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Chapter 4 
Sensing the city through new forms of 

urban data1 
Achilleas Psyllidis 

 
 
 
1 Introduction 
Different data sources and the methods that turn the generated data into insights have hitherto largely 
shaped how we conceptualize urban phenomena. Coarse-grained or aggregate data allow us to 
understand the evolution of a phenomenon (e.g. traffic flows, gentrification, etc.) within a specific and 
predefined area – or spatial unit – at a larger scale (e.g. neighborhood, postcode area, etc.). Fine-grained 
or disaggregated data offer the possibility of gaining insight into processes at a smaller scale. One 
example could be the daily commuting behavior of a group of individuals from home to work, or the 
amount of people visiting a shop over the course of a day. 

Traditionally, the study of cities has been based on both quantitative and qualitative data with 
various granularities, from coarse to more fine-grained. The primary sources of information have been 
– and continue to be – censuses, interviews, and statistical surveys, usually designed and implemented 
by governmental authorities (see chapters 2 and 5). Observations at a finer level (e.g. household 
income, employment status per person within a household) are often aggregated into higher-level spatial 
units (e.g. rates in a postcode area or electoral unit) to ensure privacy. However, aggregation into coarser 
units had also to do with the limited analytical capabilities of computer systems in previous decades. 
Until recently, it was almost impossible to store and process urban data at fine resolutions. Lately, 
however, the exponential increase of storage and processing capabilities of modern-day computational 
systems has not only allowed the analysis of very disaggregated data: it has also given rise to a whole 
new range of data sources about cities, and an extended arsenal of analysis techniques that can turn 
them into actionable information. 
 The current landscape of urban data comprises two general categories, based on how the data 
are generated: (1) the traditional, designed data such as censuses, interviews, and surveys that I referred 
to previously, and (2) the contemporary, organic data about cities that are generated either through 
technologies embedded in the urban fabric (e.g. sensors, cameras, etc.) or are the byproduct of people’s 
online activities (e.g. tweets, blog posts, reviews, etc.) (Singleton, Spielman, Folch, 2017). This chapter 
focuses specifically on the second category of urban data, given that – unlike the ones belonging to the 
first category – they have only recently been introduced to and considered in the analysis of cities. For 
this reason, I will collectively refer to them as new forms of urban data. 
 Sources that generate new forms of urban data may vary substantially. From the perspective of 
devices and technologies embedded in the urban fabric, these could include various types of sensors, 
cameras, Wi-Fi networks, GPS receivers, and card-based ticketing systems in public transport. 
Regarding online sources, examples include geo-enabled social media (e.g. Twitter, Instagram), 
mapping applications (e.g. OpenStreetMap, Google Maps), travel and tourism-related platforms (e.g. 
Airbnb, TripAdvisor), through which people actively provide and generate new data. Spatially-tagged 
user-generated reviews, textual descriptions, ratings, and other media (e.g. photos and videos) could 
further enhance our understanding about people’s experiences, sentiments, and overall behavior in 
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cities. Moreover, information is being updated dynamically, often in real time, and therefore offering 
insight into aspects of cities and city life that have not been recorded before. 
 New forms of urban data do not, by any means, replace the conventional, well-established 
sources of information in city analytics. Instead, they may ideally complement them with features that 
are latent or absent in designed datasets. To do so, however, new approaches to the processing and 
analysis of emerging data are needed. As opposed to traditional, designed data, the newly emerging 
datasets are generated organically, sometimes even spontaneously, without a carefully defined purpose 
and scope in mind. For example, social media records could facilitate our understanding of human 
mobility over time, but this comes, in fact, as a byproduct – that is, the original purposes of social media 
are different than the ones we could eventually use their data for. The resulting datasets are, therefore, 
messy, often uncertain, and conceivably unrepresentative of a population. Statistical (spatial) analysis 
techniques developed originally for structured datasets of limited size and variety of types are, hence, 
not suitable for the analysis of new (unstructured) urban data. Instead, new methods and tools are 
needed. Moreover, in making the most of heterogeneous and messy datasets, it is important that clear 
research questions and goals drive the data collection, processing, and analysis. 
 This chapter sheds light on emerging forms of data about cities, as complementary sources of 
information to conventional urban data. It presents their main categories, outlines their limitations and 
uncertainties, and introduces a range of new methods suitable for turning new data into actionable 
insights. I classify new urban data into four categories: (1) physical sensor data, (2) mobile phone data, 
(3) social media data, and (4) user-generated and POI-based web data (other than social media). The 
characteristics, limitations, and suitable methods for each data category are described in the 
corresponding sections. 
 
