of periapsis. Sub-
scripts A and B denote before- and post-flyby, respectively. Each of the orbital elements
represents a feature of the state vector. One set of input vector and corresponding output
vector comprises a so-called sample. In the inertial frame, Figure 2.1 shows the osculat-
ing orbital elements of the spacecraft at the initial condition. The frame is centred at
the primary and the X-axis points to the vernal equinox. Two assumptions are made
for these initial conditions: the spacecraft starts from the apoapsis (i.e., θ = −180◦); the
initial true anomaly of the secondary θP2 is selected such that it arrives at the negative
X-axis when the spacecraft (in terms of initial osculating orbit) reaches periapsis relative
to the primary. The time span before the secondary reaches the negative X-axis is set to
be half of the orbital period of the initial osculating orbit of the spacecraft. Therefore,
the relationship of phasing between the spacecraft and the secondary is described by
the argument of periapsis ω only. When ω = 180◦, the minimum distance between the
particle and the secondary happens at the periapsis passage and a flyby effect can be
expected (See Appendix A for more details). When ω is greater/smaller than 180◦, the
flyby occurs after/before the periapsis. The boundary of the input featureω is defined in
Section 2.3.3. When a flyby occurs, the relative phasing between the spacecraft and the
secondary has a range from −10◦ to 10◦.

The output will be predicted by GPR using the general function f

f : x 7→ y (2.3)

where x = [aA ,e A ,ωA] is a vector, and y represents one of the variables of the post-flyby
state [aB ,eB ,ωB ]. Obviously, the dimension of the output vector determines the number
of GPR models. In our case, the output vector consists of three elements, so three GPR
models are required to build the Gravity Assist Mapping.

The method of Bayesian inference is used to predict the value of the output y with
respect to the input x. This procedure works on a Gaussian process which is basically
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Figure 2.1: Osculating orbit of the spacecraft in the inertial frame centered
at the primary.

an infinite collection of random variables. Selecting an arbitrary finite number of this
collection can form a joint Gaussian distribution (Rasmussen & Williams 2006). For the
GPR method, the random variable is taken as the value of the function f (x). The Gaus-
sian process based on the function f (x) is specified by (Olds et al. 2007)

f (x) ∼GP (m(x),k(x, x ′)) (2.4)

where x ′ is an input vector in the input space. k(x, x ′) represents the covariance function
if x 6= x ′ and the variance of x if x = x ′. m(x) is the mean function.

Commonly, the prior value for m(x) is taken to be zero before obtaining more infor-
mation about the mapping. After training the model, the posterior value will be inferred,
which is not confined to be zero (Rasmussen & Williams 2006). Therefore, the mod-
ule k(x, x ′) becomes the only determinant of the process. The information about the
Gaussian process in Equation 2.4 can be gained by observing flyby effects for known in-
puts. The observation of an output (one feature of the post-flyby state) for a given input
(before-flyby state) is actually generated using the propagation in the PCR3BP model.
The input and corresponding output compose a so-called training sample. Assuming
we have N training samples, the training dataset D is defined as

D = {(X ,Y )|X = [x1, x2, . . . , xN ],Y = [y1, y2, . . . , yN ]} (2.5)

where X and Y are the training input matrix (the states before flyby) and the output vec-
tor (the selected feature of the post-flyby states), respectively. The output predicted by
the GPR is assumed to differ from the ground truth by a value that follows a Gaussian dis-
tribution. Given the training inputs, the joint Gaussian distribution of outputs obtained
from the GPR is:

Y ∼N (0,K (X , X )) (2.6)
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where K is the covariance matrix consisting of N 2 covariance functions, written as

K (X , X ) =


k(x1, x1) k(x1, x2) · · · k(x1, xN )
k(x2, x1) k(x2, x2) · · · k(x2, xN )

...
...

. . .
...

k(xN , x1) k(xN , x2) · · · k(xN , xN )

 (2.7)

Assuming that y∗ is the prediction for a new input vector x∗, then the training out-
puts Y and the predicted output y∗ form a joint Gaussian distribution:(

Y
y∗

)
∼N

(
0,

(
K (X , X ) K (X , x∗)
K (x∗, X ) k(x∗, x∗)

))
(2.8)

where K (X , x∗) represents the vector of N covariance functions calculated at each en-
try of training inputs X and new input x∗. Clearly, because of symmetry, K (x∗, X ) =
K (X , x∗)T .

By conditioning the joint Gaussian distribution in Equation 2.8 on the observations,
the predicted distribution of output y∗ has a Gaussian form and is completely specified
by the mean µ(y∗) and the covariance cov(y∗).

y∗|x∗, X ,Y ∼N (µ(y∗),cov(y∗)) (2.9)

The values of µ(y∗) and cov(y∗) can be evaluated by

µ(y∗) = K (X , x∗)T K (X , X )−1Y (2.10)

and
cov(y∗) = k(x∗, x∗)−K (X , x∗)T K (X , X )−1K (X , x∗) (2.11)

Generally, the expected value µ(y∗) can be taken as the predicted output y∗. Once
a GPR model has been built, the prediction can be obtained by matrix multiplication of
the N ×1 vector K (X , x∗), the N ×N matrix K (X , X )−1 and the 1×N vector Y . Equation
2.10 can be further simplified into:

y∗ = K (X , x∗)T Qtr ai n (2.12)

where Qtr ai n = K (X , X )−1Y is precalculated. The prediction efficiency improves about
N times after this simplification. When performing the evaluations for N∗ new inputs,
the outputs are obtained by

Y ∗ = K (X , X ∗)T Qtr ai n (2.13)

where Y ∗ = [y∗
1 , y∗

2 , ..., y∗
N∗ ] is a vector of predicted outputs and K (X , X ∗) is an N∗× N

matrix.

2.3.2. GPR COVARIANCE FUNCTION
The covariance function describes the relation between samples by evaluating a func-
tion in terms of inputs. It is the most basic and essential module for any GPR model. The
covariance functions can have various mathematical expressions and parameters which
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are called hyper-parameters. A perfect covariance function contributes to obtaining an
exact representation of mapping between input and output. In addition, the generaliza-
tion of a GPR model depends heavily on the choice of the covariance function. Unfortu-
nately, a universal rule is not available for such a choice (Sun et al. 2018). In our research,
it needs to capture the dynamics of flybys in the PCR3BP. Two criteria are considered to
evaluate the performance of the covariance function. One criterion is to minimize the
cost function:

fcost =−logp(y |x) (2.14)

where the marginal likelihood p(y |x) describes the probability of obtaining the true
training output given a training input. This process is equivalent to maximize the fol-
lowing function (Rasmussen & Williams 2006):

logp(y |x) =−1

2
yT K −1 y − 1

2
log|K |− N

2
log2π (2.15)

Equation 2.15 is also the objective function to optimize the hyper-parameters using
training samples. A larger logp(y |x) means that the possibility of observing true out-
puts is higher. Another criterion is to minimize the difference between the numerically
propagated outputs of the PCR3BP and the predictions by the GPR. The differences are
evaluated on test samples with inputs generated randomly in the input space.

The covariance function selected here initially is the Rational Quadratic Automatic
Relevance Determination (RQARD) function (Duvenaud 2014). The classical RQ covari-
ance function is stationary, i.e., it depends on the distances between sample points in
Euclidean space only. The different influence of orbital elements on the flyby effect can-
not be reflected by the RQ covariance function. To distinguish these effects, the Auto-
matic Relevance Determination (ARD) distance measure is integrated into the RQ co-
variance function. Three specific weights la , le and lω (Equation 2.17 below) will be
optimized based on the sensitivity of the flyby effects to the corresponding orbital ele-
ments. The optimized value of the weight is a reflection of the influence of that particular
feature. The RQARD function is defined as:

kRQARD(x, x ′) =σ2e(1+ (x−x′)T Q(x−x′)
2α )−α (2.16)

Here σ and α are the magnitude parameter and shape parameter of the output dis-
tribution, respectively. Q is a symmetric matrix containing weights

Q = diag(
1

l 2
a

,
1

l 2
e

,
1

l 2
ω

) (2.17)

where la , le and lω are weights for the elements a, e and ω respectively. Clearly, the
RQARD formulation emphasizes the influence of near-by training samples, whereas
samples further away have less influence.

Some covariance functions can interpret specific model characteristics, such as a
cosine or periodicity. For this research, a new covariance function is built by taking the
influence of the initial argument of periapsis ωA on the variation of the semi-major axis
a during a flyby into consideration. ωA turns out to be the most influential parameter
because it specifies the phasing between the massless particle and the secondary (Ross
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& Scheeres 2007). Under the predefined boundary, Figure 2.2 shows a typical flyby ef-
fect of aB for initial ωA values between 174◦ and 186◦ at [aA ,e A] = [1.2591AU,0.2] in
the Sun+(Earth+Moon)-spacecraft system. The post-flyby aB tends to have a sinusoidal
curve in terms of ωA . This is caused by the phase change of the flyby: the spacecraft can
gain Keplerian energy if the secondary is ahead of it and vice versa. The Keplerian en-
ergy is computed for the osculating orbit with respect to the primary when the spacecraft
moves far away from the secondary. For this near-Keplerian orbit, its Keplerian energy
of the spacecraft with respect to the primary is proportional to the inverse of the semi-
major axis (Ross & Scheeres 2007). The three-body energy is invariant during the flyby.
In order to model this flyby effect, we incorporate a cosine function of ωA into the GPR
function. The combined covariance function (SUM) is expressed as

kSUM(x, x ′) =σ2e(1+ (x−x′)T Q(x−x′)
2α )−α+p2cos(

π(ωA−ω′A )

180h ) (2.18)

where σ and α are hyper-parameters defined in Equation 2.16, and p and h are hyper-
parameters denoting magnitude and phase transition, respectively. Whenω′

A has a value
close to ωA , the last term in Equation 2.18 is approximately equal to its maximum p2.
This leads to a sample with ω′

A gaining more information from a sample with ωA than
from other samples.

Figure 2.2: Variation of semi-major axis after a flyby. This result is obtained by numerical integration in the
system of Sun-(Earth+Moon)-spacecraft.

2.3.3. TRAINING SAMPLES
As mentioned earlier, the GPR model obtains the empirical information by optimizing
hyper-parameters using training samples. The training set, in particular their num-
ber and distribution, determines the performance, accuracy and efficiency of the GPR
model. In principle, the accuracy of prediction improves with the information provided
by an increasing number of training samples. However, a smaller training size will reduce
the computational effort with respect to Equation 2.12. In order to balance accuracy and
efficiency, the number of training samples is an essential variable which will be anal-
ysed in Section 2.4. Taking the Sun-(Earth+Moon)-spacecraft system as an example, the
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training input vectors aA ,e A ,ωA are randomly generated in the input space such that the
initial radius of periapsis rp , apoapsis ra and ωA meet the conditions

rp ∈ [1.00004464,1.02],AU

ra ∈ [1.01,2.02],AU

ωA ∈ [170,190],deg

(2.19)

Figure 2.3: Example of a trajectory in synodic frame. The red star represents Earth. The Sun at (−µ,0) is not
shown in this figure.

Figure 2.4: The evolution history of the Tisserand parameter for the trajectory of Figure 2.3. The X-axis shows
the steps of the numerical integration for one orbital period.

The boundaries are selected to meet a number of requirements. First, the osculating
orbit of the spacecraft has a Minimum Orbit Intersection Distance (MOID) with the sec-
ondary which allows a minimum of 300 km altitude at Earth taking the Galileo mission
as reference (Anderson et al. 2008). Second, the spacecraft starts outside the Hill sphere
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such that the status of the spacecraft with respect to the primary can be defined using
the Keplerian elements. Third, ωA is defined in order to observe an obvious flyby effect;
beyond these boundaries effectively nothing happens (cf. Figure 2.2, the semi-major
axis aB after the flyby becomes closer to aA in the left and right parts of the figure). After
generating sets of [rp ,ra ,ω], the training inputs can be obtained by

aA = rp+ra

2 ,AU

e A = ra−rp

ra+rp

ωA ∈ [170,190],deg

(2.20)

Once the training inputs have been generated, the perfect post-flyby states are ac-
quired by numerical propagation using Equation 2.1. The numerical propagation adopts
adaptive step-size Runge-Kutta method with a maximum stepsize of 1×10−6 and relative
and absolute tolerances of 1×10−12, such that the quality of training samples is ensured.
It is of importance to define a termination condition for the propagation: in principle
one orbital period of the initial osculating orbit is defined as end epoch. The GPR-based
Keplerian map is to assess the effect of a single flyby. However, the selected boundaries
for input space do not guarantee a single flyby as shown in Figure 2.3. The initial con-
dition of this particular trajectory is [1.02 AU,0.007,177.84◦]. Apparently, the spacecraft
has a second close encounter with Earth at the final stage of the propagation. The sec-
ond flyby results in an inconsistency of the training outputs: most are based on one flyby,
some are based on two such events. There is no clear boundary for a flyby in the PCR3BP,
which makes it difficult to remove second flybys by monitoring the position or velocity of
the spacecraft. To overcome this difficulty, the Tisserand parameter is used as the index
for the termination condition (Tisserand 1891):

T = 1−µ
a

+2
√

a(1−e2) (2.21)

Using this parameter as termination index is inspired by the value of the Tisserand
parameter before and after a flyby when the spacecraft is far away from the secondary
(Campagnola et al. 2012). Figure 2.4 illustrates the evolution of the Tisserand parame-
ter for the trajectory in Figure 2.3. The Tisserand parameter drops dramatically when
the first flyby happens, then it increases rapidly and begins to decrease again when the
second close encounter is coming. To prevent the second flyby, the propagation is ter-
minated when the Tisserand parameter is maximised after the first drop, at the top of
the curve after the first flyby. In addition, the cases when an Earth impact takes place are
removed for obvious reasons.

2.4. PERFORMANCE OF GPR-BASED GRAVITY ASSIST MAP-
PING

In order to evaluate the accuracy of the GPR-based Gravity Assist Mapping, a set of
test samples has been generated whose inputs are randomly distributed over the in-
put space. To quantify the quality of any combination of GPR model and number and
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distribution of training samples, the Root-Mean-Square Error and the Mean-Absolute-
Percentage Error are adopted:

RMSE =
√∑n

i=1(y i
PCR3BP − y i

GPR)2

n
(2.22)

and

MAPE = 100%

n

n∑
i=1

∣∣ y i
PCR3BP − y i

GPR

y i
PCR3BP −xi

PCR3BP

∣∣ (2.23)

Figure 2.5: Illustration of training samples using different distributions.

In principle, an increment of the number of training samples can be expected to con-
tribute to the reduction of errors because the GPR model is offered more empirical infor-
mation. So the acceptable error level serves for choosing the size of the training dataset.

The procedure of building a GPR-based Gravity Assist Mapping is summarized in the
following steps:

(1) Define the mass ratio for a specific three-body system. The Sun-(Earth+ Moon)-
spacecraft system is taken as an example with a mass ratio of 3.036× 10−6. The mass
ratio is the only key parameter in the PCR3BP, so it is easy to implement the GPR-based
Gravity Assist Mapping for different three-body systems;

(2) Construct the covariance function. RQARD and SUM (Equations 2.16 and 2.18)
are used and analyzed here;

(3) Generate training inputs. The input space defined in this work selects a broader
boundary for flyby passage, instead of considering only the distant encounters outside
the Hill sphere. Training set sampling uses four different distributions as shown in Figure
2.5: Systematic Sampling (SS), Random Sampling (RS), Latin Hypercube Sampling (LHS),
and Stratified Random Sampling (SRS), further described in Section 2.4.1;

(4) Calculate training outputs using the numerical PCR3BP propagation. The termi-
nation conditions on time and the Tisserand parameter are employed to guarantee the
consistency of the training outputs;

(5) Optimize the hyper-parameters based on the training samples, i.e., maximize the
outcome of Equation 2.15. Conjugate gradient ascent is used to find optimal values of
the hyper-parameters. This is used in a multi-start approach to avoid being trapped in
local minima (more precisely: the gradient procedure is initiated at 10 different initial
combinations of hyper-parameter values);
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(6) Determine the optimal size of the set of training data. This is done by adding
training samples gradually until a stable error, i.e., the difference between the outputs of
the numerical PCR3BP and the GPR models on the test dataset, is observed.

(7) Predict the output given a new input. Based on the training samples, the selected
covariance function and the corresponding optimized hyper-parameters, the prediction
can be obtained.

2.4.1. ACCURACY

We generate a test set meeting the conditions of Equation 2.19 to assess the accuracy of
the method. The test set consists of 500 (N∗) input vectors randomly distributed over
the input space, and is kept fixed for all evaluations in a certain application. Their corre-
sponding outputs are obtained by numerical propagation in the PCR3BP model and by
the GPR model. To evaluate the performance for each model, both the MAPE and RMSE
will be calculated using Equations 2.22 and 2.23. The Sun-(Earth+Moon)-spacecraft sys-
tem is considered for all applications.

SYSTEMATIC SAMPLING

By assuming that the training data can represent the empirical information of the entire
input space, we create a dataset by systematic sampling:


rp ∈ [1.00004464 : (1.02−1.00004464)/Ndi vi si on : 1.02],AU

ra ∈ [1.01 : (2.02−1.01)/Ndi vi si on : 2.02],AU

ωA ∈ [170 : (190−170)/Ndi vi si on : 190],deg

(2.24)

Ndi vi si on = 6,7,8,9,10,11 indicates to what extent each input feature is partitioned.

With increasing training size, Figure 2.6 shows MAPE and RMSE of the test set on the
semi-major axis using the RQARD and SUM covariance functions, respectively. In this
case, the RQARD function performs better than SUM, but MAPE is larger than 1000%.
Obviously, the systematic sampling fails to offer useful information for the GPR model.
This is because the GPR model uses Bayesian inference, a type of statistical inference,
which strongly relies on the assumption of random selection Osborne (1942). If this as-
sumption is not satisfied, as is the case with regular sampling, the basis for any GPR
model drops out and the output is to be considered as unrealistic.

