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Curvature Aware Motion Planning with
Closed-Loop Rapidly-exploring Random Trees

Berend van den Berg1,2, Bruno Brito1, Mohsen Alirezaei3,4 and Javier Alonso-Mora1

Abstract— The road’s geometry strongly influences the path
planner’s performance, critical for autonomous navigation in
high-speed dynamic scenarios (e.g., highways). Hence, this pa-
per introduces the Curvature-aware Rapidly-exploring Random
Trees (CA-CL-RRT), whose planning performance is invariant
to the road’s geometry. We propose a transformation strategy
that allows us to plan on a virtual straightened road and
then convert the planned motion to the curved road. It is
shown that the proposed approach substantially improves path
planning performance on curved roads as compared to prior
RRT-based path planners. Moreover, the proposed CA-CL-RRT
is combined with a Local Model Predictive Contour Controller
(LMPCC) for path tracking while ensuring collision avoidance
through constraint satisfaction. We present quantitative and
qualitative performance results in two navigation scenarios:
dynamic collision avoidance and structured highway driving.
The results demonstrate that our proposed navigation frame-
work improves the path quality on curved highway roads and
collision avoidance with dynamic obstacles.

I. INTRODUCTION

Autonomous Driving requires a motion planner to find a
motion plan from its current position to a goal position. A
motion planner suitable for Autonomous Driving must be
able to plan in structured (e.g., highways) and unstructured
environments (e.g., parking lot). Typically, in unstructured
environments, there are low speed limits and vehicle maneu-
verability is most important for the planner. In contrast, in
structured environments like highway, the road geometry is
simple and high speed limits make the dynamic feasibility
of the motion plan crucial for safe driving.

Many studies implement motion planners that can plan in
either structured [1], [2], [3], or unstructured [4], [5] envi-
ronments. Some even solve a wider range of environments
[6], [7], [8]. Yet, the generic implementation of a single
motion planning method that can plan in the full range of
environments is still an open question. Rapidly-exploring
Random Trees have proven to be effective for planning
in unstructured environments. However, implementing these
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Fig. 1: The proposed motion planning method applied during
high-speed driving on a curved highway.

methods real-time while ensuring a natural driving style on
structured roads, remains to be solved.

In this paper, we address the identified gap in literature
in the following way. Firstly, we introduce the Curvature-
Aware Closed-Loop Rapidly-exploring Random Trees (CA-
CL-RRT), whose planning performance is invariant to the
road’s geometry. A transformation strategy is proposed that
allows to plan on a virtual straightened road and then convert
the planned motion to the curved road (see Fig. 1). Secondly,
we expand our previous work on LMPCC [9] to track a
continuously updated path provided by the CA-CL-RRT. The
proposed motion planning architecture allows using the same
algorithm for maneuvering in unstructured environments,
high-speed autonomous driving on structured roads (e.g.,
highways), and dynamic collision avoidance.

This paper is organized as follows: first we discuss
state-of-the-art methods based on Rapidly-exploring Random
Trees (RRTs) and present the contributions. Next, the motion
planning problem and the preliminaries needed for solving
the problem are introduced. Then, we present an expanded
formulation of the Closed Loop Rapidly-exploring Random
Tree (CL-RRT) method for curved roads and present the
proposed motion planning framework. Lastly, we present
simulation results for two distinct scenarios: autonomous
navigation in highways with curved roads, and dynamic
collision avoidance of two pedestrians crossing a road.
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A. Related work

RRTs [10] can quickly search in high-dimensional spaces
that have complex constraints, which makes them extremely
useful for real-time applications. The algorithm incremen-
tally builds a tree of paths by connecting randomly sampled
configurations using an exact [11] or approximate [10]
steering function, based on vehicle kinematics or dynamics.
The advantage of approximate steering methods is that they
avoid the need for solving a Boundary Value Problem (BVP)
for each sample, which can be a computationally expensive
operation for differentially constrained systems [12].

One of the limitations of RRT-based methods is that
they often converge to sub-optimal solutions [11], which
expresses itself in path quality by e.g., a meandering path.
Early variants address this issue by adding an optimization
heuristic during nearest neighbor selection [7], [13], [14],
or prune the path after a solution is found [15]. However,
this does not guarantee asymptotic optimality. Therefore, the
RRT* introduces a rewiring operation that can guarantee
asymptotic convergence towards the optimal solution [11].
However, this method is currently restricted to using exact
steering functions only, because of the number of BVP to
solve during rewiring (e.g., [16]).

