
 
 

Delft University of Technology

The risk-adjusted carbon price

van den Bremer, Ton S.; van der Ploeg, Frederick

DOI
10.1257/aer.20180517
Publication date
2021
Document Version
Final published version
Published in
American Economic Review

Citation (APA)
van den Bremer, T. S., & van der Ploeg, F. (2021). The risk-adjusted carbon price. American Economic
Review, 111(9), 2782-2810. https://doi.org/10.1257/aer.20180517

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1257/aer.20180517
https://doi.org/10.1257/aer.20180517


American Economic Review 2021, 111(9): 2782–2810 
https://doi.org/10.1257/aer.20180517

2782

* Van den Bremer: Faculty of Civil Engineering and Geosciences, Delft University of Technology and 
Department of Engineering Science, University of Oxford (email: ton.vandenbremer@eng.ox.ac.uk); Van der 
Ploeg: Department of Economics, University of Oxford and Faculty of Economics and Business, University of 
Amsterdam (email: rick.vanderploeg@economics.ox.ac.uk). Mikhail Golosov was the coeditor for this article. We 
are grateful for the constructive suggestions of the referees. We also thank Elisa Belfiori, Lucas Bretschger, Simon 
Dietz, Henk Dijkstra, Carolyn Fischer, Reyer Gerlagh, John Hassler, Holger Kraft, Larry Karp, Derek Lemoine, 
Christian Traeger, Tony Venables, and Sweder van Wijnbergen for comments received on earlier versions at sem-
inars at LSE, Oxford, ETH, Zurich, Copenhagen, Heidelberg, Montpellier, Marseille, Utrecht, the CESifo Area 
Conference on Energy and Climate Economics, Munich, 2017, the FEEM conference on Optimal Carbon Price 
under Climate Risk, Milan, 2018, the WCERE conference, Gothenburg, 2018, and the CEPR Macro conference, 
Manchester, 2018. 

† Go to https://doi.org/10.1257/aer.20180517 to visit the article page for additional materials and author  
disclosure statements.

The Risk-Adjusted Carbon Price†

By Ton S. van den Bremer and Frederick van der Ploeg*

The social cost of carbon is the expected present value of damages 
from emitting one ton of carbon today. We use perturbation theory 
to derive an approximate tractable expression for this cost adjusted 
for climatic and economic risk. We allow for different aversion to 
risk and intertemporal fluctuations, skewness and dynamics in the 
risk distributions of climate sensitivity and the damage ratio, and 
correlated shocks. We identify prudence, insurance, and exposure 
effects, reproduce earlier analytical results, and offer analytical 
insights into numerical results on the effects of economic and dam-
age ratio uncertainty and convex damages on the optimal carbon 
price. (JEL E12, G22, H23, O44, Q35, Q51, Q54)

The social cost of carbon (SCC) is the expected present discounted value of all 
future marginal damages resulting from emitting one ton of carbon today.1 The 
 risk-adjusted SCC incorporates uncertainties2 associated with climate and the econ-
omy. If global warming is the only market failure, it is optimal in a decentralized 
economy to set the price of carbon emissions (e.g., a specific carbon tax or the 
price in a competitive permit market) to the SCC. To evaluate the SCC, one must 
know how much of one ton of carbon emitted today is still left in the atmosphere 
at each future time; the effect of the atmospheric carbon stock on temperature; the 
effect of temperature on damages to aggregate output and consumption; and the 
marginal utility of consumption at all instants of time. All of these effects are subject 
to uncertainty.

1 Along an optimal allocation path the SCC corresponds to the Pigouvian tax on emissions, but the SCC can also 
be evaluated along other (e.g., business as usual) paths.

2 We use the terms risk and uncertainty interchangeably.
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Our aim is to derive a  closed-form expression for the optimal  risk-adjusted SCC 
from a simple analytic yet quantitatively calibrated integrated assessment model of 
climate and the economy, where attitudes to risk aversion differ from attitudes to 
intertemporal fluctuations in consumption. We allow for a wide range of uncertain-
ties, regarding macroeconomic growth, the carbon stock, the climate sensitivity, the 
damage ratio (global warming damages as fraction of GDP), and the correlations 
between these uncertainties. We highlight the effects of  time-varying and skewed 
distributions and the convexity of damages in temperature on the SCC.

We derive the SCC as the social optimum of a dynamic stochastic general equi-
librium (DSGE) model with recursive preferences, which separate aversion to risk 
from aversion to intertemporal fluctuations (Kreps and Porteus 1978, Epstein and 
Zin 1989, Duffie and Epstein 1992). Our  closed-form expression for the optimal 
SCC is in the spirit of the rule derived by Golosov et al. (2014).3 It has the usual 
precautionary, insurance and  risk-exposure determinants of the  risk-adjusted social 
discount rate and the SCC resulting from macroeconomic uncertainty, but adds mul-
tiplicative adjustment factors to allow for the uncertainties regarding the carbon 
stock, climate sensitivity, and the damage ratio.

Our methodological contribution is to show how perturbation methods can be 
used to solve DSGE models with more than a few states (four states plus time, here). 
The  so-called small parameter of our perturbation, which measures the size of the 
perturbation, is the damage ratio.4 As our small parameter goes to zero, we return to 
a known solution, in this case the endogenous growth model with investment adjust-
ment costs of Pindyck and Wang (2013), which has a  closed-form solution. Our full 
DSGE model extends this to allow for fossil fuel use, climate change, and damages. 
We make use of power functions to capture a damage ratio that is convex in tempera-
ture and  power function transformations of normally distributed shocks to capture 
the  right-skew of the  long-run climate sensitivity. We use  mean-reverting processes 
to capture that uncertainty in climate sensitivity is larger and more  right-skewed on 
long than short horizons.5 Our perturbation method offers a powerful alternative to 
both numerical methods (reviewed below), which are computationally intensive for 
many states and do not lend analytical insight, and other perturbation methods that 
rely on a  high-order  multivariate  Taylor-series expansion in the states, which can be 
prohibitively complex (see online Appendix A.5 for a comparison).

We derive two main results.6 By focusing on the  leading-order effects of uncer-
tainty, Result 1 gives a  closed-form solution for the optimal SCC if the damage 
ratio is proportional to the atmospheric carbon stock and there is no delay in the 

3 Our solution is an approximate  closed-form expression derived from a DSGE model with endogenous growth, 
whereas Golosov et al. (2014) derive an exact  closed-form expression from a DSGE model with convex growth and 
multiple fuel sectors. If the damage ratio is proportional to the stock of carbon as in Result 1 (see Section III), this 
is similar in spirit to the assumptions made about damages in Golosov et al. (2014). Result 2 extends this to more 
general damages. 

4 We will show in Figure 3 that this damage ratio is typically only a few percentage points and can rise to 
10 percent at most. 

5 Specifically, we use  Ornstein-Uhlenbeck processes. We abstract from fat tails, so that Weitzman’s (2009) 
“dismal theorem” does not apply. 

6 Our third and most general result, Result A in online Appendix A, gives a general expression for the opti-
mal SCC without the assumption of  leading-order uncertainty and can be evaluated by numerical solution of a 
 multidimensional integral. The assumptions leading to Result A and, from there, to Results 1 and 2 are laid out 
precisely in online Appendix A. 



2784 THE AMERICAN ECONOMIC REVIEW SEPTEMBER 2021

deterministic temperature response to emissions. Result 2 generalizes this result for 
convex dependence of damages on the carbon stock and for a delayed deterministic 
temperature response.

Results 1 and 2 imply that policy makers should employ a lower discount rate 
and a higher SCC in case of uncertainty about future economic growth if aversion 
to intertemporal fluctuations exceeds one (cf. Gollier 2002, 2012, 2018; Jensen and 
Traeger 2014). In asset pricing theory, the opposite assumption is made (i.e., the 
elasticity of intertemporal substitution exceeds one) in which case macroeconomic 
uncertainty depresses the SCC, just like it depresses share prices.

Results 1 and 2 also imply that temperature uncertainty and damage ratio uncer-
tainty call for a higher SCC, where the adjustment to the SCC is larger if damages 
are more convex, the distribution of uncertainty is wider and more  right-skewed, 
uncertainty arises on shorter horizons, and the  risk-adjusted social discount rate and 
carbon decay rate are smaller. Finally, Results 1 and 2 imply that, if positive shocks 
to the economy are associated with positive (negative) shocks to temperature, the 
optimal SCC is lower (higher) if relative risk aversion exceeds one (cf. Lemoine 
2020). If shocks to future damages are negatively (positively) correlated with future 
shocks to asset returns, the optimal SCC is higher (lower), if relative risk aversion 
exceeds one.

Most previous approaches to the optimal SCC have either used models where 
intergenerational consumption smoothing and risk aversion coincide, or where 
they are separated, but the intertemporal elasticity is assumed to be one. Jensen 
and Traeger (2014), which also combines analytic formula and quantitative assess-
ment, only deal with economic uncertainty, and Cai and Lontzek (2019) combines 
economic and climate uncertainty but do not yield analytic insight. We offer a 
 closed-form expression for the optimal SCC for a range of economic, climate, and 
damage uncertainties. Moreover, our analysis has the potential to go beyond the cor-
relation analysis of Dietz, Gollier, and Kessler (2018) and Lemoine (2020). Dietz, 
Gollier, and Kessler (2018) examines the effects of the elasticity of damages with 
respect to output in the DICE integrated assessment model but without recursive 
preferences.

Different authors have performed numerical calculations of the optimal SCC 
under multiple sources of uncertainty, first with  Monte-Carlo simulations (e.g., 
Nordhaus 1994, Nordhaus and Popp 1997, Ackerman and Stanton 2012, Dietz and 
Stern 2015). Others have used stochastic dynamic optimization methods from mac-
roeconomics (e.g., Kelly and Kohlstad 1999, Pizer 1999) or advanced numerical 
methods (e.g., Crost and Traeger 2013; Traeger 2014a; Jensen and Traeger 2014; 
Hambel, Kraft, and Schwartz 2021; Lemoine and Traeger 2014, 2016a; Lontzek et 
al. 2015; Cai, Lenton, and Lontzek 2016; Cai and Lontzek 2019).7 Cai and Lontzek 
(2019) represents the state of the art in advanced numerical methods and also allow 
for recursive preferences. Our objective is complementary: we offer an approximate 
 closed-form solution for the optimal SCC under a range of economic, climatic, and 
damage uncertainties that may be correlated. In contrast to Cai and Lontzek (2019) 
we do not allow for tipping points, but we do allow for skewed distributions.

7 Lemoine and Trager (2016b) deal with ambiguity aversion and find only small effects on the optimal carbon 
tax. 
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Our contribution is also related to the analytical literature on discounting under 
uncertainty and simple rules for the optimal carbon price, which typically deals with 
one uncertainty at a time, for example about future economic growth (e.g., Gollier 
2002, 2012, Jensen and Traeger 2014). Golosov et al. (2014) obtains a simple rule 
for the optimal SCC reacting to world GDP only, making bold assumptions includ-
ing logarithmic utility,8 which imply that economic growth uncertainty does not 
affect the SCC (cf. Traeger 2017). Gerlagh and Liski (2016) also derives a simple 
rule and allows for learning about uncertain impacts. Jensen and Traeger (2019) 
shows how the effect of climate sensitivity on the risk premium in the SCC depends 
on prudence and convexity of marginal damages. Lemoine (2020) decomposes the 
SCC into different components due to uncertain warming, damages, and economic 
growth. It shows that the sign of the effect of the normalized covariances of differ-
ent climatic uncertainties with the rate of economic growth on the SCC depends on 
whether relative risk aversion is greater than one or not.9 In both the decompositions 
by Jensen and Traeger (2019) and Lemoine (2020) consumption is set exogenously. 
Recently, two important complementary studies to ours have also obtained a simple 
analytical rule for the  risk-adjusted SCC in a general equilibrium model. Traeger 
(2017) develops an integrated assessment model with a range of climate uncer-
tainties, in which consumption is determined endogenously, less than full capital 
depreciation in each period, and the restriction that the model is linear in the states 
with additively separable controls. Bretschger and Vinogradova (2019) extends an 
endogenous macroeconomic growth model to allow for Poisson shocks in the capi-
tal stock in their analysis of optimal carbon pricing.