 
2 Physical sensor data 
Physical sensors were the first of the new data sources that complemented conventional urban data 
with real-time measurements of the urban environment. The first application concerned the 
measurement of traffic flows (Batty et al., 2012). Sensors are miniaturized computer systems that can 
be embedded and deployed in the urban fabric. Of course, there exist several types of sensors used in 
the measurement of indoor environments (e.g. in buildings), yet in this section we will focus only on 
sensors and sensor networks deployed in public spaces and/or at city-wide scales.  

There is currently a wide range of sensor types, usually classified based on the measured 
property. Examples of the latter may include environmental properties (e.g. natural light, temperature, 
humidity, CO2-levels, atmospheric particulate matter, etc.), urban mobility (e.g. car flows, pedestrian 
flows, cyclist flows, etc.), transactional dynamics (e.g. purchases of goods, demand-supply dynamics, 
etc.), transport transactions (e.g. taps in or out on public transport), and satellite measurements (e.g. 
positioning, electromagnetic radiation, vegetation remote sensing, etc.).  

Sensors may exist as individual entities, measuring a property at a targeted location, or – as is 
increasingly more common in cities – comprise sensor networks. In this case, each sensor is a node in 
a wider network, which collectively measures a given property in a collaborative fashion (Verdone et 
al., 2010). The interconnection of sensors in a network enables simultaneous monitoring at city-wide 
scales. This would have been close to impossible with individual independent sensors, given their 
limited spatial coverage. Communication among the nodes is usually achieved wirelessly, using Wi-Fi 
modules and various wireless communication protocols, such as the long-range wide-area network 
(LoRaWAN). Such connectivity enables devices to form an Internet of Things (IoT). Most of sensor 
devices have geolocation capabilities and, thereby, generate data that are spatially referenced, making 
them valuable in the study of cities. Open access to sensor data is increasingly made possible through 
dedicated online portals, maintained by public authorities2 or private organizations. The case of SAIL 
2015, discussed in the box, exemplifies some of these possibilities. 

Sensor observations are transmitted continuously and can be collected in real time. Such high 
frequency updates introduce new ways of measuring and understanding urban phenomena. Whereas 
traditional urban analysis and planning approaches put emphasis on long time intervals – given the low 
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update frequency of conventional urban data – sensor technologies allow us to focus on very short time 
horizons (Batty, 2013; Psyllidis, 2016). In fact, they enable us to study the dynamics of urban 
phenomena (e.g. human mobility, crowd monitoring, traffic etc.) at higher spatial and temporal 
granularity.They also provide the opportunity to simulate the evolution of a phenomenon at fine-grained 
scales. 

However, there is a range of challenges related to the collection, analysis, and interpretation of 
sensor data. Observations derived from sensors (or sensor networks) are of quantitative nature. 
Measurements are translated into, usually, numerical values of the studied property (e.g. temperature 
degrees in Celsius or Fahrenheit scales, sound levels in decibels, number of taps in or out, etc.). The 
accuracy of these measurements – although dependent on the technical aspects of the sensor device – 
is generally considered high. What they lack, however, is semantic expressiveness. That is, it is often 
difficult to distinguish any qualitative aspects of the measured property. For instance, in the case of 
ticketing systems in public transport, although we might be able to acquire an accurate picture of the 
flow volumes of passengers, it is often difficult to obtain additional demographic information, such as 
gender and age (with the exception of personalized cards). This could already limit the interpretation 
potential of sensor data and, subsequently, their transformation into actionable knowledge. 

