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Tests for the Weights of the Global Minimum
Variance Portfolio in a High-Dimensional Setting

Taras Bodnar, Solomiia Dmytriv, Nestor Parolya , and Wolfgang Schmid

Abstract—In this paper, we construct two tests for the weights
of the global minimum variance portfolio (GMVP) in a high-
dimensional setting, namely, when the number of assets p depends
on the sample size n such that p

n
→ c ∈ (0, 1) as n tends to

infinity. In the case of a singular covariance matrix with rank
equal to q we assume that q/n → c̃ ∈ (0, 1) as n → ∞. The
considered tests are based on the sample estimator and on the
shrinkage estimator of the GMVP weights. We derive the asymp-
totic distributions of the test statistics under the null and alternative
hypotheses. Moreover, we provide a simulation study where the
power functions and the receiver operating characteristic curves
of the proposed tests are compared with other existing approaches.
We observe that the test based on the shrinkage estimator performs
well even for values of c close to one.

Index Terms—Finance, portfolio analysis, global minimum vari-
ance portfolio, statistical test, shrinkage estimator, random matrix
theory, singular covariance matrix.

I. INTRODUCTION

F INANCIAL markets have developed rapidly in recent
years, and the amount of money invested in risky assets

has substantially increased. Due to this, an investor must have
knowledge of optimal portfolio proportions in order to receive a
large expected return and, at the same time, to reduce the level
of the risk associated with the investment decision.

Since [40] presented his mean-variance analysis, many works
about optimal portfolio selection have been published. However,
investors are faced with some difficulties in the practical imple-
mentation of these investing theories since sampling error is
present when unknown theoretical quantities are estimated.

In classical asymptotic analysis, it is almost always assumed
that the sample size increases while the size of the portfolio,
namely the number of included assets p, remains constant
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(e.g., [34], [44]). Nowadays, this case is often called standard
asymptotics (see, [18]). Here, the traditional plug-in estima-
tor of the optimal portfolio, the so-called sample estimator, is
consistent and asymptotically normally distributed. However, in
many applications, the number of assets in a portfolio is large
in comparison to the sample size (i.e., the portfolio dimension
p and the sample size n tend to infinity simultaneously) such
that p

n tends to the concentration ratio c > 0. In this case,
we are faced with so-called high-dimensional asymptotics or
‘Kolmogorov’ asymptotics (see, [16], [2], [17], [6]). Whenever
the dimension of the data is large, the classical limit theo-
rems are no longer suitable because the traditional estimators
result in a serious departure from the optimal estimators un-
der high-dimensional asymptotics ([4]). These methods fail to
provide consistent estimators of the unknown parameters of
the asset returns, that are, the mean vector and the covariance
matrix. Generally, the greater the concentration ratio c, the worse
the sample estimators are. In these cases, new test statistics
must be developed, and completely new asymptotic techniques
must be applied for their derivations. Several studies deal with
high-dimensional asymptotics in portfolio theory using results
from random matrix theory (see, [26] and [36]). Recently, [13]
presented a shrinkage-type estimator for the global minimum
variance portfolio (GMVP) weights, and [12] derived the opti-
mal shrinkage estimator of the mean-variance portfolio.

Testing the efficiency of a portfolio is a classical problem in
finance. What looks good theoretically often suffers from the
curse of uncertainty and dimensionality. Nevertheless, some ap-
proaches provide effective portfolio choice strategies including
the GMVP, which by construction is a mixture of assets that
minimizes the portfolio variance/volatility. The success of this
strategy violates modern portfolio theory because it takes only
the portfolio variance into account. But many empirical studies
show that portfolios that focus on minimizing the volatility
generate superior out-of-sample results (see, [19], [20], [33],
[37] among others). That is why it makes sense to provide
a statistical test whether the current portfolio composition is
different from the conventional GMVP taking into account both
the uncertainty of the asset returns and the large dimensionality
of the portfolio.

The former literature focuses on the case of standard asymp-
totics or considers exact tests where both p and n are fixed.
For example, [28] provided an exact F -test for the efficiency
of a given portfolio, and [15] derived inference procedures
on the efficient portfolio weights based on the application of
linear regression. More recently, [14] presented a test for the
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general linear hypothesis of the portfolio weights in the case
of elliptically contoured distributions. The contribution of this
study is the derivation of statistical techniques for testing the
efficiency of a portfolio under high-dimensional asymptotics.
Two statistical tests are considered. Whereas the first approach is
based on the asymptotic distribution of the test statistic suggested
by [14] in a high-dimensional setting, the second test makes use
of the shrinkage estimator of the GMVP weights and provides
a powerful alternative to the existing methods. To the best of
our knowledge, this analysis is the first time that the shrinkage
approach has been applied to statistical test theory.

It has to be mentioned that there is a direct link between the
subject of the paper and classical methods in statistical signal
processing. The equivalent of the GMVP portfolio in signal pro-
cessing literature is the Capon or minimum variance spatial filter
(see, [52] and [51]). The estimation risk of the high-dimensional
minimum variance beamformer has already been studied in [49]
while its constrained versions were discussed in [39]. The finite
sample size effect on minimum variance filter was investigated
by [42]. An improved calibration of the precision matrix, i.e.,
the central object for constructing the GMVP portfolio, was
discussed in [54]. For more literature on the applications of
the random matrix theory to signal processing and portfolio
optimization see, [25] and references therein.

The testing procedure we propose can be used not only for
testing on the GMV portfolio but also for the inference on the
shrinkage intensity, i.e., the level of shrinkage one needs to
decrease the estimation risk of the GMVP. Our test is based
on the shrinkage technique for GMVP weights and, thus, setting
different shrinkage targets leads to different tests, which could
be of independent interest for financial analysts. As an exam-
ple, one could construct a test whether the GMVP portfolio is
stochastically dominating a naive (equally weighted) portfolio,
which has attracted much attention of financial scientists during
the last decade (see, [22], [23]).

The paper is structured as follows. In Section II, we discuss
the main results on distributional properties for optimal portfolio
weights presented by [44]. In Section III-A the high-dimensional
version of the test based on the test statistics given in [14] is
proposed, while a new test based on the shrinkage estimator for
the GMVP weights is derived in Section III-B. The asymptotic
distributions of the test statistics under both the null hypothesis
and the alternative hypothesis are obtained, and the correspond-
ing power functions of both tests are presented. In Section III-C,
new test procedures for the GMVP weights are proposed under a
high-dimensional setting when the covariance matrix is singular.
In Section IV, the power functions and the receiver operating
characteristic curves of the proposed tests are compared with
each other for different values of c ∈ (0, 1). In our comparison
study, a test of [29] is considered as well. We conclude in
Section V. All proofs are given in the Appendix.

II. ESTIMATION OF OPTIMAL PORTFOLIO WEIGHTS

We consider a financial market consisting of p risky assets.
Let Xt denote the p-dimensional vector of the returns on risky

assets at time t. Suppose that E(Xt) = µ and Cov(Xt) = Σ.
The covariance matrix Σ is assumed to be positive definite.

Let us consider a single period investor who invests in the
GMVP, one of the most commonly used portfolios (see, for
example, [41], [27], [44], [14], [29], and others). This portfolio
exhibits the smallest attainable portfolio variance w′Σw un-
der the constraint w′1 = 1, where 1 = (1, . . . , 1)′ denotes the
p-dimensional vector of ones and w stands for the vector of
portfolio weights. The weights of GMVP are given by

wGMV P =
Σ−11

1′Σ−11
. (1)

The global minimum variance portfolio is of fundamental
interest in applications involving array signal processing. In the
array processing literature it is the so-called minimum variance
distortionless response (MVDR) spatial filter or beamformer
defined as wMVDR = Σ−1s

sHΣ−1s
(see, e.g., [51], Chapter 6). The

vector s ∈ Cp is the scalar signature vector associated with some
waveform s ∈ C. Thus, the tests for the global minimum vari-
ance portfolio developed in this paper could directly be used for
minimum variance beamformer just by a simple modification.

The practical implementation of the mean-variance frame-
work in the spirit of [40] relies on estimating the first two
moments of the asset returns. Because we do not know the true
covariance matrix, it is usually replaced by its sample estimator,
which is based on a sample of n > p historical asset returns
X1, . . . ,Xn given by

Σ̂n =
1

n− 1

n∑

j=1

(
Xj − X̄n

) (
Xj − X̄n

)′

with X̄n =
1

n

n∑

v=1

Xv. (2)

Replacing Σ in (1) by the sample estimator Σ̂n, we obtain an
estimator of the GMVP weights expressed as

ŵn =
Σ̂−1

n 1

1′Σ̂−1
n 1

. (3)

Note that the estimator of the GMVP weights is exclusively a
function of the estimator Σ̂n of the covariance matrix.

