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B-UAVC: Buffered Uncertainty-Aware Voronoi Cells for
Probabilistic Multi-Robot Collision Avoidance

Hai Zhu and Javier Alonso-Mora

Abstract— This paper presents B-UAVC, a distributed colli-
sion avoidance method for multi-robot systems that accounts
for uncertainties in robot localization. In particular, Buffered
Uncertainty-Aware Voronoi Cells (B-UAVC) are employed to
compute regions where the robots can safely navigate. By
computing a set of chance constraints, which guarantee that the
robot remains within its B-UAVC, the method can be applied
to non-holonomic robots. A local trajectory for each robot
is then computed by introducing these chance constraints in
a receding horizon model predictive controller. The method
guarantees, under the assumption of normally distributed
position uncertainty, that the collision probability between the
robots remains below a specified threshold. We evaluate the
proposed method with a team of quadrotors in simulations and
in real experiments.

I. INTRODUCTION

Multi-robot collision avoidance is a fundamental problem
when deploying a team of autonomous mobile robots. Given
the robots’ current states and goal locations, the objective is
to plan a local motion for each robot to navigate towards
its goal while avoiding collisions with other robots. Most
existing algorithms solve the problem in a deterministic man-
ner, where the robots’ states are perfectly known. Practically,
however, the robots’ states are obtained by an estimator
and are not deterministically known. Taking this uncertainty
into consideration is of utmost importance in multi-robot
collision avoidance. In this paper, we present a probabilistic
method for multi-robot collision avoidance under localization
uncertainty. The method is distributed, does not require
communication, and relies on the computation of buffered
uncertainty-aware Voronoi cells (B-UAVC).

A. Related Works

The problem of multi-robot collision avoidance has been
well studied for deterministic scenarios, where the robots
states are precisely known. One of the state-of-the-art ap-
proaches is the reciprocal velocity obstacle (RVO) method
[1], which builds on the concept of velocity obstacles (VO)
[2]. The method models robot interaction pairwise in a dis-
tributed manner and estimates future collisions as a function
of relative velocity. Based on the basic framework, RVO
has been extended towards several revisions: the optimal
reciprocal collision-avoidance (ORCA) method [3] casting
the problem into a linear programming formulation which
can be solved efficiently, the generalized RVO method [4]
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applying for heterogeneous teams of robots, and the ε-
cooperative collision avoidance (εCCA) method [5] account-
ing for the cooperation of nonholonomic robots. In addition
to those RVO-based methods, the model predictive control
(MPC) framework has also been widely used for multi-robot
collision avoidance, which includes decentralized MPC [6],
decoupled MPC [7], and sequential MPC [8], [9].

Some of the above deterministic collision avoidance meth-
ods have been extended to scenarios where robot motion
uncertainty is considered. Based on RVO, the COCALU
method [10] takes into account bounded localization un-
certainty of the robots by constructing an error-bounded
convex hull of the VO of each robot. [11] presents a
probabilistic RVO method where robot state uncertainty
is assumed to follow a Gaussian distribution. In [12] the
authors present a decentralized MPC where robot motion
uncertainty is taken into account by enlarging the robots
with their 3-σ confidence ellipsoids. A chance constrained
MPC problem was formulated by [13] for planar robots,
where rectangular regions were computed and inter-robot
collision avoidance was transformed to avoiding overlaps of
those regions. Using local linearization, [14] introduced a
chance constrained nonlinear MPC (CCNMPC) method to
guarantee that the probability of inter-robot collision is below
a specified threshold.

Among these attempts to incorporate uncertainty into
multi-robot collision avoidance, several limitations are ob-
served. Probabilistic VO-based methods are limited to sys-
tems with simple first-order dynamics, or only apply to
homogeneous teams of robots. Probabilistic MPC-based
methods typically demand communication of the planned
trajectory of each robot to guarantee collision avoidance,
which is not well suited for systems with many robots. The
alternative is to assume that all other robots move with con-
stant velocity, which has been shown to produce collisions
in cluttered environments [14]. In this paper, we build on the
buffered Voronoi cell (BVC) method [15] for deterministic
multi-robot collision avoidance, where each robot only needs
to know the relative positions of neighboring robots. We
extend the method into probabilistic scenarios considering
robot localization uncertainty by mathematically formalizing
a buffered uncertainty-aware Voronoi cell (B-UAVC).

