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Comfort and Time Efficiency: A Roundabout Case Study

Yanggu Zheng1, Barys Shyrokau1 and Tamas Keviczky2

Abstract— The public acceptance of automated driving is
influenced by multiple factors. Apart from safety being of top
priority, comfort and time efficiency also have an impact on the
popularity of automated vehicles. These two factors contradict
each other as optimizing for one results in the degradation
of the other. We investigate in this paper how such a multi-
objective problem is approached by human drivers and by
numerical optimization in the roundabout scenario, which is
compact in size but complex to handle. The human drivers’
behavior is first observed using naturalistic driving data. The
average trajectories and distribution of peak accelerations were
extracted after model-based fitting and removal of erroneous
samples. The processed data is shared online as an open-
access dataset. Then, an optimization problem is formulated
and solved to find the numerically optimal motion profile
in terms of comfort and time efficiency. The weighted sum
of travel time and discomfort is minimized. By adjusting
the weight distribution, we present different motion profiles
favoring optimal comfort, human-like acceleration magnitudes,
and agility, respectively.

I. INTRODUCTION

The research interest in automated driving has been con-
stantly growing, thanks to the potential societal benefits it
promises to bring about. Apart from reducing road fatalities
due to human errors, the considerable amount of time saved
from performing the driving task on a regular basis is also
beneficial. To efficiently utilize such time, automated vehi-
cles should further improve their comfort level, as physical
discomfort and motion sickness may harm the occupants’
performance in cognitive tasks [1]. A major contributing
factor to discomfort and motion sickness is the translational
accelerations [2][3]. Longitudinal and lateral accelerations
can be reduced by changing speed gently and negotiating
the corners at a lower speed. A survey suggests that around
10% of the passengers often or almost always experience car-
sickness [4]. If they were to become the users of automated
vehicles, the motion planner should focus on optimizing
the comfort level. Prior to automated vehicles, this topic
was covered under the motion planning studies on wheeled
robots with non-holonomic kinematics. The relevant studies
primarily focus on the smoothness of the planned path,
where the continuity of curvature and its derivatives are of
interest. The field has seen the development of methods based
on Dubins’ curves, clothoids, etc. [5]. The smooth curves
are considered suitable for comfort in a qualitative manner
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nitive Robotics, Faculty of Mechanical, Maritime & Materials Engineer-
ing, Delft University of Technology, 2628 CD Delft, The Netherlands
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[6]. However, driving on public roads is a more complex
and dynamic task, further requiring the vehicle to adopt a
proper velocity on top of a safe and smooth spatial path.
Moreover, motion comfort is a more comprehensive quality
to measure than the smoothness of a curve. Hence, comfort-
oriented motion planning has received some research interest
in recent years. For sake of simplicity, some studies opt
for decoupled approaches and focus on longitudinal motion
only. Again, smooth curve classes have been exploited to
improve comfort. Lattarulo et al. [7] defined the velocity
profile with quintic Bezier curves and Du et al. [8] chose the
hyperbolic tangent function for a similar purpose. Some other
studies quantitatively optimize longitudinal motion comfort
by minimizing a cost function related to jerk [9][10][11]. The
other way of decoupling the motion planning problem is to
assume a constant velocity and plan the path for specific
use cases. These studies mainly exploit similar techniques
as in smooth path planning, using parametric curves [12] or
motion primitives [13]. Combined path and velocity planning
for comfort is less addressed due to the complexity of the
problem. Shin et al. [14] proposed a comfort planner for
car-like robots to avoid obstacles with a minimal integral
of acceleration and travel time. Htike et al. [15] adopted
a similar idea although the motion sickness dose value
(MSDV) is used as the comfort measure instead.

Optimizing comfort could come at the cost of a longer
travel time, which is frustrating for the passengers who are
less susceptible to motion sickness or on an urgent trip.
As in [14] and [15], travel time should also be considered
when evaluating the planned motion. Solving this multi-
objective optimization problem helps reveal the full potential
that automated vehicles can achieve. The optimal solution
set allows the motion planner to adapt to user preferences
within a safe and feasible range. The user is able to choose
between a higher comfort level or a swifter ride. The choice
could be less intuitive for inexperienced users though. Thus a
default setting that results in a human-like motion is helpful.
The naturalistic driving trajectories of human drivers can
be exploited to help describe the average human driving
behavior.