Besides semantics, sensor data often suffer from issues of representativeness. Each sensor 
device has the capacity to measure a given property within a limited spatial range. As mentioned above, 
this limitation can be mitigated by deploying a network of sensors that collectively cover a wider area. 
Yet due to high deployment costs, coverage of entire cities or wider urban areas is often cumbersome, 
leading to partial coverage of city regions or population groups (e.g. people who use public transport to 
commute). The extent of representativeness, the level of semantic expressiveness, and device-related 
measurement errors are aspects that need to be considered in the process of analysis and interpretation 
of sensor data. Combining sensor measurements with other types of data – presented in the following 
sections – could mitigate these issues, as also shown by the SAIL 2015 example. Notwithstanding these 
limitations, physical sensors and sensor networks introduce a valuable source of information, especially 
in studying the dynamic evolution of urban phenomena. 
 
 
3 Mobile phone data 
A special class of sensors relates to the ones that are embedded in handheld devices, such as mobile 
phones. Modern-day cellular devices comprise several sensor technologies, including gyroscopes, Wi-
Fi modules, and cameras that, in turn, generate an abundance of spatially and temporally tagged data. 
In a broader sense, data generated by mobile phones can be classified into two main categories: (1) call 
detail records (CDRs), and (2) user-generated application data. This section focuses on the former, 
whereas user-generated content deriving from social media and installed applications on mobile phones 
will be covered in the following sections. 

Call detail records refer to the documentation of telecommunication transactions, such as phone 
calls and text messages, derived from cell tower pings. These data records are usually structured in 
tabular formats, which contain various attributes relating to the phone call or text message. Examples 
of such attributes include caller and receiver IDs, geolocations of both the caller and receiver, 
timestamps marking the starting time of the call (or the transmission time of the text message) in 
date/time format, and duration of the call, among others. Already from the types of attributes listed 
previously, one can easily realize that CDRs could contain valuable information on where, when, and 
how people communicate with each other, as well as with whom. 

In short, the main novelty that mobile phone data, and especially CDRs, bring to urban analytics 
pertains to the study of social interactions. The ubiquity of mobile phones around the globe enables us 
to study these interactions at scale, as opposed to traditional surveys that rely on population samples. 
Moreover, the spatial and temporal features of CDRs give us the opportunity to respectively analyze 
the geographical footprint of social networks and their dynamics. For these reasons, CDRs have been 
gaining in popularity in scientific research over the past 15 years, and have found application in various 
domains relating to cities. Application domains include social analysis (networks, communities, 
relationships, interactions), human mobility, planning, epidemics, and crime detection. For a 
comprehensive overview of research and applications using CDRs, we refer to Blondel, Decuyper and 



Krings (2015). Indicative research in the context of cities and wider urban regions explore person-to-
person activity over space and time (Calabrese et al., 2011), the behavior of individual human 
trajectories (González, Hidalgo & Barabasi, 2008; Gao et al., 2013), and the delineation of urban 
regions, based on the interactions between users (a class of problems, which in urban analytics and 
quantitative geography is referred to as regionalization) (Blondel, Krings & Thomas, 2010; Ratti et al., 
2010). The combination of CDRs with traditional data, such as the census and travel surveys, further 
allows for comparative analyses of human activity dynamics across cities (Grauwin et al., 2015), and 
between nations (Amini et al., 2014). 

The geolocation of a user in CDRs – either caller or receiver – is relative to the closest cell 
tower in an area, and its corresponding range. In other words, the exact location of a person remains 
relatively unknown. In their simplest form, CDRs are represented as networks, consisting of nodes that 
represent people (callers and receivers) and links between them. Network analysis techniques, in 
combination with statistical measurements of graph properties (e.g. clustering coefficients, centrality, 
coherence, community detection, etc.), are the prevalent methods in analyzing mobile phone data. More 
advanced techniques intertwine social networks with physical (urban) space, leading to complex geo-
social networks, to explore the behavioral characteristics of mobile phone usage over geographic space 
(Hristova et al., 2016; Andris, 2016). 