Assuming that the asset returns {Xt} follow a stationary
Gaussian process with mean µ and covariance matrix Σ, [44]
proved that the vector of estimated optimal portfolio weights
is asymptotically normal. Under the additional assumption of
independence, they derived the exact distribution of ŵn. [44]
showed that the distribution of arbitraryp− 1 components of ŵn

is a (p− 1)- dimensional t-distribution with n− p+ 1 degrees
of freedom and

E(ŵn) = wGMV P ,

Cov(ŵn) = Ω =
1

n− p− 1

Q

1′Σ−11
,

Q = Σ−1 − Σ−111′Σ−1

1′Σ−11
.

Consequently, if ŵ∗
n and w∗

GMV P are obtained by deleting the
last element of ŵn and wGMV P and if Ω∗ and Q∗ consist of
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the first (p− 1)× (p− 1) elements of Ω and Q, then ŵ∗
n has a

(p− 1)-variate t-distribution withn− p+ 1 degrees of freedom
and parameters w∗

GMV P and 1
n−p+1

Q∗
1′Σ−11 . This distribution is

denoted by ŵ∗
n ∼ tp−1(n− p+ 1,w∗

GMV P ,
n−p−1
n−p+1Ω

∗), since
n−p−1
n−p+1Ω

∗ = 1
n−p+1

Q∗
1′Σ−11 .

III. TEST THEORY FOR THE GMVP IN HIGH DIMENSIONS

At each time point, an investor is interested to know whether
the portfolio he is holding coincides with the true GMVP or has
to be reconstructed. For that reason, we consider the following
testing problem:

H0 : wGMV P = r against H1 : wGMV P �= r, (4)

where r with r′1 = 1 is a known vector of, for example, the
weights of the holding portfolio. Thus, this problem analyses
whether the true GMVP weights are equal to some given values.

[14] analysed a general linear hypothesis for the GMVP port-
folio weights and introduced an exact test assuming that the asset
returns are independent and elliptically contoured distributed.
Moreover, they derived the exact distribution of the test statistic
under the null hypothesis and the alternative hypothesis.

The main focus of this study is high-dimensional portfo-
lios. We want to consider the testing problem (4) in a high-
dimensional environment, that is, assuming that p

n → c ∈ (0, 1)
as n → ∞. Note that, in this case, H0 and H1 depend on
n as well. Thus, it would be more precise to write H0,n :
w∗

GMV P,n = r∗n and H1,n : w∗
GMV P,n �= r∗n. In the following,

we will ignore this fact in order to simplify our notation. More-
over, it turns out that the sample covariance matrix is no longer
a good estimator of the covariance matrix (see, [2], [4], [53]).
Indeed, the latter references reveal that if p/n → c ∈ (0, 1)
and the covariance matrix is Σ = I then the empirical spectral
distribution of the eigenvalues of the sample covariance matrix
Σ̂n is supported on

(
(1−√

c)2, (1 +
√
c)2
)
. As a result, the

larger p/n, the more the eigenvalues spread out. It implies in
terms of the L2 norm that Σ̂n is not consistent.

For that reason, it is unclear how well the test of [14] be-
haves in that context. First, we study its behaviour under the
high-dimensional asymptotics, and, after that, we propose an
alternative test that makes use of the shrinkage estimator for the
portfolio weights (cf. [13]).

In recent years, several studies have dealt with estimators of
unknown portfolio parameters under high-dimensional asymp-
totics with applications to portfolio theory. [29] formulated
tests for the portfolio weights, variances of the excess returns,
and Sharpe ratios of the GMVP for c ∈ (0, 1). [13] and [12]
derived the shrinkage estimators for the GMVP and for the
mean-variance portfolio, respectively, under the Kolmogorov
asymptotics for c ∈ (0,∞).

A. A Test Based on the Mahalanobis Distance

[14] proposed a test for a general linear hypothesis of the
weights of the global minimum variance portfolio. Here, we are
interested in the special case (4). For this case, the test statistic

is given by

Tn =
n− p

p− 1
(1′Σ̂−11)(ŵ∗

n − r∗)′(Q̂∗
n)

−1(ŵ∗
n − r∗), (5)

where Q̂∗
n consists of the first (p− 1)× (p− 1) elements of

Q̂n = Σ̂−1
n − Σ̂−1

n 11′Σ̂−1
n /1′Σ̂−1

n 1 and the number of assets
p in the portfolio is fixed. It was shown that Tn has a central
F -distribution with p− 1 and n− p degrees of freedom under
the null hypothesis, i.e., Tn ∼ Fp−1,n−p. Moreover, the density
of Tn under the alternative hypothesis H1 is equal to

fTn
(x) = fp−1,n−p(x) (1 + λ)−(n−1)/2

× 2 F1

(
n− 1

2
,
n− 1

2
,
p− 1

2
;

(p− 1)x

n− p+ (p− 1)x

λ

1 + λ

)
, (6)

where

λ = 1′Σ−11(w∗
GMV P − r∗)′(Q∗)−1(w∗

GMV P − r∗) (7)

and 2F1 stands for the hypergeometric function (see, [1], chap.
15), that is,

2F1(a, b, c;x) =
Γ(c)

Γ(a)Γ(b)

∞∑

i=0

Γ(a+ i)Γ(b+ i)

Γ(c+ i)

zi

i!
.

Thus, the exact power function of the test is given by

G(λ, p, n) = 1−
∫ ∞

f1−α;p−1,n−p

fTn
(x)dx , (8)

where f1−α;p−1,n−p denotes the (1− α) quantile from the cen-
tral F -distribution with p− 1 and n− p degrees of freedom.
Note that this result is also valid for matrix-variate elliptically
contoured distributions (see, [14]). On the other hand, several
computational difficulties appear when the power function of
the test is calculated for large values of p and n, since doing
so involves a hypergeometric function whose computation is
very challenging for large values of p and n. In order to deal
with this problem, we derive the asymptotic distribution of Tn

in a high-dimensional setting. This result is given in Theorem 1.
The proof is in the Appendix. Since λ depends on p (i.e., on n)
through Σ, we write λn in the rest of the paper.

Theorem 1: Let p ≡ p(n) and cn = p
n → c ∈ (0, 1). As-

sume that {Xt} is a sequence of independent and normally
distributed p-dimensional random vectors with mean µ and
covariance matrix Σ, which is assumed to be positive definite.
Let

C2
n = 2 + 2

λ2
n

c
+ 4

λn

c
+ 2

c

1− c

(
1 +

λn

c

)2

.

Then, it holds that

√
p− 1

(
Tn − 1− λn

n−1
p−1

Cn

)
d→ N (0, 1)

for p/n → c ∈ (0, 1) as n → ∞. Under the null hypothesis,√
p− 1 (Tn − 1)

d→ N (0, 2/(1− c)) for p/n → c ∈ (0, 1) as
n → ∞.
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Fig. 1. Asymptotic power function (solid line) vs. empirical power function
(dashed line) for the test problem in (4) as functions of λn for various values
of c ∈ {0.1, 0.5, 0.7, 0.9} and n = 500. The nominal significance level of the
test (the probability of a type I error) is α = 5%.

The results of Theorem 1 lead to an asymptotic expression of
the power function given by

P

(√
p− 1 (Tn − 1)√

2/(1− c)
> z1−α

)

= 1− P

(√
p− 1

(
Tn − 1− λn

n−1
p−1

)

Cn

≤
√

2
(1−c)z1−α −

√
p−1λn(n−1)

p−1

Cn

)

≈ 1− Φ

(√
2/(1− c)z1−α −√

p− 1λn

c

Cn

)
, (9)

where z1−α is the (1− α)-quantile of the standard normal
distribution.

In Figure 1, we plot the power function (9) as a function of λn

for several values of c andn (solid line). In addition, the empirical
power of the test is shown for the same values of c and n (dashed
line) and is equal to the relative number of rejections of the
null hypothesis obtained via a simulation study. It is remarkable
that, following the proof of Lemma 5, the considered simulation
study can be considerably simplified. Instead of generating a
p× n random matrix of asset returns in each simulation run,
we simulate four independent random variables from standard
univariate distributions and then compute the statistic Tn for the
given value of λn following the stochastic representation (33)
in the Appendix. Namely, the simulation study is performed in
the following way:

i) Generate four independent random variables ω
(b)
1 ∼

N (0, 1), ξ(b)2 ∼ χ2
n−p, ξ(b)3 ∼ χ2

n−1, and ξ
(b)
4 ∼ χ2

p−2

ii) For fixed λn, compute

T (b)
n

d
=

n− p

p− 1

(√
λnξ

(b)
3 + ω

(b)
1

)2

+ ξ
(b)
4

ξ
(b)
2

iii) Repeat steps (i) and (ii) for b = 1, . . . , B, where B is
the number of independent repetitions and calculate the

empirical power by

P̂ =
1

B

B∑

b=1

1(z1−α,+∞)

⎛

⎝
√
p− 1

(
T

(b)
n − 1

)

√
2/(1− c)

⎞

⎠ ,

(10)
where 1A(.) is the indicator function of the set A.