Finally, we make the proviso that we do not allow for (Bayesian) learning about 
economic and climatic uncertainty. Kelly and Kolstad (1999) finds that learning of 
climate sensitivity takes a very long time (90 years). Kelly and Tan (2015) confirms 
this but finds that “tail learning” can be fast as observations near the mean provide 
evidence against fat tails. The damage ratio could also be learned (Nordhaus and 
Popp 1997). Lemoine and Rudik (2017) gives a comprehensive overview of uncer-
tainty and learning in climate policy. It highlights that policy makers learn expecta-
tions of future temperature increase better if temperature has been observed to rise, 
how temperature changes affect the ability to smooth welfare in response to the 
signal that is received about the climate sensitivity, and how active learning affects 
mean and precision of beliefs. Lemoine and Traeger (2014) and Cai and Lontzek 
(2019) allow for learning about irreversible changes in climate sensitivity after pass-
ing an unknown temperature threshold. If there is learning about “tail” uncertainty, 
then our results might suggest that the optimal SCC will be substantially reduced 
once learning has taken place.

Section I presents our model. Section II discusses our perturbation method for 
deriving the optimal SCC. Section III presents Results 1 and 2. After discussing our 
calibration in Section IV, Section V estimates the optimal SCC and discusses the 
effects of the different uncertainties. Section VI concludes.

8 They have a  discrete-time (decadal) model, assume logarithmic utility,  Cobb-Douglas production, 100 percent 
depreciation of capital each period, and total factor productivity as an exponential function of the atmospheric 
carbon stock.

9 Alternatively, it depends on whether the  risk-insurance effect dominates the offsetting  risk-exposure effect 
resulting from damages being proportional to GDP (cf. Lemoine 2020).
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I. A DSGE Model of Global Warming and the Economy

We start from the DSGE model with endogenous  AK growth of Pindyck and 
Wang (2013) and add fossil fuel use as a production factor. Fossil fuel use gives 
rise to global warming and damages to output. The coefficient of relative risk aver-
sion, η = CRRA ≥ 0, may differ from the coefficient of relative intergenerational 
inequality aversion, IIA = 1/EIS = γ ≥ 0, where EIS denotes the elasticity of 
intertemporal substitution. We use the  continuous-time version of recursive prefer-
ences (Duffie and Epstein 1992), where the recursive aggregator  f (C, J)  depends on 
consumption C and the value function

(1)  J =  피 t   [ ∫ 
t
  
∞

   f  (C(s), J(s))  ds]   with  f  (C, J)  =   1 _ 
1 − γ     

 C   1−γ  − ρ   ( (1 − η) J)      
1−γ _ 
1−η   
   _________________  

  ( (1 − η) J)      
1−γ _ 
1−η  −1

 
   . 

The dynamics of the aggregate capital stock follow from

(2)   dK = Φ(I, K ) dt +  σ K   Kd W 1    with Φ(I, K )  = I −   1 _ 
2
   ω    I   

2  _ 
K   − δK, 

where K denotes the capital stock, I investment,  δ ≥ 0  the depreciation rate of 
physical capital, and  ω > 0  the adjustment cost parameter.10,11 Adjustment costs 
are quadratic and homogenous of degree one in capital and investment. Capital 
is subject to continuous geometric shocks with relative volatility   σ K   ,  and   W 1    is a 
Wiener process, representing both economic growth and asset return uncertainty in 
the context of the  AK model considered. Investment is  I = Y − C − bF,  where Y 
is aggregate production, F fossil fuel use, and b the production cost of fossil fuel. 
Fossil fuel is supplied inelastically at fixed cost. The final goods production function 
is  Y = A K   α   F   1−α   with 0 < α < 1 , and  A ≡  A   ⁎  (1 − D)  is total factor productiv-
ity. Since we focus on endogenous growth, we abstract from labor-augmenting tech-
nical progress and population growth and thus omit time indices. Damages as share 
of  pre-damage aggregate output  D  increase in global mean temperature relative to 
the preindustrial temperature T. We use the  power function specification

(3)  D(T, λ) =  T   1+ θ T     λ   1+ θ λ      with  θ T   ≥ −1 and  θ λ   ≥ −1, 

where the (positive) stochastic damage ratio parameter  λ  captures the uncertain 
nature of the damage ratio at given temperature T. Convexity of the damage ratio 
(3) with respect to temperature corresponds to   θ T   ≡ T D TT  / D T   > 0. 12 To allow for 
potential skewness in the damage distribution assuming  λ  has a symmetric distribu-
tion, we raise  λ  to the power  1 +  θ λ   . 

The part of atmospheric carbon, S, associated with  man-made emissions is  
E ≡ S −  S PI   ,  where   S PI    is the preindustrial carbon stock. This is often referred to 
as the concentration or pollution stock above preindustrial level. The rate of  carbon 

10 With  AK growth, shocks to the capital stock and productivity are equivalent. To avoid an extra state, we 
introduce volatility directly in the capital dynamics (cf. Pindyck and Wang 2013).

11 For ease of presentation, we first introduce the separate evolution equations for the four stochastic variables 
before introducing the covariance matrix of these four state variables.

12 Subscripts of functions denote partial derivatives except for the subscript PI which refers to preindustrial.
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emissions is  F exp (−gt),  where F is fossil fuel use and  exp (−gt)  the emission 
intensity which declines at the endogenous economic growth rate g. A proportion  
0 < μ < 1  of fossil fuel emissions ends up in the atmosphere. Atmospheric car-
bon decays at the rate  φ ≥ 0.  The carbon stock dynamics is

(4)  dE = (μF e   −gt  − φE ) dt +  σ E   d W 2   , 

where   W 2    denotes a second Wiener process, so the carbon stock is described by a 
Arithmetic Brownian motion with absolute volatility   σ E   ≥ 0. 13,14 This specifica-
tion ensures that the expected value of the carbon stock returns to its preindustrial 
value when emissions cease. We have for temperature

(5)  T(E, χ) =  χ   1+ θ χ     (E/ S PI   )   1+ θ E      with  θ E   ≥ −1 and  θ χ   ≥ −1, 

where the (positive) stochastic variable χ captures the uncertain nature of tempera-
ture for a given carbon stock. We will use a negative value of   θ E    to capture the concave 
dependence of temperature on the carbon stock. The parameter   θ χ    captures skewness 
of the climate sensitivity distribution assuming χ has a symmetric distribution (see 
(8a) below). The climate sensitivity is the temperature increase from doubling the 
carbon stock from its preindustrial level, i.e.,   T 2   ≡ T(E =  S PI   , χ) =  χ   1+ θ χ    .  It is 
a stochastic variable and depends on the stochastic climate sensitivity parameter χ. 
Its  leading-order mean is  피 [ T 2  ]  =  μ  χ  1+ θ χ    (1 +  θ χ   (1 +  θ χ   )  ( Σ χ  / μ χ   )   2 /2)   (see online 

Appendix E.5) and skewness is  skew [ T 2  ]  = 3 θ χ    (1 +  θ χ   )   3   μ  χ  3(1+ θ χ  )   ( Σ χ  / μ χ   )   4  ,  
where   μ χ    and   Σ χ    are the mean and standard deviation of the  steady-state distribu-
tion of χ. Both increase in the skewness parameter   θ χ    and the coefficient of variation 
  Σ χ  / μ χ   .  Combining equations (3) and (5), the  reduced-form damage ratio becomes

(6)   D(E, χ, λ) =  χ   1+ θ χT     λ   1+ θ λ    (E/ S PI    )   1+ θ ET     with  θ χT   ≡  θ χ   +  θ T   +  θ χ    θ T   . 

The parameter   θ ET   ≡  θ E   +  θ T   +  θ E    θ T    captures the combined effect of the con-
cave relationship between temperature and the carbon stock ( −1 ≤  θ E   < 0 ) and 
the convex relationship between damages and temperature (  θ T   > 0 ). It is positive or 
negative depending on which effect dominates. We refer to   θ ET   = 0  as proportional 
damages and   θ ET   > 0  as convex damages, reflecting the  reduced-form dependence 
of damages on the carbon stock. The parameter   θ χT    captures the joint effect of skew-
ness of climate sensitivity (  θ χ   > 0 ) and convexity of the damage function with 

13 One can allow for a permanent and one (Golosov et al. 2014), two (Gerlagh and Liski 2018), or three (Millar 
et al. 2017) temporary basins of atmospheric carbon. Online Appendix F3 shows that our  1-box model reproduces 
historical atmospheric carbon stocks well, and Section IV illustrates how it captures all the key features of future 
projections, although a value of μ substantially smaller than one may lead to too rapid initial decay of the carbon 
stock due to a marginal emission. Millar et al. (2017) allow the speed at which oceans absorb atmospheric car-
bon (akin to our φ) to fall with warming. We ignore such positive feedback effects and associated multiplicative 
uncertainty.

14 Although  E, χ , and  λ  in (4), (8a), and (8b) can formally become zero or negative with finite probabilities due 
to their Gaussian distributions, we will show in Section IV that these probabilities are negligibly small. Formally, all 
three variables are truncated in our model, so that they can only take positive values, and the model is well posed. 
For simplicity of presentation, we avoid additional notation to describe this truncation, which we do apply. 
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respect to temperature (  θ T   > 0 ). From (6), total factor productivity and aggregate 
output are a decreasing function of the carbon stock and the climate sensitivity and 
damage ratio parameters:

(7)  Y = A(E, χ, λ) K   α  F   1−α  with A(E, χ, λ) ≡  A   ⁎  (1 −  (E/ S PI   )   1+ θ ET     χ   1+ θ χT    λ   1+ θ λ   ) . 

Uncertainties in the climate sensitivity and the damage ratio are driven by trun-
cated (see footnote 14)  mean-reverting stochastic  Ornstein-Uhlenbeck processes 
with means   χ –  ,    λ –  ,  mean reversion coefficients   ν χ  ,    ν λ  ,  and volatilities   σ χ  ,    σ λ  , 

(8a)  dχ =  ν χ   ( χ –   − χ ) dt +  σ χ   d W 3  , 

(8b)  dλ =  ν λ   ( λ –   − λ ) dt +  σ λ   d W 4  , 

where   W 3    and   W 4    are two Wiener processes.15 Together with  T ∝  χ   1+ θ χ     in (5), 
the process (8a) captures two features of the actual climate sensitivity distribu-
tion. First, the expected response of temperature to increases in the carbon stock is 
delayed in time, from the (lower) transient climate response (TCR) at initial times to 
a steady state associated with the (higher) equilibrium climate sensitivity (ECS).16 
We allow for a delayed response of temperature to increases in the carbon stock 
via the  time-varying dynamics of the stochastic process for the random variable χ. 
If   χ 0   <  χ –  ,  then temperature (cf. (5)) will start low . Over time and in the absence 
of uncertainty, mean reversion ensures that χ gradually increases to its  steady-state 
value, and this leads to gradual increase in temperature. Second, the uncertainty and 
skewness of the climate sensitivity distribution grow with time from the narrow and 
symmetric TCR to the wide and skew ECS in steady state, which like the steady 
state of the mean is reached as  t ≫ 1/ ν χ   , with  1/ ν χ    the  e-folding time.17 Note 
that our formulation implies that temperature increases are independent of when 
carbon is added to the atmosphere. In our model, temperature responds immediately 
to changes in the atmospheric carbon stock (cf. (5)). It does not suffer from the 
degree of inertia in the response of temperature to marginal emissions for which a 
number of integrated assessment models have recently been criticized (Mattauch 
et al. 2020, Dietz et al. 2021), although the magnitude of the response is allowed 
to increase slowly with time. For all three uncertain climatic processes  E ,  χ , and  
λ , the uncertainties are exogenously given and cannot be learned in our model. 
Fundamentally, both statistical (or aleatoric) uncertainty and systemic (or episte-
mological)  uncertainty play a role in reality, but their contributions cannot always 

15 Equation (8a) has solution  χ(t ) =  χ 0    e   − ν χ  t  +  χ –  (1 −  e   − ν χ  t  ) +    σ χ    ∫ 0  
t   exp (− ν χ   (t − s)) d W 3  (s),  and similarly for 

(8b). The variables  χ(t)  and  λ(t)  have distributions  χ(t ) ∼ N(  μ χ  ,  Σ  χ  2   )  and  λ(t ) ∼ N( μ λ  ,  Σ  λ  2   ) . Mean and variance 
of  χ(t)  are   μ χ   =  χ 0    e   − ν χ  t  +  χ ̅  (1 −  e   − ν χ  t  )  and   Σ  χ  2   =  σ  χ  2   (1 − exp (−2 ν χ   t)) /2 ν χ    with  steady-state limits   μ χ   →  χ –    
and   Σ  χ  2   →  σ  χ  2  /2 ν χ   .  