RANDOM SAMPLING

In this test, we distribute the training inputs randomly over the entire input space. MAPE
and RMSE results are shown in Figure 2.7. The SUM function has a better performance
than the RQARD function. For the case of 780 training samples, SUM obtains the low-
est MAPE value of 19.7% and an RMSE of 5.8× 10−3 AU. We generate another two sets
of training samples using different random seed numbers and perform the predictions
using the SUM function. The trends of MAPE and RMSE with respect to three training
data sets show that the random seed number is not an influential parameter for the level
of convergence.



2.4. PERFORMANCE OF GPR-BASED GRAVITY ASSIST MAPPING

2

29

(a) MAPE using uniform distribution. (b) RMSE using uniform distribution.

Figure 2.6: The error of test samples when the training dataset uses systematic sampling.

(a) MAPE using random distribution. (b) RMSE using random distribution.

Figure 2.7: The error of test samples when the training dataset has a random distribution.

LATIN HYPERCUBE SAMPLING

LHS is a statistical method to generate random samples especially for multi-dimensional
problems McKay et al. (1979). This method is generally used to avoid clustering of ran-
dom samples in a specific subspace. Shown in Figure 2.8, the SUM function captures the
model mechanics more quickly than RQARD. In addition, the SUM function has a lowest
MAPE value of 24.1 % and an RMSE of 4.9×10−3 AU at a training data size of 900. The
LHS has a poorer accuracy than random sampling with respect to MAPE.

STRATIFIED RANDOM SAMPLING

Figure 2.9 shows the number of MAPE values larger than 10% for the subspaces of ωA

using random sampling. Due to the stronger flyby effects aroundωA = 180◦ according to
Figure 2.2, the error for these test points is worse. More training points can be added for
the subspace of ωA ∈ [175◦,185◦] to gain more information over this subspace.

In order to improve the performance of prediction for the subspace of ωA ∈
[175◦,185◦], the sampling density of this range can be taken as twice as that of the re-
maining area: an SRS method. The training size is increased by 60 every time. For each 60
training samples, there are 10 samples within [170◦,175◦], 40 samples within [175◦,185◦]
and 10 samples within [185◦,190◦]. Figure 2.10 shows the corresponding RMSE results.
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(a) MAPE using LHS distribution. (b) RMSE using LHS distribution.

Figure 2.8: The error of test samples when the training dataset has an LHS distribution.

Figure 2.9: Number of MAPE larger than 10% based on random sampling.

The performance becomes stable when using an increasing number of training samples.
In Figures 2.10(a) and 2.10(b), the RMSE of these training datasets converges to the same
level with a training data size larger than 1500. The prediction of ω needs more training
samples than that of a and e. This indicates that the GPR function needs more informa-
tion to learn the change of ω. We generate another two groups of training samples using
the same SRS method with different random seed numbers. For the prediction of a, the
standard deviation among these three groups is about 1.0×10−4 AU when a number of
more than 1500 training samples are used. The random seed number for generating
training dataset is a negligible influence factor for the performance of GPR models.

SUMMARY OF SAMPLING METHODS

We used four types of sampling methods for the generation of the training samples for
comparison. The prediction using RS performs better than that of SS and LHS. Based on
RS, we developed an SRS specifically for this case (h > 300 km) due to the larger errors
for the test samples in the subspace ofωA ∈ [175◦,185◦]. The RMSE using SRS is reduced
to less than 1/4 of that of RS. By using different training datasets, the training process of
the GPR model is illustrated to be insensitive to the random seed numbers.
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(a) RMSE of semi-major axis using 3
groups of training samples.

(b) RMSE of eccentricity using 3 groups
of training samples.

(c) RMSE of argument of periapsis using
3 groups of training samples.

Figure 2.10: The RMSE of test samples when the training dataset adopts a stratified random sampling. The
SUM covariance function is used.

2.4.2. FLYBYS OUTSIDE THE SPHERE OF INFLUENCE OF THE SECONDARY

In this application, the periapsis of the initial osculating orbits of the spacecraft are cho-
sen such that they are above the sphere of influence of the secondary (SoI): rp > 1.0062
AU (i.e., rp > rSoI +r2) in the system of Sun-(Earth+Moon)-spacecraft. Figure 2.11 shows
the errors of the semi-major axis predictions after the flybys. After some fluctuations for
training data sizes between 0 and 1000, the error becomes gradually smaller and stable
until the data size reaches 2400. The RMSE is selected as the main criterion for opti-
mizing hyper-parameters. Using the same set of hyper-parameters, MAPE could have
a slightly different trend compared to that of RMSE. The performance of predicting ec-
centricity is presented in Figure 2.12. The RMSE of e decreases to a value of 1.0×10−3

using 2000 training samples. The maximum eccentricity e A among the test cases is 0.33.
In Figure 2.13, the RMSE of ω becomes lower than 0.4◦ with more than 1800 training
samples. The convergence of optimizing hyper-parameters for the prediction of the out-
put state is illustrated in Figure 2.14: the hyper-parameters la , le and lω are selected.
When the training data size becomes larger than 1000, the GPR model converges grad-
ually to the optimum. Although the optimization process converged at negative values
for the hyper-parameters eventually, this has no consequences since the quadratic value
of them is used (Equation 2.17). RS is used in this case because a significant difference
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of error between different subspaces is not observed.

(a) RMSE using random distribution. (b) MAPE using random distribution.

Figure 2.11: The semi-major axis error of test samples when the training dataset has a random sampling. The
periapsis of initial osculating orbit of the spacecraft is outside the sphere of influence of the secondary.

(a) RMSE using random distribution. (b) MAPE using random distribution.

Figure 2.12: The eccentricity error of test samples when the training dataset has a random sampling. The
periapsis of initial osculating orbit of the spacecraft is outside the sphere of influence of the secondary.

(a) RMSE using random distribution. (b) MAPE using random distribution.

Figure 2.13: The ω error of test samples when the training dataset has a random sampling. The periapsis of
initial osculating orbit of the spacecraft is outside the sphere of influence of the secondary. The best MAPE

obtained is 5.7%.
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Figure 2.14: Evolution of optimal hyper-parameters. The flybys are outside the SoI of the secondary.

2.4.3. FLYBYS OUTSIDE THE HILL SPHERE OF THE SECONDARY

For the prediction of distant flyby effects, this application investigates the condition of
the radius of periapsis being larger than 1.01 AU (i.e., rp > r2 + rHi l l ). Figure 2.15 shows
the accuracy of prediction with an increasing number of training samples. For three or-
bital elements, the curves flatten out gradually after using 1300 training samples. The
accuracy is better than the case of SoI. MAPE of δa and δe is no more than 1%. The
MAPE of δω has been improved by a factor of two. It shows that the low-energy case is
easier for GPR to learn. This is mainly because the flyby effects at low energies are less
complex than the previous applications, e.g., the retrograde flybys disappear at such en-
ergies Campagnola et al. (2012). Therefore, less training samples are required to obtain
a reliable model.

The comparison between the performance of our GPR-GAM and the Keplerian Map
(KM) model of Ross et al. (Ross & Scheeres 2007) (fully reproduced here) is shown in Ta-
ble 2.1. 1500 training samples are considered in our GPR model and the SUM covariance
function is selected. The test set has 500 samples with inputs randomly distributed in
the input space and outputs numerically calculated by the PCR3BP propagation. Both
tests are performed in MATLAB@ 2017b using a laptop of Core i7 CPU and 8.00 GB RAM.
The RMSE of predicting a using GPR-GAM is only 1/6 of that of the KM. In addition, the
GPR-GAM improves the accuracy of predictingω to a level of 4.72×10−3 rad. The KM fails
to quantify the variation of ω accurately due to simply evaluating ω in terms of orbital
period change. The CPU time of prediction spent on a single test sample is the same
for both a and ω. KM is much slower in predicting a because of using the numerical
integration but is faster in the prediction of ω.

The time efficiency of the GPR method is demonstrated for up to 300,000 test samples
in Figure 2.16. When using 1500 training samples for the case outside the Hill sphere, the
total prediction time increases linearly with the number of test samples. It costs 0.32 s for
the evaluation of 300,000 samples. The prediction time per sample is always lower than
1.2×10−6 s. For the case outside the SoI in Figure 2.16 (b), the computational effort is
bigger because of using 2400 training samples. It spends only 1.14 s for the same number
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of test samples and the CPU time per sample is 3.8×10−6 s. When applying GPR to the
case outside the Hill sphere, the generation of the training samples (0.28 s per sample)
and training the GPR model (1530 s for 10 multi-starts) cost 1950 s in total. However,
the GPR model is off-the-shelf once the training process is completed, and the values
in Table 2.1 give an accurate estimation of the computation time needed to predict the
flyby effect of a single input.

Table 2.2 summarizes the performance of GPR for various applications. The accu-
racy of the GPR model becomes better when the closest passage of the spacecraft moves
further from the secondary. The radius of the Hill sphere is close to that of the SoI but
the accuracy improves especially for a and e. The prediction of ω is the worst which can
be further investigated.

(a) Accuracy of δa. (b) Accuracy of δe.

(c) Accuracy of δω.

Figure 2.15: The RMSE and MAPE of test samples when the training dataset adopts a stratified random
sampling. The SUM covariance function is used.

Table 2.1: The performance of GPR-GAM compared to Ross & Scheeres (2007) (fully reproduced here).

RMSE Prediction CPU Time* [s]
a [AU] ω [rad] a ω

GPR 2.38×10−4 4.72×10−3 1.16×10−6 1.16×10−6

Ross & Scheeres (2007) 1.42×10−3 1.57 0.064 1.04×10−6

* The computational time is obtained by taking the mean value of 1000 repeated experiments.
The value is the CPU time spent on one test sample.
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(a) 1500 training samples. (b) 2400 training samples.

Figure 2.16: Time efficiency of the GPR-GAM for one orbital element. Equation 2.13 is used for the prediction
of multiple inputs. The cost of generating training samples is not included.

Table 2.2: Summary of the GPR performance for all applications (SUM covariance function).

MAPE [%] RMSE
Flyby distance Distribution a e ω a [AU] e [-] ω [rad]

>300 km altitude RS 19.7 85.6 97.5 0.0056 0.0062 0.0511

SRS 5.6 22.3 24.5 0.0009 0.0008 0.0082

>SoI RS 3.8 7.8 5.7 0.0003 0.0007 0.0051

>Hill sphere RS 0.4 1.0 3.1 0.0002 0.0002 0.0047

The number of training samples N for the three cases of flyby distance are 2400, 2400, 1500
respectively. The SRS is not applied to the second and third cases because the error in different
parts of the input space is similar. The values of corresponding hyper-parameters are given in
Appendix B.

2.5. CONCLUSIONS
A model of the Gravity Assist Mapping was proposed based on a machine-learning
method called Gaussian Process Regression. It was trained by a dataset consisting of
thousands of samples generated using numerical integration in the planar CR3BP frame-
work. The generation of training data takes into account elliptical orbits of low, moderate
and high eccentricity. We determined the size of training samples by choosing a stable
RMSE on the test dataset. A covariance function (SUM) was developed combining the
cosine term and the rational quadratic term with automatic relevance determination
(RQARD), which captures well the dynamics of flybys. The GPR-based model can as-
sess the flyby effect more efficiently given the initial condition of a particle compared to
methods based on numerical integration. The model for various planar CR3BP systems
can be built by simply changing the mass ratio parameter. Using a machine-learning
method, this work investigated and predicted the flyby effect instead of numerical inte-
gration of the equations of motion in previous contributions. The domain of applicabil-
ity is beyond that of the Keplerian map. The GPR-MAP requires to be trained to model
the flyby effect of trajectories belonging to different domain.
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The results demonstrate that the GPR-based Gravity Assist Mapping has a good per-
formance on accuracy. Compared to previous work in literature, significant improve-
ments have been made, in particular when using a combined covariance function and
stratified random sampling. This can contribute to two main studies in astrodynamics.
On the one hand, the characteristic of the GA in the CR3BP can be investigated by a great
deal of accurate data produced by the GPR model, providing a deep understanding of the
third-body effect. On the other hand, the GPR model can be considered to design multi-
flyby missions, which takes the advantage of a high efficiency to update the post-flyby
status. The developed GPR-GAM is still a prototype. It has some limitations, such as
being unable to classify collision orbits in test samples because they are removed in the
training samples. The post-flyby status near the neighbourhood of the secondary might
be neglected using the Tisserand termination condition. Further improvements include
developing a classification model to categorise collision orbits given an arbitrary initial
condition and using a distance termination condition.
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2.7. APPENDIX A: MINIMUM DISTANCE BETWEEN SPACECRAFT

AND SECONDARY
All variables are non-dimensionalized using (M1+M2) for the mass, the semi-major axis

of the secondary aP2 for the length, and
√

a3
P2/(G(M1 +M2)) for the time. For the circular

orbit of the secondary, the true anomaly θP2 is set to be 0 at the position of the positive
X-axis. The initial true anomaly of the secondary θi ni t i al

P2 is selected such that it arrives
at the negative X-axis when the spacecraft (in terms of initial osculating orbit) reaches
periapsis. This is specified by:

θi ni t i al
P2 =π(1− (aA)

3
2 ) (2.25)

where aA is the semi-major axis of the initial osculating orbit of the spacecraft. The
distance d between the spacecraft and the secondary is defined using the law of cosines:

d =
√

r 2
1 + r 2

P2 −2r1rP2cos(γ) (2.26)

where r1 represents the distance between the spacecraft and the primary, rP2 the dis-
tance between the secondary and the primary, γ denotes the angle contained between
r1 and rP2. Since rP2 has a constant value of 1, Equation 2.26 is simplified to:

d =
√

1+ r 2
1 −2r1cos(γ) =

√
f (r1,γ) (2.27)

Assuming a fixed value of γ, the partial derivative ∂ f (r1,γ)
∂r1

is:

∂ f (r1,γ)

∂r1
= 2r1 −2cos(γ) (2.28)
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The value of the right-hand side is always larger than zero given the initial conditions of
this paper. The function f (r1,γ) is monotonically increasing. When r1 equals the radius
of periapsis rp and γ= 0, d has the minimum value | rp −1 |. This condition corresponds
to ω=π.

2.8. APPENDIX B: VALUES OF HYPER-PARAMETERS
The optimized values of the hyper-parameters of the models in Table 2.2 are given below.

Table 2.3: The optimized hyper-parameters of GPR-GAM for the first case in Table 2.2.

Output σ α la le lω p h

a -1.2450 -1.2043 2.9608 0.7480 -4.2359 0.5279 -11.7555
e -3.3324 -2.4650 4.8943 1.7674 -8.8055 -0.0180 -10.4190
ω -2.1321 -2.1245 1.7252 1.2615 -3.2145 -0.2121 -7.2210

Table 2.4: The optimized hyper-parameters of GPR-GAM for the second case in Table 2.2.

Output σ α la le lω p h

a -2.0214 -2.5534 0.2000 -0.8179 3.4195 3.4419 -0.2592
e -1.7113 -2.0229 0.1768 -0.7881 3.6202 2.8485 -0.2926
ω -2.7010 -2.9755 0.5394 2.1231 1.4008 -0.3179 -1.1486

Table 2.5: The optimized hyper-parameters of GPR-GAM for the third case in Table 2.2.

Output σ α la le lω p h

a -1.9506 -3.3963 -3.3770 -0.3370 -3.4057 1.9674 -3.1555
e -1.3524 -2.2365 0.2718 -4.2451 -1.9327 4.0959 -4.2971
ω -1.8572 -2.6009 0.7222 3.4731 -1.1252 0.7433 0.8022

Table 2.6: The optimized hyper-parameters of GPR-GAM for the fourth case in Table 2.2.

Output σ α la le lω p h

a -1.8168 -2.4690 -0.2082 -1.5223 3.2384 0.9166 0.5527
e -1.3950 -2.3792 -0.0306 -1.3639 2.2226 2.9447 -0.3096
ω -1.4090 -2.9224 0.9743 4.7129 0.0638 -0.7502 0.2507
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A GRAVITY ASSIST MAPPING FOR

THE CIRCULAR RESTRICTED

THREE-BODY PROBLEM USING

GAUSSIAN PROCESSES

Abstract Inspired by the Keplerian Map and the Flyby Map, a Gravity Assist Mapping
using Gaussian Process Regression for the fully spatial Circular Restricted Three-Body
Problem is developed. A mapping function for quantifying the flyby effects over one or-
bital period is defined. The Gaussian Process Regression model is established by proper
mean and covariance functions. The model learns the dynamics of flyby’s from training
samples, which are generated by numerical propagation. To improve the efficiency of
this method, a new criterion is proposed to determine the optimal size of the training
dataset. We discuss its robustness to show the quality of practical usage. The influence
of different input elements on the flyby effects is studied. The accuracy and efficiency
of the proposed model have been investigated for different energy levels, ranging from
representative high- to low-energy cases. It shows improvements over the Kick Map, an
independent semi-analytical method available in literature. The accuracy and efficiency
of predicting the variation of the semi-major axis are improved by factors of 3.3, and
1.27×104, respectively.

3.1. INTRODUCTION
For deep space missions, a flyby along a planet or a major moon is a common tech-
nique to save propellant. The state of the spacecraft is changed effectively due to the
gravitational pull of these massive bodies. In the preliminary design of an interplane-
tary mission, the patched-conics model is typically used (Bate et al. 1971, Broucke 1988,
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Longuski & Williams 1991, Strange & Longuski 2002). This model has a crucial assump-
tion: the gravity of the flyby body (e.g., Mars) is considered if and only if the spacecraft
comes into the sphere of influence of that body. The gravity effect of other objects (in
particular, the Sun) can be ignored; the original problem is split up in a succession of
elementary two-body problem formulations. The patched-conics model simplifies the
preliminary mission design process. However, it has a limitation in describing the dy-
namics in more detail, in particular for low-energy cases with phenomena like invariant
manifolds, which do exist in a three-body formulation. The special dynamics described
by the three-body formulation have proven to be essential to design low-energy trajec-
tories or study the movement of asteroids between Mars and Jupiter (Beutler 2004, Cam-
pagnola et al. 2012, 2014).