To avoid the need for solving a BVP, [7], [17] introduced
the CL-RRT. This variant samples in the controller’s input
space (e.g., a path and reference velocity) instead of the ve-
hicle inputs (e.g., steering angle and velocity). The controller
inputs are used for simulating a closed-loop trajectory of the
vehicle controlled by a lateral and a longitudinal controller.

Traditional RRT algorithms sample the vehicle inputs
directly and have a steering function with a short prediction
horizon. Usually far less than a second. Therefore, these
methods require many samples (and thus path segments) to
reach the goal. In contrast, the CL-RRT can generate path
segments of several seconds. Therefore, this variant requires
fewer samples to reach the goal and may suffer less from
path meandering issues than traditional variants. Thus, we
base our method on the CL-RRT. However, due to the piece-
wise linear nature of the controller inputs, the CL-RRT is not
capable of accurately following the curved roads. This issue
remains to be solved before it can be applied to high speed
driving on structured roads.

B. Contributions

The main contribution of this paper is a path bending
method that enhances Closed-Loop RRTs [17] for planning
on curved roads, the CA-CL-RRT, which can be followed
with a predefined velocity. Path planning is enhanced such
that the planned path does not present undesired wandering
around the lane center. We evaluate the performance of the
proposed method with randomized highway driving, where
we compare the introduced approach with RRT and CL-RRT.
Further, we expand the Local Model Predictive Contouring
Control (LMPCC) proposed in [9] to follow a recursively
updated trajectory reference provided by our global planner,
and present simulations results, comparing both methods in
a dynamic collision avoidance scenario.

II. PROBLEM FORMULATION

We apply the following assumptions during the problem
definition:
• Obstacle positions and vehicle states are known
• The goal state is provided by a mission planner
• Lane markings are provided by a lane detection system

as coefficients of a 2nd order polynomial.
• A velocity profile is given to generate a trajectory from

the computed path

A. Vehicle representation

The Autonomous Vehicle (AV) operates on a world plane
W ∈ R2. The dynamics of the AV are represented by a set
of nonlinear dynamic equations:

ẋ(t) = f(x(t),u(t)), x(0) = x0 (1)

where x(t) ∈ Rnx and u(t) ∈ Rnu are the vehicle states and
inputs respectively and x(0) is the initial state of the vehicle.
The body of the AV is modeled with a 2-Dimensional
Oriented Bounding Box (2D-OBB) that is aligned with the
vehicle heading. The region of the state-space that the body
of the AV occupies is denoted as A(x) ∈ X .

B. Motion planning problem

The main objective is to find a feasible trajectory τ , con-
sisting of a sequence of T states xm = [xrm, y

r
m, θ

r
m, v

r
m] ∈

X with m ∈ {1, . . . , T}, from an initial x(0) to a goal state
region Xgoal, that minimizes the lane center deviation, path
curvature and path length, within the local car-coordinate
frame (see Section IV-B.1). The upper-script r is used to
denote the reference trajectory. More formally, we define the
motion planning problem as follows:

τ∗ = arg min
τ

M∑
0

J(τm) = (3) (2a)

s.t. (1) (2b)
A(x) ∈ X \ (Xobs ∪Xdyn) (2c)
u(t) ∈ U ∀t ∈ [0, T ] (2d)
x(T ) ∈ Xgoal (2e)

where U is the set of admissible inputs and J(·) is the
trajectory cost function (defined in Section IV-B.1). Xobs
is the region in the state-space that violates the collision
constraints, and Xdyn the set of vehicle’s states that violate
stability criteria, dynamic limitations and actuator saturation
(See Section IV-A.2). Future positions of dynamic obstacles
are predicted with a constant velocity model.