16 We thus include potential effects of temperature lags from ocean heating, which affect estimates of the 
 long-run climate sensitivity (e.g., Roe and Bauman 2013). In reality, the response to small emissions is much faster 
and on a decadal scale (Ricke and Caldeira 2014) than the response to larger emissions (Zickfeld and Herrington 
2015), reflecting nonlinearity in the system, which is not captured by our  Ornstein-Uhlenbeck process (8a). Clearly, 
our parsimonious climate model cannot capture all features of  state-of-the-art climate models, and we discuss its 
limitations in Section VI.

17 The  e-folding time is how long it takes for an exponentially growing quantity to rise by a factor 2.27.
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be separated.18 For all three processes, we use in our calibration the most  high-level 
or “consensus” range of uncertainty estimates available, which also do not make 
this distinction (see Section IV). For example, the “consensus” uncertainty range 
for the climate sensitivity (e.g., IPCC 2014, AR5, Chapter 12, Box 12.2) captures 
both statistical uncertainty in individual climate models and (some) epistemological 
uncertainty arising from considering different climate models. The carbon stock, 
climate sensitivity and damage ratio uncertainty we examine are aggregate measures 
of uncertainty that capture  present-day disagreement in the scientific literature.

Equations (2), (4), and (8) are part of a  multivariate  Ornstein-Uhlenbeck process:

(9)    dx = αdt − ν ∘  (x −  μ –  ) dt + Sd  W t  , 

where the states are  x ≡  (k, E, χ, λ)   T  , with  k ≡ log ( K⁄ K 0   )  , and  ∘  denotes the ele-
ment-wise product. The growth rates of this stochastic process are

(10)       α ≡   (  1 _ 
dt

     
 피 t   [dK] 
 _ 

K   −   1 _ 
2
    σ  K  2  , μF e   −gt , 0, 0)    

T

  . 

The vector of mean reversion rates and the vector of means of this process are

(11)       ν ≡  (0, φ,  ν χ  ,  ν λ   )   T   and   μ –   ≡  (0, 0, χ –  , λ –  )   T  . 

The covariance matrix  S S   T   of the components of this multivariate process is

(12)    1 _ 
dt

    피 t   [dxd x   T ]  = S S   T  =  

⎛

 ⎜ 
⎝

  

 σ  K  2  

  

 ρ KE    σ K    σ E  

  

 ρ Kχ    σ K    σ χ  

  

 ρ Kλ    σ K    σ λ  

     
 ρ KE    σ K    σ E    

 σ  E  2  
  

 ρ Eχ    σ E    σ χ    
 ρ Eλ    σ E    σ λ       

 ρ Kχ    σ K    σ χ  
  

 ρ Eχ    σ E    σ χ  
  

 σ  χ  2  
  

 ρ χλ    σ χ    σ λ  
     

 ρ Kλ    σ K    σ λ  

  

 ρ Eλ    σ E    σ λ  

  

 ρ χλ    σ χ    σ λ  

  

 σ  λ  2  

  

⎞

 ⎟ 
⎠

 , 

where   ρ ij   , i ≠ j, i, j = K, E, χ, λ  denote partial correlation coefficients. The covari-
ances imply that unexpected shocks to, for example, climate sensitivity (or tempera-
ture) may lead to unexpected shocks in the growth of the economy (or asset returns), 
which occurs on top of the direct effect of temperature shocks on economic activity 
via the damage ratio.19

The optimal solution from a social planner’s perspective must satisfy the 
 Hamilton-Jacobi-Bellman equation

(13)      max  
C,F

    [f  (C, J)  +   1 _ 
dt

    피 t   [dJ (t, K, E, χ, λ) ] ]  = 0, 

18 Statistical uncertainty describes genuinely stochastic and continuously fluctuating processes, whereas sys-
temic uncertainty is potentially learnable. Climate sensitivity is not learnable in our model. There are likely aspects 
of climate sensitivity that are difficult or impossible to learn (cf. Roe and Baker 2007).

19 An alternative interpretation of the covariances is that human behavioral bias (e.g., overconfidence or publi-
cation bias) may tilt prediction errors in the same direction for climatic and economic uncertainty.
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where   (1/dt)  피 t   [dJ]   is Ito’s differential operator applied to  J.  Using  I(C, F, K, E, χ, λ )   
= A(E, χ, λ) K   α   F   1−α  − C − bF  and Ito’s lemma gives20

(14)   max  
C,F

    [ f  (C, J)  +  J K   Φ (I(C, F, K, E, χ, λ ), K)  +  J E   (μF e   −gt  − φE)]  +  J t  

   +   J χ    ν χ   ( χ –   − χ )  +  J λ    ν λ   ( λ –   − λ )  +   1 _ 
2
    J KK    K   2   σ  K  2   +   1 _ 

2
    J EE    σ  E  2   +   1 _ 

2
    J χχ    σ  χ  2   

 +   1 _ 
2
    J λλ    σ  λ  2    

 

+  J KE   K ρ KE    σ K    σ E   +  J Kχ   K ρ Kχ    σ K    σ χ   +  J Kλ   K ρ Kλ    σ K    σ λ   

 +  J Eχ    ρ Eχ    σ E    σ χ   +  J Eλ    ρ Eλ    σ E    σ λ   +  J χλ    ρ χλ    σ χ    σ λ   = 0. 

The optimality conditions with respect to  C  and  F  imply that the 
marginal value of investment and consumption must be the same, 
i.e.,   f C   =  C   −γ    ( (1 − η) J)    (γ−η)/(η−1)  = J   K    Φ I   (I, K ) ,  and that the marginal product 
of energy equals its social cost,  (1 − α ) Y/F = b + P e   −gt  ,  where the optimal SCC 
is defined as the marginal disvalue of emitting an additional ton of carbon divided by 
the marginal value of consumption, i.e.,  P ≡ − μ  J E  / f C   > 0.  Our command opti-
mum corresponds to the outcome in a decentralized market economy if emissions 
are priced at the SCC that results from the optimal solution, revenues are rebated in 
 lump-sum manner, and no other externalities or market failures exist. We thus use 
the terms “carbon price” and SCC interchangeably.

II. Perturbation Theory Solutions for the Optimal Risk-Adjusted SCC

A  closed-form solution to the stochastic dynamic optimal control problem (14) 
does not exist.21 Our approach to solving the Hamilton-Jacobi-Bellman equation 
(14) is to use perturbation theory. Perturbation theory is a method for finding an 
approximate solution to a complicated problem by starting with the exact solution 
of a related, simpler problem, which in our case is that of the stochastic  AK model 
of Pindyck and Wang (2013). The complicated problem is thus not solved exactly, 
but instead  so-called “small” terms are added to adjust the solution of the simpler, 
exactly solvable problem. Perturbation theory provides a formal framework to con-
trol how small these adjustment terms are. A  so-called small parameter  ϵ  must be 
defined so that we return to the simpler, exactly solvable problem in the limit  ϵ → 0. 

In online Appendix A, we lay out in detail and from first principles how pertur-
bation theory can be applied to (14). Crucially, we identify a single small parameter 
corresponding to the initial damage ratio (from (6)):

(15)     ϵ ≡  D 0   =  χ  0  
1+ θ χT     λ  0  

1+ θ λ    ( E 0  / S PI    )   1+ θ ET    , 

20 Strictly, (13) is not continuously differentiable, due to the truncation discussed in footnote 14, but we will 
ignore the (negligibly small) probability atoms at zero values of the states here (see Section IV).

21 Solving (14) numerically by approximating the value function and its derivatives in  five-dimensional space 
(time and the four states) is challenging due to the curse of dimensionality and does not yield analytical insight into 
the stochastic drivers of the optimal SCC.
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where the subscripts 0 denote values at  t = 0.  As we will show in Section IV, where 
we calibrate the model, damages only ever make up a few percent of GDP and 
are typically less than 10 percent even in the worst scenario (Nordhaus and Moffat 
2017), which justifies our choice of  ϵ  as small parameter. The solution for the value 
function takes the form of a series with terms of increasing order in  ϵ , i.e.,

(16)     J =  J   (0)  + ϵ  J   (1)  + ( ϵ   2 ), 

where we only evaluate the zeroth- and  first-order terms, and the error between the 
unknown complicated problem  J  and our approximation   J   (0)  + ϵ  J   (1)   is said to be  
( ϵ   2 ) . The first two terms are sufficient to evaluate a  so-called  leading-order esti-
mate of the optimal SCC known as Result A in online Appendix A.22

III. A  Closed-Form Solution for the Optimal Risk-Adjusted SCC

Although Result A is amenable to rapid numerical evaluation, we can obtain 
 closed-form solutions for the optimal SCC that are easy to interpret if we make 
three additional assumptions,23 as explained in detail in online Appendix A. These 
 closed-form solutions are known as Results 1 and 2, and their accuracy compared 
to Result A is less than 2 percent even in the most demanding case we consider in 
online Appendix F.

We first assume proportional damages (  θ ET   = 0 ), so that marginal damages do 
not depend on the carbon stock, and no delayed deterministic response of tempera-
ture to increases in the carbon stock (  χ 0   =  χ ̅   ).

Result 1: If   θ ET   = 0  and   χ 0   =  χ –    (and Assumptions I, II, and III in online 
Appendix A hold), the optimal SCC or carbon price is

(17)        P =   μΘ  Y|  P=0   _  r   ⁎  + φ   (1 +  Δ χ   +  Δ λ   +  Δ CK   +  Δ CC   )   with  Θ ≡    D E   _ 
1 − D   ,

where 

   r   ⁎  = ρ + (γ − 1 ) ( g   (0)  −   1 _ 
2
   η  σ  K  2   ) ,    Δ χ   =   1 _ 

2
    θ χT   (1 +  θ χT   )   

 (  σ χ  / χ –   )   2 
 __________   r   ⁎  + 2  ν χ   + φ   , 

   Δ λ   =       1 _ 
2
    θ λ   (1 +  θ λ   )  

 (  σ λ  / λ –   )   2 
 __________   r   ⁎  + 2  ν λ   + φ   ,    Δ CC   = (1 +  θ χT   )   

 ρ χλ    σ χ    σ λ  / χ –   λ –  
  ____________   r   ⁎  +  ν χ   +  ν λ   + φ   , and

   Δ CK   = − (η − 1)  σ K   ((1 +  θ χT   )   
 ρ Kχ    σ χ  / χ –  
 _________   r   ⁎  +  ν χ   + φ   + (1 +  θ λ   )   

 ρ Kλ    σ λ  / λ –   _________   r   ⁎  +  ν λ   + φ  ) . 