B. Contribution

The main contribution of this paper is an on-line dis-
tributed and communication-free method for probabilistic
multi-robot collision avoidance under localization uncer-
tainty. The method relies on the computation of buffered
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uncertainty-aware Voronoi cells (B-UAVC). At each time
step, each robot computes its B-UAVC based on the es-
timated position and uncertainty covariance of itself and
neighboring robots, and plans its motion within the B-
UAVC. Probabilistic collision avoidance is guaranteed by
constraining each robot’s motion within its corresponding
B-UAVC, via chance constraints, such that the inter-robot
collision probability is below a user-specified threshold. We
assume that robots can obtain the position and uncertainty
information of their neighbors via communication or via
onboard sensors and a filter. Communication among robots
is not necessary if we assume that the estimated position
uncertainty of other robots is higher than the real one.

The method can be applied to non-holonomic robots, such
as a team of drones, by computing a local trajectory for
each robot with a model predictive controller that keeps each
robot within its B-UAVC. The method guarantees, under the
assumption of normally distributed position uncertainty, that
the collision probability between the robots remains below
a specified threshold. We compare the proposed method in
simulation with state-of-the-art approaches and evaluate it in
real-world experiments with a team of quadrotors.

II. PRELIMINARIES

A. Problem Statement

A group of n robots freely moving in a d-dimensional
space W ⊂ Rd, d ∈ {2, 3} is considered. For each robot
i ∈ I = {1, 2, . . . , n}, pi ∈ Rd denotes its position, vi = ṗi
its velocity and ai = v̇i its acceleration. Each robot has a
safety radius ri. We consider that the position of each robot is
obtained by a state estimator and is described as a Gaussian
distribution with covariance Σi, i.e. pi ∼ N (p̂i,Σi), where
a hat ·̂ denotes the mean of a random variable. In this paper,
we assume that each robot only knows the mean position and
covariance of other robots in the group (or has an estimate
of them).

Any two robots i and j in the group are mutually collision-
free if ‖pi − pj‖ ≥ ri+ rj . Note that the robot position is a
random variable described by a Gaussian distribution, which
has infinite support. Hence, the collision-free condition can
only be satisfied in a probabilistic manner, which is defined
as a chance constraint as follows:

Definition 1 (Probabilistic Collision Free). A robot i at
position pi ∼ N (p̂i,Σi) is probabilistic collision-free with
a robot j at position pj ∼ N (p̂j ,Σj) if

Pr(‖pi − pj‖ ≥ ri + rj) ≥ 1− δ, (1)

where δ is the collision probability threshold, Pr(·) indicates
the probability of an event.

The objective of probabilistic collision avoidance is to
compute a local motion for each robot in the group, that re-
spects its kinematic and dynamic constraints, makes progress
towards its goal location and is probabilistic collision-free
with other robots in the team for a short time horizon.

In our proposed method, to achieve probabilistic collision
avoidance, we rely on two concepts, which are described in

the following: a) Voronoi cells for partitioning the workspace
among the robots and b) linear separators of a pair of
Gaussian distributions. In the upcoming Sec. III we will show
how the linear separator can be employed to compute the B-
UAVC.

B. Voronoi Cell

For a set of deterministic points (p1, . . . ,pn) ∈ Rd, the
normal Voronoi cell (VC) of each point i ∈ I is defined as
[16]

Vi = {p ∈ Rd : ‖p− pi‖ ≤ ‖p− pj‖ ,∀j 6= i}, (2)

where ‖·‖ denotes the Euclidean distance. Equation (2) can
be written as

Vi = {p ∈ Rd : pTijp ≤ pTij
pi + pj

2
,∀j 6= i}, (3)

where pij = pj − pi. It can be observed that Vi is the
intersection of a set of planes which separate point i with any
other point j in the group, as shown in Fig. 1a. Hence, VC
can be obtained by computing the separating plane between
each pair of points.

