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Magnetic Susceptibility Estimation for Magnetostatics
Aad Vijn 1, Eugene Lepelaars2, Johan Dubbeldam1, Martin van Gijzen1, and Arnold Heemink1

1Delft Institute of Applied Mathematics, Delft University of Technology, 2600 AA Delft, The Netherlands
2Electronic Defence, Netherlands Organisation for Applied Scientific Research, 2509 JG The Hague, The Netherlands

This paper presents a parameter estimation method to determine the linear behavior of an object constructed of thin plates. Based
on the magnetostatic field equations, an integral equation is derived that fully determines the induced magnetization, whenever the
spatial magnetic susceptibility distribution is known. This forward problem is used as an underlying physical model for the parameter
estimation method. Using near-field magnetic measurements around a thin plate, the parameter estimation yields a distribution of
the magnetic susceptibility. Furthermore, a sensitivity analysis is performed to understand the behavior of this parameter estimation
method.

Index Terms— Forward problem, induced magnetization, inversion, magnetic susceptibility, parameter estimation, regularization.

I. INTRODUCTION

IDENTIFICATION of the magnetic state of ferromagnetic
objects is, in general, very difficult. A common approach is

to split the total magnetization into two parts: an induced part
and a permanent part. The induced magnetization is related
to a linear response of the material to the background field,
and the permanent part is due to the magnetic history of the
material [16]. The magnetic history, also called magnetic hys-
teresis, is a very complex phenomenon that may be described
by means of Preisach models [18] or continuous models such
as Jiles and Atherton [11]. The linear response is described by
the magnetic susceptibility and may be complex to describe
depending on the material properties. Isotropic material does
not have a preferred direction in which it magnetizes, and
therefore, the magnetic susceptibility is easily described by
a scalar quantity. For anisotropic materials, the magnetic
susceptibility is harder to describe because of the orientation
dependencies within the material.

A related notion to the magnetic susceptibility is the
(relative) permeability, which seems to be more relevant in
applications. The magnetic susceptibility χ and relative per-
meability μr are related to the well-known identity

χ + 1 = μr .

Hence, all results in this paper (in terms of the magnetic
susceptibility) can equivalently be expressed in terms of the
permeability. From our point of view, we are interested in the
magnetic susceptibility, because it links the internal magnetic
field inside an object to its magnetization.

A typical application of identifications of magnetic states
can be found in the military context. Nowadays, accurate
identification of the magnetic state of a military vessel (called
the magnetic signature) has become important, as more sophis-
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ticated weaponry use different kinds of sensors—such as mag-
netic sensors—to find and destroy their target. It is of utmost
importance for the navy to reduce the magnetic signature of
their military vessels, to avoid detection and destruction of
their vessels [7]–[9].

The forward computation of the induced magnetization is
rather simple and can be done in a finite-element environment.
Such implementations are readily available in many soft-
ware packages such as Comsol Multiphysics, Cédrat
Flux3D, and Ansys Maxwell. However, for such compu-
tations of the induced magnetization, the value of the magnetic
susceptibility χ must be known. In the literature, one can find
specific values for different materials. In practice, anomalies
in materials and the specific composition of the material imply
variations in these values. Therefore, one should expect spatial
variability of χ in an object rather than being a constant. This
makes accurate modeling of the forward problem complicated.

Several parameter estimation methods have been proposed
for the determination of the magnetic susceptibility. Suscepti-
bility estimation is found in the determination of the initial
magnetic susceptibility for the “metal magnetic memory”
method to passive magnetic nondestructive testing [17]. Even
though MRI works with a high-frequency signal, a magnetic
susceptibility method can be defined in magnetostatics by con-
sidering the relationship between the magnetic susceptibility
and varying magnetic fields in the frequency domain (for a
fixed frequency) [12]. However, for MRI-related applications,
the values of the magnetic susceptibility are presumed to be
small (in the order of 10−3), which leads to approximately
linear estimation models. For ferromagnetic steel, the magnetic
susceptibility values are high (in the range of 102–105), which
leads to nonlinear magnetic field equations in χ . This case is
more challenging, and the techniques used are more involved.

This paper considers two topics. First, we derive a
magnetic susceptibility estimation method to compute spa-
tial magnetic susceptibility distributions of linearly reacting
materials, for which the magnetic susceptibility values are
large. This method is based on least-squares optimization
and solved using the “Broyden–Fletcher–Goldfarb–Shanno
(BFGS)” method [13]. Because approximations of these spa-
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tial magnetic susceptibility distributions may contain errors,
we are interested in how these variations relate to the corre-
sponding variations in the induced magnetic induction field.
Such insights may also tell us to what extent the parameter
estimations must be accurate. It is also important for future
work, where we try to describe the magnetic distortion fields
of magnetic objects accurately. These sensitivity questions are
considered in the second part of this paper.