22 This result involves evaluation of a  high-dimensional integral, which is much less computationally demand-
ing than using numerical methods to solve the  Hamilton-Jacobi-Bellman equation (14) directly. In Section III, we 
further assume that the relative uncertainty in the three climate variables can be modeled as small parameters in 
order to get a tractable  closed-form expression for the SCC.

23 First, we assume the future atmospheric carbon stock does not inherit any of the uncertainty from new emis-
sions through its dependence on the stochastic capital stock (Assumption I). Second, we will include only the 
 leading-order effects of uncertainty (Assumption II) by performing an additional perturbation expansion. Third, 
we set the initial and  steady-state values of the damage ratio parameter   λ 0    and   λ –    to be equal, so deterministic dam-
ages are not subject to a delay (Assumption III), but do not make the same assumption for the climate sensitivity 
parameter  χ .
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Without uncertainty,  P = μΘ  Y|  P=0   /( r   ⁎  + φ)  with   r   ⁎  = ρ + (γ − 1) g   (0)  .  This 
expression shows the  well-known geophysical (μ and φ), economic (Y and   g   (0)  ), 
damage (Θ), and ethical (ρ and γ) determinants of the optimal deterministic SCC. 
More patience (lower ρ) boosts the SCC. 24 Rising affluence (higher   g   (0)  ) pushes 
up the discount rate if intergenerational inequality aversion exceeds one, and thus 
curbs the appetite of current generations for ambitious climate policy (the  γ g   (0)   
term in   r   ⁎  ). Higher economic growth also implies growing damages and a lower 
( growth-corrected) discount rate (the  − g   (0)   term in   r   ⁎  ), which increases the optimal 
SCC. Economic growth thus depresses the SCC if  γ > 1.   A higher economic activ-
ity (Y) and normalized marginal damage ratio (Θ) also push up the SCC. A small 
fraction of emissions that stays in the atmosphere ( μ ) and fast decay of atmospheric 
carbon (higher φ) curb the SCC.

A. Effects of Economic Growth Uncertainty on the Optimal SCC

Including economic—but not climatic—uncertainty, Result 1 boils down to 
 P = μΘ  Y|  P=0   /( r   ⁎  + φ) , where the  risk-adjusted discount rate can be written as

(18)     r   ⁎  =   ρ 
 
 

⏟
 

impatience

 +  γ  g   (0)  
 
 


 

rising affluence

 −   g   (0)  
 
 


  

growing damages

    −   1 _ 
2
   (1 + γ ) η  σ  K  2   

 
 


 

prudence

   +   η  σ  K  2     ⏟
 

insurance

  . 

The first two terms are the familiar  Keynes-Ramsey terms, the third term corrects 
for damages growing in line with output, the fourth term is the prudence term, 
which increases in the coefficient of relative prudence  1 + γ  and risk aversion η 
(cf. Leland 1968, Kimball 1990), and the insurance term stems from perfect cor-
relation between damages and output. Impatience, rising affluence, and insurance 
depress the SCC but growing damage and prudence boost the SCC. For  γ > 1 , 
the prudence effect dominates the insurance effect so growth uncertainty curbs 
the discount rate and boosts the SCC (cf. Nordhaus 2017, Gollier 2018).25 If EIS    
=   1/γ   >   1, growth uncertainty depresses the SCC; as in the asset pricing  
literature, it depresses the  price-dividend ratio.26 Our equation for   r   ⁎   in Result 1 

24 In contrast to exogenous Ramsey growth models such as Golosov et al. (2014) and Nordhaus (2017), our rate 
of economic growth   g   (0)   is endogenous. Hence, there are indirect effects on the optimal SCC via the growth rate   g   (0)  .  
For example, the direct effect of a higher rate of pure time preference ρ is to lower the SCC, and the indirect effect is 
to raise the SCC as economic growth is lowered (for  γ ≥ 1 ). Together, the effect of a higher rate of pure time pref-
erence on the discount rate is always positive  ∂  r   ⁎ /∂ ρ = 1 + (γ − 1) ∂ g/∂ ρ = 1 / γ  with  ∂ g/∂ ρ = −1/γ  (and 
thus always negative on the SCC). Although the optimal SCC does not depend directly on the share of fossil fuel in 
value added, the cost of fossil fuel, adjustment costs or the depreciation rate of physical capital, it does depend on 
adjustment costs and the depreciation rate via their effect on the endogenous rate of economic growth, which we 
treat as fixed in the analysis below. Furthermore, Ramsey growth models with an exogenous  long-run growth rate 
include a second time scale associated with economic convergence, which will typically be faster than the climatic 
time scales. We conjecture that our formula for the optimal SCC derived in an  AK growth model will therefore be 
a good approximation to the optimal SCC for a Ramsey growth model.

25 With logarithmic preferences ( γ = 1 ) and proportional damages,   Δ CK   = 0  and (17) simplifies to 
 P = μΘ  Y|  P=0   (1 +  Δ χ   +  Δ λ   +  Δ CC   )/(ρ + φ).  Economic growth uncertainty and the covariance of climate sensi-
tivity and the damage ratio with respect to the economy do not affect the optimal SCC, but climate sensitivity and 
damage ratio uncertainty and their correlation do. The simple rule put forward by Golosov et al. (2014) does not 
consider these uncertainties and in our case reduces to  P = μΘ  Y|  P=0   / (ρ + φ).  When we use a  2-box carbon cycle 
with a permanent and a temporary reservoir, we get in this case that  P = Θ   Y|  P=0   [(1 − μ ) /ρ + μ / (ρ + φ)]  with μ 
is the fraction of emissions that goes into the temporary reservoir.

26 Bansal, Kiku, and Yaron (2012) argue that values of EIS < 1 give rise to the wrong sign of several risk premia 
in asset markets.
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 corresponds to equation (13) in Barro (2009) for the  dividend-price ratio (abstract-
ing from the risk of macroeconomic disasters). Result 1 shows that this equation is 
still relevant with climate uncertainties.

Dietz, Gollier, and Kessler (2018) allow the elasticity of damages with respect 
to output denoted by  0 ≤  θ D   ≤ 1  to differ from one.27 If  η = γ,  equation (18) 
becomes28

(18′ )   r   ⁎  = ρ + γ  g   (0)  −   θ D   ( g   (0)  −   1 _ 
2
   (1 −  θ D   )   σ K     2 )   
 
  


  

growing damages

   −    1 _ 
2
   (1 + γ )γ  σ K     2  

 
 


 

prudence

   +   θ D   γ   σ K     2  
 
 

⏟
 

insurance

   . 

A value of   θ D    lower than 1 curbs the negative effect of growing damages on the 
discount rate and raises the SCC by less than   θ D   = 1.  The insurance term is smaller 
for   θ D   < 1 , so this pushes up the SCC relative to when   θ D   = 1. 29

B. Climate and Damage Uncertainties

The term   Δ χ   = (1/2)  θ χT   (1 +  θ χT   ) ( σ χ  / χ ̅  )   2 /( r   ⁎  + 2 ν χ   + φ)  in (17) is the cli-
mate sensitivity risk adjustment and depends on   θ χT   ≡  θ χ   +  θ T   +  θ χ    θ T   , which 
combines positive skewness of the (equilibrium) climate sensitivity distribution 
(  θ χ   > 0 ) and convex dependence of damages on temperature (  θ T   > 0 ). This 
adjustment is positive and larger for a more convex damage function, a more 
skewed climate sensitivity distribution with higher uncertainty (  σ χ   ), a smaller dis-
count rate (  r   ⁎  ), and slower carbon decay rate (φ). The damage ratio risk adjust-
ment   Δ λ   = (1/2)  θ λ   (1 +  θ λ   ) ( σ λ  / λ –   )   2 /( r   ⁎  + 2  ν λ   + φ)  in (17) is zero if the 
distribution of the damage ratio is not skewed (  θ λ   = 0 ). A  right-skewed distribu-
tion requires an increase in the SCC, more so if damages are more uncertain. When 
keeping the  steady-state uncertainties   Σ  χ  ∞  ≡  σ χ  / √ 

_
 2  ν χ      and   Σ  λ  ∞  ≡  σ λ  / √ 

_
 2  ν λ      

fixed, higher rates of mean reversion   ν χ    and   ν λ    increases the risk adjustments as the 
near future becomes more uncertain.

C. Risk-Insurance and Risk-Exposure Effects

We can rewrite the term in Result 1 that adjusts for correlations between climate 
and damage ratio risks, on the one hand, and economic risks, on the other hand, as

(19)   Δ CK   = − (η − 1) Σ  K,χ,λ  2    with     Σ  K,χ,λ  2   ≡  σ  K  2   (  
 (1 +  θ χT  )  β Kχ    _   r   ⁎  +  ν χ   + φ   +   

 (1 +  θ λ  )  β Kλ    _   r   ⁎  +  ν λ   + φ  ) , 

27 Dietz, Gollier, and Kessler (2018) use Monte Carlo simulations of DICE (Nordhaus 2008) and find that, with 
 emissions-neutral technical change, future states with rapid technical progress imply more emissions, more warm-
ing and a greater benefit from curbing emissions. The positive correlation between consumption and the benefits of 
mitigation implies a positive climate beta. This beta is close to one if damages are proportional to GDP, but closer 
to zero if damages are additive. Our Section IIIC analyses the effects of correlations between temperature, damage, 
and economic shocks more generally.

28 A similar expression is derived by Jensen and Traeger (2014) and Dietz, Gollier, and  Kessler (2018). Rewriting 
(18′ ), the    risk-adjusted  discount  rate  becomes    r   ⁎ = r  rf  

(0)  −  θ D   (g −  σ  K  2   /2 − γ  σ  K  2   )  −  θ  D  2    σ  K  2   /2  with   r  rf  
(0)  = ρ + γ  g   (0)  − 

γ (1 + γ)   σ  K  2  /2  the  risk-free interest rate, corresponding to Proposition 1 in Dietz, Gollier, and Kessler (2018). We 
only show (18′ ) for illustrative purposes and do not derive it as part our model.

29 The SCC increases if   θ D    is decreased depending on the sign of  ∂  r   ⁎ /∂  θ D   = −  g   (0)  + (1 − 2  θ D   + 2γ)   σ K     2  /2. 
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where   β Kχ   ≡  ρ Kχ    σ χ  / ( χ –    σ K  )   and   β Kλ   ≡  ρ Kλ    σ λ  / ( λ –    σ K  )   denote the normalized 
covariances of the climate sensitivity and damage ratio shocks, respectively, with 
shocks to the rate of economic growth.30 The sign of (19) depends on whether rela-
tive risk aversion η exceeds one, i.e., on whether the  risk-insurance effect ( η  Σ  K,χ,λ  2   ) 
dominates the  risk-exposure effect  ( Σ  K,χ,λ  2  )  due to growing damages (cf. Lemoine 
2020).

Turning to the  risk-insurance ( η  Σ  K,χ,λ  2   ) effect first, we note that a negative cor-
relation between climate sensitivity and economic shocks  ( β Kχ   < 0)  implies that 
asset returns are low in future states of nature in which temperature is high. It is then 
optimal to insure these investments more by raising the SCC. If the world econ-
omy benefits from higher temperature in future states, this correlation is positive  
( β Kχ   > 0),  so the SCC is lower. An example of such a positive correlation may be 
volcanic eruptions, which can be seen as a combination of a negative shock to the 
climate sensitivity through particulate emissions and a negative shock to the econ-
omy. Another example could be innovation leading to increased installation of solar 
panels, which boost both the economy and temperature (due to albedo effect of dark 
panels). The adjustment is large if risk aversion is high, climate sensitivity is more 
uncertain and askew, damages are more convex, and the normalized covariance for 
the climate sensitivity is large (high  η,  σ χ   ,  θ χ   ,  θ T   ,    β Kχ   ) and is  nonzero even for a 
symmetric climate sensitivity distribution and a damage ratio that depends linearly 
on temperature  ( θ χT   = 0). 