C. Best Linear Separator

In contrast to only separating two deterministic points
in VC, in [17], a best linear separator for two Gaussian
distributions with different covariance is developed. Given
pi ∼ N (p̂i,Σi) and pj ∼ N (p̂j ,Σj), consider a linear
separator aTijp = bij where aij ∈ Rd and bij ∈ R.
The separator classifies the points p in the space into two
clusters: aTijp ≤ bij to the first one while aTijp > bij to the
second. The separator parameters aij and bij can be obtained
by minimizing the maximal probability of misclassification,
which is briefly described in the following.

The misclassification probability when p is from the first
distribution is

Pri(aTijp > bij) = Pri(
aTijp− aTijp̂i√

aTijΣiaij
>
bij − aTijp̂i√

aTijΣiaij
)

= 1− Φ((bij − aTijp̂i)/
√
aTijΣiaij),

where Φ(·) denotes the cumulative distribution function
(CDF) of the standard normal distribution. Similarly, the
misclassification probability when p is from the second
distribution is

Prj(aTijp ≤ bij) = Prj(
aTijp− aTijp̂j√

aTijΣjaij
≤
bij − aTijp̂j√

aTijΣjaij
)

= 1− Φ((aTijp̂j − bij)/
√
aTijΣjaij).

The objective is to minimize the maximal value of Pri and
Prj , i.e.

(aij , bij) = arg min max
aij ,bij

(Pri,Prj), (4)

which can be solved using a fast minimax procedure. Here
we give the method to compute aij and bij without proof.
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(a) (b) (c) (d)

Fig. 1: Example of buffered uncertainty-aware Voronoi cell (B-UAVC). Blue dots are robots; blue dash-dot line indicates
the 3-σ confidence ellipsoid of the position uncertainty. (a) Deterministic Voronoi cell (VC, the boundary in black dashed
line). (b) Uncertainty-aware Voronoi cell (UAVC, the boundary in blue dashed line). (c) UAVC with robot raidus buffer (the
boundary in green solid line). (d) Final B-UAVC with robot radius and collision probability buffer (the boundary in red
solid line).

One can refer to [17], [18] for more details and proof. First
we write aij and bij as

aij = [tΣi + (1− t)Σj ]−1(p̂j − p̂i), (5)

bij = aTijp̂i + taTijΣiaij = aTijp̂j − (1− t)aTijΣjaij , (6)

where 0 < t < 1. Then substituting Eq. (5) into the following
equality

aTij [t
2Σi − (1− t)TΣj ]aij = 0, (7)

we can obtain a nonlinear equation which can be solved to
obtain the value of t. Finally, we can compute aij and bij
using Eqs. (5) and (6).

Remark 1. The best linear separator coincides with the
separating plane of Eq. (3) when Σi = Σj = σ2I. In this
case, t = 0.5, aij = 2

σ2 (p̂j− p̂i) and bij = (p̂j− p̂i)
T (p̂i+

p̂j)/σ
2.

Remark 2. ∀i 6= j ∈ I,aji = −aij , bji = −bij . This can be
obtained according to the definition of best linear separator.

III. BUFFERED UAVC

In this section, we formally introduce our definition of
buffered uncertainty-aware Voronoi cell, give the construc-
tion method and present its important properties.

A. Definition of UAVC

To consider the robot position uncertainty, we introduce
the uncertainty-aware Voronoi cell using the concept of best
linear separator described in section II-C.

Definition 2 (Uncertainty-Aware Voronoi Cell). For a set
of Gaussian random points with mean (p̂1, , . . . , p̂n) ∈ Rd
and covariance (Σ1, . . . ,Σn) ∈ Rd×d, the uncertainty-aware
Voronoi cell (UAVC) of each point i ∈ I is defined as

Vui = {p ∈ Rd : aTijp ≤ bij ,∀j 6= i}, (8)

where aij , bij formulate a best linear separator between i
and j as described in section II-C.

Figure 1b illustrates the UAVC of three robots which have
different uncertainty covariances. It can be observed that the

robot with larger uncertainty covariance is assigned a larger
partition of the space.

Remark 3. Vui = Vi when Σi = Σj = σ2I. This can be
derived from Remark 1.