This paper has the following structure. In Section II,
the methodology behind the derived magnetic susceptibility
estimation is discussed. A forward model is derived that fully
describes the linear behavior. Several magnetic identification
methods are proposed for semi-linearly reacting materials
[3], [4], [19]. However, we take another, slightly different,
approach to describe the induced magnetization. From a phys-
ical point of view, we assume that magnetization is a contin-
uous vector field. Therefore, we expand any magnetization as
a function in terms of linear basis functions. This has some
advantages, e.g., enabling the use of smoothing regularization
operators. Then, using various techniques from variational data
assimilation [5], [20] and numerical analysis [6], we solve
the proposed nonlinear minimization problem. In Section III,
numerical examples are given that illustrate the forward and
magnetic susceptibility estimation. A numerical identical-twin
experiment where the true magnetic susceptibility state is
assumed to be known is conducted to test the validity of the
methodology. In this stage of the research, it is essential to
consider first a numerical validation of the method, because
the true magnetic susceptibility state of magnetic objects
is unknown in practice, and therefore, the performance of
the method is hard to analyse. In Section IV, a sensitivity
analysis is then performed to investigate the behavior of vari-
ations in the magnetic susceptibility in forward computations.
A conclusion and a discussion of future work for the further
enhancement of the proposed parameter estimation method are
summarized in Section V.

II. METHODOLOGY

In this section, the methodology behind the parameter
estimation method is discussed. Starting with the derivation
of the underlying physical model, the parameter estimation
method is then derived using techniques from variational data
assimilation.

A. Magnetostatics

Suppose that an object is made of linearly reacting and
isotropic material, and suppose that the magnetic susceptibility
χ and the geometry of the object are known. Furthermore,
assume that the object is made of thin plates with a thickness
t .

The object is placed in a uniform magnetic background
field B0 = μ0H0. The background field induces some
magnetization denoted by Mind. Assume that any permanent
magnetization is absent, therefore, the magnetization of �
reads

M := Mind.

Due to the induced magnetization, a perturbation arises and
this perturbation is called the reduced (or induced) magnetic
field, denoted by Hred. The total field H reads

H = H0 + Hred. (1)

Let � ⊆ R
3 be the compact volume of the object. The linear

behavior in � is defined through

M = χH (2)

which defines the coupling between the magnetic field and the
magnetization of object �. Here, χ is a dimensionless number,
which is assumed to be spatially dependent.

To obtain the reduced magnetic field due to M, use the
magnetostatic field equations

⎧
⎪⎨

⎪⎩

∇ × H = 0

∇ · B = 0

B = μ0(H + M).

(3)

In these equations, B denotes the magnetic induction field,
and μ0 = 4π · 10−7 H/m is the magnetic permeability in
vacuum. The magnetostatic equations can be solved via a
scalar potential function (see [10, pp. 194–197]). The reduced
magnetic field at point r reads

Hred(r) = − 1

4π

∫∫∫

�

r − r�

|r − r�|3 (∇� · M)(r�)d��

+ 1

4π

∫∫

∂�

r − r�

|r − r�|3 (n� · M)(r�)d S� (4)

where n� = n�(r�) is a normal vector, pointing outwards. The
differential operator ∇� is defined by ∇� = [∂x �, ∂y�, ∂z� ]T . The
magnetization M is supported on �, and M ≡ 0 outside �.

Combining (1), (2), and (4) leads to the following integral
equation for M (see [19])

1

χ(r)
M(r)+ 1

4π

∫∫∫

�

r − r�

|r − r�|3 (∇� · M)(r�)d��

− 1

4π

∫∫

∂�

r − r�

|r − r�|3 (n� · M)(r�)d S� = H0. (5)

Note that this equation is only valid inside the object �.
Evaluation of (5) in a point r ∈ � is mathematically challeng-
ing, since both integrals are singular for r� = r. Equation (5)
must be reformulated in such a way that these singularities are
avoided. This is done after discretization of �, using Gauss’
divergence theorem.

B. Discrete Forward Problem

Introduce a triangulation of � = ⋃Ne
k=1 ek where Ne is the

number of triangular elements. Because � is thin, we assume
in the remainder of this paper that � is a 2-D surface and
that the elements e are flat triangles. Using demagnetization
factors [14], one can derive that, in this case, the magnetization
is approximately tangential to the object and as χ is large,
the induced magnetization is approximately uniform in the
normal direction. In Fig. 1, one can find an example of a
triangulation of a square plate. Furthermore, assume that χ is
piecewise constant on each triangular element

χ = χk on element ek , χk ∈ R
+
0 . (6)



VIJN et al.: MAGNETIC SUSCEPTIBILITY ESTIMATION FOR MAGNETOSTATICS 7400309

Fig. 1. Example of a triangulation, with triangular elements e1, . . . , e5.