A negative correlation between damage ratio and economic shocks  ( β Kλ   < 0)  
implies that asset returns will be low in future states of nature in which the damage 
ratio is high (over and above the effect of damages being proportional to GDP). 
This justifies a higher SCC. One example of this negative correlation may be the 
COVID-19 pandemic, which was unexpected and may lower asset returns and make 
more areas of the economy vulnerable to climate change (e.g., food supply chains 
or health systems). In the hypothetical case that the world economy benefits from 
climate damage (e.g., through ingenious water engineering in response to damages 
that improves living conditions), there is a positive correlation  ( β Kλ   > 0)  and car-
bon should be priced less vigorously. The adjustment is large if risk aversion is high, 
the damage ratio has high uncertainty and skewness (high  η,  σ λ   ,  θ λ   ) and is  nonzero 
even for a symmetric damage ratio distribution (  θ λ   = 0 ).

The offsetting  risk-exposure effects (  Σ  K,χ,λ  2   ) in (19) occur because future states of 
nature that are associated with high asset returns are associated with large damages 
(as damages are proportional to GDP). That is, if   β Kχ   < 0,  future states of nature 
with negative GDP shocks are associated with lower damages, which requires a 
lower SCC.  Risk-insurance effects dominate  risk-exposure effects if risk aversion is 
large enough, i.e.,  η > 1 .31

30 Consistent with our perturbation scheme, the volatility of GDP is given to leading order by the volatility of 
the capital stock neglecting the effect of climate damages and thus the carbon stock, climate sensitivity and damage 
uncertainties on this volatility. These betas are defined analogously to the betas in asset pricing theory (e.g., Lucas 
1978, Breeden 1979), but they are related to “hedging” of the climate asset against the only risky “financial asset” 
in our model (capital). 

31 Sandsmark and Vennemo (2007) have one stochastic parameter (the loss of GDP for given temperature) and 
additive damages (  θ D   = 0 ). High future damages are then associated with low future aggregate consumption, so 
the corresponding beta is negative. It relies on the product of the change in marginal utility due to damages and 
marginal damages themselves, which is   ( ϵ   2 )   in our perturbation scheme and too small to be included. Nordhaus 
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D. Correlation between Temperature and Damage Ratio Risks

The term   Δ CC   = (1 +  θ χT   )  ρ χλ   ( σ χ  / χ –  )(  σ λ  / λ –  )/(  r   ⁎  +  ν χ   +  ν λ   + φ)  in (19) of 
Result 1 captures the effect of correlation between temperature and damage ratio 
uncertainty on the SCC. This is positive if high temperature shocks are associated 
with a disproportionately high damage ratio (e.g., extreme weather/climate events 
such as hurricanes and fires as far as they are not captured by the convex dependence 
of damages on temperature), in which case the optimal SCC is higher. Risk aversion 
η plays no role, since there is no possibility of  self-insuring.

E. Result 2

Result 2 relaxes the two assumption underlying Result 1 (  θ ET   = 0  and   χ 0   =  χ –   ), 
while still only considering the  leading-order effects of uncertainty.32

Result 2: The optimal SCC if damages are not proportional to the carbon stock 
( θ ET   ≠ 0)  and with a delayed deterministic temperature response  ( χ 0   ≠  χ –  )  is

(20)  P =   
μΘ (E,  χ 0  )    Y|  P=0    ____________  r   ⋆     (1 +  θ ET     

μ  F   (0)  _ 
E     

 ϒ  θ ET  ≠0   _  r   ⋆⋆    

  +  (1 +  θ χT   )   
 ν χ   _  r   ⋆      

 χ –   − χ _____ χ    ϒ  χ 0  ≠ χ ̅     +  Δ EE   +  Δ χχ   

 +  Δ λλ   +  Δ χ×λ   +  Δ CK   +  Δ CC  ) , 

where   r   ⋆  ≡  r   ⁎  + (1 +  θ ET   ) φ,    r   ⋆⋆  ≡  r   ⋆  + (η − 1)  σ  K  2   − φ , and   F   (0)  =   ((1 − 
α)/b)    1/α  A   1/α K  is optimal fossil fuel use without climate policy (to zeroth order of 
approximation). Like in (17), the  Δ -terms in (20) are the uncertainty adjustments 
and are given by (A4.1)–(A4.5) in online Appendix A. We distinguish two types of 
multiplicative correction factors, for   θ ET   ≠ 0  and for   χ 0   ≠  χ –  ,  which can be lin-
early combined. For example:   ϒ χχ   ≡  ϒ χχ, θ ET  ≠0   +  ϒ χχ, χ 0  ≠ χ ̅     , where   ϒ χχ    is the cor-
rection factor by which   Δ χχ    in Result 1 has to be multiplied to obtain   Δ χχ    in Result 
2. These correction factors are given in (D3.4) and (D3.5) in online Appendix D.

The effects of convexity of  reduced-form damages (  θ ET   > 0 ) in Result 2 are 
fourfold. First, the normalized marginal damage ratio rises with the stock of atmo-
spheric carbon so that the time path for the carbon price is steeper than of world 

(2011) argues that “those states in which the global temperature increase is particularly high are also ones in which 
we are on average richer in the future,” suggesting a positive beta. In our perturbation theory approach this effect 
does not feature in our correction factors, since it requires the integration of a geometric Brownian motion (for K), 
when solving the differential equation for the carbon stock, which cannot conveniently be done in closed form. 
If   θ ET   = 0,  this effect is zero as marginal damages are no longer proportional to the carbon stock E and enhanced 
uncertainty of this term due to uncertain new emissions does not contribute to the SCC. For the case   θ ET   > 0,  we 
examine this effect by numerically solving the stochastic differential equations and the integral in Result A and find 
it to be small (see online Appendix F).

32 These two assumptions are known as Assumptions IV and V in online Appendix A. We could also allow for 
the initial damage ratio not to be at its steady state, but this would lead to a more cumbersome expression. We allow 
for this in Result A.
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GDP. The correction factor   ϒ  θ ET  ≠0   > 0  reflects the more harmful effect of future 
emissions when the stock is higher. Second, convex damages boost the effective 
discount rate, since the marginal damage of a unit of carbon decays more quickly 
than the unit itself, depressing the SCC. Third, if damages are not too convex  
(0 <  θ ET   < 1),  the adjustment for carbon stock uncertainty is negative instead of 
zero, as in Result 1. Fourth, the adjustments for the other two climatic uncertainties 
are multiplied by correction factors that are greater than one, reflecting rising mar-
ginal damages.

Result 2 also captures the delay in the deterministic temperature response  
 ( χ 0   ≠  χ –  )  by the multiplicative correction factors. If Result 1 is evaluated with 
the generally higher value   χ –   , it ignores this delay and overestimates the SCC. 
Further discussion of the effects captured by Result 2 can be found in online  
Appendix A.4.2.

IV. Calibration

Table 1 summarizes our calibration starting from base year 2015 with further 
details in online Appendix E. To calibrate the  non-climatic part of our model to 
match historical asset returns, we follow Pindyck and Wang (2013) but abstract from 
catastrophic shocks to economic growth (see online Appendices E.1 and E.2). This 
gives a coefficient of relative risk aversion of  η =    4.3, intergenerational inequal-
ity aversion of  γ =    1.5, pure time preference of  ρ =    5.8 percent per year, trend 
growth of   g   (0)  =    2.0 percent per year, volatility of asset returns of   σ K   =    12 per-
cent per year1/2, and a risk premium of   r   (0)  −  r  rf  

(0)  = η  σ  K  2   =    6.4 percent per year 

Table 1—Summary of baSe CaSe CalibraTion

Impatience and aversion to 
 intergenerational inequality and risk

ρ = 5.8 percent/year, IIA = 1/EIS = γ = 1.5, RRA = η = 4.3

World economy A⁎ = 0.113/year, GDP PPP = 116$T/year,   g   (0)   = 2.0 percent/year

Investment, depreciation, and  
 adjustment cost

i(0) = 2.8 percent/year, δ = 0.33 percent/year, ω = 12.5 year

Asset volatility and returns   σ K    = 12 percent/year1/2,   r   (0)   = 7.2 percent/year,

  r  rf  
(0)   = 0.80 percent/year,   r   (0)  −  r  rf  

(0)   =  η  σ  K  2    = 6.4 percent/year 

Share of fossil fuel and production cost 1 − α = 4.3 percent, b = $5.40 × 102/tC

Preindustrial and 2015 (t = 0) carbon 
 stocks

Concavity of Arrhenius’ law and 
 stochastic carbon stock dynamics

  S PI    = 596 GtC,   S 0    = 854 GtC,   E 0    = 258 GtC,

  θ E   = − 0.36,  μ = 0.65, φ = 0.35 percent/year, 
  σ E      = 13 ppmv/year1/2

Distribution of the climate sensitivity   χ 0   =    1.11,   χ –   =    1.26,   σ χ      =   2.0 percent/year1/2

  ν χ      =   0.86 percent/year,   θ χ    = 3.0

Distribution of the damage ratio   θ T    = 0.56 (  θ ET   = 0 ),   λ –      = 0.21,   σ λ      = 2.3 percent/year1/2, 
  θ λ    = 2.7,   ν λ      = 0.20/year

Initial damage ratio and initial normalized 
 marginal damage ratio

  D 0    = 0.29 percent,   Θ 0    = 2.07 percent GDP/TtC

Conversion factors 1 ppmv CO2 = 2.13 GtC, 1 tC = 3.664 tCO2
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(with   r   (0)   the risky and   r  rf  
(0)   the  risk-free rate). In line with the specification in (4), 

we assume the global ratio of CO2 emissions to GDP declines at a rate of 2.0 percent 
per year, which matches recent data.33 Following Nordhaus (2017), we use world 
GDP at PPP of US$(2015)116 trillion. Table 1 gives details for investment, depre-
ciation, and fossil fuel cost.

A. Carbon Stock Uncertainty

To calibrate our  1-box model for carbon stock dynamics (4), we use the 17 
linear impulse response functions from the survey in Joos et al. (2013) and find 
 μ =  0.65 and  φ =  0.35 percent/year.34 We use the 90 percent confidence range 
 794–1,149 ppmv in 2100 predicted by simulations for the  high-temperature scenario 
RCP 8.5 (Chapter 12.4.8.1, IPCC, 2014 AR5) to calibrate   σ E   =    13 ppmv/year1/2. 
Panel A of Figure 1 shows the impulse response function for our  1-box model and 
panel B of Figure 1, shows the stock of atmospheric carbon, including 95 percent 
confidence bounds.35 Figure 1 shows that our simple  1-box model compares well 
with the  4-box model fitted to the same data by Aengenheyster et al. (2018) and the 
 2-box model of Golosov et al. (2014).36,37,38 Our confidence bands are much wider 
than those in Joos et al. (2013)39 and still much wider than the uncertainty range 
obtained from historical data,40 suggesting that model uncertainty may far exceed 
any inherent variability.

33 The global ratio of CO2 emissions to GDP ratio declined at 2.1 percent per year during  2000–2015 versus a 
decline of 0.8 percent per year in the decade before. Nordhaus (2017) uses a decline of 1.5 percent per year.