Of course, working with mobile phone data, and especially CDRs, comes with various 
challenges and limitations. The most prominent restriction is that of data access. Depending on privacy 
protection laws and internal operator policies about data sharing, access to CDRs may vary significantly 
across countries and mobile phone operators. Although the content of phone calls or text messages is 
not recorded, raw mobile phone data contain sensitive information, such as demographic information 
of the caller and receiver (e.g. home address, gender, date of birth, etc.). In ensuring privacy 
preservation, anonymization and aggregation techniques are used. A customary anonymization 
technique consists of replacing users and their phone numbers with a unique ID, or disassociating users 
from individual geolocations. The latter can be achieved by means of spatial aggregation that preserves 
the possibility to identify general patterns, without uniquely identifying individual users. Other 
limitations of CDR data relate to the relatively low precision of a user’s location (which is relative to 
the range of the closest cell tower), as well as the limited semantic richness of the data, given that the 
actual content of phone calls or text messages is generally not recorded. Despite these challenges and 
limitations, the analysis of mobile phone data has led to novel insights into human mobility and activity 
behavior, as shown in the referenced research examples. 
 
 
4 Social media data 
Besides CDRs, mobile phones produce a wealth of data from applications installed in and running on 
the devices. By leveraging on the built-in global positioning system (GPS), these applications passively 
generate real-time streams of geo-referenced data. A prominent example of this is the case of Google 
Maps, in which traffic congestion estimates are calculated on the basis of pooled geo-data from cellular 
devices. 

Aside from these passively generated datasets, a set of online social networking applications 
has introduced an entire new class of data sources about cities and human behavior, with unprecedented 
characteristics. On platforms such as Twitter, Instagram, Facebook, and Foursquare, content is created 
actively by the application users themselves, and consists of various data formats, as will be explained 
further in the following paragraphs. Access to such data is usually obtained through Application 
Programming Interfaces (APIs), offered by the corresponding platforms. This section focuses 
specifically on user-generated data derived from online social media, while other types of user-
generated web content will be described in the next section. The case of SAIL 2015 illustrates some of 
these applications. 

Although the characteristics of social media data may vary among the different platforms, there 
exist some general common features. Most of the platforms contain information about demographic 
characteristics of the users such as gender, age, hometown, and place of residence, among other things. 
Users generate posts, frequently accompanied by texts expressed in natural language (and often with 
Internet-specific writing styles, including abbreviations, emoticons, and other symbols), and other 



media such as photos and videos. Much of these posts contain a spatial tag – either in the form of exact 
geo-coordinates or in reference to a named location – and a timestamp. Lastly, they include information 
about relationships between users, which can help build social networks. This multiplicity of 
information embedded in social media data has opened new avenues in gaining insight into aspects of 
urban life that are otherwise hardly observable and measurable. Indicative examples include insights 
into the attitudes and behaviors of people regarding specific activities in cities over time (e.g. relating 
to leisure, mobility habits, social interactions, etc.), and into their experiences and sentiments. One can 
thus easily ascertain that social media data are by far the most semantically rich data of the types I have 
discussed thus far. Analysis of such high-dimensional (i.e. with numerous attributes) datasets could 
reveal how people interact with the places they visit and with each other, how their activities are 
distributed through space and over time, and how they communicate about places through opinions, 
perceptions, and sentiments. 

Before delving into commonly used analysis techniques, it is important to explain in further 
detail the concept of point of interest (POI), around which many user-generated data sources revolve. 
From a computational perspective, POIs are digital proxies of real-world places (e.g. restaurants, 
theaters, squares, etc.), represented as geometric point entities. In early phases of social media 
platforms, geolocations (i.e. geographic coordinates of latitude and longitude) were the prevalent way 
of spatially tagging user posts. More recently, however, much of georeferenced social data are in fact 
associated with a POI instance, picked from a predefined list of places (a prominent example is that of 
Foursquare). Subsequently, the activity described in the post is linked to the geo-coordinates of the 
associated POI. This creates an unprecedented interlinkage between real-world places and the way 
people communicate about and experience them over time, through textual descriptions, photos, videos, 
ratings, and reviews. Also, the interconnection of POIs allows us to study the dynamics of place-to-
place relationships. In other words, social media – and other user-generated web – data give new 
opportunities to studying the concept of place (examples to follow) – a long-standing issue in urban 
studies – as opposed to space, represented by a generic geolocation. 