The next step is to approximate the magnetization M on each
element. We choose to expand M in terms of linear basis
functions. On a triangular element e, the approximation of M
is denoted by (M)e and reads

(M)e(r) =
3∑

k=1

Mkϕk(r) (7)

where Mk are the values of M at the vertices v1, v2, and v3
of the triangular element e and ϕ1, ϕ2, and ϕ3 are linear basis
functions on e defined by the relations

ϕi (v j ) = δi j , for i, j = 1, 2, 3. (8)

The divergence of M and the flux n� ·M is approximated using
these expansions

(∇� · M)e(r�) =
3∑

k=1

Mk · ∇�ϕk(r�) (9)

and

(n� · M)e(r�) =
3∑

k=1

(n� · Mk)ϕk(r�). (10)

Using the triangulation and the above-mentioned expansions
for M, integral equation (5) is reduced to a finite-dimensional
system of equations. Due to the small thickness of �, the vol-
ume and surface integrals in (5) are reduced to surface and
line integrals. After applying a Galerkin projection method,1,2

one obtains the following set of equations:
1

χ(ri )
(M)ek (ri ) + t

4π

∑

e

∫

∂e

n�

|ri − r�| (∇
� · M)e(r�)d S�

− t

4π

∑

e

∫

∂�∩e

ri − r�

|ri − r�|3 (n� · M)e(r�)dl � = H0 (11)

for each evaluation point ri ∈ ek . The normal vector n� is
defined as a vector pointing outwards as illustrated in Fig. 1.
Each evaluation of (11) in a point leads to a single equations in

1A word of caution on the reduction of the integral equation to the
discrete case. Whenever the diameter of the triangular elements ek becomes
smaller than the thickness t of object �, then approximation (11) of integral
equation (5) becomes invalid.

2In the derivation of (11), the assumptions are used in a slightly different
order. One first start with a discretization of the full 3-D object �, and uses the
typical value of the thickness to neglect terms of the equation. One is then left
with integrals defined on the surface of the 3-D object, as mentioned in (11).

terms of the background field H0, the magnetic susceptibility
values and magnetization values Mk at the grid points.

If the integral equation is evaluated in three points per tri-
angular element ek , the above-mentioned integral equation (5)
can be solved consistently by solving the corresponding dis-
crete system (11). Further derivations show that (11) can be
written as a system of the form

[
Ne∑

k=1

1

χk
Dk + A + B

]

M = h0. (12)

The matrices Dk, A, B ∈ R
3M×3N , where M is the number

of evaluation points and N is the number of grid points and
h0 ∈ R

3M is a constant vector that contains the magnetic
background field. Vector M ∈ R

3N is now the numerical
approximation of the magnetization and contains the values
of the magnetization in each of the grid points. Note that this
vector suffices to describe the full magnetization through (7).
Furthermore, the entries of Dk, A, and B may be computed
analytically, or approximated numerically by means of suitable
quadrature rules.

Finally, if M is obtained after solving (12), the same
triangulation and expansion are used to compute the (total)
magnetic induction field at any observation point via

Bc(rk) = B0 + Bred(rk) (13)

where Bred(rk) is written as

Bred(rk) = μ0C(rk)M. (14)

The matrix C(rk) ∈ R
3×3N is obtained from (4) after applying

the discretization and evaluation at rk .

C. Inverse Problem Formulation

Based on the discrete forward problem described in Section
II-B, one can formulate the corresponding (discrete) inverse
problem. Suppose that the magnetic induction field of some
linearly reacting magnetic object � is measured, the inverse
problem is to determine the magnetic source Mind, based on
the physical model described in Section II-B.

If M = {r1, r2, . . . , rK } denotes a collection of measure-
ment locations, the values of the magnetic induction field in
the measurement locations give rise to a vector Bm ∈ R

3K

given by

Bm = [(Bm(r1))x , (Bm(r1))y, (Bm(r1))z, . . .

(Bm(rK ))x , (Bm(rK ))y, (Bm(rK ))z]T . (15)

Each measurement is contaminated by noise; in this paper,
we assume the Gaussian white noise and write

Bm := b0 + Be
red + e, e ∼ N (0,�) (16)

where � is the covariance matrix of e, Be
red are the exact

values of the reduced magnetic induction field, and b0 ∈ R
3K

is a constant vector containing the values of the magnetic
background induction field. Similarly, using the discrete for-
ward model, one can compute the magnetic induction field
in the measurement locations for some prescribed magnetic
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susceptibility distribution. This forward computation gives rise
to a vector Bc[χ] that is computed via a simple matrix product

Bc[χ] := b0 + C(M)M (17)

where C(M) ∈ R
3K×3N is built out of block matrices defined

in (14).