In Figure 1, we observe a good performance of the asymptotic
approximation of the power function. This approximation works
almost perfectly for both small and large values of c.

B. Test Based on a Shrinkage Estimator

In most cases, the unknown parameters of the asset return
distribution are replaced by their sample counterparts when an
optimal portfolio is constructed. In recent years, however, other
types of estimators, such as shrinkage estimators, have been dis-
cussed as well (see, [45] and [13]). The shrinkage methodology
was introduced by [50]. His results were extended by [24] to the
case in which the covariance matrix is unknown. The shrink-
age methodology can be applied to the expected asset returns
(e.g., [35]) and the covariance matrix ([7], [8]). Both of these
applications appear to be very successful in reducing damaging
influences on the portfolio selection. A shrinkage estimator was
applied directly to the portfolio weights by [30] and [46]. They
showed that the shrinkage estimators of the portfolio weights
lead to a decrease in the variance of the portfolio weights and to
an increase in utility.

[13] proposed a new shrinkage estimator for the weights of
the GMVP that turns out to provide better results in the high-
dimensional case than the existing estimators do. This estimator
is based on a convex combination of the sample estimator of the
GMVP weights and an arbitrary constant vector expressed as

ŵn;GSE = αn
Σ̂−1

n 1

1′Σ̂−1
n 1

+ (1− αn)bn with b′
n1 = 1.

(11)
Here, the index GSE stands for ‘general shrinkage estimator’.
It is assumed that bn ∈ Rp is a vector of constants such that
b′
nΣbn is uniformly bounded. [13] proposed determining the

optimal shrinkage intensity αn for a given target portfolio bn

such that the out-of-sample risk is minimal, that is,

L = (ŵn;GSE −wGMV P )
′Σ(ŵn;GSE −wGMV P ) (12)

is minimized with respect to αn. This result leads to

α̂n =
(bn − ŵn)

′ Σbn

(bn − ŵn)
′ Σ (bn − ŵn)

. (13)

The authors showed that the optimal shrinkage intensity α̂n

is almost surely asymptotically equivalent to a non-random
quantity α̃n ∈ [0, 1] when p

n → c ∈ (0, 1) as n → ∞, which is
given by

α̃n =
(1− c)Rbn

c+ (1− c)Rbn

, (14)

where

Rbn
=

σ2
bn

− σ2
n

σ2
n

= 1′Σ−11b′
nΣbn − 1 (15)

is the relative loss of the target portfolio bn, σ2
bn

= b′
nΣbn is

the variance of the target portfolio, and σ2
n = 1/1′Σ−11 is the
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variance of the GMVP. This result provides an estimator of the
optimal shrinkage intensity given by

ˆ̃αn =
(1− p

n )R̂bn

p
n + (1− p

n )R̂bn

,

R̂bn
=
(
1− p

n

)
b′
nΣ̂nbn1

′Σ̂−1
n 1− 1. (16)

Using the estimated shrinkage intensity ˆ̃αn, the corresponding
portfolio weights are given by

ŵn;ESI = ˆ̃αnŵn + (1− ˆ̃αn)bn. (17)

[13] proved that the ratio
ˆ̃αn

α̃n
→ 1 if p

n → c ∈ (0, 1) as n →
∞. In Theorem 2, we show that the estimated intensity is
asymptotically normally distributed. The proof of Theorem 2
is given in the Appendix.

Theorem 2: Let p ≡ p(n) and cn = p
n → c ∈ (0, 1). As-

sume that {Xt} is a sequence of independent and normally
distributed p-dimensional random vectors with mean µ and
covariance matrix Σ, which is assumed to be positive definite.
Then
√
n
ˆ̃αn −An

Bn

d→ N (0, 1) for p/n → c ∈ (0, 1) as n → ∞,

(18)
where

An =
(1− cn)Rbn

cn + (1− cn)Rbn

,

B2
n = 2

c2n(1− cn)(2− cn)(Rbn
+ 1)

((cn +Rbn
(1− cn))4

(
Rbn

+
cn

2− cn

)
.

Next, we introduce a test based on the estimated shrinkage
intensity. The motivation is based on the following equivalences
(see, (14) and (15)):

α̃n = 0 ⇐⇒ Rbn
= 0 ⇐⇒ σ2

bn
= σ2

n .

This result means that α̃n = 0 if and only if the variance
of the portfolio based on bn is equal to the variance of the
GMVP. This finding in turn means that b′

nΣbn = 1/1′Σ−11 =
minw:w′1=1w

′Σw = w′
GMV PΣwGMV P . Since the GMVP

weights are uniquely determined, this result is valid if and only
if bn = wGMV P . Choosing bn = r, it holds that

wGMV P = r ⇐⇒ α̃n = 0.

Thus, it is possible to obtain a test for the structure of the GMVP
using the shrinkage intensity with the hypothesis given by

H0 : α̃n = 0 against H1 : α̃n > 0. (19)

Note that ˆ̃α = ˆ̃α(bn). Let Sn =
√
n ˆ̃α(bn = r). For testing

(19), we use the test statistic Sn.
From Theorem 2 we get

Sn −√
nAn

Bn

d→ N (0, 1) for p/n → c ∈ (0, 1) as n → ∞,

where An and Bn are given in the statement of Theorem
2. Moreover, under the null hypothesis, Rbn

= 0 and, thus,

Sn
d→ N (0, 2(1− c)/c) for p/n → c ∈ (0, 1) as n → ∞. This

result gives us a promising new approach for detecting deviations
of the true portfolio weights from the given quantities. Using
Theorem 2, we are able to make a statement about the power
function of this test. Since An and Bn depend on bn, we only

Fig. 2. Asymptotic power function for the test problem in (19) as a function
of Rbn for various values of c ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The number of
observations is n = {500, 1500}. The nominal significance level of the test
(the probability of a type I error) is α = 5%.

have to replace this quantity with r. It holds that

P

⎛

⎝ Sn√
2 1−c

c

> z1−α

⎞

⎠

= 1− P

(
Sn −An(bn = r)

Bn(bn = r)

≤
√
2 1−c

c z1−α −An(bn = r)

Bn(bn = r)

)

≈ 1− Φ

⎛

⎝

√
2 1−c

c z1−α −An(bn = r)

Bn(bn = r)

⎞

⎠ . (20)

Note that the approximation given in (20) is purely a function of
Rbn=r. This property is a main difference from the test discussed
in Section III-A, where the power function is a function of λn.
These properties are very useful to analyse the performances of
both tests and simplify the power analysis.

In Figure 2, the power of the test is shown as a function
of Rbn

and n. It can be seen that the test performs better for
smaller values of c. With increasing values of c, the power of
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the test decreases. We determine the power function for two
different sample numbers, n = 500 and n = 1500. As expected,
the test shows a better performance for larger values of n, since
An(bn = r) increases, the numerator of the expression in the
cumulative distribution function in (20) becomes negative, and
the whole expression tends to one.

C. Case of a Singular Covariance Matrix Σ

We extend the results of Section III-A and Section III-B to
the case of a singular covariance matrix with rank(Σ) = q < p.
Here, we consider two types of singularity: (i) in the popula-
tion covariance matrix Σ and (ii) in addition, in the sample
covariance matrix Σ̂n by allowing the sample size n to be
smaller than the dimension p. Throughout this section, we refer
to q as the actual dimension of the data generating process
and, consequently, derive the results under the high-dimensional
asymptotic regime q/n → c̃ ∈ (0, 1) as n → ∞.

In the case q < p, the sample covariance matrix Σ̂n is singular
and its inverse does not exist. As a result, the Moore-Penrose
inverse of Σ̂n, which we denote by Σ̂+

n , is used to estimate the
weights of the GMVP expressed as

ˆ̃wn =
Σ̂+

n1

1′Σ̂+
n1

. (21)

In a similar way, the true GMVP weights are obtained and they
are given by

w̃GMV P =
Σ+1

1′Σ+1
.