The variety of data types that comprise social media data requires a set of new analytical 
methods that are designed to address their specific characteristics. Integrating textual descriptions in 
natural language with images, videos, and spatiotemporal references can be a challenging process. 
Many of the techniques applied to social media analytics derive from various fields of data science. 
These range from machine learning techniques for natural language processing (e.g. part-of-speech 
tagging, named entity recognition, topic modeling, sentiment analysis, etc.) and image analysis 
techniques (e.g. scene detection, object recognition, etc.) to spatiotemporal analysis methods (e.g. 
spatial regression, point pattern analysis, spatial clustering, etc.) (Janowicz et al., 2019). Social network 
analysis techniques, as described in the previous section, are also useful in understanding dynamic 
interactions between users and between places. Each of these techniques targets a specific type of data 
included in a social media record. More advanced techniques aim to simultaneously take into account 
the various dimensions (i.e. spatial, temporal, thematic, social) of social media data. The use of these 
data in urban studies implies that the spatial aspect plays an important role. Yet it is important to 
consider that, given the high-dimensional nature of social media data, the focus on spatial aspects is not 
so much on distances, topology, and directions. Instead, it is more about deriving semantic relationships 
with and among places, through spatially and temporally referenced linguistic descriptions and human 
interactions with the (urban) environment. 

The new avenues that user-generated social media data open to capturing, understanding, and 
representing urban life in various places have led to a wealth of related research over the past ten years. 
An extensive overview of these works falls outside the scope of this chapter. A few indicative examples 
include the comparative analysis of human mobility patterns across cities (Noulas et al., 2012), the 
classification of venues in cities based on users’ activity profiles (Silva et al., 2013), the study of the 
segregation extent between urban neighborhoods (Shelton, Poorthuis & Zook, 2015), the investigation 
of city attractiveness factors (Sobolevsky et al., 2015), the regional variability of human activities over 
time (McKenzie et al., 2015), and the discovery of functional regions within cities, based on the social 
interactions of people at various places (Psyllidis, Yang & Bozzon, 2018; Gao, Janowicz & Couclelis,  
2017). 

The very nature of social media data poses, however, several challenges to urban analytics. 
Being user-generated, they possess several biases related to culture, context, technology penetration, 



and personal habits (Mislove et al., 2011; Olteanu et al., 2015). The use of natural language, and 
especially Internet-specific writing styles, could lead to misinterpretations of the actual content relating 
to a human activity. Moreover, the possible difference between the time a post is created and the actual 
time the activity it refers to took place could give a wrong impression about the distribution of human 
activities over time. Text analysis plays an important role in disambiguating posts that refer to places 
generically from those that concern a real activity happening at a place. Finally, given that social media 
data are generated predominantly by population groups with specific characteristics, the 
representativeness of the collected data should be given careful consideration in the generalizability of 
the analysis results. Again, this further strengthens the need to collect and link data from various sources 
to mitigate the drawbacks and biases present in individual data streams. 
 
 
5 User-generated & POI-based web data 
In addition to social media data, there is a wealth of online sources in which users contribute, directly 
or indirectly, geographic information about the places they visit. Integral to these sources is the concept 
of POI, as described in the previous section. In principle, each of the platforms relates to a specific 
function. Examples of the latter include mapping applications (e.g. OpenStreetMap, Google Maps), 
travel and tourism platforms (e.g. Airbnb, TripAdvisor), photography sharing (e.g. Flickr), discussion 
forums (e.g. Reddit), among others. Each source contains different information and contributes to a 
variable understanding of POI-related aspects. For instance, OpenStreetMap focuses on geometrical 
and locational characteristics of POI footprints, Foursquare concentrates on the number of users that 
have checked in to a place, whereas Google Maps further provides temporal occupancy profiles, 
especially for retailer and entertainment stores. The POI concept across these data sources is constant, 
though the attributes that describe it may vary significantly. A POI can thus be characterized by several 
features, besides its point-based geometry and geographic location. Such features include a name, 
address, function, opening hours, website, and phone number. In addition, as in the case of social media 
data, POIs could be linked to textual descriptions, ratings, photos, and videos. The challenges relating 
to these data are similar to the ones described in the previous section. 