D. Inversion, Minimization Problem

System (12) and expressions (15) and (17) are the starting
point of the derivation of the parameter estimation method.
The idea is as follows: based on near-field measurements of
the magnetic field B, the task is to find a suitable spatial
distribution of χ such that there is a good fit between computed
values and the measured values. This naturally results in
defining the residual

Res := Bm − Bc[χ]. (18)

If the residual is small, a good fit between the measured
values and computed values is expected, and the choice of the
corresponding spatial distribution of χ should be acceptable.
Define the residual functional

J (χ) = 1

2
ResT WRes = 1

2
	Res	2

W (19)

where W = �−1 is the inverse of the covariance matrix.
Note that J depends on χ , although this dependence is not
explicitly visible from its definition. The parameter estimation
method is based on the iterative minimization of this func-
tional. A solution of the parameter estimation method is found
through

χ∗ = argmin
χ∈RNe

J (χ). (20)

In practice, measurements are contaminated by noise. Noise
typically arises from measurement interference and inaccu-
racies in the measuring devices; for magnetic field sensors,
these inaccuracies are, e.g., orthogonality errors between axes,
temperature dependencies, hysteresis in the device and scaling
errors. This implies that whenever one tends to solve (20),
a certain tolerance level εtol should be chosen in such a way
that it reflects the noise level in the measurements (16)

stop whenever |J (χ∗)| < εtol. (21)

Otherwise, the minimization will overfit the noise in the
measurements, which leads to unsatisfying solutions.

E. Inversion, Regularization

In general, the solution of least-squares problem (20) is not
unique, and J (χ) has many local minima. In order to choose
the optimal minimizer, additional information can be added
to the least-squares problem to reduce the dimensions of the
solution space.

In the literature, the values of χ for different materials can
be found. This information can be used as a prior estimation
of the χ-distribution in the minimization to guide the search
of the solution, denoted by χprior.

In addition, one may require that χ satisfies a smoothness
condition [2, Ch. 3.2]. Such a condition can be formalized in
terms of a smoothing operator, say R, which originates from
application of finite differences to χ . Smoothness requirements
ensure that the value of χk on some element ek should not
differ much from its neighbors χ j . Define the function

ϕ :
Ne⋃

k=1

{ek} → {1, 2, 3}, ek �→ ϕ(ek) (22)

as the number of adjacent triangular elements e j ; call two
elements ep and eq adjacent whenever they share a side.
The following stochastic equation reflects the smoothness
condition:

χk = 1

ϕ(ek)

ϕ(ek)∑

i=1

χki + Ik, Ik ∼ N (
0, σ 2

k

)
(23)

for k = 1, 2, . . . , Ne . Element eki is a neighbors of ek and
the term Ik is called an innovation term. The innovation term
shows that χk can vary with respect to its neighbors. The value
of σk reflects to what extent the value of χk can differ with
respect to the values of its neighbors. To illustrate this idea,
apply (23) to the elements in Fig. 1 to obtain, for example,

χ1 = 1

2
(χ2 + χ4) + I1

χ2 = 1

3
(χ1 + χ3 + χ5) + I2. (24)

The set of equations in (23) can be written as

Rχ = E (25)

where R ≡ (INe×Ne − S) and E ∼ N (0,�Ne×Ne ). The matrix
S originates from the right-hand side in (24). Note that the null
space of R is 1-D and consists of all uniform χ-distributions.
The obtained operator R is used to regularize the solutions.
The stochastic model (23) can be used if one defines the
minimization problem in terms of a Bayesian framework [2].

In general, if � is meshed by means of a nonuniform
triangulation, smoothness requirement (23) must be replaced
by, for example,

χk =
ϕ(ek)∑

i=1

⎛

⎝
μ(eki )

∑ϕ(ek)
j=1 μ(ek j )

⎞

⎠χki + Ik, Ik ∼ N (
0, σ 2

k

)
(26)

where μ(e) measures the area of element e. Note that,
in the case, the triangulation is uniform, expression (26)
reduces to (23).

Tikhonov regularization [2, Ch. 6] means that the original
problem is replaced by a nearby minimization problem

χ∗ = argmin
χ∈RNe

J (χ) + λ2 1

2
	R(χ − χprior)	2

2 (27)

where λ is called the regularization parameter. The regular-
ization parameter should be selected in such a way that for
the desired solution, the norm of the vector R(χ − χprior) is
not excessively large; whenever 	R(χ − χprior)	2 is small,
it follows that χ is relatively smooth. However, it is not
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desirable that the norm is close to zero, because it would imply
that the found solution merely shows variation.

In general, it is not clear which value for λ is optimal and
how to find a suitable value. One heuristic approach is the
use of the so-called L-curve [6]. The most favorable value of
λ is the one that corresponds to the corner of the L-curve,
which gives a good balance between the minimization of the
residual and the size of the regularization term. However,
the computation of this L-curve is too cumbersome and
time-consuming.

F. Inversion, Solving the Minimization Problem

Hereinafter, problem (27) is considered. Note that this
problem is not linear in χ . Therefore, the parameter estima-
tion method is based on a nonlinear least-squares problem.
A sophisticated (iterative) numerical solver is required to solve
this least-squares problem. Recall that a necessary condition
for χopt to be a local minimum for J is

∇
[

J (χ) + λ2 1

2
	R(χ − χprior)	2

2

] ∣
∣
∣
∣
χ=χopt

= 0. (28)

In Gauss–Newton-type methods [13, Ch. 3], one requires these
gradients with respect to χ for efficient computation of the
nonlinear least-squares problem. In general, it is complex
to find an analytical expression for this gradient, as the
underlying physical model may consist of many nonlinearities.
It is favorable to derive analytical expressions for the gradient,
as this reduces the computational time significantly. In the
Appendix, analytical expressions for the gradient of J are
derived using the adjoint method.