III. PRELIMINARIES

A. Trajectory Tracking Controller

Consider that a reference trajectory τ , consisting of a
sequence of T reference points τ rm = [xrm, y

r
m, θ

r
m, v

r
m]

with m ∈ {1, . . . , T}, is provided by a global planner (e.g.,
CA-CL-RRT). A trajectory tracking controller receives the
reference trajectory τ and generates acceleration and steering
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Fig. 2: Schematic overview of the proposed method: Clane: lane marking coefficients, OOBB : obstacle Oriented Bounding
Box, xcar: vehicle states, xgoal: goal states, acmd: acceleration command, δcmd: steering angle command.

commands u = [acmd, δcmd] to ensure that the vehicle
follows the planned trajectory. In this work, we employ an
MPCC formulation, more specifically the LMPCC approach
proposed in [9], as a trajectory tracking controller for the
following reasons. First, LMPCC enables one to follow a
trajectory provided by a global planner and compute control
commands for the vehicle. Second, LMPCC allows us to
take into account the predicted paths of dynamic obstacles
and to incorporate collision avoidance constraints. Hence,
the LMPCC approach enables trajectory tracking and local
collision avoidance if the global path is not computed in time
to avoid dynamic obstacles. For more details, we refer the
reader to [9], [18].

IV. METHOD

The overall system architecture is presented in Fig. 2. The
vehicle is equipped with sensors to detect obstacles and lane
markings. The mission planner uses this data and the vehicle
state information to define a local goal sending it to the
motion planner. Our motion planning method builds on [17]
consisting of the following three steps:

1) Transform the planner inputs from the curved road to
a virtual straightened road;

2) Build a tree towards the goal using the CL-RRT;
3) Bend the best motion plan back to the curved road.

Finally, we employ the motion controller introduced in the
preliminaries that enables the vehicle to track the planned
trajectory from the motion planner [9]. In this section, first,
the CL-RRT method which we build on is presented. Then,
in Section IV-B, the proposed adjustments applied to the CL-
RRT enhancing its application to curved roads by applying
the road transformations as described in Section IV-C. Last,
the re-planning for dynamic collision avoidance is discussed
in Section IV-E.

A. Closed-Loop Rapidly-exploring Random Tree

The CL-RRT incrementally builds a tree of feasible tra-
jectories towards the goal. During each tree expansion step
(see Algorithm 1), first a random sample is generated in
the workspace (line 1). Tree nodes are then sorted using
heuristics (line 2). Multiple nearest nodes are selected (line
3), which in turn, are expanded until a feasible trajectory is
generated (line 5-9). This expansion is done through closed-
loop prediction of the vehicle trajectory (see Section IV-A.1).
If a new node is added, a goal biased expansion is attempted
(lines 10-12). If this expansion is feasible (i.e., if satisfies

Eq. (2c) and Eq. (2d)) (line 13), it is added to the tree (line
14). For more details on the algorithm, see [17].

Algorithm 1: ExpandTree(T ) [17]
1 Get random sample s ∈ R2.
2 Sort nodes n using heuristics.
3 Select Nnear nearest neighbors.
4 for all n ∈ Nnear do
5 Form a reference command from n to s
6 Obtain a trajectory x(t) ∈ [t1, t2] by doing a

simulation until the end of reference is reached.
7 if x(t) is feasible ∀t ∈ [t1, t2] then
8 T .add node
9 break

10 if a node was added then
11 Form a reference command from s to goal.
12 Obtain a trajectory x(t) ∈ [t2, t3] by doing a

simulation until the end of the goal reference is
reached.

13 if x(t) is feasible ∀t ∈ [t2, t3] then
14 T .add node

15 return

1) Closed-loop prediction: A virtual car is driven along
a generated reference path and velocity profile (see Section
IV-B.2) to obtain a closed-loop prediction of its trajectory.
If the simulated trajectory satisfies constraints (2c) and (2d)
we add it to the tree.

2) Vehicle model: We model the vehicle using the ex-
tended linear dynamic bicycle model as proposed in [17].
To ensure the vehicle stability and consistency of the linear
bicycle model [19], we constrain the lateral (alateral ≤ 0.3g)
and longitudinal (alongitudinal ≤ 1.5m/s2 ) acceleration dur-
ing planning. Here, g is the Earth’s gravitational acceleration
constant.

B. Enhancing CL-RRT for highway driving

To enhance CL-RRT for application to high-speed driving
on curved roads, we propose the following modifications to
the original method.

1) Cost function: The cost function employed in the
baseline planning method (CL-RRT [17]) minimizes path
length. Consequently, this can result in corner cutting, which
makes the cost function not suitable for a natural driving
style. To realize a natural style that is also suitable for
highway driving, we introduce the cost function in (3) that
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Fig. 3: Reference path generation. In green, initialization of
the tree with a node at preview distance dLA. Then in blue,
several exploration expansions. Lastly in red, a goal biased
expansion with look-ahead distance dLA.