In order to reduce the degree of difficulty of a most general three-body formula-
tion, the Circular Restricted Three-Body Problem (CR3BP) can be introduced (Szebehely
1967). Here, it is assumed that the mass of one of the three bodies can be neglected
and the other massive bodies move in circular orbits about the barycenter of the system.
Considering the Sun-Earth-spacecraft system, this formulation takes the gravitational
attraction of the Sun and the Earth into account simultaneously. The domain of a flyby
in the CR3BP is expanded beyond the sphere of influence of the Earth.

The Keplerian Map (KM) is a common method to study the flyby effects in the CR3BP.
Based on perturbation theory, this method was initially developed to investigate the dy-
namics of comets around Jupiter (Petrosky & Broucke 1987, Chirikov & Vecheslavov 1989,
Conley 1968, Malyshkin & Tremaine 1999, Zhou et al. 2000). Ross & Scheeres (2007) stud-
ied the KM in the system of a planar CR3BP, which models the flyby effect over one or-
bital period using an energy-kick function. It works effectively for an energy level of
around 3.0 for the Jacobi constant. For a quantitative investigation in the spatial frame-
work (CR3BP), a three-dimensional KM was developed to solve initial-value problems
(Peñagaricano Muñoa & Scheeres 2010). The accuracy of this method is reasonably good
for low three-body energy levels only. Alessi & Sánchez (2016) expanded this method and
derived a formulation to estimate the variation of orbital elements due to the perturba-
tion of a third body. It then may be used to study the effects of a flyby. The results are
obtained by applying the classical Lagrange planetary equations and performing a first
iteration of Picard’s method over one orbital period. This formulation assumes a suffi-
ciently small mass ratio and may suffer from singularity problems for low eccentricity
and inclination. Neves et al. (2018) analysed various ways of modelling the third-body
effect and tried to obtain a fully analytical solution. They showed the accuracy of these
models within certain fields of application. It is well known that the 3BP is not solvable
in an analytically closed form. Many attempts have been made to find closed analytical
solutions for the variation of the orbital elements of the massless body under specific
conditions in the CR3BP. The techniques mentioned above are semi-analytical and em-
ploy numerical methods to generate solutions. The Flyby Map developed by Campag-
nola et al. (2012) is also a typical approach to study the CR3BP, which is fully numerical
and valid for a wide range of energy levels. It extended the functionality of the Tisserand
graph over the applicability of the patched-conics model. According to the spacecraft ve-
locity relative to the secondary, the flybys are categorised into two types: ‘direct’ and ‘ret-
rograde’ flybys. In terms of the variation of semi-major axis, the direct flybys are shown
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to be more efficient than the latter.

This paper is inspired by the works on the Keplerian Map and Flyby Map. Instead
of solving the analytical forms of flyby effects in the CR3BP, we develop a Gravity Assist
Mapping (GAM) based on Gaussian Process Regression (GPR) to quantify flyby effects
in a full three-dimensional situation. Specifically, the flyby refers to an encounter of
the massless body with the second-largest body. GPR is a supervised machine-learning
method, which was developed by Krige (1951) for mine valuation. For a complete three-
body problem, the technique of Deep Neural Network was used to predict the position
of each body within a fixed duration (Breen 2019). The prediction of velocity was not
investigated. Instead of using Cartesian coordinates, the GAM models use Keplerian or-
bital elements similar to the Keplerian Map. The size of the training data set for a DNN
model requires around 10,000 samples. Moreover, the structure, the number of layers,
the number of nodes, the activation function and the pooling function, etc. need to be
determined. The model selection of the GPR method is simpler than that of the DNN.
In addition, the GPR models work accurately at a lower level of training data size (Ras-
mussen & Williams 2006). In the field of astrodynamics, GPR has been used to evaluate
the accessibility of asteroids, to model the gravity field of small bodies, and to design
low-thrust trajectories (Shang & Liu 2017, Gao & Liao 2019, Bouwman et al. 2019). Liu
et al. (2021) used GPR to evaluate flyby effects; their model was developed in a planar
CR3BP and performs more efficiently and accurately than the work of Ross & Scheeres
(2007). The complexity of the CR3BP increases significantly when going from a planar
model to a full spatial model. In the current work, we develop a new GPR-based GAM to
solve this. The Keplerian Map for approximating a particle’s motion was initially devel-
oped for low three-body energies (Ross & Scheeres 2007). Here, we aim at developing an
approach which is applicable for a wider range of energy levels. The energy of the con-
sidered cases ranges from values lower than that associated with the L1 libration point
to values larger than that associated with L4/L5. Several thousands of training samples
are required for the GPR model to learn the dynamics. The prediction of output given
an arbitrary input will be compared with a previous semi-analytical method and numer-
ical integration methods. The computational effort is expected to be further reduced
particularly when a large group of initial conditions needs to be assessed.

3.2. CIRCULAR RESTRICTED THREE-BODY PROBLEM

The CR3BP describes the dynamics of three point masses: two massive bodies P1 and
P2 and a third body P3 with masses M1, M2 and M3, respectively, which meet the condi-
tion M1 > M2ÀM3. Throughout this paper, flybys in the Sun-(Earth+Moon)-spacecraft
system are investigated and the primary P1, the secondary P2 and massless particle P3

are the Sun, the Earth+Moon and the spacecraft, respectively. In the rotating reference
frame, the origin is set at the barycenter of P1 and P2, and the X-axis is aligned with the
direction to P2. The primaries P1 and P2 rotate around the Z-axis. The equations of
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motion for the spacecraft are described as (Szebehely 1967):

ẍ −2ẏ = x − (1−µ)

r 3
1

(x +µ)− µ

r 3
2

(x −1+µ)

ÿ +2ẋ = y − (1−µ)

r 3
1

y − µ

r 3
2

y

z̈ =− (1−µ)

r 3
1

z − µ

r 3
2

z

(3.1)

where x,y and z represent the normalized position coordinates in the barycentric Carte-
sian reference frame, and 

µ= M2/(M1 +M2)

r1 =
√

(x +µ)2 + y2 + z2

r2 =
√

(x − (1−µ))2 + y2 + z2

(3.2)

µ is defined as the mass parameter which differentiates between different implemen-
tations of the CR3BP, and is equal to 3.036×10−6 for the system of Sun-(Earth+Moon)-
spacecraft. r1 and r2 are the distances between P3 and the primaries P1 and P2, respec-
tively.

A closed-form solution of Equation 3.1 does not exist; numerical integration meth-
ods are typically used to solve the problem. Some attempts were made to find analytical
solutions for the variation of the orbital elements of P3 (Ross & Scheeres 2007, Alessi
& Sánchez 2016, Neves et al. 2018). Based on the concept of KM developed by Ross &
Scheeres (2007), the current work studies a new approach to quantify the flyby effects
for a wide range of Jacobi energy levels.

3.2.1. JACOBI CONSTANT
The CR3BP has an analytical integral of motion which is constant along the trajectory of
the spacecraft. The value of this Jacobi constant C J is fully determined by the position
and velocity of the spacecraft. In the rotating reference frame, the Jacobi constant is
defined as (Beutler 2004):

C J = x2 + y2 + 2(1−µ)

r1
+ 2µ

r2
− (ẋ2 + ẏ2 + ż2)+µ(1−µ) (3.3)

The Jacobi constant reflects the energy level of the trajectory of the spacecraft. A high
value of C J represents a low energy level. The region that is accessible for the spacecraft is
related to the Jacobi constant for a given mass ratio. The Jacobi constant associated with
the Lagrange libration points allows to characterize the accessible region for different
cases. For µ = 3.036×10−6, the values for the Jacobi constant of these points are CL1 =
3.000898, CL2 = 3.000893, CL3 = 3.000003, CL4/L5 = 2.999997. For some values of C J ,
there are inaccessible regions which divide the accessible regions (i.e., Hill’s regions) into
different parts. The boundaries of these regions are zero-velocity surfaces. If the value
of C J is larger than CL1, a particle remains in its initial region. When CL1 > C J > CL2,
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it is possible for the spacecraft to move to the vicinity of the other primary if it started
in the vicinity of either of the primaries. Transitions between the interior and exterior
regions are not possible yet. This becomes possible when C J <CL2 (for details see Beutler
(2004)). The current work focuses on the motion of a spacecraft which starts from the
exterior region as shown in Figure 3.1.

Figure 3.1: Hill’s region when CL1 >C J >CL2.

3.3. GRAVITY ASSIST MAPPING

3.3.1. MAPPING FUNCTION
In this paper, we aim to develop a GPR model to quantify the flyby effects in the frame-
work of a CR3BP, i.e., a GPR-based GAM (GPR-GAM). The mapping function of the GPR-
GAM is described as:

FGPR-GAM : x 7→ y

or [a,e, i ,ω,φ] 7→ [δa,δe,δi ,δω,δΩ]
(3.4)

where the vector x represents the orbital elements of the spacecraft before a flyby and
y the variation of orbital elements due to that flyby, after one orbital period of the ini-
tial osculating orbit. a,e, i ,ω,Ω are osculating semi-major axis, eccentricity, inclination,
argument of pericenter and longitude of the ascending node of the spacecraft with re-
spect to the primary. Particularly, the angular phasing angle φ= tan−1(tan(ω)cos(i ))+Ω
shown in Figure 3.2 describes the relative position between the spacecraft and the sec-
ondary (Alessi & Sánchez 2016). When investigating the effects of a flyby, δa and δe have
an explicit response to φ. The reference system will be detailed below.

3.3.2. CONFIGURATION OF FLYBY
In Equation 3.4, the input and output are defined in an inertial reference frame. Figure
3.2 shows the orbit of a spacecraft before a flyby in the Sun-(Earth+Moon)-spacecraft sys-
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tem. The origin is located at the Sun, and the Earth revolves around it in the X Y -plane,
so that the reference plane is the ecliptic plane. Here, the input vector x represents the
osculating orbital elements of the spacecraft at apoapsis. The angular phasingφ denotes
the angle between the projection of the Sun-periapsis line of the spacecraft onto the X Y -
plane and the positive X -axis. The spacecraft starts from apoapsis with a true anomaly
of −π, and the true anomaly of the Earth is initialized such as to reach the positive X -axis
when the spacecraft has travelled half of its unperturbed orbital period.

The GPR is a supervised learning method which requires training samples consisting
of input and output. In this paper, the boundary of the input space is defined such to
obtain obvious flyby effects. In order to quantify the distance between the spacecraft
and the secondary properly, we define a boundary based on the radius of periapsis rp

and the radius of apoapsis ra , and then transform these into a and e.
The boundary is specified in Table 3.1. Based on this input space, the Jacobi constant

ranges from 0.512176 to 3.001196, which covers energy levels from low to high (Ross
& Scheeres 2007). The value of i only takes prograde orbits into account, which is the
expected geometry for normal interplanetary missions. The boundary forφ is defined in
order to observe an obvious flyby effect; the distance in phasing should not become too
large. Figure 3.3 shows the histogram of the Jacobi constant of a group of 5000 randomly
generated samples (in line with further calculations). In addition to this, we divide the
range of ω into four quadrants:

ω= {ωQ1,ωQ2,ωQ3,ωQ4|(0,90], (90,180], (180,270], (270,360](deg)}

Given the same a, e, i and φ, the output y is a periodic function in terms of ω:

y(ω|a,e, i ,φ) = y(ω+180|a,e, i ,φ),ω ∈ [0,180]deg (3.5)

In order to achieve an accurate estimate of the flyby effects, two GPR models are built
separately forωQ1 andωQ2. Using the property of periodicity (Equation 3.5), these mod-
els can be simply applied to ωQ3 and ωQ4. After generating training inputs, the training
outputs are obtained through numerical propagation using Equation 3.1, as will be ex-
plained in Section 3.4.3.

Table 3.1: Boundary for the input space.

rp [AU] ra [AU] i [deg] ω [deg] φ [deg]

[1.00004464, 1.02] [1.01, 3.03] [0, 90] [0, 360] [-25, 25]

The minimum value of rp corresponds to a minimum distance of 300 km between the space-
craft and the Earth surface when φ = 0 deg, i.e., both of them arrive at the positive X-axis si-
multaneously.
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Figure 3.2: Schematics of a three-body system before a flyby. The orbit of the S/C is the initial osculating orbit
centered at the Sun in the inertial reference frame; it starts at apoapsis.

Figure 3.3: Histogram of the Jacobi constant for 5000 samples based on the input space defined in Table 3.1.

3.4. GAUSSIAN PROCESS REGRESSION MODEL
The development of a GPR-GAM considers two major steps: training and predicting.
During the training part, the GPR model is built by digesting the empirical information
from a certain process. In this paper, this process is the mapping of orbital elements
before the flyby to the post-flyby changes of those elements. In the prediction part, the
trained model estimates the output for an arbitrary input. We develop five GPR-GAM
models with a single output; each model associates the five inputs into one of the out-
puts in Equation 3.4. This separation of constructing a GPR-GAM model simplifies the
training process to a single-objective optimization problem. The mapping function of
the basic GPR model is:

fGPR-GAM :R5 →R

x 7→ y
(3.6)

where y represents one of the outputs [δa,δe,δi ,δω,δΩ] as in Equation 3.4.
The GPR-GAM model is developed in terms of the properties of a Gaussian Process

(GP). A GP is a collection of random variables following their own Gaussian distribution.
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A key property of any GP is that any finite number of these random variables forms a
joint Gaussian distribution. Instead of simple variables, the GPR-GAM method takes the
function f (x) as that random variable. Therefore, the development of the GPR-GAM
model works in function space. A GP over the function f (x) is given as:

f (x) ∼GP (m(x),k(x , x ′)) (3.7)

where x and x ′ are points in the input space; m(x) and k(x , x ′) are the mean function
and the covariance function, respectively. Both functions will be explained in Sections
3.4.1 and 3.4.2, respectively. These functions specify the properties of a GP completely
through their formulation and hyper-parameters. The hyper-parameters are actually
the parameters of the mean function and the covariance function, and are not directly
related to the actual data. . ’Hyper-’ is used to emphasize that they are characteristics of
a non-parametric model (Rasmussen & Williams 2006).

The formulation of m(x) and k(x , x ′) is selected by the authors. Each formulation has
a set of corresponding hyper-parameters. The values of these hyper-parameters are ini-
tialized randomly. Then the learning procedure starts, which is actually a process of opti-
mizing the hyper-parameters using the empirical information. This information comes
from the training dataset Dtrain, defined by:

Dtrain = {(X ,Y )|X = [x1, x2, . . . , xN ],Y = [y1, y2, . . . , yN ]} (3.8)

where (xi , yi ) represents one training sample (i = 1,2, . . . , N ), and N is the number of
training samples. According to the properties of GP, the collection of training outputs Y
can be written as a joint Gaussian distribution:

Y ∼N (m(X ),K (X , X )) (3.9)

where m(X ) represents the mean function and will be elaborated in Section 3.4.1.

K (X , X ) =


k(x1, x1) k(x1, x2) · · · k(x1, xN )
k(x2, x1) k(x2, x2) · · · k(x2, xN )

...
...

. . .
...

k(xN , x1) k(xN , x2) · · · k(xN , xN )

 (3.10)

The objective of the training process is to optimize the hyper-parameters such that
the GPR-GAM model has the highest possibility to reproduce the ground-truth outputs.
This is done by maximizing the marginal likelihood logp(Y |X ) using the following equa-
tion (Rasmussen & Williams 2006):

logp(Y |X ) =−1

2
Y T K −1Y − 1

2
log|K |− N

2
log2π (3.11)

In principle, the marginal likelihood represents the possibility of obtaining true out-
puts given the inputs and hyper-parameters. The hyper-parameters that yield a high
marginal likelihood would give rise to good predictions. In order to predict the output
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y∗ for a new input x∗, which are called test output and test input respectively, we con-
struct the joint distribution of the training outputs and y∗ as(

Y
y∗

)
∼N

((
m(X )
m(x∗)

)
,

(
K (X , X ) K (X , x∗)

K (X , x∗)T k(x∗, x∗)

))
(3.12)

where K (X , x∗) represents the vector of the covariance functions evaluated at all pairs of
training inputs X and new input x∗.

Based on Bayesian inference, the predicted y∗ given x∗ has a Gaussian distribution

y∗|x∗, X ,Y ∼N (µ(y∗),cov(y∗)) (3.13)

where the value of µ(y∗) is obtained from

µ(y∗) = m(x∗)−K (X , x∗)T K (X , X )−1(Y −m(X )) (3.14)

Typically, we take the value of µ(y∗) as the predicted output (Rasmussen & Williams
2006). In order to improve the efficiency of the prediction effort, we simplify Equation
3.14 by merging matrices (Liu et al. 2021):

µ(y∗) = m(x∗)−K (X , x∗)T Qtrain (3.15)

where Qtrain = K (X , X )−1(Y −m(X )) can be obtained immediately after the training pro-
cess has been completed, with the obvious advantage that it needs to be calculated only
once.

3.4.1. MEAN FUNCTION
When constructing GPR models for the planar CR3BP, a zero-mean function is sufficient
for this simpler scenario (Liu et al. 2021). Due to the increased complexity of fully spatial
CR3BP dynamics, compared to planar dynamics, we add a non-zero mean function in
this work. The option of having a non-zero function offers the possibility to interpret the
model and express the empirical information more correctly. The function employed
here is a straightforward constant:

m(x) = c (3.16)

where c is one of the hyper-parameters that will be optimized while training.