The quasi-Newton method or “BFGS” [13], is used to solve
the minimization problem. The BFGS method is a part of the
fminunc routine in the unconstrained optimization toolbox in
MATLAB and uses the gradient expressions derived for (27).

In practice, the value of J is rather small, and therefore, any
pre-programed tolerance values are already met, terminating
the process. Scaling of the problem avoids this problem.
To overcome any numerical problems, we introduce the scaling
factor κ in the minimization problem and write

χ∗ = argmin
χ∈RNe

κ

[

J (χ) + λ2 1

2
	R(χ − χprior)	2

2

]

. (29)

An appropriate choice for scaling factor κ is

κ =
(

J (χ0) + λ2 1

2
	R(χ0 − χprior)	2

2

)−1

(30)

for some regularization parameter λ and initial guess χ0 in the
BFGS method.

G. Magnetic Susceptibility Estimation Method

Finally, we propose our main result in this paper. The
parameter estimation method, which computes estimations of
spatially magnetic susceptibility distributions, is called the
“magnetic susceptibility estimation method.” We abbreviate
our parameter estimation method by MSEM and it is defined
as follows—based on an initial guess for χ , say χ0, solve
problem (27) for λ = 0 to obtain a solution of the original

Fig. 2. Magnetic susceptibility estimation method.

problem without any regularization. Then, the obtained solu-
tion acts as initial guess for the full problem described in (27),
for some nonzero λ. The obtained solution is the estimation
for χ . Pseudo-code for this method is found in Fig. 2.

It is observed that residual functional (19) is quite insensi-
tive to variations in χ , which makes the search for an optimal
solution difficult. This is due to the asymptotic behavior of
forward model (12) for χ → ∞. Rescaling the problem via
(29) and (30) allows the BFGS method to find a local optimal
solution. This solution is then used in the MSEM to find a
more optimal regularized solution.

III. NUMERICAL EXAMPLES

In this section, two numerical examples are given. First,
the integral equation is solved for a square plate to obtain
the induced magnetization M, and then the corresponding
reduced magnetic field is computed in a plane above the plate.
The typical shape of the solution M shows that the integral
equation is implemented correctly. Then, an identical-twin
experiment is conducted to test the methodology.

A. Solving the Integral Equation

Consider the following simple example: a square plate �
that is 1 m long and 10 mm thick is placed in a uniform
external magnetic field given by

B0 = [60, 0, 0]T (μT ). (31)

Suppose that the magnetic susceptibility is uniform on � and
χ ≡ 100; the plate is meshed into 50 triangular elements. The
condition number of system (12) is approximately 28, which
means that the system is well conditioned. Therefore, the prob-
lem may be solved using an LU or SVD decomposition. If
we compactly write system (12) as K M = b, then matrix K
can be decomposed using an LU decomposition: K = LU ,
where L is a 3M ×3M lower triangular matrix with the value
one on the diagonal entries, and U is a 3M × 3N matrix with
zero entries below the main diagonal. In the case of an SV D
decomposition, we can write K = SU V T , where S and V
are orthogonal matrices and U contains the singular values
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Fig. 3. Induced magnetization on a square plate for χ ≡ 100, placed in a
uniform background field H0 = 50ux A/m.

Fig. 4. Reduced magnetic induction field 5 cm above the plate.

of K . Using these decompositions, one can solve system (12)
easily (see [13]). The resulting magnetization distribution M
is shown in Fig. 3. Note that the induced magnetization is
more or less parallel to the background field, as expected. At 5
cm above �, the corresponding magnetic field is computed.
The results are shown in Fig. 4.

B. Twin Experiment for Parameter Estimation

Identical-twin experiments [1] use a model to generate a set
of “observations,” add random noise to the simulated obser-
vations, and then try to estimate the true model parameters,
using these noisy observations and the same model. This type
of experiment is a natural first step, because it limits the
sources of errors to a minimum and it enables us to understand
whether or not the estimation method acts consistently to
simulated data.

Our estimation method is tested on a square steel plate using
an identical-twin experiment. Start with a plate with a length
L of 1 m, a width W of 1 m, and 10 mm thickness. Suppose
a continuous χ distribution is given by

χ(r) = 70 + 30 cos(2	r + c	2), c = 1

2
[L, L]T . (32)

The vector c indicates the center of the plate. The above-
mentioned definition of χ defines a smooth varying χ-pattern

of the plate. The plate is meshed into Ne = 200 triangular
elements. In each element, we compute the value χ using (32).
This leads to the true model parameters χtrue ∈ R

200,
as depicted in Fig. 5(a).