Another data source with great potential for urban studies is street-level imagery. This is a 
more recent addition to the spectrum of POI-related sources. Unlike the well-established satellite 
imagery, this source provides panoramic views of – primarily urban – environments at ground level. 
Street-level imagery can be extracted from both proprietary (e.g. Google Street View) and user-
generated public (e.g. Mapillary) online repositories, usually through APIs. This new type of data gives 
a novel perspective on how we represent urban environments. In fact, it simulates the process of a 
person walking along the streets, thereby providing a three-dimensional overview of visible spatial 
elements (e.g. building facades, trees, lamp posts, etc.), while highlighting their morphological 
characteristics (e.g. height, color, materials, geometry, etc.). For this reason, an increasing number of 
recent studies have used street-level imagery to analyze various aspects of the urban environment. 
Examples include the estimation of city-level travel patterns (Goel et al., 2018), the classification of 
land uses (Zhu, Deng & Newsam, 2019), the quantification of urban perception (Dubey et al., 2016), 
crowd-mapping of physical objects in the urban environment (Qiu et al., 2019), and the inference of 
business-related POIs, combining visual and text analytics (Sharifi Noorian, Psyllidis & Bozzon, 2019; 
Sharifi Noorian et al., 2020). In line with the recent advancements in deep learning, the combination of 
street-level imagery with other user-generated data allows for the extraction of latent city-related 
characteristics that are otherwise hard to observe or measure (e.g. perceptions of urban public spaces). 
 
 
6 Summary 
In this chapter, I have presented an overview of new forms of urban data that can complement 
conventional data sources about cities, and could offer new insight on modern-day urban life. The case 
of SAIL 2015, discussed in the box, is an illustration of potential applications. Although the potential 
of emerging data sources has been leveraged in scientific fields, such as data science, their incorporation 
in urban studies and implementation into planning/design tools is still at a nascent stage. In making the 



most of these data, it is required that new dedicated methods and analytical frameworks are applied and 
developed, catering to the unique qualities of emerging data sources. I have outlined the main 
characteristics, the latest methodological advancements, and the limitations that should be considered 
in the analytic process. I have further provided indicative references to a variety of application examples 
from recent research work, with emphasis on aspects of the urban environment. This new paradigm of 
urban research has given rise to a new generation of burgeoning scientific fields, such as urban analytics, 
spatial/urban data science, and location intelligence, which lie at the intersection of urban theory, 
planning, and information sciences. 



  

Crowd management at city-scale events – the case of SAIL 2015 
 
The emergence of new forms of urban data has opened new avenues in analyzing, understanding, 
and explaining the behaviors and activities of people during large-scale events. Music festivals, 
sports events, and national festivities are examples of events that attract large numbers of people, 
and often lead to re-organizations in the city infrastructure (e.g. transportation adjustments, closure 
of streets and other public spaces, etc.). In that sense, they are exceptional cases of everyday city 
life. Real-time measurements of visitor density and estimates of visitors’ movement and activity 
patterns across space are integral to emergency support and crowd management. Such measurements 
can hardly be inferred from conventional data, yet emerging urban data could prove valuable in this 
regard. To illustrate this, I use the case of the SAIL 2015 nautical event in Amsterdam as an 
indicative example of crowd management application, informed by insights that are retrieved from 
various new forms of urban data. 