34 It is possible to estimate these values from historical data too (see online Appendix E3).
35 From   Σ E   (t ) =  ( 1,149   −   794)/3.29 = 108 ppmv,   σ E   =  Σ E   (t)  √ 

_______________
   2φ⁄ (1 − exp (−2φt))     =    13 ppmv CO2/

year1/2 with t = 2100  −  2005 = 95 years and using  φ =    0.35 percent/year, which corresponds to a  steady-state 
uncertainty of   Σ  E  ∞  =  σ E  / √ 

_
 2φ   =    155 ppmv CO2. The confidence band from IPCC (2014, AR5) is shown centered 

around the (different) mean of our prediction and translated in time to 2110 to reflect different initial times. Note 
that the RCP 8.5 scenario is associated with higher emissions than in our base case as can be gauged from Figure 1, 
panel B. We nevertheless use the standard deviation from the RCP 8.5 scenario to act as an upper bound on atmo-
spheric stock uncertainty. The probability of a value of  E ≤ 0  is indeed negligibly small, as previously assumed, 
and we formally have a negligibly small atom at  E = 0 .

36 For a linear  N-box carbon cycle   S ̃   =   ∑ i=0  N     S ̃   i    by  d  S ̃   i  /dt =  μ i   F e   −gt  −  φ i     S ̃   i   , Aengenheyster et al. 
(2018) obtain  μ =    {0.2173, 0.2240, 0.2824, 0.2763},  φ =    {0, 0.25, 2.74, 23.23} percent/year with   S ̃  (t = 0)   
=  {328, 40, 27, 5} ppmv scaled so   S ̃  (t = 0 )  =  401 ppm. We adapt Golosov et al. (2014) to continuous time and get  
μ =  {0.2, 0.3215},  φ =  {0, 0.23} percent/year and   S ̃  (t = 0 )  =  {0.85, 0.15}  ×  401 ppm, ignoring its third box for 
carbon that decays within the first decadal period. 

37 We set the initial atmospheric carbon concentration to   S 0   =    401 ppm of CO2 (May 2015), corresponding 
to 0.854 TtC or 3.13 TtCO2, and the preindustrial atmospheric carbon concentration to 280 ppm CO2, 0.596 TtC 
or 2.19 TtCO2, so that   E 0   =  121 ppm CO2, 0.258 TtC or 0.94 TtCO2. Updated and historical values can be found 
online at http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html. 

38 Although our calibration for  μ  and  φ  captures the  long-term impulse response (Figure 1, panel A) and stock 
 build-up (Figure 1, panel B), the resulting underestimation of the impulse response for small time (Figure 1, panel 
A) could lead to an underestimate of the SCC, especially for high discount rates. Although the impulse response 
function is less well captured by our  1-box model, this must be time integrated (after discounting) to evaluate the 
SCC. Agreement of the time path of the atmospheric stock (Figure 1, panel B) is thus more important, especially 
if   θ ET   ≠ 0  and the dependence on the stock is nonlinear.

39 Using the distribution at t = 95 years and  φ =    0.35 percent/year, we get   σ E    = 3.7 ppm/year1/2 , which is 
much higher than the value of   σ E   =    0.65 ppm/year1/2 obtained by Aengenheyster et al. (2018), based on Joos et 
al. (2013).

40 Based on the historical Law Dome Ice Core  2,000-year dataset for emissions and concentrations, we esti-
mate   σ E   =    0. 1–0.15 ppmv CO2/year1/2 (see online Appendix E3). Using the same dataset but fitting a geomet-
ric Brownian motion, Hambel, Kraft, and Schwartz (2021) find a much larger volatility of 0.78  percent/year1/2. 
Estimating this volatility, we find 1.4, 0.5, and 0.2 percent/year1/2 for the periods  1800–2004,  1900–2004, and 
 1959–2004. This large variation of volatility with time suggest that historical volatility in the atmospheric carbon 
concentrations is better described by an arithmetic Brownian motion, as in (6).

http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
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Nevertheless, we will show in section V that even with our high value of   σ E   , the 
adjustment to the optimal SCC is small for   θ ET   ≠ 0  (it is 0 for   θ ET   = 0 ) .41

B. Climate Sensitivity Uncertainty

We calibrate our temperature model (5) and (8a) to capture the key features of both 
the transient climate response (TCR) and the equilibrium climate response (ECS).42 
The ECS is the equilibrium or  long-term change in annual mean global tempera-
ture following a doubling of the atmospheric carbon stock relative to  preindustrial 
levels. The TCR is the change in temperature following an increase of 1 percent in 
the atmospheric stock of carbon each year at the time of doubling (i.e., 70 years). 
The distributions of the ECS and the TCR capture both statistical and modeling 
uncertainties, but are in our view the best characterized measures of the uncertainty 
associated with predicted temperature increase in the climate science literature.

Figure 2 shows the range of probability density functions proposed for the TCR 
and ECS in IPCC (2014, AR5).43 We take the mean of these distributions and fit 
our model to the first two moments of the TCR (mean and variance) and the first 
three moments of the ECS (mean, variance, and skewness), as well as an initial 

41 The adjustment to the SCC is potentially larger than we calculate here, since there is a risk that as global 
warming continues (sudden) releases of greenhouse gases (e.g., from thawing permafrost) and reductions in the 
capacity of oceans to absorb CO2 cause additional global warming. The existing modeling of such positive feed-
backs “do not yield coherent results beyond the fact that  present-day permafrost might become a net emitter of 
carbon during the twenty-first century under plausible future warming scenarios (low confidence)” (IPCC 2014, 
AR5, Chapter 12.4.8.1) and we thus exclude it here.

42 From (7),   T 2   ≡ T(E =  E PI   , χ )  =  χ   1+ θ χ    , with  χ  normally distributed with  time-varying mean 
  μ χ   =  χ 0   exp (− ν χ   t)     +  χ ̅   (1 − exp (− ν χ   t))  , and standard deviation   Σ χ   =  σ χ    √ 

________________
    (1 − exp (−2 ν χ   t)) /2  ν χ     , and its skew-

ness is given to  leading-order by  skew [ T 2  ]  ≡ 피 [  ( T 2   − 피 [ T 2  ] )    3 ]  = 3  θ χ    (1 +  θ χ   )   3   μ  χ  3(1+ θ χ  )   ( Σ χ  / μ χ   )   4  + (  Σ  χ  6   ) . 
43 We take the 7 distributions for the TCR and the 13 distributions for the ECS from Figure 10.20 of IPCC 

(2014, AR5). The gray area in Figure 2 corresponds to one standard deviation either side of the mean of these 
different distributions (negative values not shown). More recent climate model simulations find a higher range for 
the ECS which is due to cloud feedback and the interaction with aerosol forcing (Meehl et al. 2020). These effects 
are not captured by our calibration.

Figure 1. Atmosperhic Carbon Cycle And Uncertainty
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 temperature of   T 0   =  0.89°C above preindustrial. Reflecting our different initial CO2 
concentration from the TCR scenario, we ensure that our model matches the uncer-
tainty of the TCR at the time the concentration reaches twice preindustrial, i.e., at t 
= 17 years from initial time (2015), rather than the original definition of 70 years 
from preindustrial.44,45 Tables 2 and 3 show that we match these moments well, and 
are in line with the consensus likelihood ranges in IPCC (2014, AR5). Figure E2 in 
online Appendix E plots the distribution of temperature as function of time.

C. Damage Ratio Uncertainty

To calibrate the damage ratio and its uncertainty given in (3), we use the survey by 
Nordhaus and Moffat (2017)—henceforth, NM17—including their subjective weights 
to reflect the reliability of different estimate shown in Figure 3.46 From these data, we 
estimate a mean   λ 0   =  λ ̅   =  0.21, standard deviation   Σ  λ  ∞  =    0.036, damage con-
vexity   θ T      =   0.56, and skewness parameter   θ λ      =   2.7 of the damage ratio,47 which 
we take to correspond to the steady state, setting the  mean-reversion coefficient   ν λ    to 

44 To capture these and initial temperature, we match the TCR at  t = ln (2  S PI  / S 0  )/0.02 =  17 years from 2015 
(instead of 70 years from preindustrial). We thus deviate from the formal definition of TCR, but argue this is justi-
fied as the  high-level uncertainties in TCR and ECS are by far the best characterized of all summary statistics. This 
gives   χ 0   =  1.11,   χ –   =  1.26,   T 0   =  0.89°C,   σ χ   =  2.0 percent/year1/2,   θ χ   =  3.0, and   ν χ   =  0.86 percent per year corre-
sponding to an  e-folding scale of  1/ (2  ν χ  )  =  58 years. Climate sensitivity (as a proxy for temperature) is initially 
below its  long-run value (  χ 0   ≤  χ –   ).

45 The probability of  χ ≤ 0  is indeed negligibly small, as previously assumed. Since the truncated variable  
max[ χ, 0]  cannot take negative values, we formally have a negligibly small atom at  χ = 0  (and   T 2   = 0 ).

46 Since our formulation does not allow for negative damages, we omit these estimates, which were given low 
weights of 0.1 by NM17. Panel A of Figure 3 shows omitted estimates in open circles and included estimates in 
closed circles. Since  λ  cannot take negative values, there is a negligibly small atom at λ = 0 (and D = 0).

47 Ackerman and Stanton (2012) and Weitzman (2012) used a damage function which is even more convex at 
high temperatures. NM17 examines evidence for thresholds or large convexities in the damage function, but did 
not find any.
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a large value of 20 percent/year (so   σ λ   =  Σ  λ  ∞   √ 
_

 2  ν λ      = 2.3 percent/year1/2). The 
distribution has a positive standardized skewness   skew   ⁎  [D | T]  = 3  θ λ    Σ  λ  ∞ / λ –    = 0.29.

The continuous red line in panel A of Figure 3 denotes the expected damage ratio 
with the red shaded area corresponding to the 90 percent confidence band.48 Panel 
A of Figure 3 also shows NM17’s preferred regression  (D = 0.0018 T   2  ),  which 

48 Further details are given in online Appendix E6.
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Table 2—Climate Sensitivity Uncertainty

TCR ECS

IPCC (2014, AR5) Our calibration IPCC (2014, AR5) Our calibration

피[T2] 1.7°C 1.7°C 2.8°C 2.8°C
var[T2] 0.19°C2 0.20°C2 1.5°C2 1.7°C2

skew[T2] 0.16°C3 0.054°C3 2.4°C3 2.5°C3

Table 3—Climate Sensitivity Likelihood

IPCC (2014, AR5)(%) Our calibration (%)
TCR  1–2.5°C “very likely” ( 90–100) 91

>3°C “extremely unlikely” ( 0–5) 0.72

ECS 1. 5–4.5°C “likely” ( 66–100%) 75
<1°C “extremely unlikely” ( 0–5) 4.2

>6°C “very unlikely” ( 0–10) 2.3

Figure 3. Damage Ratio Uncertainty
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agrees closely with our expected damage ratio. Finally, following Nordhaus and 
Sztorc (2013) and NM17, we adjust damages shown in panel A of Figure 3 upwards 
by 25 percent at all temperatures to reflect damages not included in current esti-
mates. Combined with our calibrated value of   θ E   = − 0.36  (see online Appendix 
E4), we obtain proportional damages  ( θ ET   = 0)  from this calibration.

Panel B of Figure 3 also gives a calibration in which the damage ratio is con-
strained to be quadratic in temperature, so convex damages (  θ T   = 1,    θ ET   = 0.28). 49  
Our estimates imply a normalized marginal damage ratio  Θ( E 0  ,  χ 0  , λ –  )  of 2.1 percent 
and 1.8 percent GDP/TtC for proportional and convex damages, respectively. The 
normalized marginal damage ratio and the optimal SCC rise as the atmospheric car-
bon stock rises with continued emissions (for   θ ET   > 0 ) and as the expected climate 
sensitivity rises to equilibrium, as captured by the two correction factors in Result 2. 
Golosov et al. (2014) have a constant Θ = 2.4 percent GDP/TtC, which includes an 
upward adjustment for tipping risk.