Fig. 4: Velocity profile Fig. 5: Road straightening

penalizes path length, path curvature, and deviation from lane
center.

JCA-CL-RRT =

s=S∑
s=1

i=I∑
i=1

(
wuu∆t+ wκκn,i + wDDn,i

)
(3)

where S is the number of path segments, I the number
iterations used in the closed-loop predictions for the segment
n, wu, wκ and wD are the cost weights, u is the longitudinal
velocity, ∆t is the prediction step size, κn,i is the curvature
of the path, and Dn,i is the distance to the goal lane.

2) Reference generation: We employ the reference gen-
eration strategy as proposed in [7], [17], which constructs a
piece-wise linear path and designs a deterministic trapezoidal
velocity profile. A goal-biased reference connects the sample
with the goal position, and extends this with an extra segment
that is aligned with the goal heading (see Fig. 3), and has the
length of the look-ahead distance of the lateral controller (see
Section IV-B.3). We employ the velocity profile proposed in
[7], and introduce a variable end velocity (vend), see Fig. 4:

v2max − v20
2aacc

+ vmaxtmin +
v2max − v2end

2adec
< D (4)

v2coast − v20
2aacc

+ vcoasttmin +
v2coast − v2end

2adec
= D (5)

where, D is the path length. v0, vcoast and vend are the
initial, coasting, and end velocity, respectively. vmax is
the speed limit, and tmin is the minimum coasting time.
Lastly, aacc and adec are the acceleration and deceleration
respectively. Here, the first, second and third terms represent
the acceleration, coast and brake distance, respectively. We
use these equations as follows. If (4) can be satisfied, we
select vcoast = vmax. Otherwise, (5) is solved to obtain
vcoast. Lastly, when vend > vcoast, we select vcoast = vend.

3) Controllers: We apply the single-point preview con-
troller presented in [20], which considers a dynamic vehicle
model and is suitable for high-speed driving. It uses a
preview point ahead of the vehicle, of which the position

depends on the look-ahead time and longitudinal velocity.
We vary the look-ahead time to enhance maneuverability at
low speeds and curvature smoothness at high speeds.

For longitudinal control we apply the PI controller as
proposed in [17].

C. Road transformation
The piece-wise linear reference path, described in Section

IV-B.2, cannot accurately follow the road curvature when
motion is planned directly on the curved road. Hence, we
propose to plan on a virtual straightened road and deform
the generated plan motion plan to follow the shape of the
road, inspired by the approaches proposed in [2], [3], [8]. The
virtual straight road allows the planner to remain using piece-
wise references while constructing references that accurately
follow the road curvature. Additionally, this approach avoids
corner-cutting issues caused by distance-based optimization
heuristics. In the following paragraphs, we denote equations
belonging to the straight and curved with superscripts S and
C , respectively.

1) Straightened road definition: We model the road as a
second-order polynomial Cycl(x) = c2x

2+c1x+c0, provided
by a lane detection system. We use this to construct a virtual
straightened road tangent to the curved road: Sycl(x) =
c1x+ c0, as depicted in Fig. 5.

2) Arc-length parametrization: The transformation be-
tween the curved and straight road is realized through an
intermediate Frénet frame (see Fig. 5). A pose in this frame is
defined as PF = [S, ρ, θF ], where S is the position along the
lane, ρ is the lateral displacement, and θF is the difference
in the heading.

For the transformation between the frames, we need an
arc-length parametrization S(x) for both roads. Obtaining an
analytical parametrization for the straight road is straightfor-
ward. In contrast, for the curved, road this involves solving
a fifth-order root and is therefore fairly complex. Hence, we
numerically approximate the parametrization with a second-
order polynomial.

3) Transformation from curved to straight: Transforming
a state (x ∈ Rnx) from the curved to the straight road
involves the transformation of a pose (x, y, θ) and the
steering angle (δ). The remaining states (v, a, ȧ) do not
change during the transformation. Firsts, we transform a pose
Pi = [xi, yi, θi] to the straight road by evaluating equations
(6-9) Then, we locate the closest point along the center-line
of the curved road and determine the road heading at that
point. We use this to calculate the relative Frénet frame pose
(7). Finally, we calculate the heading of the straight road (8)
and use it to transform the pose to the straight road (9).