Various scenarios have been adopted in the literature
to demonstrate the performance of the motion planning
algorithms. The naturalistic driving data also covers highly
diverse driving situations. In order to make an efficient
comparison between human drivers and motion planners,
a common, compact, and nonetheless complex scenario is
needed. The roundabout scenario meets these requirements
as it demands properly adjusted speed and path from the
passing vehicles while involving moderate maneuvering ef-
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fort. This scenario has been adopted in studies on various
topics related to automated driving [16][17].

In this paper, we investigate how the conflict of interest
between comfort and time efficiency can be approached,
and concentrate the effort on the roundabout scenario. First,
the naturalistic driving data from the ACFR dataset [18] is
utilized to understand the comfort level of average human
drivers. Then, an optimization problem is formulated where
the weighted sum of discomfort and travel time for navigat-
ing through a roundabout should be minimized. The weight-
ing between the two factors can be exploited to adapt to the
user’s preference. On one side, the comfort-optimal motion
profiles are obtained, which benefit passengers who are
highly susceptible to motion sickness. The motion profiles
reflecting human-like acceleration levels are then determined
for the default weighting. Towards the other end, we also
present more aggressive motion profiles for urgent trips.

The rest of the paper is structured as follows. Section II fo-
cuses on processing the naturalistic driving data. The detailed
formulation of the optimization problem for maneuvering at
a roundabout is given in Section III. The results from the two
sections are presented in Section IV, where we first show the
human drivers’ behavior at roundabouts and then present the
optimized motion profiles. The work is concluded in Section
V where we discuss the findings and limitations of this study
and point out potential future opportunities.

II. HUMAN PERFORMANCE BASELINE

As the first step of this study, we aim to observe and
characterize human driving behavior at roundabouts from
naturalistic driving data. The ACFR dataset is chosen as
it contains over 23,000 runs recorded at five roundabouts
on public roads. The traffic vehicles were tracked primarily
using LiDAR, which is installed on top of the data collection
vehicle parked close to the intersection. The position of a
traffic vehicle is estimated with the center of its bounding
box. The generation of bounding boxes is sensitive to the
shape of the recorded vehicle and occasionally suffers from
occlusions. Hence, the time-stamped position data is rather
noisy and is not suitable for extracting the velocity directly,
nor for finding the higher-order derivatives which have
more impact on comfort. Furthermore, the dataset contains
erroneous recordings that are not representative of driving
a passenger vehicle. Additional processing effort has been
involved to overcome these issues. These tasks are described
in the following subsections.

A. Trajectory Reconstruction

To handle the measurement noise and errors, an
optimization-based trajectory reconstruction has been per-
formed. The motion profiles are reconstructed based on the
point-mass kinematics (1) to ensure feasibility and continuity.
The motion of the vehicle is described by x, y, velocity
v, and heading angle ψ . The motion is controlled by the
longitudinal acceleration v̇ and angular acceleration ψ̈i. The
equations of motion are integrated with an Euler step of
ts, the sampling time of the original data. The motion
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Fig. 1. An example of the reconstructed trajectory by the optimization-
based method in comparison to polynomial fitting.

profile obtained from an input sequence is evaluated with
a cost function in the form of (2) that penalizes the spatial
deviation from the measured positions added to the input
effort involved.

xi+1 = xi + vi cosψi · ts
yi+1 = yi + vi sinψi · ts
vi+1 = vi + v̇i · ts
ψ̇i+1 = ψ̇i + ψ̈i · ts
ψi+1 = ψi + ψ̇i · ts

(1)

J1 =
N

∑
i=1

(
εi

T Qεi +ui
T Rui

)
εi =

[
xi
yi

]
rec
−
[

xi
yi

]
est
,ui =

[
v̇i
ψ̈i

] (2)

By minimizing this cost function, an optimal reconstruc-
tion of the recorded trajectory could be achieved. The total
processing time of the entire dataset is approximately 3 days
on a desktop PC (Intel Xeon W-2145 CPU). A 7th order
polynomial fitting method was implemented as an alternative
approach, in order to demonstrate the benefits of incorporat-
ing basic kinematics and penalizing the input effort. Each
trajectory is described with the x- and y-coordinates versus
time and the two sequences are fitted into two corresponding
polynomials. The comparison between the two methods
is given in Fig. 1, performed on a random recording in
the dataset. It is evident that the original data is of poor
quality. A strong discontinuity can be found on the left-
hand side of the recorded trajectory. Both methods are able
to reconstruct a smooth spatial path. However, the velocity
and acceleration profiles from the polynomial method are
less feasible because it solely minimizes the fitting error.
The optimization-based method reflects a more reasonable
driving behavior in contrast.
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B. Outlier Removal