3.4.2. COVARIANCE FUNCTION
The supervised machine learning generates predictions using the relationship between
samples. The test output is predicted based on the correlation between its correspond-
ing input and all the training inputs. In a GPR method, the covariance function is the
most crucial module because it describes this similarity between different samples and
plays a key role in interpolation. What remains is the specific formulation of this co-
variance function, and the number and distribution of training samples. In principle,
there is no universal rule for choosing an appropriate covariance function. The choice is
typically based on experience, the information about the characteristics of the relation
between inputs and outputs provided by training samples, and the error over test sam-
ples. For the planar CR3BP, the authors selected a sum covariance function combining
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a Rational Quadratic function with Automatic Relevance Determination (RQARD) and a
cosine function to learn the flyby effects (Liu et al. 2021). In this new spatial framework,
we test nine commonly-used covariance functions in addition to this sum function and
elaborate on the three best options with the smallest error (Rasmussen & Williams 2006).
Only the best three (based on first evaluations) are detailed here; the others will be men-
tioned briefly at the end of this section.

The first one is the Neural Network (NN) covariance function:

kNN(x , x ′′′) = s2
f ,NN · sin−1(

xP x ′′′T√
(1+xP x ′′′T)(1+x ′′′P xT)

) (3.17)

where s2
f ,NN is the signal variance. The matrix P = η× I5 is a matrix of η times I5, which

represents an identity matrix of size five. Both s2
f ,NN and η are hyper-parameters to be

optimized.
The second one is the Squared Exponential covariance function with Automatic Rel-

evance Determination (SEARD):

kSEARD(x , x ′′′) = s2
f ,SEARD ·exp(

−(x −x ′′′) ·Q · (x −x ′′′)T

2
) (3.18)

where s2
f ,SEARD is the signal variance for this function.

The third one is the aforementioned RQARD:

kRQARD(x , x ′′′) = s2
f ,RQARD(1+ (x −x ′′′)Q(x −x ′′′)T

2α
)−α (3.19)

Here s2
f ,RQARD and α are the signal variance and shape parameter, respectively.

The latter two covariance functions include an ARD term Q , which is a symmetric
matrix containing weights

Q = diag(
1

l 2
a

,
1

l 2
e

,
1

l 2
i

,
1

l 2
ω

,
1

l 2
φ

) (3.20)

where la , le , li , lω and lφ, which are called characteristic length-scale hyper-parameters,
are weights for the elements a, e, i , ω and φ, respectively. This ARD term controls the
similarity between samples. Therefore, these five input elements have a different influ-
ence on predicting the output of a particular test sample.

In order to show the improvement of using ARD, the performances of another two
covariance functions Squared Exponential (SE) and Rational Quadratic (RQ) are also pre-
sented in Section 3.5.1. For these two functions without the ARD term, the terms Q in
Equations 3.18 and 3.19 have a simplified form 1

l 2 × I5.
The other four covariance functions that were initially considered are Piecewise Poly-

nomial, Matérn, and these two formulations using ARD (Rasmussen & Williams 2006).
As mentioned earlier, their performance was such that they were excluded from fur-
ther analysis. It is particularly noteworthy that the sum covariance function is also ex-
cluded, which has a good performance for the planar CR3BP studied by the authors pre-
viously (Liu et al. 2021). It indicates that the characteristics of the mapping function have
changed considerably from the planar CR3BP to the spatial one. A different covariance
function is required for the new mapping function, i.e., Equation 3.6.
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3.4.3. TRAINING SAMPLES
Training samples are necessary for the supervised learning method to provide empirical
information about a system. In this paper, a training sample consists of a training input
of five orbital elements and an output of the variation of a specific element due to a
flyby (Equation 3.6). For the GPR-GAM model, the inputs are generated randomly using
the uniform distribution in the input space. The range of values of each dimension is
different (Table 3.1) which would let the large-value input element dominate the results.
To avoid this, the inputs are normalized to [0,1].

Given a training input, the final state of the spacecraft is obtained by numerically
propagating the motion as described by Equation 3.1 over one unperturbed orbital pe-
riod of the initial osculating orbit. The propagation employs an RK4 integration in MAT-
LAB@ 2018b (The Mathworks Inc. 2018) using a relative error tolerance of 1.0 × 10−9

and an absolute error tolerance of 1.0×10−12, leading to uncertainties of 0.15 km (i.e.,
1.0×10−7 % on the scale of the problem) after one orbital period of integration. Starting
from the exterior Hill’s region, it is possible for the spacecraft to be temporally trapped
by the secondary. The training output, i.e., the variation of Keplerian orbital elements,
is calculated by subtracting that input from the final osculating orbital elements of the
spacecraft.

The training process then uses a conjugate gradient method to look for the optimal
values of hyper-parameters maximizing the outcome of Equation 3.11 (Rasmussen &
Williams 2006). Based on the theory of Bayesian inference, the GPR-GAM model has
a high possibility of producing results close to the training outputs with optimal hyper-
parameters. Training samples are also used by the GPR-GAM model when predicting the
output for a new input x∗, as in the matrix X denoted in Equation 3.14.

3.4.4. ACCURACY EVALUATION AND TRAINING DATA SIZE
To evaluate the performance of a GPR-GAM model, a set of test samples is generated.
Following the same way of generating training samples, a group of 500 test samples
T are generated and used. This set is kept constant for all further evaluations. Exact
test outputs yCR3BP’s (still, the effects δa etc. of the flyby) obtained by the numerical
CR3BP propagation are employed as benchmark and compared with results yGPR-GAM’s
obtained by GPR-GAM. The criterion to quantify their quality, we use the Mean Absolute
Error (MAE), which is defined as:

MAE(N ) = 1

N∗
N∗∑
i=1

|yCR3BP,i − yGPR-GAM,i | (3.21)

This equation shows the MAE of N∗ test samples when using N training samples.
Generally, a larger training dataset can be expected to decrease the MAE since more

information is provided for the GPR-GAM model to capture the characteristics of the
problem at hand. However, as shown in Equation 3.14, more training samples will in-
crease the burden of computation. It remains a problem to identify the optimal size
of the training dataset due to the trade-off between accuracy and efficiency. Bouwman
et al. (2019) defines a threshold εMAE for the fluctuation of the MAE. Increasing the num-
ber of training samples is stopped when ∆MAE becomes smaller than that particular
threshold. For GPR-GAM, we improve this method so that it works for different types of
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output elements. When estimating the MAE of test data T with an increasing number of
training samples, the training data size N starts from 100 and is increased with 100 each
time.

A set of MAE’s over a certain range of training data size is defined as:

E(N ) = [MAE(N ),MAE(N +n), ...,MAE(N +9n)] (3.22)

where n = 100. The fluctuation of MAE over this range is given as:

∆MAE(N ) = max(E(N ))−min(E(N )) (3.23)

When the number of training samples for the GPR-GAM model meets the condition,
i.e., ∆MAE is smaller than 5 % of the lowest MAE over the last 10 iterations:

∆MAE(N )

min(E(N ))
< 0.05, (3.24)

The prediction converges at the point ks :

ks = argmin
k=1,...,9

E(N ) (3.25)

The value Ns is selected as the final training data size:

Ns = N +n ×ks (3.26)

This criterion can be applied to every output element and ensures that an accurate
GPR-GAM model with minimum training samples is obtained.

3.5. PERFORMANCE OF GPR-BASED GRAVITY ASSIST MAP-
PING

3.5.1. DIFFERENT COVARIANCE FUNCTIONS
The performance of GPR-GAM is shown in Figure 3.4 for an increasing number of train-
ing samples, from 100 to 5000. Figure 3.4 presents the MAE of test samples using five
different covariance functions. The covariance functions of SE and RQ with the ARD
strategy are shown in addition to those without ARD. For every output element, RQARD
performs better than RQ. Also, SEARD obtains more accurate results than SE except for
predicting δω. The results demonstrate the positive effect of ARD. For predicting an out-
put, the five input features play different roles in Equation 3.6. The accuracy is improved
by emphasizing the effects of some particular inputs using ARD. The RQARD function
has the best accuracy with regards to all outputs. The NN function comes second except
for quantifying δΩ.

Using RQARD, the MAE tends to become stable when the training data size is larger
than 3000. To better quantify this by applying the criterion of Section 3.4.4, the minimum
stable training data size for the five outputs to converge are [4700,3500,4300,4200,4500].
Due to the complexity of the spatial CR3BP, significantly more training samples are re-
quired than for the planar case (Liu et al. 2021), which should not come as a surprise.
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Predicting eccentricity is the fastest to become stable. When increasing the number of
training samples from 100 to 1000, the MAE of δa and δi decrease sharply. However the
results tend to be really stable using more than 4000 training samples.

Inspecting Figures 3.4(c)-3.4(f), in particular the zoomed-in plot in Figure 3.4(f), the
conclusion can be drawn that δω is the most difficult element to predict, both in terms
of level of convergence and in level of agreement between various covariance functions.
PredictingδΩ is the second-most difficult thing to do (at a level of 1.0×10−5 rad), whereas
δi is the most accurate one.

The full set of hyper-parameters of the mean and covariance functions are presented
in Table 3.2. According to Equation 3.20, the influence of an input element on predicting
a particular output is inversely proportional to the absolute value of the corresponding
length-scale. For a set of five length-scales in predicting a specific output, a lower value
of length-scale represents a higher influence of the corresponding input feature because
all the inputs are normalized before training. For example, the eccentricity plays an im-
portant role in predicting δa, δω and δΩ. The predictions of δe and δi most rely on i
and ω, respectively. The second-most influential input element is i ranking first in the
prediction of δe, and second in that of δa, δi and δω. This illustrates the importance of
inclination in the flyby effects in a spatial CR3BP. The signal variance parameter s2

f ,RQARD

represents the amplitude of the RQARD covariance function. The value of s2
f ,RQARD for

ω is small, which means that the similarity between two samples is small even though
their inputs are close to each other. The shape parameter α controls how the similarity
changes when a sample moves away from the other sample. The similarity is highest
when two samples coincide. A larger α indicates that the similarity decreases fast when
two samples are separating. The prediction of δω has a small s2

f ,RQARD and largeα, which

means an accurate prediction of δω relies on training samples very close to the test sam-
ples.

Table 3.2: The values of length-scales, signal variance and shape parameters using the RQARD covariance
function.

δa δe δi δω δΩ

l 2
a 14.545 17.565 8.795 1.144 13.394

l 2
e 0.171 0.282 1.013 0.021 0.071

l 2
i 0.212 0.031 0.382 0.572 7.173

l 2
ω 0.663 4.064 0.041 2.253 26.155

l 2
φ 1.074 0.483 1.284 6.905 3.792

s2
f ,RQARD 8.29 15.76 19.98 0.068 0.518

α 0.15 3.22 1.23 3.37 1.21

c 0.002 −0.001 0.001 0.03 0.0004

* The subscript of the length-scale hyper-parameters stands for the order of influence of an
input element on predicting a particular output using the GPR model.
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(a) MAE of δa. (b) MAE of δe.

(c) MAE of δi . (d) MAE of δω.

(e) MAE of δΩ. (f) MAE of δω after zooming in.

Figure 3.4: The MAE of test samples when using five different covariance functions.

3.5.2. COMPARISON WITH SEMI-ANALYTICAL METHOD

For the same group of test samples, we compare the GPR-GAM model to the Semi-
analytical Keplerian Map (SKM), which is called the Kick Map, developed by Alessi &
Sánchez (2016). Since the Kick Map is known for working well outside the Hill sphere of
the perturbing body, an additional comparison is performed for the case of r2 > 0.01 AU.
The performance of a Planar-GPR-GAM (P-GPR-GAM) model developed by the authors
for the planar CR3BP is also presented (Liu et al. 2021). The P-GPR-GAM studies flyby
effects in a three-parameter input space of a, e and ω.

In Table 3.3, the MAE and CPU time of these methods are presented. Note that the
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SKM statistics are based on an implementation of this technique on the first author’s PC
(Core i7 CPU and 8.00 GB RAM), and not on the numbers reported in Alessi & Sánchez
(2016) itself; in this way platform-specific effects are eliminated. In the case of r2 > 6678
km, the GPR-GAM has a better accuracy than the SKM for all outputs. The advantage
is clear with regards to δa, δe and δi . In particular, the MAE of δa by SKM is about 3.3
times that of using GPR-GAM. The efficiency of predicting δa is improved by a factor of
1.27× 104. 7.5× 10−2 s is the total time of SKM predicting five outputs of a single test
sample. However, predicting these five outputs using GPR-GAM, which spends a total of
2.0×10−5 s, is still much faster than SKM. GPR-GAM has seen an improvement on the
accuracy and efficiency over SKM. Note that the time in this table shows the prediction
component only. The training time needed for a GPR-GAM model using 4000 training
samples is 32 minutes on the first author’s PC. The advantage of GPR-GAM is that it has
to learn only once and can be easily applied to a next prediction. This is certainly based
on the assumption that the input space in interest does not change.

In the case of r2 > 0.01 AU, the accuracy of both SKM and GRP-GAM is improved
due to simpler dynamical properties. The overall accuracy of SKM approximations in-
creases by about a factor of two. With regards to δa, δi and δΩ, GPR-GAM still has better
performance over SKM. SKM is more accurate for the prediction of δω. When the mini-
mum distance between the spacecraft and the Earth is larger than the radius of the Hill
sphere, the difference of MAE between these two methods decreases. In the planar case,
P-GPR-GAM uses only 1500 training samples to reach a stable prediction. In addition to
a lower dimension of the input space, using less training samples benefits the efficiency
drastically.

Figure 3.5 shows the difference of predictions between the GPR-GAM and the nu-
merical integration method for the first 100 test samples. For most of the predictions,
the GPR-GAM outputs almost overlap with those of the numerical integration. The max-
imum error is 3.3× 10−4 AU (49,369 km) for the No.87 test sample, where an obvious
separation is observed. However, this magnitude of error does not occur often. The
minimum error within these 100 samples is only 4.7×10−8 (7 km) AU. By converting the
Keplerian orbital elements into the Cartesian coordinates in the ecliptic coordinate sys-
tem centered at the Sun, the MAE of Cartesian distances between the GPR-GAM outputs
and those of the numerical integration is calculated by

MAECar = 1

100

100∑
i=1

|orb2Car(yCR3BP,i )−orb2Car(yGPR-GAM,i )| (3.27)

where y consists of all the Keplerian orbital elements of the spacecraft. orb2Car is a
function converting y into Cartesian coordinates, and only the position components are
used. When taking into account the error of predicting every Keplerian orbital element,
MAECar for these 100 test samples is 37,063 km.

3.5.3. ROBUSTNESS WHEN CHANGING TRAINING DATASET
To study the influence of the training samples on the accuracy, we generate another two
groups of training samples in the same input space. These groups use different seed
numbers to generate different (quasi) random samples. For all cases, the RQARD covari-
ance function is selected to build the GPR-GAM model. For the same set of test samples,
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Figure 3.5: The difference of predictions between the GPR-GAM and the numerical integration for 100
random test samples.

Figure 3.6 shows the comparison of the GPR-GAM models trained by these three groups
of training samples. The MAE drops sharply when going from 100 to 1000 samples and
there is an obvious difference between datasets when using less than 3000 training sam-
ples. A steady decline begins at 3000 until the three curves converge using more than
4000 training samples. An eventual close agreement between three groups ensures the
robustness of prediction using GPR-GAM.

The prediction of δe converges and stabilizes fastest, which supports the observa-
tion of using the least number of training samples in Section 3.5.1. In Figure 3.6(c), for
inclination, the results of the three datasets converge slowly after going through a gap
of 0.5× 10−5 rad. A minimum dataset of 4000 training samples is required to obtain a
stable performance of δi . In Figure 3.6(d), the behavior of δω using three datasets has
an insignificant difference compared to the other output elements, but the zoomed-in
plot (Figure 3.4(f)) shows a more clear difference. Predicting δΩ is also difficult for GPR-
GAM with regards to the significant fluctuation in Figure 3.6(e). Using different groups
of training samples, the fluctuation can be observed between 1000 and 3000 training
samples. δΩ has relatively larger values due to a flyby than those of δi and δω, which
is a cause of this fluctuation. Increasing the number of training samples is necessary to
stabilize the MAE.

The results are summarised in Table 3.4. To quantify the consistency of the MAE
outcome, the Percentage of Deviation (PD) is calculated by subtracting the lowest value
from the highest value, and then dividing the result by the highest value. Quantifying δω
with different training datasets has the lowest PD. The accuracy of evaluating δΩ is af-
fected more seriously than the other orbital elements. However, the absolute difference
between different groups is small and the convergence is good as shown in Figure 3.6(e).
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Table 3.3: The performance of GPR-GAM compared to that of Alessi & Sánchez (2016) (fully reproduced here).
The computational time is obtained by taking the mean value of 1000 repeated experiments. The value is the

CPU time spent on one test sample. The CPU time of numerical integration of the equations of motion of
CR3BP is listed in the last row.

MAE δa [AU] δe [-] δi [rad] δω [rad] δΩ [rad]

r2 > 6678 km GPR-GAM 5.7×10−5 3.4×10−5 6.3×10−6 1.9×10−3 1.9×10−4

SKM 1.9×10−4 7.6×10−5 1.1×10−5 2.2×10−3 2.1×10−4

r2 > 0.01 AU GPR-GAM 3.3×10−5 2.1×10−5 3.8×10−6 1.3×10−3 0.8×10−4

SKM 7.3×10−5 2.1×10−5 5.9×10−6 1.2×10−3 1.0×10−4

Time* [s] GPR-GAM 5.9×10−6 1.5×10−6 3.8×10−6 3.6×10−6 5.2×10−6

SKM 7.5×10−2 7.5×10−2 7.5×10−2 7.5×10−2 7.5×10−2

P-GRP-GAM 1.2×10−6 1.2×10−6 - 1.2×10−6 -

CR3BP 5.9×10−1 5.9×10−1 5.9×10−1 5.9×10−1 5.9×10−1

Table 3.4: The performance of GPR-GAM over three different training datasets using the same test dataset.
The values of MAE and PD are shown.

δa [AU] δe [-] δi [rad] δω [rad] δΩ [rad]

Group 1 5.74×10−5 3.42×10−5 6.32×10−6 1.89×10−3 1.91×10−4

Group 2 5.56×10−5 3.49×10−5 6.34×10−6 1.90×10−3 1.96×10−4

Group 3 5.64×10−5 3.56×10−5 6.68×10−6 1.89×10−3 2.02×10−4

PD 3.14 % 3.93 % 5.38 % 0.53 % 5.44 %
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(a) MAE of δa. (b) MAE of δe.