V. Estimates of the Optimal Risk-Adjusted SCC

A. Market-Based versus Ethics-Based Calibration

Using Result 2 and the calibration in Table 1, Table 4 reports estimates of the opti-
mal SCC derived from the  market-based calibration (base case, with proportional 
damages), where all risk  markups in this and the other tables below are a percentage 
of the deterministic SCC.50 The table shows the important role of the initial value of 
the climate sensitivity parameter   χ 0   : if it is mistakenly set to the higher  steady-state 
value   χ –   , the optimal SCC roughly doubles. This replicates a result found in Traeger 
(2017), who models temperature delay explicitly; hence, our simplified modeling 
of temperature delay in (5) and (8a) seems to work well. Similarly, if one does not 
allow for the lags in reaching the ECS and its distribution (by setting   ν χ   → ∞ ), 
the optimal  risk-adjusted SCC is considerably increased (cf. column 3), as the large 
uncertainties associated with the ECS are then experienced instantly. The SCC of 
$6.6/tCO2 is low, since it is based on market rates of return.

Our calibration has EIS = 1/1.5 < 1. Asset pricing theory (ATP) typically 
assumes EIS > 1 to ensure that macroeconomic uncertainty depresses share prices, 
in which case macroeconomic uncertainty also lowers the SCC. To match the same 
risky and  risk-free financial rates of return, the rate of impatience  ρ  drops to 4.8 per-
cent per year if we set EIS = 1.5. The ATP column in Table 4 then confirms that 
the adjustment for macroeconomic uncertainty is  − $1.50/tCO2 (negative), and the 
deterministic SCC is higher at $6.90/tCO2 (cf. analytical Results 1 and 2 and the 
numerical results of Jensen and Traeger 2014 and Cai and Lontzek 2019).

The two  market-based calibrations (the base and APT) imply a  growth-corrected 
discount rate of 5.2 percent per year, which is very high; this is why the SCC is very 
low. This is the inevitable result of deriving  policymaker preferences from decisions 

49 Setting   θ T   = 1 , we obtain   θ λ   = 6.3,  λ 0   =  λ –   = 0.43,  Σ  λ  ∞  = 0.039,    σ λ   = 2.5 percent /year   1/2  ,  ν λ   = 0.20/
year , and   θ ET   = 0.28.  This corresponds to a standardized skewness   skew   ⁎  [D | T]  = 0.27  (similar to the uncon-
strained case). See panel B of Figure 3. 

50 To assess the accuracy of the approximations made in Result 1 and 2 used in Tables  4–8, relative to that of 
Result A, we evaluate Result A numerically and show that the error is small (see online Appendix F for details). 
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made in financial markets. This is not necessarily a consensus view. For example, 
Drupp et al. (2018) found that three-quarters of climate experts found a social dis-
count rate of 2 percent per year acceptable. We therefore continue with what we call 
an  ethics-based calibration, in which we use a much lower rate of pure time prefer-
ence (1.5 percent instead of 5.8 percent or 4.8 percent per year), which corresponds 
to a  risk-adjusted (not  growth-corrected) discount rate   r   (0)  =  r   ⁎  +  g   (0)   of only 
2.9 percent (instead of 7.2 percent per year in the  market-based cases).51 Although 
not modeled here, this would require policy makers to also implement a capital sub-
sidy attain the socially optimal outcome and correct for the fact that households save 
too little from a social perspective (Belfiori 2018, Barrage 2018).52 As shown in 
Table 4, this pushes up the deterministic SCC to $11.50/tCO2 and the  risk-adjusted 
SCC to $39.80/tCO2. Using  market-based volatility, the  markup for asset price risk 
is 163 percent, which exceeds that for climate sensitivity (41 percent) and damage 
ratio risk (43 percent). Starting off at the  long-run value of the climate sensitiv-
ity parameter  ( χ 0   =  χ –  )  boosts the deterministic SCC considerably as before but 
lowers all risk  markups. Ignoring both deterministic stochastic temperature delays 
so that the ECS and its distribution is reached instantaneously (setting   ν χ   → ∞ ),  
the  risk-adjusted carbon price rises to $66.30/tCO2. In our calibration, the large 
uncertainty and skewness of the ECS (versus the TCR) only arise in the relatively 
long run (with an  e-folding time of 58 years). From comparing the market- and 
 ethics-based calibrations, we find that the ECS plays a more significant role for 
lower  ethics-based discount rates, as is clear from the case in which the distribution 
of the ECS is achieved instantaneously  ( ν χ   → ∞). 

51 Online Appendix G also shows outcomes for the optimal SCC under common alternative calibrations.
52 For example, Gollier (2018) relies on ethical arguments to use a zero or much lower discount rates as an 

alternative to discount rates derived from asset market returns. To analyze this problem, the government should 
maximize expected welfare using low  ethically motivated discount rates, subject to the constraints of the decentral-
ized market economy, which is characterized by a higher discount rate. An alternative is to adjust γ when lowering 
ρ to ensure that the risky and safe interest rates are still matched to the data, but this would not affect the optimal 
SCC given in Results 1 or 2.

Table 4—Estimates of the SCC:  Market-Based and  Ethics-Based

 Market-based calibration  Ethics-based calibration

base case   χ 0   =  χ –     ν χ   = ∞ ATP: EIS > 1 base case   χ 0   =  χ –     ν χ   = ∞ 

Deterministic SCC ($/tCO2) 4.1 8.4 8.4 6.9 11.5 20.8  20.8
due to economic uncertainty ($/tCO2) 1.3 2.4 2.4 −1.5 18.7 26.2 26.2
due to carbon stock uncertainty 0 0 0 0 0 0 0
due to climate sensitivity uncertainty 0.4 0.6 2.6 0.4 4.7 6.4 11.2
due to damage ratio uncertainty 0.7 1.4 1.7 0.7 4.9 7.5 8.1

 Risk-adjusted SCC ($/tCO2) 6.6 12.8 15.0 6.6 39.8 61.0 66.3

Economic risk  markup (%)
Climate sensitivity risk  markup (%)
Damage ratio risk  markup (%)
Total risk  markup (%)

32
9
18
59

29
7
17
53

29
31
20
80

−21
7
13

−4.9

163
41
43
247

126
31
36
193

126
54
39
219

Discount rate r(0) (per year)(%) 7.2 7.2 7.2 7.2 2.9 2.9 2.9

Note: Estimates are for proportional damages (  θ ET   = 0 ), asset return volatility (  σ K   =  12 percent/year1/2), and 
 ρ =  5.8 percent/year ( market-based) or  ρ =  1.5 percent/year ( ethics-based), except for APT (asset pricing theory), 
which has EIS = 1.5 and ρ = 4.8 percent/year.
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B. Volatility from Asset Returns versus GDP

The most important drawback of our  AK model is that asset returns (capi-
tal growth) and GDP growth have the same volatility (see also the discussion in 
Pindyck and Wang 2013), while the former is empirically much greater. Ideally, 
we would have a model general enough to calibrate asset returns and GDP growth 
separately but it is not trivial to extend Result 1 and 2 for this.53 However, if we 
calibrate to GDP volatility, Table 5 shows that the  markup for economic risk drops 
dramatically.54 Due to the higher  risk-adjusted discount rate   r   (0)  , the  markups for 
climate sensitivity and damage ratio uncertainty and the  risk-adjusted SCC are also 
considerably reduced.

With asset return volatility, an increase in RRA55 from 4.3 to 6.0 depresses 
the discount rate   r   (0)   from 2.9 percent to 2.3 percent per year and pushes up the 
 risk-adjusted SCC to $92.20/tCO2, corresponding to a total risk  markup of 705 
instead of 247 percent, whereas with GDP volatility this effect is negligibly small. 
With asset return volatility, an increase in IIA from 1.5 to 2.0 also pushes down the 
discount rate   r   (0)   to 2.3 percent per year and the  risk-adjusted SCC up to $87.20/
tCO2. With GDP volatility, a similar increase in IIA instead increases the discount 
rate   r   (0)   (from 4.5 percent to 5.5 percent per year), pushes down the deterministic 
SCC from $11.50 to $8.10/tCO2 and the  risk-adjusted SCC from $14.60 to $10.20/
tCO2.

Summarizing, the effect of RRA on the  risk-adjusted SCC depends crucially on 
the magnitude of economic volatility and is very substantial for asset return volatil-
ity but negligibly small for GDP growth volatility. More IIA substantially boosts the 
 risk-adjusted SCC for asset return volatility,56 but decreases for GDP growth vola-
tility. This accords with Crost and Traeger (2013); Ackerman, Stanton, and Bueno 

53 One way of obtaining a higher asset price volatility than GDP volatility is to assume that dividends are a 
leveraged function of output or consumption (e.g., Bansal and Yaron 2004, Wachter 2013). 

54 Historical data for the growth rate of world GDP for  1961–2015 imply   σ K    = 1.5 percent/year1/2, which we 
use here.

55 We use RRA and IIA to denote relative risk aversion (RRA = η) and intergenerational inequality aversion 
(IIA = γ), respectively. 

56 As  g − η   σ K     2  < 0  (cf. (18), when written as   r   ⁎  = ρ + (γ − 1) ( g   (0)  − η  σ  K  2   /2 )).

Table 5—Estimates of the SCC: Asset Return versus GDP Volatility

Asset return volatility
(  σ K   =  12 percent/year1/2)

GDP growth volatility
(  σ K   =  1.5 percent/year1/2)

Base case  η = 6.0  γ = 2.0 Base case  η = 6.0  γ = 2.0  ρ =  0.1%/year

Deterministic SCC ($/tCO2) 11.5 11.5 8.1 11.5 11.5 8.1 25.5

 Risk-adjusted SCC ($/tCO2) 39.8 92.2 87.2 14.6 14.6 10.2 34.1

Economic risk  markup (%)
Climate sensitivity risk  markup (%)
Damage ratio risk  markup (%)
Total risk  markup (%)

163
41
43
247

492
112
101
705

691
149
134
974

1
11
15
27

1
11
15
28

1
9
15
25

2
15
16
34

Discount rate r(0) (per year) 2.9 2.3 2.3 4.5 4.5 5.5 3.1

Note: Estimates in this table are for proportional damages (  θ ET   = 0 ) and  ρ =  1.5 percent/year ( ethics-based cal-
ibration), except for the last column, which considers a lower rate of impatience.
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(2013); and Hambel, Kraft, and Schwartz (2021), who all use uncertainty based on 
GDP.57

C. Convexity of the Damage Function

Table 6 considers the effect of our convex damage function (  θ ET   =    0.28) on the 
SCC. Generally, the SCC is larger due to larger damages for higher temperatures (cf. 
panel B of Figure 3), which is felt more strongly for lower discount rates.58 There is 
now a small negative adjustment for carbon stock uncertainty due to the convexity of 
marginal damages for   θ ET   =    0.28 (cf. (A4.1), Result 2).59 The climate sensitivity 
risk  markup increases considerably due to the more convex  damages-temperature 
relationship (  θ T   =    1.0 versus 0.56 for proportional damages). If we consider the 
highly convex damage function of Ackerman and Stanton (2012) (i.e., AS12) with 
damages rapidly rising above 1°C, we get an even larger deterministic SCC of 
$45.90/tCO2, a climate sensitivity risk  markup of 61 percent and a  risk-adjusted 
SCC of $87.60/tCO2.

60, 61

57 With GDP growth volatility, it is possible to use an even lower  ethics-based value of impatience of 
 ρ =  0.1 percent/year without negative discount rates and unbounded value of the SCC, which we will use below.

58 This effect more than compensates the higher effective discount rate due to atmospheric decay of carbon in 
the case of convex damages (cf.   r   ⋆  ≡  r   ⁎  + (1 +  θ ET   ) φ  in Result 2).