Remark 4. In contrast to deterministic Voronoi cells, the
UAVCs generally do not constitute a full tessellation of the
workspace, i.e.

⋃n
1 Vui ⊆ W , as shown in Fig. 1b.

B. Collision Avoidance Buffer

Now we introduce two buffers to the UAVC, to account for
the robot physical safety radius r and the collision probability
threshold δ.

1) Robot safety radius r: We create the robot safety radius
buffer by shifting the boundary of the UAVC towards the
robot and define

Vu,ri = {p ∈ Rd : aTijp ≤ bij − βri ,∀j 6= i}, (9)

where the safety radius buffer βri = ri ‖aij‖. Figure 1c
shows the buffered UAVC of each robot after taking into
account their safety radius.

2) Collision probability threshold δ: We create the colli-
sion probability buffer by shifting the boundary of the UAVC
towards the robot and define

Vu,δi = {p ∈ Rd : aTijp ≤ bij − βδi ,∀j 6= i}, (10)

in which the collision probability buffer is

βδi =
√

2aTijΣiaij · erf−1(2
√

1− δ − 1), (11)

where erf(·) is the Gauss error function [19] defined as
erf(x) = 2√

π

∫ x
0
e−t

2

dt and erf−1(·) is its inverse. In this
paper, we assume the threshold 0 < δ < 3

4 , which is
reasonable in practice. Hence, erf−1(2

√
1− δ−1) > 0, βδi >

0. This buffer can be obtained by following the proof of
Theorem 1.

Finally, the buffered uncertainty-aware Voronoi cell (B-
UAVC) is obtained by combining the two buffers and defined
as

Vu,bi = {p ∈ Rd : aTijp ≤ bij − βri − βδi ,∀j 6= i}. (12)
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Note that we have Vu,ri ⊂ Vu,bi and Vu,δi ⊂ Vu,bi . Figure 1d
shows the final B-UAVC of each robot in the team.

C. Properties of B-UAVC

Theorem 1 (Probabilistic Collision-Free). ∀pi ∼ N (p̂i,Σi)
and pj ∼ N (p̂j ,Σj), where p̂i ∈ Vu,bi , p̂j ∈ Vu,bj , i 6=
j ∈ I, we have Pr(‖pi − pj‖ ≥ ri + rj) ≥ 1 − δ, i.e. the
probability of collision for both robots i and j is below the
threshold δ.

Proof. We first introduce the following lemma:

Lemma 1 (Linear Chance Constraint [20]). A multivariate
random variable x ∼ N (x̂,Σ) satisfies

Pr(aTx ≤ b) =
1

2
+

1

2
erf
(
b− aT x̂√

2aTΣa

)
.

Then we prove that

pi ∈ Vu,ri ,pj ∈ Vu,rj =⇒ ‖pi − pj‖ ≥ ri + rj . (13)

According to Eq. (9), if pi ∈ Vu,si ,pj ∈ Vu,sj we have

aijpi ≤ bij − ri ‖aij‖ , (14)
ajipj ≤ bji − rj ‖aji‖ . (15)

Note that aij = −aji, bij = −bji (Remark 2). Hence, the
summation of the above two equations yields

aij(pj − pi) ≥ (ri + rj) ‖aij‖ . (16)

Therefore,

‖pi − pj‖ ≥
(ri + rj) ‖aij‖
‖aij‖

= (ri + rj).

Next, we compute the probability of pi ∈ Vu,ri when
pi ∼ N (p̂i,Σi) where p̂i ∈ Vu,bi (similarly for jth robot).
According to Eq. (12), we have

aTijp̂i ≤ bij − ri ‖aij‖ −
√

2aTijΣiaij · erf−1(2
√

1− δ − 1).

(17)
Hence, applying Lemma 1 and substituting Eq. (17) yields

Pr(pi ∈ Vu,ri ) = Pr(aijpi ≤ bij − ri ‖aij‖)

=
1

2
+

1

2
erf

bij − ri ‖aij‖)− aTijp̂i√
2aTijaij


≥ 1

2
+

1

2
erf
(

erf−1(2
√

1− δ − 1)
)

=
1

2
+

1

2
(2
√

1− δ − 1)

=
√

1− δ.
(18)

Similarly for the robot j, Pr(pj ∈ Vu,rj ) ≥
√

1− δ.
Finally, by applying Eq. (13), we have

Pr(‖pi − pj‖ ≥ ri + rj) ≥ Pr(pi ∈ Vu,ri ) · Pr(pj ∈ Vu,rj )

≥
√

1− δ ·
√

1− δ
= 1− δ.