Pc =

xcyc
θc

 =

 minimize

∣∣∣∣∣∣∣∣ [xiyi
]
−
[

x
Cycl(x)

] ∣∣∣∣∣∣∣∣
arctan2

(
(dCycl(x)/dx)|x=xc , xc

)
 (6)

PF =

 Sρ
θF

 =


CS(xc)

sign(θi − θc)
∣∣∣∣∣∣∣∣ [xiyi

]
−
[
xc
yc

] ∣∣∣∣∣∣∣∣
θi − θc

 (7)
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θrs = arctan2(dSycl/dx, 1) (8)

Ps =

xsys
θs

 =

 cos(θrs)S − sin(θrs)ρ
sin(θrs)S + cos(θrs)ρ+ c0

θF + θrs

 (9)

The only thing remaining is the transformation of δ,
which is solved by subtracting the steering angle required
for following the road center at its longitudinal coordinate
S. We realized the transformation of a state in constant
time by evaluating closed-form expressions. Transforming
the planned motion back to the curved road can be done by
applying the inverse of the discussed calculations.

D. Planning on the straight road

The proposed transformations facilitate the planning steps
introduced at the beginning of Section IV. By using this
method, we can plan on the virtual road as long as the
lane detection system can provide the road parametrization.
If this system fails to detect the road, we can skip the
transformations and apply CL-RRT directly to the curved
road. While bending the final motion plan we introduce
additional curvature (κ), and thus lateral acceleration (ay =
u2κ). This was included in the dynamic constraints (2c) by
calculating an upper bound of the curvature. We calculate
path curvature as κ(x) = y′′/(1 + y′2)

3
2 , and establish the

upper bound by solving dκ/dx = 0.

E. Dealing with dynamic environments

To deal with dynamic obstacles, we re-plan continuously
and incorporate trajectory prediction information about the
dynamic agents. The predictions are obtained, assuming a
constant velocity model. Algorithm 2 summarizes the main
steps of the proposed CA-CL-RRT planning method. First,
the path planner updates all inputs (line 1). Then, the inputs
and the previously computed trajectory are transformed into
the straight virtual road space (lines 2-3). The tree is ini-
tialized with the previous trajectory (line 4) and expanded
while time is available (line 5-6). The new best trajectory
is selected (line 7) and transformed back to the curved
road (line 8-9). Lastly, the planned trajectory is sent to the
controller for execution (line 10).

Algorithm 2: CA-CL-RRT: Curvature-Aware
Rapidly-exploring Random Trees

1 Update xcar, xgoal, Xobs, Road
2 if ∃Road then
3 Transform xcar, xgoal, Xobs and τ old from C to S

according to Eq. (6-9)

4 T .initialize(τ old)
5 while t0 < t0 + ∆t do
6 ExpandTree(T ) (see Algorithm 1)

7 Select τnew according to Eq. (3)
8 if ∃Road then
9 Transform τnew from S to C with inverse of Eq. (6-9)

10 Apply τnew. Set τ old = τnew.

TABLE I: Vehicle parameters

Parameter Value Unit
δmax 0.52 rad

δ̇max 0.3294 rad/s
Td 0.3 −
Ta 0.3 −
amin −6 ms2

amax 2 ms2

L 2.7 m
Kus 0.014 −
ρ 5.95 m
wbody 2 m
Lbody 4.7 m
lr 1 m

TABLE II: Planner
parameters

Parameter Value Unit
aacc 1 ms2

adec −1 ms2

tmin 1 s
ay,max 0.3 g
tla,highway 1.4 s
Kp 4 −
Ki 0.05 −
Pexp 0.7 −
Popt 0.3 −

V. SIMULATION RESULTS

The proposed method is evaluated in urban and highway
environments with static and dynamics obstacles (e.g., pedes-
trians or other human drivers):
• Section V-B: Highway with static obstacles
• Section V-C: Dynamic obstacle avoidance

A. Simulation environment

The simulations were performed on a mobile workstation
with an Intel i5 CPU@2.6GHz. The highway scenario was
implemented in MATLAB R2019b and simulates the RRT
planners only. For the dynamic collision avoidance scenario,
we implemented the full planning architecture, described in
Fig. 2, in C++ optimized for real-time performance and ROS
as middleware. Additionally, we use the open-source im-
plementation of [9] for the pedestrian’s simulation scenario
and LMPCC implementation for the motion controller. The
motion planner (CA-CL-RRT) and controller (LMPCC) have
an update rate of 5Hz and 50Hz, respectively. The vehicle
parameters used during simulation are defined in Table I.
Here, wbody and Lbody are the width and length of the
vehicle body. lr is the distance from the rear of the vehicle
body to the rear axle coordinate frame. The motion planner
configuration parameters are defined in Table II.