59 IPCC (2014, AR5) suggests that carbon cycle uncertainty and climate sensitivity uncertainty contribute about 
equally to uncertainty in temperature. From our temperature model (5), we obtain   Σ T   /피 [ T ]  =  (1 +  θ χ  )   Σ χ  / μ χ   +  
(1 +  θ E  )   Σ E   /피 [ E]  and from Table 1 we estimate the first term to be 48 percent and the second term to be 36 percent 
at a typical value of the future carbon stock of 피[E] = 550 ppmv (see panel B of Figure 1), thus also of comparable 
magnitude. However, this does not mean that both terms contribute equally to the SCC. With proportional damages, 
carbon cycle uncertainty has zero effect (Result 1). With convex damages, climate sensitivity has a large and posi-
tive effect on the SCC, whilst carbon cycle uncertainty has only a small negative effect.

60 The damage function of AS12 is  D = 1 −  (1 + 0.00245 T   2  + 5.021 ×  10   −6   T    6.76  )   −1  . As our formulation has 
power law damage functions, we fit  D =  T   1+ θ T,AS     ( C AS   λ)   1+ θ λ     to the AS12 damage function over the range  0–4.0°C 
to obtain   θ T,AS   =  1.54 and   C AS   =  0.99, as illustrated in online Appendix Figure E4a. We retain the distribution for 
λ and the value of   θ λ    for proportional damages given in Table 1. 

61 As an alternative to our multiplicative uncertainty, Crost and Traeger (2014) have argued that the  power 
coefficient in the relationship between damages and temperature should be uncertain. To illustrate this, we calibrate  
D =  D 0    T   λ   with  λ ∼ N(  μ λ   ,  Σ  λ  2   ) , to obtain   D 0   =  0.20,   μ λ   =  1.1, and   Σ λ   =  0.59, as shown in online Appendix 
Figure E4b. Since damages cannot be stochastic at 1.0°C, we only use damage estimates for which temperature 
exceeds 1.1°C. From a  leading-order expansion in  λ, we obtain a standardized skewness which rises with tem-
perature, i.e.,  skew⁎(D | T ) = 3  Σ λ   log (T)  (e.g., to 2.45 at 4°C), which is much higher than our (constant) value 

Table 6—Estimates of the SCC: Convexity of the Damage Function

Proportional damages
(  θ ET   = 0 ) 

Convex damages
(  θ ET   = 0.28 )

Highly convex damages
(AS12,   θ ET   = 0.63 )

Deterministic SCC ($/tCO2) 25.5 26.8 45.9

 Risk-adjusted SCC ($/tCO2) 34.1 41.9 87.6

Economic risk  markup (%)
Carbon stock risk  markup (%)
Climate sensitivity risk  markup (%)
Damage ratio risk  markup (%)
Total risk  markup (%)

2
0
15
16
34

1
−1
30
26
56

−1
−1
61
21
91

Discount rate r(0) (per year) 3.1 3.1 3.1

Note: Estimates in this table are for  ρ  = 0.1 percent/year ( ethics-based calibration) and GDP growth volatility 
(  σ K   =  1.5 percent/year1/2).
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D. Correlation of Climate Sensitivity and Damage Risks with the Economy

Table 7 shows that, if the elasticity of damages with respect to world GDP is cut 
from 1 to   θ D    = 0.8, two opposing effects occur: damage shocks are no longer fully 
insured, depressing the  risk-adjusted discount rate (the insurance term in (18′ )) and 
pushing up the SCC, and damages now grow less rapidly than GDP, pushing up the 
discount rate (the  growing-damages term in (18′ )) and depressing the SCC. Table 7 
shows that the  insurance-effect dominates if economic volatility is based on asset 
returns, and the  growing-damages effect if it is based on GDP growth.

Taking economic volatility based on GDP growth, the SCC drops from $40.10 to 
$28.10/tCO2 as the correlation coefficient between the climate sensitivity and GDP, 
is increased from its minimum to its maximum value (  ρ Kχ    from −1 to 1). The rea-
son is that, as correlation between climate sensitivity shocks and GDP increases and 
flips from negative to positive, the scope for insurance increases, and carbon can be 
priced less. Similarly, the SCC drops from $36.50 to $31.70/tCO2 as the correlation 
coefficient between the damage ratio and GDP is increased from its minimum to its 
maximum value (  ρ Kλ    from −1 to 1). Finally, if we vary   ρ χλ    from −1 to 1, the SCC 
increases from $29.20 to $39.00/tCO2, with the largest value corresponding to the 
case when future climate sensitivity shocks are perfectly (positively) correlated with 
future damage ratio shocks.62

of 0.29, especially at higher temperatures. Figure E4b indicates that this alternative gives a damage ratio distribution 
that is also more uncertain (wider confidence bands) at temperatures higher than 3°C or 4°C compared to convex 
damages. Both the higher skewness and higher uncertainty push up the optimal SCC for low discount rates, but this 
effect is like our case of convex damages (Figure 3b). 

62 The effects of   ρ EK   ,  ρ Eχ   , and   ρ Eλ    on the  risk-adjusted SCC are very small in our calibration, so we omit these 
here.

Table 7—Estimates of the SCC: Correlated Risk

Asset return 
volatility GDP growth volatility (  σ K   =  1.5 percent/year1/2)

Base
  θ D   
0.8 Base

  θ D   
0.8

  ρ Kχ     ρ Kλ     ρ χλ   

−1 1 −1 1 −1 1

Deterministic SCC ($/tCO2) 11.5 9.9 25.5 19.0 25.5 25.5 25.5 25.5 25.5 25.5

 Risk-adjusted SCC ($/tCO2) 39.8 122.9 34.1 25.3 40.1 28.1 36.5 31.7 29.2 39.0

Economic risk  markup (%) 163 811 2 3 2 2 2 2 2 2
Climate sensitivity risk  markup (%) 41 181 15 14 15 15 15 15 15 15
Damage ratio risk  markup (%) 43 156 16 16 40 −7 26 7 −3 36
Total risk  markup (%) 247 1147 34 33 57 10 43 24 15 53

Discount rate r(0) (per year) (%) 2.9 2.2 3.1 3.5 3.1 3.1 3.1 3.1 3.1 3.1

Note: Estimates in this table are for proportional damages (  θ ET   = 0 ), for  ρ =  1.5 percent/year in the case of asset 
return volatility (  σ K   =  12 percent/year1/2) and for  ρ =  0.1 percent/year in the case of GDP growth volatility (  σ K   =  
1.5 percent/year1/2).
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VI. Concluding Remarks

Using perturbation methods, we have derived a tractable  closed-form approximate 
solution for the optimal  risk-adjusted SCC under economic and climatic uncertain-
ties allowing for skewed distributions and accounting for the time scales on which 
the uncertainties arise and their correlation. Our solution is a better approximation if 
damages are a small fraction of world GDP, which they are for most available esti-
mates. Our solution offers new analytical insights and complements insights from 
numerical solutions of stochastic, dynamic, nonlinear systems. We have calibrated 
our uncertainties based on  high-level surveys (IPCC 2014, AR5) for atmospheric 
carbon stock and climate sensitivity uncertainties and Nordhaus and Moffat (2017) 
for damage ratio uncertainty.

We confirm earlier results that the optimal SCC decreases with increasing inter-
generational inequality aversion if economic growth adjusted for its uncertainty is 
positive, but increases in risk aversion if economic growth (or asset returns) are vol-
atile provided the elasticity of intertemporal substitution is less than one. If damages 
are proportional to GDP, there is an insurance effect which curbs the optimal SCC. 
If the elasticity of damages with respect to GDP is below one, there is less insurance 
potential, which increases the SCC, but damages grow less rapidly, which reduces 
the SCC (cf. Dietz, Gollier, and Kessler 2018). In our simulations, the first effect 
dominates if economic volatility is derived from asset returns, but the second effect 
dominates if volatility is derived from GDP growth.

Uncertainty in atmospheric carbon stock dynamics only requires adjustments to 
the SCC if damages are convex, but these effects are negligible if based on historical 
uncertainty and negative and small if based on future projections. Uncertain climate 
sensitivity increases the SCC significantly, especially due to the skewness of the equi-
librium climate sensitivity distribution, further enhanced by the convex dependence of 
damages on temperature. The magnitude of this  markup depends crucially on the time 
scale on which it arises, and the much larger and more skew equilibrium climate sen-
sitivity only plays a role for lower  ethics-based discount rates. There is some evidence 
that the distribution damage ratio is  right-skewed with an increase in the optimal SCC 
as a result. These results are complementary to those of Traeger (2017).

Our solution for the optimal SCC also allows for correlated risks. If rela-
tive risk aversion exceeds one, the  risk-insurance effects dominate the offsetting 
 risk-exposure effects resulting from damages being proportional to GDP. It is thus 
optimal to insure and raise the SCC if climate sensitivity and economic shocks are 
negatively correlated. If risk aversion exceeds one, we also show that the optimal 
SCC is higher if damage ratio and economic shocks are negatively correlated. This 
occurs if asset returns are high in future states of nature in which the damage ratio 
is lower than expected. If risk aversion equals one, correlation of damage ratio or 
climate sensitivity risks with economic risks do not affect the SCC as in Lemoine 
(2020), but correlation between climate sensitivity and damage ratio risks does.

We have made two crucial simplifications in our analysis. First, we have assumed 
that all forms of climatic uncertainty that might exist are captured by  present-day 
disagreement in the scientific literature about four key metrics: the atmospheric car-
bon stock in 2100 (given an emission scenario), the transient climate response, the 
equilibrium climate sensitivity and the climate damage ratio. We thus capture only 
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“known unknowns,” and  present-day disagreement may underestimate future uncer-
tainty (“unknown unknowns”).63 If, on the other hand, learning takes place, we may 
be overestimating uncertainty. Furthermore, through our use of stochastic processes 
of the  Ornstein-Uhlenbeck type to model climatic uncertainty, we impose a particu-
lar shape of the (joint) probability distribution and its variation in time. In doing so, 
we have ruled out “ abnormal” events associated with the (fat) tail of the probability 
distribution, including tipping events. We have also ruled out climatic uncertainty 
that grows continuously with increasing time horizons (as for example captured by 
geometric versus arithmetic Brownian motions or even more rapidly as in  long-run 
risk models).

Second, our analysis is based on a very parsimonious representation of the cli-
mate, which captures some but not all features of  state-of-the-art climate models. 
Our  1-box atmospheric carbon stock model (similar to Golosov et al. 2014) does 
not fully capture the slowing rate of carbon decay with time, potentially causing an 
underestimate of ( short-term) temperature increase. Yet, our temperature response 
does not suffer from the inertia for which many integrated assessment models have 
recently been criticized (Mattauch et al. 2020).

Future research should be aimed at models with  ethics-based discounting for 
policy makers and  market-based discounting for the private sector that are gen-
eral enough to distinguish volatility of equity returns and GDP growth. We have 
abstracted from  long-run risk in economic growth (Bansal and Yaron 2004) and a 
 downward-sloping term structure resulting from mean reversion in economic growth 
(Gollier and Mahul 2017), both of which tend to boost the SCC.64 We need robust 
empirical estimates and more structural underpinning of correlations between cli-
mate sensitivity and damage ratio shocks with the economy. Other challenges are to 
allow for compound Poisson shocks to temperature and damages (cf. Hambel et al. 
2021; Bretschger and Vinogradova 2019; Bansal, Ochoa, and Kiku 2016), positive 
feedbacks such as the CO2 absorption capacity of the oceans declining with tem-
perature (Millar et al. 2016), the timing of climatic uncertainty, the risk of tipping 
points (e.g., Lemoine and Traeger 2014, 2016a; Lontzek et al. 2015; Cai, Lenton, 
and Lontzek 2016; van der Ploeg and de Zeeuw 2018; Cai and Lontzek 2019), which 
may further increase the optimal SCC. Finally, future research may attempt to dis-
tinguish between modeling disagreement and statistical uncertainty. Robust optimal 
control techniques may also be used to deal with modeling uncertainties in climate 
policy (e.g., Rudik 2020).
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