(c) MAE of δi . (d) MAE of δω.

(e) MAE of δΩ. (f) MAE of δω after zooming in.

Figure 3.6: The MAE of test samples when using three different training datasets.

3.5.4. ROBUSTNESS WHEN CHANGING TEST DATASET
To evaluate the robustness of GPR-GAM when predicting different test datasets, we gen-
erate another two groups of test samples using different random seed numbers. Akin to
the group used before, each group has 500 samples. The same training data set and the
RQARD covariance function are used for building the GPR-GAM model. By applying the
criterion of Section 3.4.4 to the results in Figure 3.4, the training data size is set at [4700,
3500, 4300, 4200, 4500] for each orbital element. The performance of these three groups
is presented in Table 3.5, where the first line obviously refers to results already presented
in Tables 3.3 and 3.4. The PD is calculated for these parameters. These PDs are smaller
than those in Table 3.4, except for δω. Gradually, the GPR-GAM model has a better ro-
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bustness when changing test datasets than that when changing training datasets. The
results for δa have the smallest PD which is only 0.69%. This suggests that predicting
δa using GPR-GAM has the best generalization (Rasmussen & Williams 2006). For every
element, the overall PD’s between groups is lower than 3.0%. The results demonstrate
that the GPR-GAM model has a stable performance when predicting the flyby effects for
a new given initial condition.

Table 3.5: The performance of GPR-GAM over three different test datasets using the same training samples.
The values of MAE and PD are shown.

δa [AU] δe [-] δi [rad] δω [rad] δΩ [rad]

Group 1 5.74×10−5 3.42×10−5 6.32×10−6 1.89×10−3 1.91×10−4

Group 2 5.78×10−5 3.40×10−5 6.39×10−6 1.84×10−3 1.89×10−4

Group 3 5.75×10−5 3.38×10−5 6.24×10−6 1.85×10−3 1.93×10−4

PD 0.69 % 1.17 % 2.35 % 2.65 % 2.07 %

3.5.5. LOW-ENERGY CASES
The computations so far sample the input space in a uniform way, irrespective of the
energy level. One could argue that the high-energy part of the domain does not really
need a three-body formulation, and that the low-energy part of the domain is the more
challenging. In order to analyze the specific application of the GPR-GAM model to low-
energy transfers, we generate a group of 500 test samples with C J >CL3. According to the
initial condition defined by the input space, the spacecraft starts from somewhere in the
exterior Hill’s region. This means that the following situation when the Jacobi constant is
smaller than that of CL1 is not considered: the spacecraft is located initially in the vicinity
of either the Sun or the Earth and travels to the neighbourhood of the other. However, it
does allow the cases of the spacecraft starting from the exterior realm and moving into
the neighbourhood of the Earth when CL2 > C J > CL3. The predictions are obtained by
using the training dataset 1 and the corresponding hyper-parameters shown in Table 3.2,
so for the model that is based on the entire energy range. The MAE for the low-energy
part of the domain are shown in Table 3.6.

Table 3.6: The performance of GPR-GAM over the test samples with Jacobi constant C J >CL3.

δa [AU] δe [-] δi [rad] δω [rad] δΩ [rad]

low-energy domain 3.71×10−5 4.28×10−5 8.08×10−6 2.56×10−3 2.31×10−4

full domain 5.7×10−5 3.4×10−5 6.3×10−6 1.9×10−3 1.9×10−4

The MAE’s remain at the same level as those of the entire Jacobi energy cases in Table
3.4, with a slight degradation of about 20−30% (except for δa). This is mainly because
of the more complex variation of orbital elements due to the higher chaotic dynamics,
particularly when CL2 > C J > CL3. Using the CR3BP propagation, the variation of the
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semi-major axis for 500 test samples in the low-energy regime is shown in Figure 3.7.
Although the majority of δa has an absolute value of about 1.0×10−3 AU, a significant
percentage of them are larger than 0.01 AU. The initial conditions with smaller phasing
angle would generally result in larger variation of semi-major axis. The largest change
among these is -0.0771 AU. In the rotating reference frame, the trajectory of this case
(C J = 3.00057) is shown in Figure 3.8. The osculating Keplerian elements of its initial
condition [a,e, i ,ω,φ,θ] are [1.028AU,0.008,0.086◦,0.932◦,-0.524◦,-180◦ ].

The value of C J meets the condition CL2 > C J > CL3. The interior and exterior Hill’s
region are connected which allows a spacecraft motion between these two realms. Over
one unperturbed orbital period computed from the initial condition, the spacecraft trav-
els from the exterior Hill’s region into the neighbourhood of the Earth temporarily before
moving out. The closest distance between the spacecraft and the center of the Earth is
7223 km. The variation of the Keplerian elements and the predictions obtained by GPR-
GAM are shown in Table 3.7. The predictions are well approximated especially for δa
and δe. The prediction of δi , δω and δΩ yield poorer accuracy compared to the MAE in
Table 3.6,but the relative error is small compared to the large variation of these elements.
It is worth noting that the value of the semi-major axis of the final condition is 0.951AU ,
which is beyond the predefined input space in the current work. Extending the input
space to the initial conditions of starting from the interior Hill’s region is of interest for
future work.

Figure 3.7: The variation of the semi-major axis for 500 test samples in the low-energy regime.

Table 3.7: The prediction of the test sample (C J = 3.00057).

δa [AU] δe [-] δi [deg] δω [deg] δΩ [deg]

Numerical integration -0.0771 0.0470 20.1637 -20.2493 9.0656

GPR-GAM -0.0773 0.0464 20.1127 -20.4192 8.9913

PD 0.26% 1.28 % 0.25 % 0.85 % 0.82 %
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Figure 3.8: Trajectory of a test sample (C J = 3.00057). In order to show the trajectory properly in three
dimensions, the scales of three axes are not equal.

3.6. CONCLUSIONS
A Gravity Assist Mapping was developed based on Gaussian Process Regression for eval-
uating flyby effects in the fully spatial CR3BP. A new criterion was proposed to select the
number of training samples for every orbital element. Due to the increasing complex-
ity of a fully spatial CR3BP compared to that of the planar one, a larger training dataset
is required. Compared to a previous semi-analytical method, GPR-GAM has achieved a
better accuracy. The CPU time for prediction is a factor 103 faster than that of this semi-
analytical method. The domain of applicability is extended beyond that of the Keplerian
Map.

According to the MAE, the RQARD covariance function performs best. Based on the
optimized values of the length-scale, the influence of different input elements on flyby
effects was discussed. The stable robustness of GPR-GAM was illustrated by changing
the training and test datasets. It indicates that quantifying δa has the best generaliza-
tion property. The prediction of δω is more difficult than that of the other output ele-
ments. Further attention needs to be paid to the various ranges of output. The results
show the ability of the GPR-GAM model to predict the dynamics of the CR3BP system
with relatively high accuracy compared to SKM. The GPR-GAM model has been shown
to be a versatile tool that can be applied for a wide range of energy levels. The quality of
predictions in the low-energy domain is almost comparable to that in the high-energy
part.

The input space considers only the initial conditions of the spacecraft starting from
the exterior Hill’s region, and the time of flight is limited to one orbital period of the ini-
tial osculating orbit. The periapsis passage of the initial osculating orbit is located in
the same region. The phenomenon of the spacecraft temporarily being captured by the
secondary is observed for this input space, which is not amenable to a patched-conics
technique. However, future work will consider extension of the input space to include
more complex situations. The angular phasing and the longitude of the ascending node
are used in the input and the output vectors, respectively. The flexibility of the GPR tech-
nique allows the mapping function to have different formulations. In order to explore the
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applications of GPR-GAM, four subjects are of interest for further investigation: a) using
an alternative set of orbital elements; b) employing the orbital elements in the rotating
reference frame; c) extending the time of flight to multiple orbital periods, or using a
Poincaré section as boundary conditions, such that more complex dynamics is involved
and more CPU time could be saved on predicting the status of the spacecraft; d) es-
tablishing GPR-GAM for different CR3BP systems considering the various goals of space
missions, e.g., SMART-1 (Moon) or exploration missions to Jupiter or Saturn (Sánchez
et al. 2015).
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A MACHINE-LEARNING DESIGN

TOOL FOR QUANTIFYING GRAVITY

ASSIST EFFECTS IN THE CIRCULAR

RESTRICTED THREE-BODY

PROBLEM

Abstract A method to quantify the changes in orbital elements after a gravity assist, the
Gravity Assist Mapping, is developed for the Circular Restricted Three-Body Problem.
The mapping function is inspired by the Keplerian Map and the Flyby Map. Instead
of solving the mapping analytically or numerically, the model is built using a Gaussian
Process-based machine-learning technique. The first main element is the development
of a classification model to identify impact trajectories given arbitrary initial conditions.
The second main element is a regression model to predict the flyby effects after com-
pletion of one orbital revolution. The Jacobi constant is used to show the broad energy
range where the proposed method can be applied, and is also employed as an extra pa-
rameter for a more accurate modeling of the flyby dynamics. The performance of the
models is analyzed in three systems with increasing mass ratio between the primary
and secondary body in order to study the impact of this mass ratio: Sun-(Earth+Moon)-
spacecraft, Jupiter-Callisto-spacecraft, and Sun-Jupiter-spacecraft. The results demon-
strate that the evaluation of flyby effects can be efficiently and accurately made combin-
ing the classification and regression models. The reliability of detecting impact trajecto-
ries is better than 90%. The mean absolute error of predicting the change in semi-major
axis is only 3.86×10−5 AU (a typical range of changes is −0.0115 AU to 0.0163 AU), with a
computational cost of 5.8×10−6 s per sample, which is several million times faster than

This chapter is to be submitted to Advances in Space Research (2021).
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solving the equations of motion by numerical integration.

4.1. INTRODUCTION
The gravity assist, or flyby, is a commonly used technique in space missions. Here, the
flyby at one celestial body (e.g., Jupiter) is typically used to change the velocity of a space-
craft with respect to a primary body (e.g., the Sun). When designing such a flyby trajec-
tory, the patched-conics model is widely adopted for a first-order analysis (Broucke 1988,
Longuski & Williams 1991, Strange & Longuski 2002, de Almeida Prado & de Felipe 2007).
This model is simple, and only considers the gravitational attraction of a single celestial
body at a time. Reaching beyond the limitations of the patched-conics model, the mech-
anisms of distant flybys or invariant manifolds are of significant importance in celestial
mechanics, and only exist in the framework of Circular Restricted Three-Body Problem
(CR3BP) (Szebehely 1967, Koon et al. 2000, Beutler 2004, Campagnola et al. 2012). As an
example, it can be shown that the gravitational attraction of Jupiter also affects the tra-
jectory of the spacecraft even beyond its Sphere of Influence (SoI) (Greenberg et al. 1988,
Gawlik et al. 2009).

The CR3BP is a simplified model for studying the three-body problem. The motion
of the spacecraft is always affected by the primary and secondary body simultaneously,
which rotate around their barycenter. The behavior of flybys in the CR3BP can be a com-
plex issue because of the potentially chaotic dynamics.

The Keplerian Map (KM) developed by Ross et al. (2007) approximates the flyby ef-
fects in the planar CR3BP and gives insight into the chaotic zone in the phase space (Ross
& Scheeres 2007). The changes in Keplerian orbital elements over one orbital period are
estimated using perturbation theory and Picard’s method. Based on this KM, Peñagar-
icano Muñoa et al. (2010) developed an approach for the fully spatial CR3BP (Peña-
garicano Muñoa & Scheeres 2010). Also for the spatial framework, Alessi et al. (2016)
developed a kick map to evaluate the flyby effects by applying the Picard iteration to the
Lagrange planetary equations (Alessi & Sánchez 2016). The above methods are semi-
analytical and obtain integration solutions by quadratures or numerical methods. The
situations of transition between interior and exterior Hill’s regions and temporary cap-
ture around the secondary are not taken into account. It is also not possible to identify
initial conditions that lead to an impact on the secondary.

Inspired by the KM and the Tisserand-Poincaré graph, Campagnola et al. (2012) de-
veloped a Flyby Map (FM) to extend the applicability of the Tisserand graph to low en-
ergy levels (Campagnola et al. 2012). For the planar CR3BP, it reveals that direct flybys are
more efficient than retrograde flybys. This method is as accurate as the numerical inte-
gration of the CR3BP equations of motion, and has an equivalent computational cost.

The aim of this work is to develop an alternative approach, Gravity Assist Mapping
(GAM), to quantify the flyby effects in the fully spatial CR3BP. The approach consists of
two models built up using a machine-learning technique based on Gaussian Processes
(GP) (Rasmussen & Williams 2006). In the past decade, the Deep Neural Network tech-
nique has become very popular for its excellent performance on speech recognition, vi-
sual object recognition and object detection, etc. (LeCun et al. 2015). Unlike neural
network methods, the GP method requires a relatively smaller training dataset, and has
a simple model selection procedure (Rasmussen & Williams 2006). The prediction is



4.2. CIRCULAR RESTRICTED THREE-BODY PROBLEM

4

63

based on one assumption: close inputs are likely to have similar outputs.

The first developed model is the Gaussian Process Classification (GPC), to be used for
identifying impact trajectories given initial conditions. The second model is the Gaus-
sian Process Regression (GPR) for predicting the variation of the Keplerian orbital el-
ements after a flyby. The GP approach is a supervised learning method developed by
Krige for making predictions based on empirical information (Krige 1951). In the as-
trodynamics framework, it has been successfully used for assessing the accessibility of
asteroids, optimizing low-thrust trajectories, and building gravity models (Shang & Liu
2017, Bouwman et al. 2019, Gao & Liao 2019).

This paper is organized as follows: Section 4.2 defines the framework of the CR3BP.
The equations of motion are used for the generation of samples for the GP models. The
mapping functions for classification and regression are given in Section 4.3. The con-
struction and training process of GAM models are also presented here, as well as the gen-
eration of training datasets and criteria for accuracy measurement. Section 4.4 shows the
performance of the GP models in three applications: the Sun-(Earth+Moon)-spacecraft,
the Jupiter-Callisto-spacecraft and the Sun-Jupiter-spacecraft systems. Section 4.5 ad-
dresses the possibility of making quality assessments using GP models. Section 4.6 sum-
marizes the results, and discusses the advantages and limitations of GAM. Recommen-
dations on the usage of GAM and how to improve its performance in future work are also
made.

4.2. CIRCULAR RESTRICTED THREE-BODY PROBLEM
The CR3BP describes the motion of three point masses. It assumes two massive bodies
P1 and P2 with masses M1 and M2, respectively. P1 and P2 are known as the primary and
secondary, respectively, which meet the condition M1 > M2. P1 and P2 rotate around
their barycenter OB and have a constant distance aP2. The third body P3 has a negligible
mass. The motion of P3 is affected by the other two bodies simultaneously, which is
specified by the equations of motion in the rotating reference frame (Beutler 2004):

ẍ −2ẏ = x − (1−µ)
r 3

1
(x +µ)− µ

r 3
2

(x −1+µ)

ÿ +2ẋ = y − (1−µ)
r 3

1
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r 3
2

y

z̈ =− (1−µ)
r 3

1
z − µ

r 3
2

z

(4.1)

where µ = M2/(M1 + M2) is the mass parameter. r1 =
√

(x +µ)2 + y2 + z2 and r2 =√
(x −1+µ)2 + y2 + z2 represent the distance of the spacecraft to P1 and P2, respec-

tively. The variables are normalized using (M1 + M2) for mass, aP2 for length, and√
a3

P2/(G(M1 +M2)) for time. G is the universal gravitational parameter. In this paper,

µ = 3.036× 10−6 for the Sun-(Earth+Moon)-spacecraft system, µ = 5.668× 10−5 for the
Jupiter-Callisto-spacecraft system, and µ = 9.537× 10−4 for the Sun-Jupiter-spacecraft
system. The CR3BP has one integral, the Jacobi constant C J , written as (Beutler 2004):

C J = x2 + y2 + 2(1−µ)

r1
+ 2µ

r2
− (ẋ2 + ẏ2 + ż2)+µ(1−µ) (4.2)
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C J is the only known variable that has a constant value in the CR3BP. It is determined
by the initial condition of the spacecraft and is a measure for its three-body energy: a
larger C J represents a lower amount of specific energy. In this work, the initial condition
is such that the vehicle is outside the Hill sphere. The center of the Hill sphere is at the
secondary, and its radius is defined as (Szebehely 1967):

rH = 3

√
µ

3(1−µ)
(4.3)

4.3. GRAVITY ASSIST MAPPING

4.3.1. MAPPING FUNCTION
In this work, the GAM describes the variation of the state of the spacecraft using the
Keplerian orbital elements with respect to the primary body. In an inertial reference
frame, the initial osculating orbit of the spacecraft is specified as depicted in Figure 4.1.
The origin is centered at the primary and the reference plane is taken as the orbital plane
of the secondary. The positive X-axis is in the direction of the vernal equinox. The initial
condition S A and the final condition SB of the spacecraft before and after a flyby are
defined as:

S A = {(a,e, i ,ω,Ω,θ) | r2(a,e, i ,ω,Ω,θ) > 2rH ,θ =−π} (4.4)

SB = {(a,e, i ,ω,Ω,θ) | r2(a,e, i ,ω,Ω,θ) > 2rH ,θ =π} (4.5)

where a represents the semi-major axis, e eccentricity, i inclination, ω arguement of
periapsis,Ω right ascension of ascending node, θ true anomaly.

Figure 4.1: The initial osculating orbit of the spacecraft centered at the primary in an inertial reference frame.