The Moore-Penrose inverse of the covariance matrix has already
been used in portfolio theory by [9], [47] among others, while [5]
derived several distributional properties of the Moore-Penrose
inverse of the sample covariance matrix.

Next, we consider linear combinations of both the true GMVP
weights and their estimator given by

w̃∗
GMV P =

LΣ+1

1′Σ+1
and ˆ̃w

∗
n =

LΣ̂+
n1

1′Σ̂+
n1

,

where L is a k × p matrix of constants with k ≤ q and rank
(L) = k. In particular, if L = [IkOk,p−k] with the k-
dimensional identity Ik and the k × (p− k) zero matrixOk,p−k,
then w̃∗

GMV P is the vector of the first components of w̃GMV P .
In order to verify the structure of the GMVP, we first extend

the test based on the Mahalanobis distance to the test problem
given by

H0 : w̃∗
GMV P = r̃∗ against H1 : w̃∗

GMV P �= r̃∗ (22)

for some k-dimensional vector r̃∗ and the test statistic

T̃n =
n− q

k
(1′Σ̂+

n1)( ˆ̃w
∗
n − r̃∗)′( ˆ̃Q

∗
n)

−1( ˆ̃w
∗
n − r̃∗), (23)

where ˆ̃Q
∗
n = LΣ̂+

nL
′ − LΣ̂+

n11′Σ̂+
nL′

1′Σ̂+
n1

. This test statistic was con-
sidered in [10], who derived its finite-sample distribution for
both small portfolio dimension and sample size.

In Theorem 3, we extend these results by deriving the asymp-
totic distribution of T̃n under the high-dimensional asymptotic
regime with q/n → c̃ ∈ (0, 1) and k/n → b̃ ∈ [0, 1) asn → ∞.
To this end, we also note that only a part of the GMVP weights
are tested in (22). In order to test the structure of the whole

portfolio, we have to repeat the test (22) for several subvectors
of w̃GMV P and to adjust the significance level of each test by
applying, for example, the Bonferroni correction.

Theorem 3: Assume that {Xt} is a sequence of independent
and singular normally distributed p-dimensional random vectors
with meanµ and singular covariance matrixΣwith rank(Σ) =
q. Let q ≡ q(n) and c̃n = q

n → c̃ ∈ (0, 1) and letk < q such that
b̃n = k

n → b̃ ∈ (0, 1). We define

C̃2
n = 2 + 2

(1− c̃+ b̃)λ̃
2

n

b̃
+ 4

(1− c̃+ b̃)λ̃n

b̃

+2
b̃

1− c̃

(
1 +

(1− c̃+ b̃)λ̃n

b̃

)2

with

λ̃n =
(
1′Σ+1

)
(w̃∗

GMV P − r̃∗)′ (Q̃∗)−1 (w̃∗
GMV P − r̃∗) .

Then, it holds that

√
k

(
T̃n − 1− λ̃n

n−q+k
k

C̃n

)
d→ N (0, 1)

for q/n → c̃∈(0, 1) and k/n → b̃∈(0, 1) as n → ∞. Under

the null hypothesis,
√
q − 1 (T̃n − 1)

d→ N (0, 2(1− c̃+ b̃)/
(1− c̃)) for q/n → c̃ ∈ (0, 1) andk/n → b̃ ∈ (0, 1) asn → ∞.

The results of Theorem 3 are very useful to derive the power
function of the suggested test. Similarly to the case of a non-
singular covariance matrix, it is given by

P

⎛

⎝
√
q − 1

(
T̃n − 1

)

√
2/(1− c̃)

> z1−α

⎞

⎠

= 1− P

(√
q − 1

(
T̃n − 1− λ̃n

n−1
q−1

)

C̃n

≤
√

2
(1−c̃)z1−α −

√
q−1λ̃n(n−1)

q−1

C̃n

)

≈ 1− Φ

(√
2/(1− c̃)z1−α −√

q − 1 λ̃n
˜̃c

C̃n

)
.

Next, we present the test based on a shrinkage estimator for
the singular covariance matrix Σ. Similarly as in the case of
a nonsingular covariance matrix we get the shrinkage intensity
given by

α̂+
n =

(
bn − ˆ̃wn

)′
Σbn

(
bn − ˆ̃wn

)′
Σ
(
bn − ˆ̃wn

) , (24)

where ˆ̃wn are given in (21). The following proposition holds.
Proposition 1: Assume that {Xt} is a sequence of indepen-

dent and singular normally distributed p-dimensional random
vectors with mean µ and singular covariance matrix Σ with
a rank q and assume 0 < Ml ≤ 1/1′Σ+1 ≤ b′

nΣbn ≤ Mu <
∞ for all n. The optimal shrinkage intensity α̂+

n is almost surely
asymptotically equivalent to a non-random quantity α̃+

n ∈ [0, 1]
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when q/n → c̃ ∈ (0, 1) as n → ∞, which is given by

α̃+
n =

(1− c̃)R+
bn

c̃+ (1− c̃)R+
bn

, (25)

where

R+
bn

= 1′Σ+1b′
nΣbn − 1. (26)

Proposition 1 is complementary to [13, Theorem 2.1] and
covers additionally the case of a nonsingular matrix Σ. Going
carefully through the proof of Proposition 1 we can easily deduce
the consistent estimator of α̃+

n given by

̂̃α+

n =
(1− q/n)R̂+

bn

q/n+ (1− q/n)R̂+
bn

(27)

with

R̂+
bn

= (1− q/n)1′Σ̂+
n1b

′
nΣ̂nbn − 1. (28)

Now we are ready to state the central limit theorem for ̂̃α+

n , which
is a straightforward consequence of the proofs of Proposition 1
and Theorem 2.

Theorem 4: Let q ≡ q(n) and c̃n = q
n → c̃ ∈ (0, 1). As-

sume that {Xt} is a sequence of independent and singular
normally distributed p-dimensional random vectors with mean
µ and singular covariance matrix Σ with a rank q. Then

√
n
ˆ̃α+
n −A+

n

B+
n

d→ N (0, 1) as n → ∞, (29)

where

A+
n =

(1− c̃n)R
+
bn

c̃n + (1− c̃n)R
+
bn

,

B2 +
n = 2

c̃2n(1− c̃n)(2− c̃n)(1 +R+
bn

)

((c̃n +R+
bn

(1− c̃n))4

(
R+

bn
+

c̃n
2− c̃n

)
.

Next, we are ready to introduce a test based on the estimated
shrinkage intensity for testing the hypotheses

H0 : α̃+
n = 0 against H1 : α̃+

n > 0 (30)

which are equivalent to

H0 : w̃GMV P = r̃ against H1 : w̃GMV P �= r̃.

Similarly as in the case of a nonsingular covariance matrix,
we use the test statistic S+

n =
√
n ˆ̃α+(bn = r) for testing (30).

From Theorem 4 we get

S+
n −√

nA+
n

B+
n

d→ N (0, 1) for q/n → c̃ ∈ (0, 1) as n → ∞,

where A+
n and B+

n are given in the statement of Theorem 4.

Under the null hypothesis, S+
n

d→ N (0, 2(1− c̃)/c̃) for q/n →
c̃ ∈ (0, 1) as n → ∞. The power function can be constructed in
a similar manner as in the case of a nonsingular matrix Σ.

This result extends our previous findings and suggests that we
may still use the test based on the optimal shrinkage intensity
in the case of a singular population covariance matrix with the
only difference that instead of p/n → c ∈ (0, 1) we demand
q/n → c̃ ∈ (0, 1) as n → ∞ and instead of the usual inverse
we can safely use the Moore-Penrose inverse of the sample
covariance matrix Σ̂n. Moreover, the test based on the shrinkage
intensity needs no multiple testing scheme, which indicates its
huge advantage over the test based on the Mahalanobis distance.

IV. COMPARISON STUDY

The aim of this section is to compare several tests for the
weights of the GMVP.

In the preceding two subsections, we considered two tests for
the weights of the GMVP. For the test based on the empirical
portfolio weights, the exact distribution of the test statistic is
known. In Section III-A, the asymptotic power function of the
test proposed by [14] is derived in a high-dimensional setting. In
Section III-B, a new test is proposed, and its asymptotic power
function, which purely depends on Rbn=r, is determined. The
fact that both tests depend on different quantities complicates
the comparison of both tests. Note that

Rbn=r = 1′Σ−11 r′Σr− 1

= λn
r′Σr

(w∗
GMV P − r∗)′(Q∗)−1(w∗

GMV P − r∗)
− 1.