As mentioned above, the dataset contains an unknown
amount of erroneous recordings that are not representative
of driving a passenger vehicle. To exclude these samples,
we adopt the DBSCAN (density-based spatial clustering of
applications with noise) algorithm that is widely used in
data science. Essentially, the algorithm clusters the samples
according to a distance metric (e.g., the Euclidean distance).
In each iteration, a new cluster starts with a random sample
that does not yet belong to any existing cluster. The cluster
grows by repetitively including the nearby samples whose
distance to existing samples in the cluster is below a certain
threshold. The reconstructed trajectories are first interpo-
lated to an equal number of steps so that the dimensions
match. The trajectories recorded at the same location and
having identical entry-exit combinations are grouped together
and DBSCAN is performed separately on each group. The
samples belonging to the largest cluster are considered the
most representative and the rest are discarded. We used the
standard implementation of DBSCAN in MATLAB, where
the critical parameter is the distance metric. Ideally, the
parameter is tuned to distinguish between erroneous samples
and the samples that are only different so that the diversity
in the accepted samples is still preserved. We adapt this
parameter to different types of maneuvers, considering that
a longer maneuver would naturally have a larger variance
between drivers. Although it is infeasible to manually check
all the samples, we present in Fig. 2 a random example
of a rejected recording in comparison to an accepted one.
The rejected recording indeed exhibits a different behavior
as the object had a significantly lower speed towards the
end and departed from the drive lane after the roundabout.
This could be, e.g., a cyclist mistakenly classified as a motor
vehicle, diverting to the sidewalk. Fig. 3 shows the variance
of the data before and after removing the outliers. The points
on the 2-D plane represent the coefficient of the first and
second principal components (PC1 and PC2, respectively)
determined by the principal component analysis (PCA).
The high-ranking principal components are the projected
directions in which the samples have a larger variance. Thus
PCA highlights the data variation in a compact manner and
also simplifies the visualization. The results suggest a better
concentration of data after the outliers are removed. The
processed and validated recordings are collected in a dataset
that is open-access via IEEE DataPort1.

III. OPTIMAL MANEUVER AT A ROUNDABOUT

In this section, we formulate an optimization problem
to find the optimal motion profile at roundabouts. The
optimality of the motion is characterized by comfort and time
efficiency. The optimization is performed for three typical
maneuvers: turning right, driving straight (i.e. taking the
exit with the same heading), and turning left. These match
the maneuvers from the naturalistic driving data, although

1https://ieee-dataport.org/open-access/
reconstructed-roundabout-driving-dataset
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Fig. 2. Comparison between an acceptable sample and a sample deemed
invalid by DBSCAN.

Fig. 3. A compact visualization of data variance with PCA before (upper
row) and after (lower row) removing the outliers.

the latter is for left-handed traffic, and hence the left- and
right-hand turns are mirrored. We currently only consider a
situation without interaction with other road users. Although
the interaction is an important part of driving and inevitably
increases discomfort and travel time, we have not observed
a significant portion of samples featuring yielding for other
road users. To make the optimization study comparable to the
naturalistic driving data, we opted to leave the interaction
to be investigated in the future. Nevertheless, the negative
impact could be mitigated by smart traffic control and
cooperative driving methods that reduce potential conflicts
[19]. The detailed formulation of the optimization problem
is described as follows.

A. Objective function

The optimization minimizes a cost function described by
(3), which is simply the weighted sum of travel time T
and discomfort D with the weighting factor W is placed
on travel time. This allows the scheme to find the comfort-
optimal motion by assigning W = 0. The weighting can also
be interpreted as a measure of the urgency of the trip for
the user to choose. It remains an open question though,
how to measure passenger comfort in a way that reflects the
subjective feeling. We adopted the indicator of discomfort
described by (4), which is the integral of squared planar
acceleration over time, identical to what was chosen in [14].
Contrary to the use of root-mean-square accelerations, the
integral action prevents reducing the discomfort measure by
unnecessarily slowing down the vehicle, especially in the
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case of W = 0. The frequency sensitivity is not considered
due to its significantly higher computational demand and the
fact that the duration of the maneuver is not sufficiently long
to analyze the low-frequency components. Vertical motion
is not considered in this study as we assume flat and well-
paved road conditions. Improving vertical motion comfort (or
ride quality) is more often considered a task for suspension-
related studies.