The spacecraft starts from the apoapsis with a distance to the secondary larger than
two times rH in the exterior of the Hill sphere. After about one orbital revolution, the
final condition represents the apoapsis when the spacecraft is at least 2rH away again
from the secondary, such that the spacecraft is not in the vicinity of the secondary even
if it could be temporarily captured. In order to represent the relative position between
the spacecraft and the secondary, a phasing angle φ is defined specifically for the initial
condition (Alessi & Sánchez 2016):

φ= tan−1(tan(ω)cos(i ))+Ω (4.6)
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Here, φ represents the phasing angle between the positive X-axis and the projection
of the periapsis line of the spacecraft orbit onto the reference plane at the moment of
periapsis passage. The initial true anomaly θP2 of the secondary is defined from the
orbit of the spacecraft:

θP2 =−π
√

a3 (4.7)

This ensures that the secondary reaches the positive X-axis when the spacecraft has
traveled half of the orbital revolution. In particular, the spacecraft arrives at the primary-
secondary line if φ= 0.

The GAM method aims at building mapping functions FGAM to predict output y cor-
responding to a set of inputs x :

FGAM(x) : x 7→ y (4.8)

The specific elements for x and y can be defined differently for different objectives.
For impact analysis, the function of Gaussian Process Classification-based Gravity Assist
Mapping (GPC-GAM) is defined as:

FGPC-GAM : x 7→ y

[a,e, i ,ω,φ] 7→ [C ]
(4.9)

where x represents the initial Keplerian elements of the spacecraft, before the flyby. C is
a class label denoting impact trajectories:

C =
{
+1 i mpact

−1 no i mpact
(4.10)

A trajectory is classified as ’impact’ if the spacecraft gets close to the secondary, i.e.,
within a distance of 300 km above its surface or less (taking the second flyby of the Galileo
mission performed at Earth as reference (Anderson et al. 2008)). Otherwise, we clearly
are in a flyby situation. A well-trained GPC-GAM can tell whether a given input leads to
a collision, before the process to quantify the flyby effect is even started. The model can
also be used stand-alone for impact classification, given a large number of initial condi-
tions. Previously, van der Weg & Vasile (2014) introduced the concept of survivability and
event maps in the coupled circular restricted three-body problem involving Sun, Earth
and Moon. The method was used to obtain suitable conditions such that the spacecraft
crashes on, or is weakly captured by the Moon.

The mapping function of Gaussian Process Regression-based Gravity Assist Mapping
(GPR-GAM) is defined as:

FGPR-GAM : x 7→ y

[a,e, i ,ω,φ] 7→ δa,δe,δi ,δω,or δΩ
(4.11)

where the δ represents the change of a Kepler element due to the gravity assist. Obvi-
ously, the input vector is identical to that of the GPC-GAM. y is the variation of one of
the Keplerian elements after a flyby. The flexibility of a GP method allows it to use differ-
ent features as input. Incorporating new features could potentially help the GPR model
to better learn the dynamics of a flyby. To this end, we develop an alternative model
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based on GPR-GAM by adding the Jacobi constant as the sixth input feature, although
x already provides all information to uniquely identify a specific trajectory. This new
model is defined as:

FGPR-GAM-J : x 7→ y

[a,e, i ,ω,φ,C J ] 7→ δa,δe,δi ,δω,or δΩ
(4.12)

C J is calculated with the initial conditions using Equation 4.2. Even when applying
this model to a multi-revolution situation, C J needs no updating because of its invariant
property (Alessi & Sánchez 2016).

4.3.2. GAUSSIAN PROCESS MODELS
The prediction models built are based on the theory of the Gaussian Process (Rasmussen
& Williams 2006). A GP is a collection of random variables, each of which follows a Gaus-
sian distribution. The random variables refer to the value of the function FGAM(x) in
Equation 4.8. The GP is fully defined by the mean function m(x) and the covariance
function k(x , x ′) (Rasmussen & Williams 2006):

f (x) ∼GP (m(x),k(x , x ′)) (4.13)

Note that m(x) and k(x , x ′) can have different values, given the expressions for dif-
ferent input elements. The nature of the GP models learning the mapping functions,
i.e., Equations 4.9, 4.11 and 4.12, is actually a process of training the parameters ac-
cording to observed examples. In our study, a constant mean function and the Rational
Quadratic function with Automatic Relevance Determination (RQARD) are selected (Liu
et al. 2021), which are defined respectively as (Rasmussen & Williams 2006):

m(x) = c (4.14)

and

kRQARD(x , x ′′′) = s2
RQARD(1+ (x −x ′′′)Q(x −x ′′′)T

2α
)−α (4.15)

The parameters in the GP method are called hyper-parameters. c, s2
RQARD and α are

a constant, signal variance and shape hyper-parameters, respectively. Q is a symmetric
matrix containing length-scale hyper-parameters:

Q = diag(
1

l 2
1

,
1

l 2
2

, ...,
1

l 2
d

) (4.16)

where d is the number of features in the input vector x .
Training the hyper-parameters requires empirical information provided by observed

examples. In supervised machine learning, the examples are defined as training sam-
ples. Each sample (x , y) consists of a training input x and a training output y . The col-
lection of training samples Dtrain is defined by:

Dtrain = {(X ,Y )|X = [x1, x2, . . . , xN ],Y = [y1, y2, . . . , yN ]} (4.17)

where N is the size of the training dataset. For a specific problem, the training inputs
are randomly generated in a predefined input space. The training outputs are obtained
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from integrating the CR3BP equations of motion using Equation 4.1, and are considered
as the ground-truth observations. The generation of a training dataset will be elaborated
upon in the next section.

The basic property of a GP is that any finite number of variables in a GP has a joint
Gaussian distribution. Given the training inputs, the joint Gaussian distribution of out-
puts obtained from a GP is:

f ∼N (m(X ),K (X , X )) (4.18)

where m(X ) is an N -dimensional vector of constant elements c. K (X , X ) is an N × N
matrix:

K (X , X ) =


k(x1, x1) k(x1, x2) · · · k(x1, xN )
k(x2, x1) k(x2, x2) · · · k(x2, xN )

...
...

. . .
...

k(xN , x1) k(xN , x2) · · · k(xN , xN )

 (4.19)

where k(xi , x j ) is the RQARD covariance function given in Equation 4.15.
The training process is aimed to have f approximate Y by optimizing hyper-

parameters, which is accomplished by maximizing the log marginal likelihood (Ras-
mussen & Williams 2006):

logp(Y |X ) =−1

2
Y T K −1Y − 1

2
log|K |− N

2
log2π (4.20)

Here, p(Y |X ) specifies the probability of reproducing Y using the GP model. The
conjugate gradient algorithm is used for optimization (Rasmussen & Williams 2006).
When the training procedure has been completed, the prediction of output f ∗ for an
arbitrary input x∗ can be made. According to the property of GP, Y and f ∗ also follow a
joint Gaussian distribution described by:(

Y
f ∗

)
∼N

((
m(X )
m(x∗)

)
,

(
K (X , X ) K (X , x∗)

K (X , x∗)T k(x∗, x∗)

))
(4.21)

where K (X , x∗) is a vector of covariance functions:

K (X , x∗) =


k(x1, x∗)
k(x2, x∗)

...
k(xN , x∗)

 (4.22)

By conditioning the joint Gaussian distribution on Y , the distribution of the predic-
tion f ∗ is

f ∗|x∗, X ,Y ∼N (µ( f ∗),cov( f ∗)) (4.23)

where
µ( f ∗) = m(x∗)−K (X , x∗)T K (X , X )−1(Y −m(X )) (4.24)

cov( f ∗) = k(x∗, x∗)−K (X , x∗)T K (X , X )K (X , x∗) (4.25)

The Gaussian distribution of the prediction f ∗ has a mean value of µ( f ∗). We gen-
erally take µ( f ∗) as the predicted output y∗ for the input x∗ because the probability of
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obtaining µ( f ∗) is highest. The covariance cov( f ∗) describes the uncertainty measure-
ment of the result. For the GPC-GAM model, the prediction y∗ is typically a value within
the range [−1,+1]. y∗ > 0 is classified as impact trajectory and vice versa (Equations 4.9,
4.10).

4.3.3. GENERATION OF TRAINING DATASET
In order to generate a training dataset, the boundary conditions of the input space need
to be defined. The boundary conditions are defined in terms of a specific scenario con-
cerning the selected CR3BP model, energy level, etc. The selected boundaries will be
presented in the next section for different applications. In a predefined domain, the in-
puts x are randomly generated following a uniform distribution. Equation 4.4 specifies
the initial conditions of the spacecraft. The training output is calculated by numerical
integration of the equations of motion in Equation 4.1 over one orbital revolution of the
initial osculating orbit. The final condition in Equation 4.5 ensures that the spacecraft
moves away from the secondary, especially when the spacecraft has been temporally (a
duration of no more than 10 orbital periods according to the initial condition) trapped
in the vicinity of the secondary. The integrator uses an adaptive step-size Runge-Kutta
7(8) method with a maximum step size of 1× 10−6, relative and absolute tolerances of
1×10−12, such that the accuracy of numerical integration is good enough to be used as
a ground-truth benchmark.

For the GPC-GAM model, the training outputs are labelled according to the colli-
sion situation during propagation. The values +1 and -1 are assigned to impact and
safe trajectories, respectively (Equation 4.10). The impact criterion of 300 km above
the secondary corresponds to a distance of 6678 km to the center of Earth for the Sun-
(Earth+Moon)-spacecraft system, and 2710 km to the center of Callisto for the Jupiter-
Callisto-spacecraft system. It is 76,541 km to the center of Jupiter for the Sun-Jupiter-
spacecraft system, corresponding to a distance of 5000 km larger than the equatorial ra-
dius of Jupiter, considering its thick atmosphere. For the GPR-GAM(-J) model, the train-
ing outputs are the changes in the Keplerian elements corresponding to the initial and
final state.

In addition to the training dataset, a test dataset D test is generated based on the same
procedure. D test is used for independently evaluating the accuracy of the GP models by
comparing the predictions to the ground truth.

4.3.4. ACCURACY ASSESSMENT
Two criteria are used to evaluate the performance of the GP models. The Mean Absolute
Percentage Error (MAPE) is adopted for the GPC-GAM model:

εMAPE(N ) = 100%

N∗
N∗∑
i=1

|CGPC-GAM,i −CCR3BP,i |
2

(4.26)

where N∗ is the size of the test dataset, CCR3BP,i represents the ground-truth output ob-
tained using CR3BP propagation by numerical integration, and CGPC-GAM,i is the pre-
diction of the GP model. The denominator 2 is used for the mispredicted sample when
|CGPC-GAM,i −CCR3BP,i | = 2. The value of εMAPE(N ) is expected to decrease with increasing
number of training samples N .
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The Mean Absolute Error (MAE) is used as the error measure for the GPR-GAM(-J)
model, and is defined as:

εMAE(N ) = 1

N∗
N∗∑
i=1

|yGPR-GAM(-J),i − yCR3BP,i | (4.27)

The accuracy of GP models is expected to benefit from a larger training dataset be-
cause more empirical information is used. However, a larger dataset leads to a lower
efficiency according to Equation 4.24. In order to balance accuracy and efficiency, the
optimal size of the training dataset is decided upon by increasing the number of training
samples with steps n until a certain condition is met (Liu et al. 2021). First, a set of error
evaluations corresponding to various sizes of the training dataset is defined as:

ξ(N ) = [ε(N ),ε(N +n), ...,ε(N +9n)] (4.28)

where n = 100. The difference between the maximum and minimum of ξ(N ) is defined
as the convergence of ξ(N ):

∆ξ(N ) = max(ξ(N ))−min(ξ(N )) (4.29)

For the GPC and GPR models, the optimal size of the training dataset is determined
by different conditions, reflecting the differences in character of the two outcomes:

NGPC = {argmin(ξMAPE(N )) |∆ξMAPE(N ) < 5%} (4.30)

NGPR = {argmin(ξMAE(N )) | ∆ξMAE(N )

min(ξMAE(N ))
< 5%} (4.31)

4.4. PERFORMANCE OF GRAVITY ASSIST MAPPING

4.4.1. SUN-(EARTH+MOON)-SPACECRAFT
The input space of the flyby trajectories in the Sun-(Earth+Moon)-spacecraft system is
shown in Table 4.1. For each model, the inputs of training samples are randomly gen-
erated in the given domains following a uniform distribution. The minimal value of rp

corresponds to a distance of 300 km above the surface of the Earth. The GPR-GAM model
covers an energy level from low to high. The GPC-GAM model has a smaller range of en-
ergy, which is focused on low-energy conditions only. This is because very few impact
trajectories are observed using the full input space of the GPR-GAM, e.g., only three for
20,000 samples. Clearly, such a number of impact samples is not sufficient to train a
classification model. After a grid search, we found that most impact samples are located
in this sub-space (boundary for GPC-GAM in Table 4.1) of the GPR domain, i.e., 1073 in
20,000 samples. Given a new input x∗, the GPC-GAM is used to filter impact samples
first, then the GPR-GAM is used to quantify flyby effects over the broader domain.

CLASSIFICATION MODEL

Here, the GPC-GAM model is built for the Sun-(Earth+Moon)-spacecraft problem. The
distribution of training samples in the input space is random. The initial condition of
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Table 4.1: The input space for the Sun-(Earth+Moon)-spacecraft system. The boundaries are defined such to
obtain obvious flyby effects following (Liu et al. 2021).

GPC-GAM GPR-GAM

rp [AU] [1.000045, 1.02] [1.000045, 1.02]

ra [AU] [1.02, 1.2] [1.02, 3.0]

i [deg] [0, 1] [0, 90]

ω [deg] [0, 1] [0, 90]

φ [deg] [-1, 1] [-25, 25]

C J [-] [2.9980, 3.0012] [0.5107, 3.0012]

true anomaly is −π, and the final condition is π. An extra boundary condition (Equa-
tions 4.4 and 4.5) is introduced so that the spacecraft is at least 2rH away from the Earth.
The training outputs are generated by numerically propagating the CR3BP equations of
motion. As defined in Equation 4.10, a trajectory is labeled as ’impact’ if it enters the
sphere of 300 km above Earth’s surface during the propagation. The size of the train-
ing dataset is increased gradually by 100 training samples. Due to the limited number
of impact situations, 10 impact samples are added to every 100 training samples. The
test dataset has 500 impact and 500 no-impact cases, following the same way of obtain-
ing the training dataset. In Figure 4.2, the Percentage Accuracy (PA) is shown, which is
calculated as (1− ξMAPE). The accuracy of the impact and no-impact test samples are
presented individually. The PA of both curves converges to a level of about 90.0% using
at least 3000 training samples. When using 4300 training samples, the best results are
90.8% for the impact case and 90.0% for the no-impact case, respectively. At the start
point of the curve, the PA of the impact case is 0.0%, and that of the no-impact case is
100.0%. This is because the number of impact samples is very small, leading to a system-
atic error. The GPC-GAM model lacks sufficient empirical information, and classifies all
test samples as no-impact. Table 4.2 shows an error matrix. The PA of the impact case
refers to the true positive rate (TPR), which equals 454/500 = 90.8%. For the no-impact
case, the PA is the true negative rate (TNR), i.e., 450/500 = 90.0%. A high TPR means that
the model can recognize most of the impact trajectories. This guarantees that less im-
pact cases will be forwarded to the next stage, the GPR-GAM. The TNR determines how
many no-impact trajectories are recognized by the classification model.

For the specific input space of the GPC-GAM model, Figure 4.3(a) shows the differ-
ence between the impact and no-impact trajectories (both obtained by numerical inte-
gration) in terms of a and e. For the samples with a larger than 1.04 AU, almost all impact
trajectories have a large eccentricity. These correspond to rp close to a value of 1.0 AU,
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i.e., a closer distance to the Earth during flyby. The Jacobi constant C J is shown in Figure
4.3(b). Impact samples exist in a range from 2.998 to 3.000893. The lowest value of C J

for the impact and no-impact cases are close (2.998). The largest value of C J = 3.000893
equals that of the L2 Lagrange point. The Hill’s region around the Earth is disconnected
from the exterior Hill’s region when C J > 3.000893. The spacecraft will not impact the
Earth if it was to start outside the Hill’s region.

For the test dataset, the actual distributions of collision cases and the ones predicted
by the GPC-GAM model are shown in Figure 4.4. The predicted distribution closely re-
sembles the results obtained by the CR3BP propagation, which confirms the validity of
the GPC-GAM model.

Figure 4.2: Percentage accuracy of the GPC-GAM model for the Sun-(Earth+Moon)-spacecraft system.

Table 4.2: Error matrix of GPC-GAM for the Sun-(Earth+Moon)-spacecraft system.

Truth
Prediction Impact No-impact

Impact 454 46

No-impact 50 450

REGRESSION MODEL

The selected boundary for the input space is defined in Table 4.1. The training inputs are
randomly generated in this input space. After eliminating the impact samples using the
GPC-GAM model, the training outputs are obtained through numerical integration using
Equation 4.1. The GPR-GAM model is built using gradually increasing training samples,
from 100 to 5000. As a verification, 500 random training samples are selected to com-
pare the training outputs predicted by the GPR-GAM model with those obtained from
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(a) (b)

Figure 4.3: The inputs of the impact and no-impact trajectories (Sun-(Earth+Moon)-spacecraft system).

(a) CR3BP propagation (b) GPC-GAM

Figure 4.4: Actual and predicted collision cases (Sun-(Earth+Moon)-spacecraft system). Red = impact, blue =
no-impact.

the CR3BP propagation. MAE of these results are shown in the bottom of Table 4.3 . Fig-
ure 4.5 shows this comparison in terms of δa when the GPR-GAM is trained using 5000
samples. The predicted outputs coincide well with the training outputs, which proves
the correctness of the developed model. For each element, the MAE between the results
of the GPR-GAM and the CR3BP propagation is shown in Table 4.3. The MAE of predict-
ing δa is only at the magnitude level of 1.0×10−6 AU. Using Equation 4.25, the variance
of the GAM-GPR prediction is obtained. For 5000 training samples, the predicted stan-
dard deviationσ has a range of [2.62×10−4,3.50×10−4]AU. The error bars corresponding
to the 95% confidence interval (1.96σ) are plotted in Figure 4.5. It shows that the outputs
of CR3BP propagation are within the 95% confidence interval of the GPR predictions.