For the above-mentioned plate with magnetic susceptibility
χtrue, generate a set of M = 225 measurements of the reduced
near field in a uniform sampling grid (1/2)[−L, L]2 at z = 1
cm above the plate and form Bm

c ∈ R
3M using (12), (13),

and (15). Gaussian white noise is added to each component
of Bm

c

Bm = Bm
c + e, e ∼ N (

0, σ 2 I3M×3M
)
. (33)

We choose σ = 10−6 in the above-mentioned error vector,
which means that there is approximately 3μT variation in each
component. In practice, magnetic sensors have a measurement
error in the order of 1nT , but in this twin experiment, we want
to push the boundaries of the performance of MSEM. Set

χ0 ≡ 70, χprior ≡ 0, λ = 10−11 (34)

and apply the MSEM to the above set of noisy measurements.
The results of χ̂ and χ∗ are depicted in Fig. 5(b) and (c). Note
the influence of regularization on the obtained estimate χ∗.
Regularization not only steers the iterative solver to a better
minimizer, but we are even able to reconstruct the true
χ-pattern with a high accuracy. In Figs. 6 and 7, the iterative
process in the second step of MSEM is shown. Note that,
for a nonlinear problem, the convergence of the problem is
sufficiently fast.

In Fig. 5(d) and (e), the difference and relative error between
χtrue and χ∗ are depicted; the relative error is pointwise
defined by

τ = |χ∗ − χtrue|
|χtrue| . (35)

A maximum relative error 0.05 is quite acceptable. Based
on these results, we conclude that the twin experiment is
successful.

C. Experiment Design

Based on the numerical identical-twin experiment, a real
experiment for the characterization of the magnetic mate-
rials can be designed as follows. The performance of the
estimation method is dependent on the chosen measurement
configuration. The twin experiment could be used to determine
the optimal sensor configuration. Start with defining a true
magnetic susceptibility pattern χtrue. If no a priori knowl-
edge about the material is known (such as anomalies in the
material), the pattern χtrue should be chosen uniformly. For
given sensor configuration S, let χS denote the corresponding
solution of the MSEM. To find an optimal sensor configu-
ration, we could solve the following minimization problem:

S∗ = arg min
S∈S

VN (S) (36)

where N is the size of the susceptibility pattern (dependent
on the chosen mesh), S is the set of all possible sensor
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Fig. 5. Twin-experiment results for MSEM. Spatial distributions (a) χtrue, (b) χ̂ (without regularization), (c) χ∗ (with regularization), (d) absolute error
χ∗ − χtrue, and (e) relative error (χ∗ − χtrue)/χtrue.

Fig. 6. Values of the residual function during the iterative process.

Fig. 7. Relative error in χ during the iterative process.

configurations, and

VN (S) =
N∑

i=1

(χS(i) − χtrue(i))
2 (37)

Fig. 8. Measurements planes above plate for several values of z.

is the empirical variance in the susceptibility pattern. Note that
the solution depends on the chosen true pattern χtrue.

Furthermore, as a rule of thumb, the measurements should
take place near the magnetic object, and in such a way that
the shape of the induced magnetic field is represented in the
data set. If the measurements take place too far away from the
magnetic object, then the method is not able to determine the
local variations of the χ-pattern inside the magnetic object.
If an optimal sensor configuration is found using this routine,
a real experiment can be defined to determine the magnetic
susceptibility of a real magnetic object.

Finally, note that we have assumed that there is no perma-
nent magnetization present in the magnetic object. In practice,
there is a permanent component present. Therefore, any data
set of measurements of the magnetic field is spoiled by this
component. One should filter out this contribution in the data
set first, before it can be used in the MSEM method. This is
easily done by considering two measurements of the magnetic
object in different background fields. By a suitable subtraction,
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Fig. 9. Monte Carlo simulation results for system (12). The maximum mean
relative error between the true magnetic field and the computed fields.

one is left with a data set that is related to the linear behavior
and can be used for the estimation method.

IV. SENSITIVITY ANALYSIS

In the identification of magnetic states of objects, it is
evident that an accurate estimation of χ is required. By means
of the MEMS method, we can estimate the true χ-distribution
in some magnetic object. However, small differences between
the estimation and the true distribution will remain, and it is
important to understand how this difference propagates in the
reduced magnetic field at larger distances. The purpose of this
section is to understand the statistical properties of the forward
model described in (11).

A. Forward Propagation of Magnetic Susceptibility

We investigate the statistical properties of the forward
problem, by means of a Monte Carlo simulation. As before,
consider a square plate with sides of 1 m and a thickness
of 10 mm. Discretize the square plate into 200 triangular
elements and assume that the magnetic susceptibility is
100 on each triangular element; denote this magnetic
susceptibility distribution by χ0. Define a realization
of the magnetic susceptibility in the Monte Carlo
simulation by

χk = χ0 + (�χ)k, (�χ)k ∼ N (0, σ 2) (38)

for each k = 1, 2, . . . , N , where N denotes the sample
size in the Monte Carlo simulation. In our Monte Carlo
simulation, we set N = 1000. For χ0 and each realization χk ,
we compute the reduced magnetic induction field in several
planes above the plate (see Fig. 8).