J2 =W ·T +D (3)

D =
∫ T

0

(
a2

x +a2
y
)

dt (4)

B. Motion definition

The motion of the vehicle is described in the spatial
domain as a sequence of waypoints. Each waypoint is defined
with respect to a station located on the lane center, containing
information about the lateral position and longitudinal veloc-
ity. This allows to directly manipulate the vehicle’s path and
velocity instead of optimizing the input sequence concerning
acceleration and steering. The latter is a controller’s task
instead. The stations are allocated throughout the entire
maneuver with an interval of 1 m. At each station, the
lateral position is measured locally along the curvature radius
(see Fig. 4) and the longitudinal velocity is assumed to be
perpendicular to the radius.

The following steps show how the aforementioned ob-
jective function can be evaluated using this motion def-
inition. First, the objective function is re-written as (5),
since integrating over the entire maneuver is equivalent to
summing the integrals between two stations. Combining with
the location of the stations, the coordinates of the actual
waypoints can be calculated. The heading and curvature at
each waypoint can then be approximated by differentiation.
The velocity is assumed to vary linearly in time between
adjacent waypoints and hence the accelerations are given by
(6), where dk is the interval between two adjacent stations
and κk is the curvature at waypoint k. The local time variable
τ equals zero when the vehicle is at waypoint k, and equals
∆Tk when the vehicle reaches waypoint k+ 1. The latter is
the travel time between waypoint k and k+ 1 as given by
(7). Finally, the increment of discomfort between the two

Road Boundary Lane Mark Lane Center

Stations Curv. Radius Waypoints

Fig. 4. The definition of the lateral position of waypoints with respect to
the stations. A waypoint has a positive lateral position when it is located 90
degrees counter-clockwise from the vehicle’s driving direction, irrespective
of the direction in which the lane bends.

waypoints is calculated as (8). Thus the value of the cost
function can be determined with these equations.

J2 =
N−1

∑
k=1

(k∆Tk +∆Dk) (5)

ax,k (τ) =
(
v2

k+1− v2
k
)/

2dk

ay,k (τ) = κk
(
vk +ax,kτ

)2 (6)

∆Tk = 2dk
/
(vk+1 + vk) (7)

∆Dk =
∫ tk+∆Tk

tk

(
a2

x,k (τ)+a2
y,k (τ)

)
dτ (8)

C. Scenario and constraints

In this study, we adopt a single-lane roundabout with four
connecting arms equally distributed. Standard dimensions
recommended for outside built-up areas in the Netherlands
are used. Assuming that the vehicle’s heading is approxi-
mately perpendicular to the curvature radius at each station,
the vehicle is considered within the safety corridor as long as
the lateral deviation is bounded. Given the lane width of 4.5
m and the fact that most passenger vehicles do not exceed
2 m in width, we consider the maximal deviation of 1 m
a sensible choice. The velocity at each station, on the other
hand, is bounded according to traffic regulations. The straight
segments have an upper limit of 50 kmh−1, the transition,
and the circular section, 30 kmh−1. The lower bound of
velocity is 18 kmh−1, leading to a lateral acceleration of
approximately 1.63 ms−2 when driving along the lane center
of the circular section. Further lowering this value could
contribute to even better comfort but may also harm the
intersection’s throughput capability and cause danger to
other road users. The upper bound of velocity within the
intersection is due to safety concerns, while the lower bound
eliminates the possibility that the vehicle comes to a full stop
to improve comfort in the case of W = 0. The chosen lower
bound matches the observations from the naturalistic driving
data and thus ensures a fair comparison.

D. Initialization and solver

The optimization problem is solved with MATLAB Global
Optimization Toolbox. A reasonable motion profile is first
generated to initialize the optimization. Intuitively, we set
the lateral deviation to all zeros, meaning that the vehicle
always follows the lane center. The velocity equals the urban
speed limit of 50 kmh−1 at the start and the end of the
maneuver. In between, the velocity gradually reduces to
20 kmh−1 before the transition and vice versa afterward.
From this starting point, a pattern search is performed for
a small number of iterations with the objective function
evaluated no more than 500×Nvar times, with Nvar being the
number of decision variables. Then the sequential quadratic
programming (SQP) method further optimizes the motion
profile until convergence. Default settings are used except
for the step tolerance being adjusted to 10−10 to prevent
premature termination.
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TABLE I
STATISTICS OF THE FITTED GAMMA DISTRIBUTIONS.