Here, both tests are compared with each other via simulations.
Additionally, we include the test presented by [29, Theorem 10]
in our comparison study as well as tests derived for a singular
covariance matrix in Section III-C.

A. Design of the Comparison Study

Let Σ be a p× p positive semi-definite covariance matrix
of asset returns, n the number of samples, and p ≡ p(n). The
structure of the covariance matrix is chosen in the following
way: one-ninth of the non-zero eigenvalues are set equal to 2,
four-ninths are set equal to 5, and the rest are set equal to 10.
A similar structure of the spectrum of the populaion covariance
matrix is present in [38]. In doing so, we can ensure that the
eigenvalues are not very dispersed, and if p increases, then the
spectrum of the covariance matrix does not change its behaviour.
Then, the covariance matrix is determined as follows

Σ = ΘΛΘ
′
,

where Λ is the diagonal matrix whose diagonal elements are the
predefined eigenvalues andΘ is the p× pmatrix of eigenvectors
obtained from the spectral decomposition of a standard Wishart-
distributed random matrix.

We consider the following scenario for modelling the changes.
Under the alternative hypothesis, the covariance matrix is de-
fined by

Σ1 = ΘΔΛΔΘ
′
, (31)

where

Δ =

(
Dm 0
0 Ip−m

)
, (32)

with Dm = diag(a) and a = 1 + 0.1κ, κ ∈ {1, 2, . . . , 15},
m ∈ {0.2p, 0.8p}whenΣ is non-singular andm ∈ {0.2q, 0.8q}
when Σ is singular. The matrix Δ determines the deviations
from the null hypothesis due to changes in the eigenvalues of
the covariance matrix Σ. Other specifications of the covariance
matrix Σ under the alternative hypothesis might be considered
as well.
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Fig. 3. Empirical power functions of the three tests for different values of
c, 20% changes on the main diagonal according to scenario given in (31) and
n = 500.

Fig. 4. ROC of the three tests for different values of c, 20% changes on the
main diagonal according to scenario given in (31) and n = 500.

B. Comparison of the Tests

In this section, we present the results of a simulation study to
compare the power functions and the ROC (Receiver Operating
Characteristic) curves of three tests in the case of a non-singular
covariance matrix, of five tests when Σ is singular and p < n,
and of two tests when Σ is singular and p > n. Our simula-
tion study is based on 105 independent realizations of Δ. The
significance level α is chosen to be 5% in the figures showing
the power functions and a = 1.4 in the figures with the ROC
curves. We set n = 500, choose c ∈ {0.1, 0.5, 0.7, 0.9} when
Σ is non-singular, and use c̃ ∈ {0.2, 0.6} in the singular case.
Furthermore, we consider p ∈ {450, 600} in the singular case.

In order to illustrate the performance of the tests based on
the shrinkage approach, the test based on the statistic of [14],
and the test proposed by [29] for the non-singular covariance
matrix, the empirical power functions for the general hypothesis
are evaluated for m = 0.2p (Figure 3) and m = 0.5p (Figure 5)
while the ROC curves are presented in Figure 4 (m = 0.2p) and
Figure 6 (m = 0.5p).

Fig. 5. Empirical power functions of the three tests for different values of
c, 50% changes on the main diagonal according to scenario given in (31) and
n = 500.

Fig. 6. ROC of the three tests for different values of c, 50% changes on the
main diagonal according to scenario given in (31) and n = 500.

In Figure 3, where 20% of the eigenvalues of the covariance
matrix are contaminated, we observe a slow increase of the
power functions for c = 0.9 and a better behaviour for smaller
values of c. In the case c = 0.9, there is no significant difference
in the performance of the tests. For all considered values of c,
the power curves of Glombeck’s test and the test of [14] are
very close to each other and they lie slightly above the power
curve of the test based on the shrinkage approach. Some larger
deviations are present in the case c = 0.1. While in terms of
the power the tests of [29] and of [14] outperform the test
based on the shrinkage approach, the opposite conclusion is
drawn when the tests are compared by using their ROC curves.
Here, we observe that the new approach performs better than
the other two competitors. These two different performance
results can be explained by the observation that the test based
on the shrinkage approach tends to be in general undersized
for small values of c which are not of great importance for
the proposed high-dimensional approach. Finally, we observe a
similar behavior of the tests in terms of both the power functions
and the ROC curves in Figures 5 and 6 for m = 0.5p.
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Fig. 7. Empirical power functions of the three tests derived under a non-
singular covariance matrix and of the two tests developed for the singular
covariance matrix for different values of c̃, 20% changes on the main diagonal
according to scenario given in (31), n = 500, p = 450 (upper figures) and
p = 600 (lower figures).

Fig. 8. ROC of the three tests derived under a non-singular covariance matrix
and of the two tests developed for the singular covariance matrix for different
values of c̃, 20% changes on the main diagonal according to scenario given in
(31), n = 500, p = 450 (upper figures) and p = 600 (lower figures).

Fig. 9. Empirical power functions of the three tests derived under a non-
singular covariance matrix and of the two tests developed for the singular
covariance matrix for different values of c̃, 50% changes on the main diagonal
according to scenario given in (31), n = 500, p = 450 (upper figures) and
p = 600 (lower figures).

Fig. 10. ROC of the three tests derived under a non-singular covariance matrix
and of the two tests developed for the singular covariance matrix for different
values of c̃, 50% changes on the main diagonal according to scenario given in
(31), n = 500, p = 450 (upper figures) and p = 600 (lower figures).

In Figures 7 to 10, we present the results in the case of the
singular covariance matrix Σ with two possible values for the
ranks, namely rank(Σ) ∈ {100, 300}which corresponds to c̃ ∈
{0.2, 0.6}. It is remarkable that all three tests, which do not take
into account the singularity of the covariance matrix, perform
very bad. Both the power functions and the ROC curves are very
close to zero in all considered cases. This is due to the fact that
under the null hypothesis the computed asymptotic variances
for all test statistics are considerably large since the singularity
of the covariance matrix was ignored in their derivations. In
contrast, the tests of Section III-C, which take into account this
singularity in their derivations, provide improvements in both the
expressions of the resulting test statistics and in their asymptotic
distributions.

Further, we note a very good performance of the test based
on the shrinkage approach that takes the singularity of the
covariance matrix into account. It outperforms other approaches
in almost all considered cases independently of the choice of the
performance criterion. Only for c̃ = 0.6 and p = 450, the test of
[9] shows a slightly better power function but this is due to the
fact that its type I error is larger. Finally, in terms of the ROC
curve the test of [9] has not a good performance for moderate
and large values of the false positive rate. This result is expected
since, the test of [9] is a multiple test whose critical values are
obtained by employing the Bonferroni correction which appears
to be very conservative for moderate and large significance
values of the test.

V. SUMMARY

The main focus of this study is the inference of the GMVP
weights. After constructing an optimal portfolio, an investor is
interested to know whether or not the weights of the portfolio
he is holding are still optimal at a fixed time point. For that
reason, we investigate several asymptotic and exact statistical
procedures for detecting deviations in the weights of the GMVP.
One test is based on the sample estimator of the GMVP weights,
whereas another uses its shrinkage estimator. To the best of



4488 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 17, SEPTEMBER 1, 2019

our knowledge, the shrinkage approach, which is very popular
in point estimation, is applied in test theory for the first time.
The asymptotic distributions of both test statistics are obtained
under the null and alternative hypotheses in a high-dimensional
setting. This finding is a great advantage with respect to other
approaches that appear in the literature which do not elaborate
on the distribution under the alternative hypothesis (e.g., [29]).
Finally, we deal with the case of a singular covariance matrix by
deriving new testing procedures for the weights of the GMVP
that are adopted to the singularity. The distributions of the
resulting test statistics are obtained under both the null and
alternative hypothesis.

In order to compare the performances of the proposed pro-
cedures, the empirical power functions of the derived tests are
determined. It is shown that the test based on the shrinkage
approach performs uniformly better than the other tests con-
sidered in the analysis in terms of both the power function
and the ROC curve comparisons when the covariance matrix
is singular. The new approach appears to be very promising for
testing the portfolio weights in a high-dimensional situation. For
a specific scenario, we also have studied a problem how good
the power function of the asymptotic test based on the Maha-
lanobis distance approximates the power of the corresponding
test and found good results already for moderate sample size,
like n = 500with p = {50, 250, 350, 450}. Surely, these results
could not be considered as a general statement to the problem and
further investigation in this direction should be done. A similar
topic should also be investigated for the test based on a shrinkage
estimator, although only asymptotic results are available in the
latter case.

APPENDIX

In this section, the proofs of Theorems are given.