B. Highway driving with static obstacle

The bending method employs a second-order polynomial
and can plan on any road that can be captured with this.
It can therefore plan on relatively simple geometries, like
highways, which are designed with guidelines that ensure
curvature limits. Here, we consider a highway scenario with
constant curvature and two lanes. We test two maneuvers:
lane following and lane changing. Fig. 1 shows the consid-
ered scenario. Notice here, that the tree was built on the
virtual straightened road, as depicted in the bottom subplot
of Fig. 1. Only the selected trajectory is deformed to the
curved road.

1) Compared algorithms: The proposed method (CA-
CL-RRT) is compared with two baseline approaches: the
standard RRT and CL-RRT to plan directly on the curved
road. All algorithms employ the same optimization heuristic
and cost function (3), with weights wu = 0.01, wκ = 0.01,
wD = 100.
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TABLE III: Statistic results of motion planning for a constant curvature highway for Rn ∈ [450, 5000], n = 1...20. The
radii are linearly distributed. Each algorithm plans 100 times for each road configuration. Considered are 0 and 1 obstacles
(randomized location for each query), and scenarios Lane Following (LF) and Lane Change (LC).

config. % failures Final cost: mean (Std) Samples explored: mean (Std) First goal comp. time: mean (Std)
CL CA-CL CL CA-CL CL CA-CL CL CA-CL

RRT RRT RRT RRT RRT RRT RRT RRT RRT RRT RRT RRT
0 obs, LF 13.8 6.0 0.0 32 (25) 9 (31) 1 (2) 351 (27) 35 (6) 35 (7) 0.8 (0.7) 0.5 (0.5) 0.6 (0.3)
1 obs, LF 23.5 18.8 1.2 33 (23) 23 (46) 10 (15) 330 (35) 20 (5) 22 (6) 1.2 (0.9) 1.2 (1.0) 1.2 (0.8)
0 obs, LC 19.4 0.1 0.0 36 (23) 10 (37) 1 (3) 376 (20) 37 (6) 39 (7) 0.8 (0.8) 0.3 (0.3) 0.4 (0.2)
1 obs, LC 28.4 1.5 0.3 35 (22) 24 (48) 7 (11) 363 (28) 20 (4) 23 (6) 1.1 (0.9) 0.9 (0.7) 1.0 (0.7)

a) Cost vs computation time b) Cost vs radius

Fig. 6: Highway comparison results

The standard RRT uses a kinematic bicycle model without
actuator constraints. A predefined discrete set of steering
angles U is employed. During node expansion, all steering
inputs ui ∈ U are simulated, which leads to many short path
segments. The segment that ends closest to the randomly
sampled location is added to the tree. The corresponding ui
is removed from this node’s set U .

During simulations we employ U = ui ∈ [−δmax, δmax],
for i = {1, 2, ..., 11}, and δmax = 0.0312 radians. The
simulation horizon is set to 0.25 seconds.

2) Road configurations: The goal position is provided by
a mission planner (See Fig. 2) and is located 150 meters
ahead of the ego vehicle and can be on either of the lanes.
The vehicle has a preferred speed of 120km/h. In total,
20 roads are considered, with the radii linearly distributed
between 450 and 5000 m. Each algorithm plans motion
200 times for each road configuration. Half of these queries
have an obstacle that is randomly placed on either of the
lanes. We performed 4000 motion queries per algorithm and
constrained the computation time per query to 4 seconds.

3) Results: Fig. 6a shows the evolution of the path cost as
computation time elapses, and Fig. 6b shows the cost of the
selected path versus the road radius. The presented results
in these figures are calculated using only motion queries
that successfully reach the goal. The bold lines represent
the means and the shaded areas the standard deviation.