In order to further assess the accuracy of the GPR-GAM model, an independent (i.e.,
not part of the training dataset) group of 500 samples is selected as test dataset. For each
Keplerian element, three groups of training samples are employed which are generated
using different random seed numbers. In addition to the GPR-GAM model, a regression
model introducing the Jacobi constant as the sixth input feature is also developed, i.e.,
the GPR-GAM-J model. The MAE of the flyby effects predicted by both the GPR-GAM and
the GPR-GAM-J models is shown in Figure 4.6. Clearly, using a small number of training
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Figure 4.5: Comparison between the training outputs obtained by the GPR-GAM and by the CR3BP
propagation (Sun-(Earth+Moon)-spacecraft system).

samples causes an unstable performance: there are fluctuations at the beginning, and
the performance differences between the three training datasets is obvious. However,
increasing the number of training samples improves both accuracy and consistency. The
curves of the three datasets converge when using more than 3000 training samples. This
indicates that the GP models start to learn the mechanism of flyby effects and are able
to give accurate predictions. When the number of training samples is approaching 5000,
the curves of different datasets converge to within 5%, for all elements. The performance
of the GPR-GAM model is not influenced by the seed number of the training dataset.
Adding the information of the Jacobi constant improves the performance of the model
significantly, especially forω andΩ. Clearly, the three-body energy is a useful feature for
quantifying the flyby effects. For the same group of training datasets, the trend of using
C J is similar to that of the results without C J . This is because the sequence of adding
training samples is identical between the GPR-GAM and GPR-GAM-J models, and every
batch of 100 new samples provides the same empirical information (the seed number is
identical). The MAE of the GAM models is summarised in Table 4.3. The MAE of δa is
improved 32% by adding C J . The accuracy of estimating δa and δe is at the magnitude
level of 1.0×10−5. Quantifying δω has the worst performance, but still an improvement
of about 70% when adding C J information. The prediction of δΩ takes the most advan-
tage of using C J , improving the accuracy by 75%.

4.4.2. JUPITER-CALLISTO-SPACECRAFT
In order to evaluate the general performance of the GAM models, i.e., in various CR3BP
systems with different values for µ, the Jupiter-Callisto-spacecraft scenario (µ= 5.668×
10−5) is also selected. The gravity assist is a commonly used technique for designing
endgame strategies (Campagnola & Kawakatsu 2012). The outer Galilean moon Callisto
is chosen as flyby body in this section because gravity assists by Callisto can be used to
save propellant when a spacecraft enters the Jovian system (?). The length is normalized
using the semi-major axis of the orbit of Callisto.
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Table 4.3: The performance of GPR-GAM using the three training datasets (Sun-(Earth+Moon)-spacecraft sys-
tem). The same pair of training and test groups using the Jacobi constant is presented in the second part.

Group δa [AU] δe [-] δi [rad] δω [rad] δΩ [rad]

1 5.76×10−5 3.46×10−5 6.28×10−6 1.83×10−3 1.86×10−4

2 5.79×10−5 3.42×10−5 6.32×10−6 1.81×10−3 1.88×10−4

3 5.77×10−5 3.39×10−5 6.26×10−6 1.82×10−3 1.91×10−4

1(J ) 3.86×10−5 2.72×10−5 2.78×10−6 5.49×10−4 4.62×10−5

2(J ) 3.88×10−5 2.75×10−5 2.81×10−6 5.55×10−4 4.65×10−5

3(J ) 3.90×10−5 2.71×10−5 2.75×10−6 5.47×10−4 4.68×10−5

Verification on training samples

1 1.37×10−6 1.11×10−6 1.54×10−7 1.03×10−4 9.75×10−6

Table 4.4: The input space for the Jupiter-Callisto-spacecraft system.

GPC-GAM GPR-GAM

rp [-] [1.001439, 1.06] [1.001439, 1.06]

ra [-] [1.08, 1.5] [1.08, 3.0]

i [deg] [0, 1] [0, 90]

ω [deg] [0, 1] [0, 90]

φ [deg] [-1, 1] [-25, 25]

C J [-] [2.9912, 3.0099] [0.5068, 3.0017]
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(a) MAE of δa. (b) MAE of δe.

(c) MAE of δi . (d) MAE of δω.

(e) MAE of δΩ.

Figure 4.6: The MAE of test samples when using three different training datasets for the
Sun-(Earth+Moon)-spacecraft system, each with and without the usage of the Jacobi constant.

CLASSIFICATION MODEL

In Table 4.4, the input space for GPC-GAM is specified to cover an energy range from
slightly smaller than that of the L4/L5 Lagrange point to a value larger than that of the
L1 Lagrange point. The value of 1.001439 for pericenter distance corresponds to 300
km above the surface of Callisto. For generating the training dataset and test dataset
the same strategy is adopted (as shown in Section 4.4.1). Due to the limited number of
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impact trajectories, each 100 training samples uses 90 no-impact and 10 impact trajec-
tories. The test dataset has 500 impact and 500 no-impact trajectories. The accuracy
of predicting impact trajectories is shown in Figure 4.7. The performance becomes sta-
ble using more than 2000 training samples. Increasing the size of the training dataset
improves the accuracy steadily. The best PA is 90.6% for impact samples and 90.8% for
no-impact samples, respectively. Table 4.5 shows that the TPR is lower than that of Sun-
(Earth+Moon) scenario, but the TNR gets better. A smaller number of no-impact trajec-
tories will be falsely eliminated. For the integrated trajectories of the CR3BP, the patterns
of input features are shown in Figure 4.8. The impact samples appear in an area similar to
that in Figure 4.3. A major difference is shown in the left plot, where more impact trajec-
tories occur with moderate values of e and a larger than 1.15. These samples have a low
three-body energy as shown in the green rectangle in the right plot. They are attracted by
Callisto during the flyby even though the rp according to the initial conditions are larger
than the radius of the Hill’s sphere (0.0268). Figure 4.9 shows the comparison between
the results of the GPC-GAM model and the CR3BP propagation. As before, the accuracy
of the GPC-GAM model is indicated by the resemblance between the plots. The model
has a misclassification for the inputs of rp = [1.025,1.04]∩ ra = [1.3,1.4], corresponding
to the samples in the green rectangle in Figure 4.8(b).

Figure 4.7: Percentage accuracy of the GPC-GAM model for the Jupiter-Callisto-spacecraft system.

Table 4.5: Error matrix of GPC-GAM for the Jupiter-Callisto-spacecraft system.

Truth
Prediction Impact No-impact

Impact 453 47

No-impact 46 454
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(a) (b)

Figure 4.8: The inputs of the impact and no-impact trajectories for the Jupiter-Callisto-spacecraft system.

(a) CR3BP propagation (b) GPC-GAM

Figure 4.9: Actual and predicted collision cases (Jupiter-Callisto-spacecraft system). Red = impact, blue =
no-impact.

REGRESSION MODEL

Here, the GPR-GAM models are built using different groups of training samples (different
random seed numbers). For the same group of training samples, a GPR-GAM-J model
is developed to evaluate the performance after adding the Jacobi constant as an extra
input feature. The test dataset consists of 500 samples randomly generated in the input
space presented in Table 4.4. The convergence of the MAE requires more training data
than the previous scenario. In particular, the MAE of predicting δω using 5500 samples
improves by 0.3×10−3 rad than using less than 5000 samples. Using different random
seed numbers has little influence on the convergence. In Figures 4.10(a) and 4.10(b),
the effects of adding C J are difficult to observe but the improvements are significant as
presented in Table 4.6. The accuracy of predicting δa and δe is improved by 46.4% and
24.1%, respectively. The effect is most significant for the predictions of δΩ, achieving an
improvement of 82.7%. Predictions of δi have the best results in terms of MAE, which
is only 9.15× 10−6 rad. Like in the Sun-(Earth+Moon)-spacecraft scenario, predicting
δω is the most difficult. The main reason is that the variations of ω due to a flyby are
relatively larger than those of i andΩ. This occurs for initial conditions with small values
of eccentricity, especially for the cases e < 0.1.
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(a) MAE of δa. (b) MAE of δe.

(c) MAE of δi . (d) MAE of δω.

(e) MAE of δΩ.

Figure 4.10: The MAE of test samples when using three different training datasets for the
Jupiter-Callisto-spacecraft system, with and without usage of the Jacobi constant.

4.4.3. SUN-JUPITER-SPACECRAFT
The Sun-Jupiter-spacecraft system is selected as the third case to evaluate the perfor-
mance of GAM models for the CR3BP system, with µ (9.537×10−4) larger than the two
previous cases. In this system, the values of the Jacobi constant corresponding to the L1

(C J = 3.0384) and L2 (C J = 3.0397) Lagrange points also become larger. The input space
for the GPR-GAM model covers a broad range of C J with values from 0.4367 to 3.0967 as
shown in Table 4.7. The GPC-GAM has a smaller range such that more cases of crashing
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Table 4.6: The performance of GPR-GAM models using three training datasets for the Jupiter-Callisto-
spacecraft system. The same pair of training and test groups using the Jacobi constant is presented in the
second part.

Group δa [-] δe [-] δi [rad] δω [rad] δΩ [rad]

1 8.90×10−5 5.14×10−5 2.43×10−5 2.51×10−3 2.88×10−4

2 9.05×10−5 5.22×10−5 2.48×10−5 2.54×10−3 2.82×10−4

3 9.01×10−5 5.15×10−5 2.45×10−5 2.49×10−3 2.84×10−4

1(J ) 4.77×10−5 3.90×10−5 9.15×10−6 1.17×10−3 4.97×10−5

2(J ) 4.83×10−5 3.91×10−5 9.61×10−6 1.16×10−3 5.11×10−5

3(J ) 4.93×10−5 3.84×10−5 9.55×10−6 1.19×10−3 5.05×10−5

into Jupiter are included. It focuses on the low-energy level.

CLASSIFICATION MODEL

Since Jupiter is a gas giant, a trajectory would be classified as impact if the closest dis-
tance between the spacecraft and the center of Jupiter is smaller than 76,541 km. The
size of the training dataset is gradually increased from 100 to 5000. The test dataset has
500 impact and 500 no-impact cases. The percentage accuracy for impact predictions is
shown in Figure 4.11. When using more than 3000 training samples, the PA of both cases
starts to converge to a level larger than 92.0%. Using 3300 training samples, the PA of im-
pact and no-impact cases are 96.2% and 92.0%, respectively. The accuracy is better than
that of Sun-(Earth+Moon)-spacecraft and Jupiter-Callisto-spacecraft. The distribution
of impact cases in terms of rp , ra and C J is shown in Figure 4.12. There are two major
situations of collision: the first one is a group of cases shown in red at the top of Figure
4.12(a) corresponding to the points with C J < 3.0 in Figure 4.12(b); the second situation
shown in the middle of Figure 4.12(a) has larger rp (initial condition) as well as larger C J .
In Figure 4.12(b), C J has a narrow range of values when rp has a value of about 1.06, be-
cause it is a projection of the twisted curve (Figure 4.12(c)) onto the rp −C J plane. In the
3-dimensional figure, C J increases as ra decreases when rp < 1.06, which is in contrast
to the situation when rp > 1.06. This also applies to the cases of Sun-(Earth+Moon)-
spacecraft and Jupiter-Callisto-spacecraft. In Figure 4.13, the features of collision cases
between the CR3BP propagation and the GPC-GAM model are in agreement. 482 out
of 500 impact trajectories are identified correctly. Some low-energy collision cases are
not identified by the model, which is mainly due to the insufficient number of similar
training samples.

REGRESSION MODEL

For the Sun-Jupiter-spacecraft case, the GPR-GAM and GPR-GAM-J models are devel-
oped following strategies identical to the previous two cases. The MAE of the test dataset
(500 samples) with respect to different orbital elements is shown in Figure 4.14. For each
model, three datasets are generated using different random seed numbers. The conver-
gence of the three curves of MAE starts when using more than 5000 training samples.
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Table 4.7: The input space for the Sun-Jupiter-spacecraft system.

GPC-GAM GPR-GAM

rp [-] [1.00009, 1.2] [1.00009, 1.2]

ra [-] [1.15, 1.5] [1.15, 3.0]

i [deg] [0, 1] [0, 90]

ω [deg] [0, 1] [0, 90]

φ [deg] [-1, 1] [-25, 25]

C J [-] [2.9894, 3.0481] [0.4367, 3.0967]

Figure 4.11: Percentage accuracy of the GPC-GAM model for the Sun-Jupiter-spacecraft system.

For the prediction of δe, δi and δω, the models need at least 6000 training samples to
become stable. This requires a larger size of the training dataset than for the Jupiter-
Callisto-spacecraft system. In Table 4.8, the improvement of accuracy is clearly seen
when introducing the Jacobi constant. In particular, the prediction of δi and δΩ is im-
proved by 58% and 43%, respectively. Compared to the results in Tables 4.3 and 4.6, the
MAE increases as the mass ratio µ increases.

4.4.4. TIME EFFICIENCY OF GAM MODELS

The computational time of the GAM models consists of two parts: training and predic-
tion. The training process includes the generation of training samples and the GAM
model optimization. All simulations are completed using MATLABő 2018b on the first
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(a) (b)

(c)

Figure 4.12: The inputs of the impact and no-impact trajectories for the Sun-Jupiter-spacecraft system.

(a) CR3BP propagation (b) GPC-GAM

Figure 4.13: Actual and predicted collision cases (Sun-Jupiter-spacecraft). Red = impact, blue = no-impact.

author’s PC (Core i7 CPU and 8.00 GB RAM) (The Mathworks Inc. 2018). Given a train-
ing input, the output is obtained by a numerical CR3BP propagation which takes about
0.59 s per sample. Table 4.9 presents the CPU time of training and prediction. Each col-
umn corresponds to a specific case in Sections 4.4.1-4.4.3. Training a GAM model, i.e.,
optimizing hyper-parameters, costs about 53 minutes (CPU) when using 4500 training
samples. A multi-start approach is used to avoid being trapped in local minima. The
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(a) MAE of δa. (b) MAE of δe.

(c) MAE of δi . (d) MAE of δω.

(e) MAE of δΩ.

Figure 4.14: The MAE of test samples when using three different training datasets for the
Sun-Jupiter-spacecraft system, with and without usage of the Jacobi constant.

conjugate gradient algorithm is randomly initiated at 10 different initial combinations
of hyper-parameter values. As indicated by Equation 4.24, the prediction time spent
on one test sample depends on two major factors, i.e., the number of training samples
and the size of the input vector. Compared to the case of 4500 samples, using an extra
1000 training samples adds more than 30% CPU time to the prediction. The GPR-GAM-J
has six input features, and takes an extra 10% CPU time compared with GPR(C)-GAM.
Note that the GAM model developed in this work is a supervised machine-learning tool.



4.5. QUALITY ASSESSMENT

4

83

Table 4.8: The performance of GPR-GAM models using three training datasets for the Sun-Jupiter-spacecraft
system. The same pair of training and test groups using the Jacobi constant is presented in the second part.

Group δa [-] δe [-] δi [rad] δω [rad] δΩ [rad]

1 1.02×10−4 7.08×10−5 3.32×10−5 3.46×10−3 4.01×10−4

2 9.91×10−5 7.11×10−5 3.39×10−5 3.28×10−3 4.07×10−4

3 1.01×10−4 7.30×10−5 3.35×10−5 3.54×10−3 3.92×10−4

1(J ) 7.16×10−5 6.05×10−5 1.34×10−5 2.43×10−3 1.20×10−4

2(J ) 6.93×10−5 6.03×10−5 1.41×10−5 2.34×10−3 1.18×10−4

3(J ) 7.08×10−5 5.92×10−5 1.38×10−5 2.52×10−3 1.20×10−4

Though the training process costs much computational effort, the model can be signif-
icantly time-saving when the flyby effects for millions of initial conditions need to be
quantified in the search for optimal flybys.For a single sample, the GPR-GAM prediction
is more than 5 million times faster than numerical integration.

Table 4.9: Computational time of GAM models using different number of training samples. The computational
time is obtained by taking the mean value of 1000 repeated experiments. The value of prediction is the CPU
time spent on one test sample.

4500 samples 5500 samples 6000 samples

Training [min] 53.0 66.3 75.7

GPR(C)-GAM [s] 3.9×10−6 5.2×10−6 6.2×10−6

GPR-GAM-J [s] 4.2×10−6 5.8×10−6 6.6×10−6

numerical [s] 0.59 0.59 0.59

4.5. QUALITY ASSESSMENT
When predicting the output of a single test sample, the result can be obtained by the
GAM model using Equations 4.24 and 4.25. In previous sections, the expectation ob-
tained by Equation 4.24 is taken as the predicted output. The GP method has the ability
to provide formal uncertainty estimates using the variance σ2 calculated by Equation
4.25. Figure 4.15 shows the error bars associated with the GAM-GPR predictions of test
samples for each CR3BP system. In order to show the error bars more clearly, 100 out
of 500 samples are randomly selected. The middle point of the error bar is the predicted
output yGPR-GAM using Equation 4.24. The length of the error bar represents the 95% con-
fidence interval, i.e., [yGPR-GAM − 1.96σ, yGPR-GAM + 1.96σ]. For the Sun-(Earth+Moon)-
spacecraft system in Figure 4.15(a), the standard deviation σ ranges from 2.65×10−4 to
4.83×10−4 AU. The ranges of σ for the Jupiter-Callisto-spacecraft and the Sun-Jupiter-
spacecraft systems become bigger, which are from 4.21× 10−4 to 9.86× 10−4 and from
9.72× 10−3 to 1.20× 10−2, respectively. Table 4.10 presents σ of five orbital elements.
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Clearly, the uncertainty of the GAM-GPR preditions increases when the mass ratio µ is
bigger. With a larger influence of the secondary, the absolute effect of a flyby can be
expected to become larger, but also GP models’ inherent uncertainty. This result is con-
sistent with the increasing values of the MAE in Tables 4.3, 4.6 and 4.8. The variance
provides useful information about the uncertainty of predictions. For all systems, the
physical truth, i.e., the outputs of CR3BP propagation by numerical integration yCR3BP,
are well included in the 95% confidence interval of the GAM-GPR predictions.