Let the symbol
d
= denote equality in distribution. In Lemma 5,

we first derive a stochastic representation for Tn.
Lemma 5: Under the conditions of Theorem 1, the stochastic

representation of Tn is expressed as

Tn
d
=

n− p

p− 1

(
√
λnξ3 + ω1)

2 + ξ4
ξ2

, (33)

where ω1 ∼ N (0, 1), ξ2 ∼ χ2
n−p, ξ3 ∼ χ2

n−1, and ξ4 ∼ χ2
p−2;

ω1, ξ2, ξ3, and ξ4 are independent.
Proof of Lemma 5: Let L be a (p− 1)× p matrix such that

ŵ∗
n = Lŵn, i.e., it transforms the vector of the estimated GMVP

weights into the vector of its (p− 1)first components. We define
M′ = (L′,1) and

MΣ−1M′ = {Hij}i,j=1,2, MΣ̂−1
n M′ = {Ĥij}i,j=1,2

with H22 = 1′Σ−11, Ĥ22 = 1′Σ̂−1
n 1, H12 = LΣ−11, Ĥ12 =

LΣ̂−1
n 1, H11 = LΣ−1L′, and Ĥ11 = LΣ̂−1

n L′.
Since (n− 1)Σ̂ ∼ Wp(n− 1,Σ) (p-dimensional Wishart

distribution with n− 1 degrees of freedom and covariance ma-
trix Σ) and rank(M) = p we get with [43, Theorem 3.2.11]
that

(n− 1)(MΣ̂−1
n M′)−1 ∼ Wp(n− 1, (MΣ−1 M′)−1),

and, consequently (see, [32, Theorem 3.4.1]),

(n− 1)−1MΣ̂−1
n M′ ∼ W−1

p (n+ p,MΣ−1 M′).

Recalling the definition of ŵ∗
n and Q̂∗

n, we get from Theorem 3
of [11] that

1) Ĥ22 = 1′Σ̂−1
n 1 is independent of Ĥ12/Ĥ22 = ŵ∗

n and
Ĥ11 − Ĥ12Ĥ21/Ĥ22 = Q̂∗

n

2) (n− 1)−1Ĥ22 = (n− 1)−11′Σ̂−1
n 1 ∼ W−1

1 (n− p+
2,1′Σ−11) and, consequently,

ξ2 = (n− 1)
1′Σ−11

1′Σ̂−1
n 1

∼ χ2
n−p, (34)

3) (n− 1)−1Ĥ12|(n− 1)−1Ĥ22, (n− 1)−1Q̂∗
n

∼ N
(
H12

H11
(n− 1)−1Ĥ22, (n− 1)−3Q̂∗

n

Ĥ2
22

H22

)

or, equivalently,

ŵ∗
n|(n− 1)−1Ĥ22, (n− 1)−1Q̂∗

n

∼ N
(
H12

H11
, (n− 1)−1Q̂∗

n

1

H22

)
,

where the conditional distribution does not depend on
Ĥ22, i.e., ŵ∗

n and Q̂∗
n are independent of ξ2. Hence,

ŵ∗
n|(n− 1)−1Q̂∗

n ∼ N
(
w∗

GMV P ,
(n− 1)−1Q̂∗

n

1′Σ−11

)
.

(35)

Let

ξ1 = (n− 1)
(
1′Σ−11

)
(ŵ∗

n − r∗)′ (Q̂∗
n)

−1 (ŵ∗
n − r∗) .

Then, ξ1 and ξ2 are independent, and the application of (35)
leads to

ξ1|(n− 1)−1Q̂∗
n ∼ χ2

p−1,λn(Q̂∗
n)

,

with

λn(Q̂
∗
n) = (n− 1)

(
1′Σ−11

)

× (w∗
GMV P − r∗)′ (Q̂∗

n)
−1 (w∗

GMV P − r∗) .

Moreover, in using (n− 1)(Q̂∗
n)

−1 ∼ Wp(n− 1, (Q∗)−1)
(cf. [43, Theorems 3.2.10 and 3.2.11]), we obtain

λn(Q̂
∗
n) = λn

(n− 1)(w∗
GMV P − r∗)′(Q̂∗

n)
−1(w∗

GMV P − r∗)
(w∗

GMV P − r∗)′(Q∗)−1(w∗
GMV P − r∗)

d
= λnξ3 , (36)

where ξ3 ∼ χ2
n−1.

The last equality shows that the conditional distribution of ξ1
given Q̂∗

n depends only on Q̂∗
n over ξ3, and, consequently, the

conditional distribution ξ1|Q̂∗
n coincides with ξ1|ξ3. Using the

distributional properties of the non-central F -distribution, we
obtain the following stochastic representation for ξ1 given by

ξ1
d
= (
√

λnξ3 + ω1)
2 + ξ4 ,

and, hence,

Tn =
n− p

p− 1

ξ1
ξ2

d
=

n− p

p− 1

(
√
λnξ3 + ω1)

2 + ξ4
ξ2

,



BODNAR et al.: TESTS FOR THE WEIGHTS OF THE GLOBAL MINIMUM VARIANCE PORTFOLIO IN A HIGH-DIMENSIONAL SETTING 4489

where ω1 ∼ N (0, 1), ξ2 ∼ χ2
n−p, ξ3 ∼ χ2

n−1, and ξ4 ∼ χ2
p−2;

ω1, ξ2, ξ3, and ξ4 are independent. �
Proof of Theorem 1: Applying (33) of Lemma 5, we get

n− p

ξ2

√
p− 1

[
λnξ3 + 2

√
λnξ3ω1 + ω2

1 + ξ4
p− 1

−
(
1 + λn

n− 1

p− 1

)
ξ2

n− p

]

=
n− p

ξ2

[
λn

n− 1

p− 1

√
p− 1

(
ξ3

n− 1
− 1

)

+
√

p− 1

(
ξ4

p− 1
− 1

)
−
(
1 + λn

n− 1

p− 1

)

×
√

p− 1

(
ξ2

n− p
− 1

)
+ 2
√

λn

√
ξ3

p− 1
ω1 +

ω2
1√

p− 1

]
.

Using the asymptotic properties of aχ2-distribution with infinite
degrees of freedom and the independence of ω1, ξ2, ξ3, ξ4, the
application of Slutsky’s lemma (see, for example, Theorem 1.5
in [21]) leads to

√
p− 1

(
Tn − 1− λn

n−1
p−1

Cn

)
d→ N (0, 1),

where

C2
n = 2 + 2

λ2
n

c
+ 4

λn

c
+ 2

c

1− c

(
1 +

λn

c

)2

.

�
In order to stress the dependence on n, we use the notation

Σn in the proofs of the asymptotic results. For the proof of
Theorem 2 we apply Lemma 6. It must be mentioned that
Proposition 3 of [29] is not fully correct that is why we can
not use this result in proving Lemma 6.

Lemma 6: Let

Dn =
b′
nΣ̂nbn

b′
nΣnbn

− 1,

En =
1′Σ̂−1

n 1

1′Σ−1
n 1

− 1

1− cn
.

and denote the unit norm vectors

x =
Σ

1/2
n bn√

b′
nΣnbn

, y =
Σ

−1/2
n 1√
1′Σ−1

n 1
.

Then, under the assumptions of Theorem 2 it holds that

√
n

(
Dn

En

)
d→ N

⎡

⎣
(
0
0

)
, 2

⎛

⎝ 1 − lim
n→∞(x′y)2

1−c

− lim
n→∞(x

′y)2

1−c
1

(1−c)3

⎞

⎠

⎤

⎦

for p
n → c < 1 as n → ∞.

Proof of Lemma 6: Noting that Σ̂n
d
= Σ

1/2
n SnΣ

1/2
n with

Sn ∼ W (n− 1, I), the result of Lemma 6 follows by the direct
application of Theorem 3 in [3], where it was proven that for

p
n → c < 1 as n → ∞ the following result holds

√
n

(
x′Snx− 1

y′S−1
n y − 1

1−cn

)
d→ N

(
0,

2

c
Θx,y ◦Ωc

)
,

where

Θx,y =

(
lim
n→∞(x

′x)2 lim
n→∞(x

′y)2

lim
n→∞(x

′y)2 lim
n→∞(y

′y)2

)

=

(
1 lim

n→∞(x
′y)2

lim
n→∞(x

′y)2 1

)
,

Ωc =

(
ωc,11 ωc,12

ωc,12 ωc,22

)

with

ωc,11 =

∫
z2dFc(z)−

(∫
zdFc(z)

)2

,

ωc,12 = 1−
∫

zdFc(z)

∫
1

z
dFc(z),

ωc,22 =

∫
1

z2
dFc(z)−

(∫
1

z
dFc(z)

)2

and the symbol ◦ denotes the Hadamard (entrywise) product of
matrices. The functionFc(z) denotes the cumulative distribution
function of the Marchenko-Pastur law (see, [4]) for c < 1 given
by

dFc(z) =
1

2πzc

√
(a+ − z)(z − a−)1[a−,a+](z)dz,

where a± = (1±√
c)2. The moments of Fc(z) given in the

matrix Ωc are already calculated in [29, Lemma 14] and, thus,
it holds

Ωc =

(
c − c

1−c

− c
1−c

c
(1−c)3

)
.