Travel Direction Acceleration [ms−2] Mode Mean SD
Left Longitudinal 1.25 1.35 0.37

Lateral 2.82 2.93 0.57
Straight Longitudinal 0.54 0.82 0.48

Lateral 1.42 1.55 0.44
Right Longitudinal 1.15 1.28 0.39

Lateral 3.62 3.80 0.82

IV. RESULTS

A. Human drivers

The analysis of the naturalistic driving dataset reveals
some insights into how human drivers navigate the round-
abouts. Fig. 5 is a collection of reconstructed trajectories
overlaid on the satellite image of the roundabout. The color
variation reflects the change of velocity of the vehicle. The
satellite image shows that the horizontal road at this specific
location has a wide median. The geometry is optimized to
allow the traffic along that direction to pass easily. The
effect is evident from the higher average velocity adopted
by the corresponding traffic. The vehicles turning into other
directions, on the other hand, have to reduce speed to
incorporate the larger curvature. The right-turning vehicles
approach the minimal distance to the center island in the third
quadrant (i.e. the lower-left quarter) and the minimal velocity
is obtained in approximately the same location. Driving in
this manner reduces the maximum curvature of the path and
thus reduces the lateral disturbance on the occupants. The
distribution of maximum absolute longitudinal and lateral
accelerations are given in Fig. 6. Both variables at each
recording location are fit into a Gamma distribution. The
statistics of the fitted distribution are given in TABLE I. The
figures may not be fully representative due to the incomplete-
ness of the recordings. The traffic vehicles are only detected
shortly before the entry. It is likely that the velocity has been
adjusted before the recording starts. The same applies to the
speed-up phase after leaving the roundabout. This is evident
from the fact that the highest recorded velocity is in the range
of 8.5 ms−1 or 31 kmh−1, much lower than the speed limit
for urban roads.

B. Optimization study

The weighting factor W is influential to the optimal motion
profile. The trade-off between comfort and time efficiency is
demonstrated by Fig. 7. The sub-figure on the left shows the
variation of time and discomfort when W varies between 0
and 4. The values are normalized by dividing by the values
corresponding to W = 0. When a smaller W is used, the
marginal gain of time efficiency is larger than the loss of
comfort. The other sub-figure compares the peak accelera-
tions obtained by varying W . The peak lateral acceleration
is monotonic increasing with respect to W , which is well
anticipated. In contrast, the peak longitudinal acceleration
initially decreases with a small W and increases again when
W > 0.5, depending on the type of the maneuver. This is due
to the velocity constraint at the curvy sections. With W = 0,

TABLE II
DIFFERENCES BETWEEN PATHS WITH THE SMALLEST AND LARGEST

WEIGHTING ON TRAVEL TIME.

Travel Direction RMS Diff. [m] Max Absolute Diff. [m]
Right 0.114 0.370

Straight 0.037 0.099
Left 0.028 0.091

the vehicle slows down quickly to the lowest permissible
speed in order to minimize lateral acceleration. With a
small W , the cornering velocity is between the lower and
upper bounds, requiring less deceleration before the entry.
When further increasing W , the vehicle turns at the highest
permissible speed and applies the braking later, resulting
in a larger longitudinal acceleration. The diamond-shaped
markers correspond to the values observed from human
drivers. A closer match between the optimized motion and
naturalistic driving data is achieved with W ∈ [0.5,1].