In each plane, we compare the magnetic induction field cor-
responding to χ0, denoted by Bz

0, with the magnetic induction
fields Bz

k of the realizations at height z. These comparisons
give rise to the relative error and the maximum error at height z
defined by

τ z
k =

∥
∥Bz

0 − Bz
k

∥
∥

2∥
∥Bz

0

∥
∥

2

(39)

and

εz
k = ∥

∥Bz
0 − Bz

k

∥
∥

2 (40)

Fig. 10. Monte Carlo simulation results for system (12). The maximum
mean absolute error between the true magnetic field and the computed fields.

for each realization k = 1, 2, . . . , N . The mean values

τ z = 1

N

N∑

k=1

τ z
k and εz = 1

N

N∑

k=1

εz
k (41)

are shown in Figs. 9 and 10, for several values of σ . In this
analysis, we considered the values σ = 3, 6, 9. Using a
rule of thumb for Gaussian distributions this implies that the
variations (�χ)k fall within the interval [−3σ, 3σ ] with a
probability of 0.99. This means that we consider variations
in each component in the order of 10, 20, and 30 nanotesla,
respectively.

Note that the absolute error vanishes for increasing z,
as expected. For z ≥ 1 m, the variations (�χ)k are not
visible anymore. However, if we look at the relative errors,
the relative error becomes constant3 for larger z. This is also
as expected, as the magnetic intensity of the field decreases
as (1/r3), where r is the distance from the source.

V. CONCLUSION

In this paper, we proposed a method to estimate the mag-
netic susceptibility of a magnetic object. This method can be
applied to any (ferro)-magnetic material, under the assumption
that the object itself has a sufficiently small thickness com-
pared to the other dimensions of the object. The estimation
method is based on a nonlinear least-squares optimization
problem and is solved via the BFGS method. Based on
an identical-twin experiment, we have seen that the method
shows a very good fit; under reasonable large measurement
errors, the MSEM method is still able to estimate an accurate
distribution of the magnetic susceptibility. An interesting next
step is to see how the parameter method performs in practice.

Moreover, a sensitivity analysis has shown that it is not
strictly necessary to estimate the magnetic susceptibility dis-
tribution with a high accuracy, if we want to use these distri-
butions in accurate descriptions of the reduced magnetic field.
Small variations in the magnetic susceptibility distribution are
only locally observable in the induced magnetic field. Based
on an error analysis, the local variations in the magnetic

3Indeed, the values for the relative errors at z = 2 are slightly higher, but
this is probably due to numerical errors in the computations.
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susceptibility in a square plate are not visible in the induced
magnetic field at a distance approximately the size of the plate.

Future work is to test and validate the MSEM method on a
real magnetic plate. Using experimental data, it should become
clear to what extent the method is able to estimate the magnetic
susceptibility distribution accurately. However, this is not an
easy task as the true magnetic susceptibility distribution is
unknown in practice. Therefore, validation of the results will
be complicated. An experimental design can be developed to
determine which measurements are necessary to obtain the
magnetic susceptibility of magnetic materials.

APPENDIX

ADJOINT METHOD FOR GRADIENT COMPUTATIONS

In this appendix, the gradient of the object functionals
(19) and (27) are computed, by means of the adjoint method
[5], [20]. Note that the underlying physical model can be
written as

F(M, χ) = 0 (42)

where F reads

F(M, χ) :=
[ Ne∑

k=1

1

χk
Dk + A + B

]

M − h0. (43)

The idea behind the adjoint method is to consider the object
functional

J (χ) = 1

2
ResT WRes − LT F(M, χ) (44)

which is equivalent to (19) and where L is called the adjoint
variable. Note that L acts as a Lagrange multiplier. The two
object functions are equivalent for each choice of L, due
to (42). Variation of J with respect to variable χ j is given by

�J j = ResT W
∂Res
∂M

� M − LT
(

∂ F

∂M
� M + ∂ F

∂χ j
� χ j

)

= −LT ∂ F

∂χ j
� χ j +

(

gT − LT ∂ F

∂M

)

� M (45)

where gT is given by

gT := ResT W
∂Res
∂M

. (46)

Choose the adjoint variable L by solving the equation
(

∂ F

∂M

)T

L = g (47)

such that the last term in (45) vanishes. For this choice of L,
the j th component of the gradient of (19) reads

(∇ J ) j = −LT ∂ F

∂χ j
. (48)

It remains to derive analytical expressions for the partial
derivates in (45). Some fruitful computations yields

∂ F

∂M
=

Ne∑

k=1

1

χk
Dk + A + B,

∂ F

∂χ j
= − 1

χ2
k

DkM. (49)

The partial derivative (∂Res/∂M) is in general difficult to
compute, but (17) yields that

∂Res
∂M

= C(M). (50)

Next, the gradient of (27) is computed. Using the previous
computations, only the gradient of the second term in this
expression remains. A simple computation shows that

∇
[

1

2
(χ − χ0)

T RT R(χ − χ0)

]

= RT R(χ − χ0) (51)

because RT R is symmetric. Combining results (48) and (51)
yield the gradient of (27).