In order to assess the performance of these predictions, 95% credibility interval is
calculated for each system. Table 4.11 presents the upper bound of this uncertainty in-
terval, out of 500 test samples. such that 95% of the absolute errors between yGPR-GAM

and yCR3BP lie in such interval. From Bayesian analysis point of view, the value repre-
sents the probability of the error for predicting the output of an arbitrary sample smaller
than the upper boundary. In contrast, the confidence interval shown in Figure 4.15 ex-
plains the predictive uncertainty of the GP method with a focus on the procedure. If
the process of making predictions is repeated enough times, 95% of the intervals should
contain the true value.

(a) Sun-(Earth+Moon)-spacecraft (b) Jupiter-Callisto-spacecraft

(c) Sun-Jupiter-spacecraft

Figure 4.15: The uncertainty as predicted by the GPR-GAM models. Samples of the flyby effects on the
semi-major axis, for all three systems, based on the GPR-GAM model (including 95% confidence intervals)

and ground truth.
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Table 4.10: The range of standard deviationσ associated with the orbital elements for different CR3BP systems.

Sun-(Earth+Moon)-S/C Jupiter-Callisto-S/C Sun-Jupiter-S/C

δa [-] [2.65,4.83]×10−4 [4.21,9.86]×10−4 [9.72,12.04]×10−3

δe [-] [1.30,2.57]×10−4 [2.36,5.60]×10−4 [6.30,8.59]×10−4

δi [rad] [1.99,2.74]×10−5 [3.55,7.40]×10−5 [5.05,9.17]×10−5

δω [rad] [3.92,7.08]×10−3 [5.35,8.97]×10−3 [7.69,12.38]×10−3

δΩ [rad] [4.71,9.52]×10−4 [6.31,11.20]×10−4 [9.18,14.60]×10−4

Table 4.11: The upper bound of 95% uncertainty interval associated with the orbital elements for different
CR3BP systems.

Sun-(Earth+Moon)-S/C Jupiter-Callisto-S/C Sun-Jupiter-S/C

δa [-] [2.05]×10−4 [2.85]×10−4 [2.92]×10−4

δe [-] [7.63]×10−5 [9.48]×10−5 [12.30]×10−4

δi [rad] [2.21]×10−5 [6.49]×10−5 [8.11]×10−5

δω [rad] [4.28]×10−3 [5.17]×10−3 [10.23]×10−3

δΩ [rad] [4.06]×10−4 [7.01]×10−4 [9.78]×10−4

4.6. CONCLUSIONS
A design tool, Gravity Assist Mapping, for quantifying the gravity assist effects is devel-
oped in this work. This tool is based upon the Gaussian Process method, a supervised
machine-learning model. The applications in three CR3BP systems are considered: Sun-
(Earth+Moon)-spacecraft, Jupiter-Callisto-spacecraft and Sun-Jupiter-spacecraft. The
values of the mass ratio µ differ by a factor of about 300. For each system, a classifica-
tion model (GPC-GAM) and a regression model (GPR-GAM) are developed for different
purposes.

The GPC-GAM model is used for detecting impact trajectories given arbitrary ini-
tial conditions. This model can be used in combination with the regression model for
eliminating impact samples, or can be used stand-alone for mission analysis of impact
avoidance. The values of TPR and TNR being better than 90% allows it to recognize and
eliminate impact samples effectively. The main contribution of the GPC-GAM model is
that it can be used to identify qualitatively the safe region in the input space. The TNR
would identify most of the collision cases reducing the need have to propagate all the
initial conditions. However, the current accuracy is not high enough for a detailed mis-
sion design. The input space is much smaller than that of the regression case due to the
limited number of impact occurrences. The GPC-GAM model needs sufficient empirical
information to learn the characteristics of impact trajectories. How to omit impact sam-
ples more effectively, especially for some low-energy situations, is an interesting topic
for further study.
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The results of the GPR-GAM model demonstrate that the method can be used in
CR3BP systems with a wide range of mass ratio parameters µ. Introducing the Jacobi
constant as an additional input feature improves the accuracy by more than 20%, and for
some parameters even by 70%. Representing the three-body energy, the Jacobi constant
is proven to be an important factor for the GAM to learn gravity assist effects. The MAE
for predicting δa is only 3.86×10−5 AU for the Sun-(Earth+Moon)-spacecraft scenario.
Predicting δω and δΩ is more difficult than that of the variations in other Keplerian ele-
ments. More training samples are required for the CR3BP with bigger µ. Compared to a
semi-analytical method, e.g., the Keplerian map, this method can be applied to a wider
range of three-body energies, from 0.501 to 3.002. The GAM models have the ability to
assess the uncertainty of predictions. The outputs obtained by the CR3BP propagation
are well within the 95% confidence interval of the GAM predictions. The GAM model has
an advantage of time efficiency over numerical methods, such as the ones relying on a
numerical integration using CR3BP equations of motion or the flyby map.
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5
CONCLUSIONS AND

RECOMMENDATIONS

This thesis mainly investigated the dynamics of gravity assists in the Circular Restricted
Three-Body Problem. In order to quantify the flyby effects, the Gravity Assist Mapping
technique was developed as a design tool. The models of Gravity Assist Mapping were
constructed based on the idea of the Gaussian process method, a machine-learning
technique. First, quantifying the flyby effects in the planar CR3BP was solved using
GPR. The results demonstrated the availability of GAM models in a simplified three-body
regime, the planar Sun-(Earth+Moon)-spacecraft system (Chapter 2). Second, the pro-
posed models were applied to the fully spatial CR3BP (Chapter 3). The dimension of
phase space was increased by two. The GAM models were correspondingly developed
further, to accommodate the increased complexity of the problem. The flybys under dif-
ferent three-body energy levels were discussed in terms of the Jacobi constant. At last,
a classification model (GPC) was developed for the identification of trajectories impact-
ing the secondary (Chapter 4). For the GPR, the Jacobi constant was incorporated into
the model to improve the accuracy of prediction. Both GPC and GPR models were ap-
plied to the Sun-(Earth+Moon)-spacecraft, Jupiter-Callisto-spacecraft and Sun-Jupiter-
spacecraft systems.

The research questions presented in Chapter 1 were addressed in Chapters 2-4. The
conclusions on them are given in this chapter. Recommendations and possible future
work will be summarised in full.

5.1. CONCLUSIONS
(RQ.a) Can a machine-learning method be used to quantify the GA effects in the three-
body regime?

This question was gradually addressed through three steps. First, the Circular Re-
stricted Three-Body Problem is selected as the regime to investigate the flyby effects.
Chapter 2 started to solve the question in the planar CR3BP. The results demonstrated
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the GP method to be a competent approach to quantify the flyby effects. Second, the
GAM models were modified and applied to the spatial CR3BP in Chapter 3. The method
was proved to be effective for the 3-D case, but needed more training data to converge.
In Chapter 4, the last step focused on improving the performance of quantification and
classifying impact trajectories. For the GPR, the improvement on accuracy was achieved
by introducing the Jacobi constant into the training and prediction process. The identifi-
cation of impact trajectories was performed by the GPC model. This model also used the
concept of Gaussian process but worked with outputs consisting of categories labeled as
impact and no-impact. When compared to a semi-analytical method, the GAM models
made more accurate and more efficient predictions. This work makes two major contri-
butions to astrodynamics. On the one hand, the characteristics of GA in the CR3BP can
be investigated by a great deal of accurate data produced by the GPR model, providing
a deep understanding of the third-body effect. On the other hand, the GPR model can
be considered to design multi-flyby missions involving an optimization problem, and
offers the advantage of a high efficiency to update the post-flyby status.

More conclusions about the proposed method are given below, to address the
following questions in full detail.

(RQ.b) How can the Gaussian Process method be used to learn the dynamics of flyby’s
in a planar CR3BP framework?

Chapter 2 answered this question. The GAM model was constructed based on the
GPR approach. In order to learn the dynamics of a flyby in the planar CR3BP framework,
GAM was trained by a dataset consisting of thousands of samples. The training inputs
were generated in a predefined phase space using various sampling methods. The inte-
gration was used to calculate training outputs through equations of motion in the planar
CR3BP, i.e., Sun-(Earth+Moon)-spacecraft in this chapter. The training dataset serves
as the ground truth for the machine-learning approach. The generation of the train-
ing dataset takes into account elliptical orbits of low, moderate and high eccentricity.
A covariance function (SUM) was developed combining the cosine term and the ratio-
nal quadratic term with automatic relevance determination (RQARD), which captures
well the dynamics of flybys. The optimal number of training samples was determined by
choosing a stable value of RMSE on the test dataset, which was generated randomly in
the input space.

After training, the GPR-based model can assess the flyby effect more efficiently given
the initial condition of a particle, compared to methods based on numerical integration.
The CPU time of a single prediction is only 1.16×10−6 s. In terms of three-body energy,
the domain of applicability is beyond that of the Keplerian map. The results demon-
strate that the GPR-based Gravity Assist Mapping has a good performance on accuracy,
achieving an RMSE of 2.38×10−4 AU for predicting semi-major axis variation. Compared
to the Keplerian Map, significant improvements have been made, in particular when
using a combined covariance function and stratified random sampling.

(RQ.c) Can a Gaussian Process Regression model predict the flyby effects in a fully spa-
tial CR3BP for a wide range of three-body energies, and if so, with what accuracy?

For the fully spatial CR3BP, a GAM model was developed in Chapter 3. Due to the
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increased complexity of a fully spatial CR3BP compared to that of the planar one, a larger
training dataset is required. This modification was made based on the basic assumption
of any GP method: close inputs in the input space have close outputs. The increased
dimensionality needs more training samples to guarantee the required sampling density
that is required for accurate output predictions. A criterion using MAE was proposed to
select the minimum number of training samples for every orbital element.

In terms of accuracy, the covariance function RQARD performs best. Based on the
optimized values of the length-scale, the influence of different input elements on flyby
effects was discussed. The robustness of GPR-GAM was illustrated by changing the
training and test datasets. It indicates that quantifying δa has the best generalization
property. The prediction of δω is more difficult than that of the other output elements.
The results show the ability of the GPR-GAM model to predict the flyby dynamics of
the CR3BP system with relatively high accuracy compared to the semi-analytical Kick
Map (Alessi & Sánchez 2016). The GPR-GAM model has been shown to be a versatile
tool that can be applied for a wide range of energy levels. The quality of predictions in
the low-energy domain is almost comparable to that in the high-energy part. The input
space considers only the initial conditions of the spacecraft starting from the exterior
Hill’s region. The phenomenon of the spacecraft temporarily being captured by the
secondary is observed, which is not amenable to a patched-conics technique. The CPU
time for prediction is a factor 103 faster than that of the Kick Map. The MAE values for
predicting δa and δi are 5.7×10−5 AU and 6.3×10−6 rad, respectively. Quantifying δω
has a larger MAE of 1.9×10−3 rad.

(RQ.d) Can the performance of GP models be improved by using specific characteris-
tics of the CR3BP? What classification model can be used to identify collision trajec-
tories?

Chapter 4 addressed these two questions. The performance of a supervised learn-
ing tool can be improved mainly by two aspects: the training dataset and the model
construction. Chapter 3 has adapted the model according to the characteristics of the
spatial CR3BP. This chapter created a more informative training dataset of quantifying
flyby effects. A GPR-GAM-J model was developed by adding Jacobi constant informa-
tion. Introducing the Jacobi constant as an additional input feature improves the overall
accuracy by more than 20 %. The Jacobi constant representing the three-body energy is
proved to be an important factor for the GAM to learn gravity assist effects. The error
for predicting δa is only 3.86×10−5 AU for the Sun-(Earth+Moon)-spacecraft scenario.
Compared to a semi-analytical method, e.g., the Keplerian map, this method can be ap-
plied to a wider range of three-body energies, from 0.501 to 3.002. The results in differ-
ent CR3BP systems demonstrate that the model can be used in scenarios with a different
mass ratio parameter µ. More training samples are required for the CR3BP with bigger µ.
The GPR-GAM model is able to measure the uncertainty associated with the predictions.
The results show that 95 % confidence region of the GAM predictions well include the
outputs obtained by the CR3BP propagation.

It was found that trajectories impacting the secondary exist for the input space
defined in this thesis, especially for low energy levels. The GPR-GAM model cannot
identify these trajectories given initial conditions. To this end, a GPC-GAM model
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was developed for classifying impact and no-impact cases. This model can be used in
combination with the regression model for eliminating impact samples, or used stand-
alone for mission analysis of impact avoidance. The accuracy of true positive and true
negative rates, both better than 90 %, allows it to identify and eliminate impact samples
effectively. The GAM model has a great advantage of time efficiency over numerical
methods, such as the numerical propagation using CR3BP equations of motion or the
flyby map. Since the GP method uses training data when predicting, the CPU time of
prediction is proportional to the size of the training dataset. When using 5500 training
samples, GPR-GAM-J costs 5.8× 10−6 s to predict a single test sample. The GP models
are easy to be developed. For various CR3BP systems, it can be built by simply changing
the mass ratio parameter.

5.2. RECOMMENDATIONS
There are still many open questions related to the proposed method. Here, the recom-
mendations for future work are pointed out.

The boundary of the current input space is limited. The GP models learn the dynam-
ics of flybys through a training dataset, which is generated in a predefined input space.
The predictions are only valid for this input space. Although a model can be built for any
new area in the input space, the construction of a new, extra model requires extra effort.
The boundary selected in this thesis is supposed to be sufficiently broad because it con-
tains energy levels from low to high. Also: it is realistic for learning flyby effects, an initial
state that is too far off is paintless. However, other areas in the input space could be in-
teresting for specific missions. There two potential solutions: 1) Define an input space
broad enough to meet the requirements of almost every mission. Then, the boundary for
each orbital element has to be extended. In order to preserve the sampling density, the
size of the training dataset needs to be increased correspondingly. This would weaken
the efficiency advantage of the GP models; 2) Separate the input space into a number
of subspaces and develop a GAM model for each subspace. The training data and opti-
mized hyper-parameters of each model are saved in a library. This approach is based on
the off-the-shelf concept.

When increasing the number of training samples, the error of predictions converge
after a given number of samples and at a non-zero value. This implies a systematic er-
ror in the modelling that additional training data cannot resolve. The specification of
the model selection can help to refine the predictions of the model, e.g., using covari-
ance functions that could better interpret the problem in this work. In Chapters 2 and
3, various functions have been used to find a structure suitable for predicting the flyby
effect. Methods such as spectral mixture kernels and mixtures of Gaussian processes can
be used to reduce systematic modelling issues in future work (Tresp 2001, Parra & Tobar
2017).

In the current research, the initial position of the spacecraft is located in the exterior
Hill’s region. For the initial osculating orbit, the periapsis passage occurs when the phas-
ing angle equals zero. The flybys only considered the cases of the semi-major axis larger
than 1 AU. Two improvements are necessary for future work: 1) For the situation of the
semi-major axis smaller than 1 AU, the cases of the initial condition that the spacecraft
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does start at the apoapsis is to be considered; 2) GAM models for the situations of the
semi-major axis smaller than 1 AU and flybys happening at the apoapsis passage are to
be developed.

Adding the Jacobi constant into inputs demonstrated the flexibility of the GPR tech-
nique to allow the mapping function to have different formulations. In order to explore
the applications of GPR-GAM, it is of interest to use an alternative set of orbital elements.
One option is the features used by (Campagnola et al. 2012), which is not available to
the current semi-analytical methods. A Poincaré section like being used in Chapter 4
should be set, because the Tisserand parameter is one of the features. Another option is
to replace the inertial reference frame with the rotating reference frame, and employ the
coordinates of position and velocity as inputs and outputs. The Poincaré section also
works for this approach to decrease the dimension space. Another improvement that
can be made is to extend the time of flight to multiple orbital periods, such that more
complex dynamics is involved. Once a GP model is trained, the prediction spends ex-
actly the same amount of CPU time as that for the case with only one orbital period. So,
more CPU time could be saved on predicting the status of the spacecraft. How to train
GP models to learn the more complex behavior is a new challenge obviously. In Chap-
ter 3, the GP method is proved to work for the case of a test sample temporarily being
captured. It would be a topic for future work to see how the GP method is applicable
to different events, e.g., direct, retrograde flybys, temporary captured orbits, collision
orbits.

For the classification model, the accuracy of about 90 % is not sufficient for detailed
mission design. This is mainly due to the limited number of impact samples. The GPC-
GAM model is proved to be able to identify the region that would lead to collision trajec-
tories. The accuracy of prediction can be improved by generating the training samples
within such region to increase the number of impact samples. Regarding the range of in-
put space, it is much smaller than that of the regression case due to the limited number
of impact occurrences obtained from a wider range. The GPC-GAM model needs suffi-
cient empirical information to learn the characteristics of impact trajectories. Although
the impact trajectories have been detected effectively, some cases outside the predefined
input space could be overlooked. For some part of the input space, the possibility of im-
pact is extremely low leading to few impact samples. The number of these samples is
not sufficient for adequately training a GPC model. To generate a large number of sam-
ples randomly will definitely solve the problem, but the efficiency advantage of machine
learning is undermined. In order to omit impact samples more effectively, how to apply
the GPC model to a larger input space is recommended for future study.

After successfully applying GP models to the CR3BP, a logical candidate for subse-
quent investigations is the elliptic R3BP (ER3BP). The envisioned applications include
the Sun-Mercury-spacecraft system. The eccentricity of Mercury’s orbit (0.207) is not
negligible. To investigate the flybys with respect to Mercury using a GP method, the
ER3BP framework is preferable. Apparently, the structures like Hill’s sphere and the mo-
tion of the small particle in the ER3BP are different from that of the CR3BP. The machine-
learning technique is expected to contribute to exploring dynamics in this system.
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