Besides, we have observed that the spatial paths highly
resemble each other despite the variation of W and the
corresponding velocity and acceleration profiles. The sim-
ilarity may suggest a generalizable strategy in utilizing the
lane space. The differences in the lateral deviation between
using W = 0 and W = 4 are shown in TABLE II. The
optimal motion profiles with W = 0 are presented in Fig.
8. In all cases, the optimal motion profiles suggest moving
slightly to the left before entering the roundabout, allowing
a smaller curvature in that phase. The same is observed
when departing the roundabout. In the right-turning case,
the optimized path effectively simplifies three consecutive
turns (R-L-R) into a single right-hand corner with a small
curvature. In the other two cases where the vehicle covers
a larger arc angle, the inner part of the circular lane is
exploited more. It is intuitive to understand when time
efficiency is considered, as a smaller turning radius leads to
a shorter distance. For the comfort-optimal case, this could
be less intuitive. In the case of steady-state cornering, the
smallest possible lateral acceleration is obtained by turning
at the lowest permissible velocity and at the largest possible
radius. Given an identical linear speed and an identical span
angle around the roundabout center, the integral of squared
acceleration over time depends linearly on the inverse of
radius. It means the smallest D when circulating around the
center island is obtained at the largest possible radius, too.
However, the benefit of following a small radius lies in the
transition phases where the velocity is higher. By allocating
space for a smaller curvature where the velocity is higher,
the total discomfort may actually be reduced. Therefore, with
the current measure of discomfort, driving with a minimal
radius inside the roundabout is suggested as the best strategy
of space utilization, irrespective of the weight applied to time
efficiency.

V. CONCLUSIONS

A. Contributions

In this paper, we investigate the comfort and time effi-
ciency trade-off in motion planning and focus on the compact
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Fig. 5. Naturalistic driving trajectories of human drivers at a roundabout. The velocity is reflected with the color map on the left. The bold lines represent
the average trajectories from the same type of maneuver.

Fig. 6. Distribution of peak longitudinal and lateral accelerations obtained
by human drivers at a roundabout. The sample counts on the histograms are
normalized to the form of a probability distribution function and the fitted
Gamma distribution is described by the red line.
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Fig. 8. Comfort-optimal motion profiles at a standard single-lane round-
about.

but comprehensive scenario of a roundabout. We first estab-
lish a baseline performance using naturalistic driving data of
human drivers, which helps reveal the general acceptance
of discomfort. We have processed the original data with
significant efforts to overcome the noise and errors. The
processed dataset containing smoothed velocity and acceler-
ation information has been made openly accessible via IEEE
DataPort. The data suggests that most frequently, the peak
acceleration falls between 0.54 and 1.25 ms−2 and the lateral
acceleration between 1.42 and 3.62 ms−2. The longitudinal
acceleration seems lower than expected as the recordings
do not cover the major deceleration phases. Lower values
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in lateral acceleration are obtained from vehicles driving
straight at this roundabout due to the optimized geometry for
the traffic in the corresponding direction. Next, a numerical
optimization study is performed, where the objective is to
minimize the weighted sum of discomfort and travel time.
The comfort-optimal motion profiles are found by assigning
W = 0, aiming to benefit the passengers susceptible to
motion sickness. With W ∈ [0.5,1], human-like magnitudes
of lateral acceleration are obtained. Further increasing the
weight on time efficiency would result in quick degradation
of comfort and a higher velocity within the intersection.
The optimization study also shows that the manner of space
utilization is similar between different weighting choices.
The major difference comes from the velocity profile instead.
The path optimization part remains non-trivial and further
investigation is still required.

B. Limitations and Future Works

This study mainly focused on the roundabout scenario,
which is sufficiently complex for human drivers and motion
planning algorithms but nevertheless not fully representative
of the daily use of a passenger vehicle. A more compre-
hensive testing scenario needs to be developed in order to
examine the benefits of comfort-oriented motion planning
algorithms. The roundabout used in the optimization study
is also in a simple form. Extensions to more complex
road types, e.g., multi-lane or turbo roundabouts, highway
ramps, etc., could be interesting to study in the future.
As indicated previously, the incomplete recordings in the
naturalistic driving dataset prevent us from fairly evaluating
the time efficiency of human drivers. Thus some doubts
remain on the observed distribution of the longitudinal
acceleration and the performance gain of the optimization
study cannot be properly demonstrated as a consequence.
This could be resolved by using alternative data sources,
e.g., drones or onboard measurements, that do not have the
occlusion problem. Additionally, the interaction with other
road users is not considered in this study. In practice, the
optimization scheme is capable of handling this by, for
example, constraining the velocity at the entry point to zero
or constraining the moment of entry. The results found with
our optimization study may still be further exploited for
developing path generation methods or adopted as template
motion profiles. The similarity in the optimal paths should
also be studied in order to determine the performance loss
by adopting a decoupled approach of path and velocity
planning for comfort and time efficiency. To validate the
findings of the optimization study, it is highly beneficial
to observe in experiments whether the quantitative comfort
measure correlates with the occupants’ subjective comfort,
and whether the improvements can be reflected on the their
task performance.
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