ACKNOWLEDGMENT

This work was supported by the Dutch Ministry of Defence.

REFERENCES

[1] L. Bengtsson, M. Ghil, E. Källen, Eds., Dynamic Meteorology: Data
Assimilation Methods. New York, NY, USA: Springer, 1981, p. 330.

[2] D. Calvetti and E. Somersalo, An Introduction to Bayesian Scientific
Computing. New York, NY, USA: Springer-Verlag, 2007.

[3] O. Chadebec, J.-L. Coulomb, J.-P. Bongiraud, G. Cauffet, and
P. Le Thiec, “Recent improvements for solving inverse magnetostatic
problem applied to thin hulls,” IEEE Trans. Magn., vol. 38, no. 2,
pp. 1005–1008, Mar. 2002.

[4] O. Chadebec, J. L. Coulomb, G. Cauffet, and J. P. Bongiraud, “How to
well pose a magnetization identification problem,” IEEE Trans. Magn.,
vol. 39, no. 3, pp. 1634–1637, May 2003.

[5] M. B. Giles and N. A. Pierce, “An introduction to the adjoint approach to
design,” Flow, Turbulence Combustion, vol. 65, nos. 3–4, pp. 393–415,
Dec. 2000.

[6] P. C. Hansen and D. P. O’leary, “The use of the L-curve in the
regularization of discrete Ill-posed problems,” SIAM J. Sci. Comput.,
vol. 14, no. 6, pp. 1487–1503, Jul. 1993.

[7] J. J. Holmes, Exploitation of A Ship’s Magnetic Field Signatures.
San Rafael, CA, USA: Morgan & Claypool, 2006.

[8] J. J. Holmes, Modeling a Ship’s Ferromagnetic Signatures. San Rafael,
CA, USA: Morgan & Claypool, 2007.

[9] J. J. Holmes, Reduction of a Ship’s Magnetic Field Signatures.
San Rafael, CA, USA: Morgan & Claypool, 2008.

[10] J. D. Jackson, Classical Electrodynamics, 3rd ed. New York, NY, USA:
Wiley, 1999.

[11] D. C. Jiles and D. L. Atherton, “Theory of ferromagnetic hysteresis,”
J. Magn. Magn. Mater., vol. 61, nos. 1–2, pp. 48–60, Sep. 1986.

[12] B. Kressler, L. D. Rochefort, T. Liu, P. Spincemaille, Q. Jiang, and
Y. Wang, “Nonlinear regularization for per voxel estimation of magnetic
susceptibility distributions from MRI field maps,” IEEE Trans. Med.
Imag., vol. 29, no. 2, pp. 273–281, Feb. 2010.

[13] J. Nocedal and S. Wright, Numerical Optimization. New York, NY, USA:
Springer Text, 1999.

[14] J. A. Osborn, “Demagnetizing factors of the general ellipsoid,” Phys.
Rev. J. Arch., vol. 67, nos. 11–12, p. 351, Jun. 1945.

[15] N. G. Sepúlveda, I. M. Thomas, and J. P. Wikswo, Jr., “Magnetic
susceptibility tomography for three-dimensional imaging of diamag-
netic and paramagnetic objects,” IEEE Trans. Magn., vol. 30, no. 6,
pp. 5062–5069, Nov. 1994.

[16] O. J. G. Somsen and G. P. M. Wagemakers, “Separating permanent
and induced magnetic signature: A simple approach,” Int. J. Electron.
Commun. Eng., vol. 9, no. 10, pp. 1236–1239, Mar. 2015.

[17] L. Sun, X. Liu, D. Jia, and H. Niu, “Three-dimensional stress-induced
magnetic anisotropic constitutive model for ferromagnetic material in
low intensity magnetic field,” AIP Adv., vol. 6, no. 9, p. 095226,
Sep. 2016.

[18] E. D. Torre, Magnetic Hysteresis. Hoboken, NJ, USA: Wiley, 1999.
[19] Y. Vuillermet et al., “Scalar potential formulation and inverse problem

applied to thin magnetic sheets,” IEEE Trans. Magn., vol. 44, no. 6,
pp. 1054–1057, Jun. 2008.

[20] M. A. Zaman, P. C. Hansen, L. T. Neustock, P. Padhy, and L. Hesselink,
“Adjoint method for estimating Jiles-Atherton hysteresis model parame-
ters,” J. Appl. Phys., vol. 120, no. 9, p. 093903, Aug. 2016.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