Additional results are presented in Table III. In this table,
the 1.2% failure rate of the proposed method could be caused
by obstacles being placed too close to the ego vehicle,
making avoidance impossible given the proposed lateral
acceleration constraint.

C. Dynamic obstacle avoidance
We compare the performance of our planner with the LM-

PCC planner [9] as a baseline. The LMPCC was set up to a
prediction horizon of 3 s, with 15 stages and considering the
middle lane as a reference path. In contrast, as the reference
path generated by our method already accounts for the pre-
dictions of the pedestrians, we reduced the prediction horizon
to 1 s for the trajectory tracking controller, as depicted in
Fig. 2. Fig. 7 depicts the setup of the experiment where the
autonomous vehicle has to navigate along a straight road
while avoiding two pedestrians that will cross the road at
random times and from both sides. The statistical results pre-
sented in Table IV show that the proposed method matches
the collision avoidance performance of the baseline approach
despite the reduced prediction horizon. The simulations that
resulted in a collision are due to the model mismatch used in
the tracking controller and the real vehicle and correspond
to situations where the braking command was not strong
enough to stop the car in time. Yet, the approach allows us to
significantly reduce the solver computations times, allowing,
as future work, to incorporate a higher fidelity vehicle model
to improve the overall collision avoidance performance.

Fig. 7: Pedestrian collision avoidance scenario. Red depicts
the feasible trajectories, in yellow the feasible trajectories
that reach the goal, in green the selected trajectory, in purple
the pedestrian paths, the blue circles the trajectory of the AV
and the red circles the predicted pedestrian trajectories.

VI. DISCUSSION

The highway simulation results presented in Fig. 6a reveal
that the proposed method plans paths with a significantly
lower cost compared with the two baselines. Moreover, it also
shows that while CL-RRT and CA-CL-RRT improve the path
quality over time, the RRT quickly gets stuck in its initial
solution. Results have shown that the proposed method can
accurately track the lane centerline without any meandering.
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TABLE IV: Statistic results of percentage number of col-
lisions, time to reach final destination, and solver mean
computation times for 100 random test cases of the dynamic
collision avoidance experiment with two pedestrians. The
pedestrians follow the social forces model [21].

Method % Collisions Time to goal [s] Mean Computation
Time [ms]

CA-CL-RRT 5 10.47 0.9
LMPCC 6 9.5 10.1

Fig. 6b demonstrates the advantage of our method. On
curved roads, the proposed method plans paths of signif-
icantly lower cost compared to RRT and CL-RRT. Yet,
the CL-RRT cost converges to CA-CL-RRT as the radius
increases, which can be easily explained by the fact that the
virtual straightened road varies less from the real road. Thus,
CL-RRT essentially becomes the same planner as the CA-
CL-RRT. The high cost of CL-RRT on curved roads can
be explained by the piecewise linear nature of the reference
path, which makes it extremely hard to follow the road
centerline accurately without meandering.

Considering that the Dutch directive for highway design
states that highway radii must be at least 750 meters [22],
we conclude that our approach significantly improves motion
planning on roads with realistic curvature in comparison with
the two baselines.

Table III shows that CA-CL-RRT has fewer planning
failures and produces paths with lower cost on the considered
curved roads. Furthermore, the CL-RRT and CA-CL-RRT
explore significantly fewer samples than the RRT since a
single sample leads to a significantly longer path section than
the RRT.

VII. CONCLUSION

This article presents a motion planning framework, the
CA-CL-RRT, enhancing path quality in structured envi-
ronments with curved roads. We present qualitative and
quantitative results against two baselines: RRT and CL-
RRT in a highway driving scenario. Results have shown
that the proposed CA-CL-RRT can significantly enhance
the path quality, especially in curved roads with a radius
of less than 1000 m. We combined the CA-CL-RRT with
LMPCC and compared it with LMPCC as a baseline during
a dynamic pedestrian avoidance simulation. The combination
significantly reduced the required computational effort of the
LMPCC.

Same as CL-RRT baseline method, the presented motion
planner is also using a deterministic way for exploration of
the velocity dimension. Furthermore, the algorithm tends to
produce sub-optimal paths in complex environments, which
arises from the sub-optimal nature of the RRT. To address
the identified shortcomings, future research could focus on
enhancing the velocity space exploration and introducing
asymptotic optimality.
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