At last, after elementary calculus the result follows. �
Proof of Theorem 2: First, the asymptotic distribution of

R̂bn
is derived. We rewrite R̂bn

as

R̂bn
= (1− cn)

b′
nΣ̂nbn

b′
nΣnbn

1′Σ̂−1
n 1

1′Σ−1
n 1

b′
nΣnbn1

′Σ−1
n 1− 1

= Δn(1− cn)

(
DnEn +

Dn

1− cn
+ En

)
+Δn − 1

with

Δn = b′
nΣnbn 1′Σ−1

n 1.

Then, it follows that

√
n
R̂bn

−Δn + 1

Δn

=
√
n(1− cn)(DnEn +Dn/(1− cn) + En)

= (1− cn)
√
n(Dn/(1− cn) + En) + op(1)

= (1 1− cn)
√
n

(
Dn

En

)
+ op(1)

d→ N
(
0, 2

(
2− c

1− c
− 2

Δn

))
,
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where the last equality follows from Lemma 6.
Since

ˆ̃αn =
(1− cn)

(
R̂bn−Δn+1

Δn
+ Δn−1

Δn

)

cn
Δn

+ (1− cn)
(

R̂bn−Δn+1
Δn

+ Δn−1
Δn

) ,

it follows that

√
n

(
ˆ̃αn − (1− cn)(Δn − 1)

cn + (1− cn)(Δn − 1)

)
= In + IIn

with

In =
√
n

(1− cn)
(

R̂bn−Δn+1
Δn

)

cn
Δn

+ (1− cn)
(

R̂bn−Δn+1
Δn

+ Δn−1
Δn

)

=
√
n
(1− cn)

(
R̂bn−Δn+1

Δn

)

cn
Δn

+ (1− cn)
Δn−1
Δn

×
cn
Δn

+ (1− cn)
Δn−1
Δn

cn
Δn

+ (1− cn)
(

R̂bn−Δn+1
Δn

+ Δn−1
Δn

)

=
√
n
(1− cn)

(
R̂bn−Δn+1

Δn

)

1− cn − 1−2cn
Δn

× 1

1 + 1−cn√
n(1−cn− 1−2cn

Δn
)

√
n R̂bn−Δn+1

Δn

.

Furthermore,

IIn =
√
n(1− cn)

(
1− 1

Δn

)

×
⎛

⎝ 1

cn
Δn

+ (1− cn)
(

R̂bn−Δn+1
Δn

+ Δn−1
Δn

)

− 1
cn
Δn

+ (1− cn)
Δn−1
Δn

)

=
√
n

1− cn

1− cn − 1−2cn
Δn

(
1− 1

Δn

)

×

⎛

⎜⎝
1

1 + 1−cn
1−cn− 1−2cn

Δn

R̂bn−Δn+1
Δn

− 1

⎞

⎟⎠

= − (1− cn)
2

(1− cn − 1−2cn
Δn

)2

(
1− 1

Δn

)

×
√
n R̂bn−Δn+1

Δn

1 + 1−cn√
n(1−cn− 1−2cn

Δn
)

√
n R̂bn−Δn+1

Δn

.

Consequently, if
√
n(1− cn − 1−2cn

Δn
) → ∞ as n → ∞

then

In + IIn =
√
n
R̂bn

−Δn + 1

Δn

cn(1− cn)

(1− cn − 1−2cn
Δn

)2
1

Δn

× 1

1 + 1−cn√
n(1−cn− 1−2cn

Δn
)

√
n R̂bn−Δn+1

Δn

=
√
n
R̂bn

−Δn + 1

Δn

cn(1− cn)Δn

(cn + (Δn − 1)(1− cn))2

× (1 + op(1))

d≈ N
(
0, 2

c2n(1− cn)(2− cn)Δn

(cn + (Δn − 1)(1− cn))4

×
(
Δn +

2(cn − 1)

2− cn

))
,

where we have used the equality

2− cn
1− cn

− 2

Δn
=

2− cn
1− cn

1

Δn

(
Δn +

2(cn − 1)

2− cn

)
.

Since b′
nΣnbn ≥ minww′Σnw = 1

1′
nΣ

−1
n 1n

, it holds that Δn

≥ 1, and, thus, the condition limn→∞
√
n(1− cn − 1−2cn

Δn
) →

∞ is always fulfilled. Taking into account the relation Δn =
Rbn

+ 1 the proof of Theorem 2 is finished. �
In the proof of Theorem 3 we use the following two lemmas.

Lemma 7 extends the results of Theorem 1 in [9] to the case n >
p, while Lemma 8 presents a stochastic representation of T̃n

similarly to the statement of Lemma 5 in the non-singular case.
Lemma 7: LetV ∼ Wp(N,Σ)with rank(Σ) = q ≤ N and

letL : k × p be a matrix of constants of rankk ≤ q. Then it holds
that

(LV+L′)−1 ∼ Wk

(
n− q + k, (LΣ+L′)−1

)
.

Proof of Lemma 7: The stochastic representation of V is
expressed as

V
d
= YY′ with Y ∼ Np,N (0,Σ⊗ In) . (37)

Let Σ = QΛQ′ be the singular value decomposition of Σ
where Λ : q × q is the matrix of non-zero eigenvalues and
Q : p× q is the semi-orthogonal matrix of the corresponding
eigenvectors, i.e., Q′Q = Iq . Then the stochastic representation
of Y is given by

Y
d
= QΛ1/2Z with Z ∼ Nq,N (0, Iq ⊗ In) , (38)

and, hence,

V
d
= QΛ1/2ZZ′Λ1/2Q′ , (39)

where ZZ′ ∼ Wq(N, Iq).
Since QΛ1/2 is a full column-rank matrix and Λ1/2Q′ is a

full row-rank matrix, we get

LV+L′ d
= L

(
QΛ1/2ZZ′Λ1/2Q′

)+
L′

= LQΛ−1/2 (ZZ′)+ Λ−1/2Q′L′

= LQΛ−1/2 (ZZ′)−1
Λ−1/2Q′L′ , (40)
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because ZZ′ is non-singular (cf., [31]). Finally, the application
of Theorem 3.2.11 in [43] leads to

(LV+L′)−1 ∼ Wk

(
N − q + k,

(
LQΛ−1/2IqΛ

−1/2Q′L′
)−1
)

= Wk

(
N − q + k, (LΣ+L′)−1

)
.

�
Lemma 8: Under the conditions of Theorem 3, the stochastic

representation of T̃n is expressed as

T̃n
d
=

n− q

k

(√
λ̃nξ3 + ω1

)2

+ ξ4

ξ2
, (41)

whereω1 ∼ N (0, 1), ξ2 ∼ χ2
n−q, ξ3 ∼ χ2

n−q+k, and ξ4 ∼ χ2
k−1;

ω1, ξ2, ξ3, and ξ4 are independent.
Proof of Lemma 8: Let M′ = (L′,1) and define

MΣ+M′ = {Hij}i,j=1,2, MΣ̂+
n M′ = {Ĥij}i,j=1,2

with H22 = 1′Σ+1, Ĥ22 = 1′Σ̂+
n1, H12 = LΣ+1, Ĥ12 =

LΣ̂+
n1, H11 = LΣ+L′, and Ĥ11 = LΣ̂+

nL
′.

Since (n− 1)Σ̂ ∼ Wp(n− 1,Σ) and rank(M) = k + 1 ≤
q, the application of Lemma 7 leads to

(n− 1)(MΣ̂+
nM

′)−1 ∼ Wk+1(n− q + k, (MΣ+ M′)−1),

and, consequently, (n− 1)−1MΣ̂+
nM

′ has a non-singular
Wishart distribution given by

(n− 1)−1MΣ̂+
nM

′ ∼ W−1
k+1(n− q + 2k + 2,MΣ+ M′).