SAIL is the largest free nautical event in the world, and takes place every five years in 
Amsterdam. With a total duration of five days, it attracts more than two million visitors from the 
Netherlands and abroad. The 2015 version of SAIL took place from August 19 to August 23 of that 
year. Vessels sail across the river IJ, and visitors have the chance to attend the event through various 
pre-defined walking routes and observation areas along the river. The main event is further enhanced 
by concerts, markets, and exhibitions, taking place in the streets and selected buildings surrounding 
the main attraction areas. Getting a better understanding of attendees’ movement behavior during 
such large-scale event is of vital importance for the safety of visitors, the supply of services, and 
emergency support. To that end, the Municipality of Amsterdam assigned a crowd management task 
to a group of researchers (including the author) at Delft University of Technology (TU Delft). 

Various sources of emerging urban data were employed to address this task. More 
specifically, data were collected from 20 Wi-Fi sensors (forming a sensor network), 100 GPS 
trackers, 8 camera-based counting systems, and social media posts from Twitter, Instagram, and 
Foursquare. Access to the already installed sensing infrastructure and counting systems was granted 
by the Municipality. The GPS trackers were distributed to attendees, who consented to carry them 
throughout their visit. To enrich the location-based track records, the attendees who volunteered 
also provided additional demographics (e.g. age range, gender, whether they were local visitors or 
foreign tourists) by means of signing a consent form. Social media data were crawled, processed, 
integrated, and analyzed using the SocialGlass platform (https://social-glass.tudelft.nl); a platform 
for real-time urban analytics developed by the author and his team at TU Delft (Psyllidis et al., 
2015). 

Wi-Fi sensors recorded signals from mobile phones within a given radius. These 
measurements were used to approximate the density of visitors in different places during the event. 
Records of adjacent sensors were matched to provide a picture of pedestrian flows in the entire area 
covered. Sensor records were complemented by individual headcounts from the camera-based 
counting systems. The latter provided flow measurements on a minute basis in both directions (i.e. 
inflow and outflow), using computer vision algorithms. To preserve privacy, different mobile phone 
signals were assigned unique anonymized identifiers to allow for density calculations of attendees, 
while counting systems only provided the amounts of unique users passing by.  

Sensing devices, as also explained throughout the chapter, provide precise quantitative 
estimates of human flows, yet have no semantics attached and cover limited areas. To mitigate this, 
sensor data were combined with data from various social media. Each social media dataset has been 
created using a different crawling mechanism. Typically, this was a combination of geo-fencing (i.e. 
retrieval of tweets and Instagram posts annotated with a geolocation, within a pre-defined bounding 
box covering the event area and its surroundings) and keyword matching (i.e. retrieval of tweets and 
Instagram posts that contain keywords directly relating to the event). All social media datasets were 
collected through publicly available API calls, offered by the corresponding platforms, and covered 
the entire period of the event. Additionally, the spatial coverage of social media was larger than the 
one of sensing devices, yet with varying fluctuations in terms of the density of posts within pre-
defined spatial units. For each post, the longitude, latitude, timestamp, and post content (text and   



  

accompanying media) were collected. To preserve anonymity, each post was assigned a user ID 
(posts generated by the same user were assigned the same user ID), expressed in hexadecimal code. 
Using user modeling techniques that have been implemented in the SocialGlass system, additional 
demographic characteristics of the visitors were retrieved, including age range, gender, and the type 
of visitor (i.e. resident, local visitor, foreign tourist). The demographics collected through the 
consent forms of the GPS trackers were used as reference indicators to compare them with the 
characteristics inferred by the analysis of social media data. Additional text analytics (e.g. natural 
language processing, named entity recognition, and topic modeling) and spatial analysis techniques 
(e.g. spatial autocorrelation, density-based spatial clustering) were used to gain further insight into 
activity patterns in space and time, movement flows, indications of crowdedness, and sentiments 
(for further details, see Gong et al., 2018). 

The case of crowd management during SAIL is an indicative example of urban analytics, 
where various new forms of urban data were used in a combined fashion. On such occasions, such 
as city-scale events or emergency situations, where near real-time information and insights are of 
vital importance, conventional urban data may prove inadequate. Emerging urban data are 
particularly useful in the study of human activity patterns, flows of goods and people, and the 
spatiotemporal distribution of social interactions. The combination of various emerging urban data 
together, and with conventional data about cities, has promise as a potential solution to the 
drawbacks present in individual data streams.         
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