(19)

IV. COLLISION AVOIDANCE USING B-UAVC

In this section, we present our distributed collision avoid-
ance method using the B-UAVC. We start with describing
a one-step controller for single integrator robots, followed
by a receding horizon planning formulation for high-order
dynamical systems and a method discussion.

A. Single-Integrator Dynamics: One-Step Controller

Consider robots with single integrator dynamics ṗi = ui,
where ui = vi is the control input. Similar to [15], a fast
one-step controller can be designed to make the robot move
towards its goal location gi , see Algorithm 1 . At each time
step, each robot first computes its B-UVAC Vu,bi , then finds
the closest point g∗i ∈ V

u,b
i to gi and generates a control

velocity ui = vi,max · (g∗i − gi)/ ‖g∗i − gi‖, where vi,max is
the robot maximal speed. The closest point g∗i can be found
by checking each edge and vertex of Vu,bi [15].

Algorithm 1 One-Step Controller

1: for Each robot i ∈ I do
2: Compute the B-UAVC Vu,bi
3: Find the closest point g∗i ∈ V

u,b
i to gi

4: Compute ui = vi,max · (g∗i − gi)/ ‖g∗i − gi‖
5: end for

B. High-Order Dynamics: Receding Horizon Planning

Consider a system with, potentially nonlinear, high-order
dynamics ẋk+1

i = fi(x
k
i ,u

k
i ), where xki denotes the robot

state at time step k which typically includes the robot
position pki and velocity vki . To plan a local trajectory that
respects the robot kinodynamic constraints, we formulate a
constrained optimization problem with N time steps and
planning horizon τ = N∆t, where ∆t is the time step:

Problem 1 (Receding Horizon Trajectory Planning).

min
x̂1:N
i ,u0:N−1

i

N−1∑
k=0

((p̂ki − p̂ki,r)
TQ(p̂ki − p̂ki,r) + ukiRu

k
i )

+ (p̂Ni − p̂Ni,r)
TQN (p̂Ni − p̂Ni,r)

s.t. x0
i = x̂i, (20a)

x̂ki = fi(x̂
k−1
i ,uk−1i ), (20b)

p̂ki ∈ V
u,b
i , (20c)

uk−1i ∈ Ui, (20d)
∀i ∈ I, ∀k ∈ {1, . . . , N}. (20e)

In Problem 1, pi,r is the reference trajectory of robot i,
which generally comes from some high-level path planner,
e.g. [21]; Ui is the admissable control space; Q, R, QN
are positive semi-definite symmetric matrices. The constraint
(20c) restrains the planned trajectory to be within the robot’s
B-UAVC Vu,bi . According to the definition of Vu,bi in Eq.
(12), the constraint can be formulated as a set of linear
inequality constraints:

aTijp̂
k
i ≤ bij − βri − βδi ,∀j ∈ I, j 6= i. (21)
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Solving the above trajectory optimization problem may
drive the robot towards to the boundary of its B-UAVC.
For second or higher dynamics, the robot has limited ac-
celeration. When the robot is moving to the boundary of
its B-UAVC with a large velocity, it might not be able to
continue to stay within the B-UAVC. Hence, to improve
safety, as illustrated in Fig. 2 we introduce an additional
safety stopping buffer, which is defined as

dski =

{‖aT
ijv

k
i ‖2

2amax
, if aTijv

k
i > 0;

0, otherwise,
(22)

where amax is the maximal acceleration of the robot. The
constraints in Eq. (21) now become

aTijp̂
k
i ≤ bij − βri − βδi − dski ,∀j ∈ I, j 6= i. (23)

Fig. 2: Additional buffer is added to allow robots with
second-order dynamics to have enough space to decelerate.