Let

ξ1 = (n− 1)
(
1′Σ+1

) (
ˆ̃w∗
n − r̃∗

)′
( ˆ̃Q∗

n)
−1
(
ˆ̃w∗
n − r̃∗

)
,

ξ2 = (n− 1)
1′Σ+1

1′Σ̂+
n1

,

where ˆ̃w∗
n and ˆ̃Q∗

n are defined in Section III-C.
Since (n− 1)−1MΣ̂+

nM
′ has a non-singular Wishart distri-

bution, following the proof of Lemma 5, we get that ξ1 and ξ2
are independent, ξ2 ∼ χ2

n−q , and

ξ1|(n− 1)−1 ˆ̃Q∗
n ∼ χ2

k,λ̃n(
ˆ̃Q∗

n)
,

with

λ̃n(
ˆ̃Q∗
n) = (n− 1)

(
1′Σ+1

)

× (w̃∗
GMV P − r̃∗)′ ( ˆ̃Q∗

n)
−1 (w̃∗

GMV P − r̃∗)

and λ̃n(
ˆ̃Q∗
n)

d
= λnξ3 where ξ3 ∼ χ2

n−q+k and

λ̃n =
(
1′Σ+1

)
(w̃∗

GMV P − r̃∗)′ (Q̃∗)−1 (w̃∗
GMV P − r̃∗) .

Hence,

T̃n =
n− q

k

ξ1
ξ2

d
=

n− q

k

(√
λ̃nξ3 + ω1

)2

+ ξ4

ξ2
,

whereω1 ∼ N (0, 1), ξ2 ∼ χ2
n−q, ξ3 ∼ χ2

n−q+k, and ξ4 ∼ χ2
k−1;

ω1, ξ2, ξ3, and ξ4 are independent. �
Proof of Theorem 3: Applying (41) of Lemma 8,

we get

n− q

ξ2

√
k

[
λ̃nξ3 + 2

√
λ̃nξ3ω1 + ω2

1 + ξ4

k

−
(
1 + λ̃n

n− q + k

k

)
ξ2

n− q

]

=
n− q

ξ2

[
λ̃n

n− q + k

k

√
k

(
ξ3

n− q + k
− 1

)
+
√
k

(
ξ4
k

− 1

)

−
(
1 + λ̃n

n− q + k

k

)√
k

(
ξ2

n− q
− 1

)

+ 2

√
λ̃n

√
ξ3
k
ω1 +

ω2
1√
k

]
.

Using the asymptotic properties of aχ2-distribution with infinite
degrees of freedom and the independence of ω1, ξ2, ξ3, ξ4, the
application of Slutsky’s lemma (see, for example, Theorem 1.5
in [21]) leads to

√
k

(
T̃n − 1− λ̃n

n−q+k
k

C̃n

)
d→ N (0, 1),

where

C̃2
n = 2 + 2

(1− c̃+ b̃)λ̃
2

n

b̃
+ 4

(1− c̃+ b̃)λ̃n

b̃

+ 2
b̃

1− c̃

(
1 +

(1− c̃+ b̃)λ̃n

b̃

)2

.

�
In order to proof Proposition 1 we need the following lemma,

which is a special case of [48, Theorem 1].
Lemma 9: Let a nonrandom q × q-dimensional matrix Θq

possesses a uniformly bounded trace norm (sum of singular
values) and let SN ∼ W (N, Iq). Then it holds that

∣∣tr
(
Θq(SN − zIq)

−1
)− (x(z)− z)−1tr (Θq)

∣∣ a.s.−→ 0

for q/N −→ c̃ ∈ (0,+∞) as N → ∞, where

x(z) =
1

2

(
1− c̃+ z +

√
(1− c̃+ z)2 − 4z

)
. (42)

Proof of Proposition 1: The proof is similar to the proof of
Theorem 2.1 by [13] with a few important modifications due to
the singularity of Σn. Indeed, taking into account the equality
(39) we have

(n− 1)Σ̂n
d
= QΛ1/2ZnZ

′
nΛ

1/2Q′ ,

where the Wishart matrix ZnZ
′
n ∼ Wq(n− 1, Iq) is nonsingu-

lar. Using now the properties of the Moore-Penrose inverse and
(40) we get

Σ̂+
n

d
= QΛ−1/2

(
1

n− 1
ZnZ

′
n

)−1

Λ−1/2Q′

= Σ̃−1/2
n

(
1

n− 1
ZnZ

′
n

)−1

Σ̃−1/2 ′
n . (43)

Moreover, note the following identities

Σn = Σ̃1/2
n Σ̃1/2 ′

n andΣ+
n = Σ̃−1/2

n Σ̃−1/2 ′
n . (44)
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Recall the optimal shrinkage intensity expressed as

α̂+
n =

b′
nΣnbn − 1′Σ̂

+

nΣnbn

1′Σ̂
+

n1

1′Σ̂
+

nΣnΣ̂
+

n1

(1′Σ̂
+

n1)2
− 21′Σ̂

+

nΣnbn

1′Σ̂
+

n1
+ b′

nΣnbn

. (45)

Due to (43) and (44) it holds that for all z ∈ C+ = {z̃ ∈ C :
�(z̃) > 0}

1′Σ̂
+

n1 = tr

[(
1

n− 1
ZnZ

′
n − zI

)−1

Θξ

]∣∣∣∣∣
z=0

(46)

1′Σ̂
+

nΣnbn = tr

[(
1

n− 1
ZnZ

′
n − zI

)−1

Θζ

]∣∣∣∣∣
z=0

(47)

1′Σ̂
+

nΣnΣ̂
+

n1 =
∂

∂z
tr

[(
1

n− 1
ZnZ

′
n − zI

)−1

Θξ

]∣∣∣∣∣
z=0

,

(48)

with Θξ = Σ̃
− 1

2
′

n 11′Σ̃
− 1

2

n and Θζ = Σ̃
1
2

′

n bn1
′Σ̃

− 1
2

n . The sym-
bol ·|z=0 stays for the limit z → 0.

Let

ξn(z) = tr

[(
1

n− 1
ZnZ

′
n − zI

)−1

Θξ

]
,

ζn(z) = tr

[(
1

n− 1
ZnZ

′
n − zI

)−1

Θζ

]
.

where both matrices Θξ and Θζ possess a bounded trace norm
since

‖Θξ‖tr = 1′Σ+
n1 ≤ M−1

l and

‖Θζ‖tr =

√
1′Σ+

n1
√
b′
nΣnbn ≤

√
Mu

Ml
.

Then, for all z ∈ C+, we get from Lemma 9

|ξn(z)− (x(z)− z)−1tr [Θξ] |
= |ξn(z)− (x(z)− z)−11′Σ+1| a.s.−→ 0 (49)

|ζn(z)− (x(z)− z)−1tr [Θζ ] |
=
∣∣ζn(z)− (x(z)− z)−1

∣∣ a.s.−→ 0 (50)

for q/n → c̃ ∈ (0, 1) as n → ∞, where x(z) is given in (42).
Using that limz→0+(x(z)− z)−1 = (1− c̃)−1 and combining
(49) and (50) with (46) and (47) leads to

|1′Σ̂
+

n1− (1− c̃)−11′Σ+
n1| a.s.−→ 0, (51)

∣∣∣1′Σ̂
+

nΣnbn − (1− c̃)−1
∣∣∣ a.s.−→ 0 (52)

for q/n → c̃ ∈ (0, 1) as n → ∞. Finally, using the equality

∂

∂z

1

x(z)− z

∣∣∣∣
z=0

= − x′(z)− 1

(x(z)− z)2

∣∣∣∣
z=0

=
1

(1− c̃)3
,

we get ∣∣∣∣ξ
′
n(0)−

∂

∂z
(x(z)− z)−1

∣∣∣∣
z=0

tr [Θξ]

∣∣∣∣

= |ξ′n(0)− (1− c̃)−31′Σ+
n1| a.s.−→ 0

for q/n → c̃ ∈ (0, 1) as n → ∞. As a result,

|1′Σ̂
+

nΣnΣ̂
−1

n 1− (1− c̃)−31′Σ+
n1| a.s.−→ 0 (53)

for q/n → c̃ ∈ (0, 1) as n → ∞. At last, the application of (51),
(52) and (53) to (45) implies the result of Proposition 1. �

Proof of Theorem 4: Using the proof of Proposition 1 we can
immediately deduce that Lemma 6 also holds in the case of
singular covariance matrix Σn with the only exception that the
usual matrix inverse must be replaced by the Moore-Penrose
inverse and p must be replaced by q, i.e., cn becomes c̃n. That
is why the proof of Theorem 2 can be applied step by step again
without any further changes. �
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