C. Discussion

1) Collision avoidance guarantee: We assume that the
robot’s position uncertainty within the short planning horizon
is less or equal to its real-time localization uncertainty. Under
the assumption, by constraining each robot’s motion within
its corresponding B-UAVC, our formulation guarantees, by
construction, that the collision probability of the robot with
each other robot at every stage of the planned trajectory is
below δ. (Section III-C Theorem 1).

2) Deadlock resolution: Since the proposed collision
avoidance method is local and distributed, deadlocks may
happen. For the one-step controller, each robot must be at
g∗i when the system is in a deadlock configuration. In this
case, each robot chooses one of the nearby edges within its
B-UAVC to move along [15]. For receding horizon planning
of high-order dynamical systems, the robot may get stuck due
to a local minima of the trajectory optimization problem. In
this case, we temporally change the goal location gi of each
robot by clockwise rotating it along the z axis with 90◦, i.e.

gi,temp = RZ(−90◦)(gi − p̂i) + p̂i, (24)

where RZ denotes the rotation matrix for rotations around z-
axis. Once the robot recovers from stuck, i.e. once it moves
with a positive speed, its goal is changed back to gi.

Similar to most heuristic deadlock resolutions, the so-
lutions presented here can not guarantee that all robots

will eventually reach to the goals since livelock (robots
continuously repeat a sequence of behaviors that bring them
from one deadlock situation to another one) may still occur.

V. RESULTS

In this section, we evaluate the proposed method in
both simulations and experiments. A video demonstrating
the results accompanies this paper. We use a commodity
Intel i7 CPU@2.6GHz computer for computations, which
are performed in MATLAB. The Forces Pro solver [22]
is employed to generate fast optimized MPC code for the
receding horizon planning problem.

A. Simulation Results

1) Simulation with single-integrator robots: We first eval-
uate our method in simulation with single-integrator robots
moving in a planar space. The one-step controller described
in Section IV-A is employed. As shown in Fig. 3, eight
robots are initially placed around two circles with their goal
locations at the opposite side of the same circle. The robot
radius is set as r = 0.3 m. Robots 1-4 have a localization
uncertainty Σh = diag(0.06 m, 0.06 m)2 while robots 5-8
have Σl = diag(0.04 m, 0.04 m)2. The inter-robot collision
probability threshold is set as δ = 0.03.

We run the simulation 10 times and compare our B-UAVC
method with the deterministic BVC method [15]. Simulation
results show that when taking into account robot localization
uncertainty, collision happened in all runs with BVC. Instead,
B-UAVC successfully navigates the robots without collision
in every run. An average minimum distance among robots
of those runs is 0.68 m and the minimum minimum distance
is 0.65 m. Fig. 3 shows an instance of the simulations.

2) Comparison with other methods: We then evaluate
our receding horizon planning algorithm with quadrotors
in 3D space, and compare our method with one of the
state-of-the-art quadrotor collision avoidance methods: the
chance constrained nonlinear MPC (CCNMPC) with se-
quential planning [14], which requires communication of
future planned trajectories. For both methods, we adopt
the same quadrotor dynamics model described in [14] for
planning. The quadrotor radius is r = 0.3 m and the collision
probability threshold is set as δ = 0.03. The time step is
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Fig. 3: An instance of simulation with eight single-integrator
robots under localization uncertainty. Robot 1-4 have a
localization uncertainty Σh = diag(0.06 m, 0.06 m)2 while
robots 5-8 have Σl = diag(0.04 m, 0.04 m)2. (a) Initial
positions. (b) At time step 300. (c) At time step 1224.
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Fig. 4: Simulation with six quadrotors exchanging positions
in 3D space. Solid lines represent executed trajectories of
the robots. (a) Results of our B-UAVC method. (b) Results
of the CCNMPC method [14].

∆t = 0.05 s and the total number of steps is N = 20 which
results in a planing horizon of one second.

As shown in Fig. 4, we simulate with six quadro-
tors exchanging their initial positions in 3D space.
Each quadrotor is under localization uncertainty Σ =
diag(0.04 m, 0.04 m, 0.04 m)2. For each method, we run
the simulation 10 times and calculate the minimum distance
among robots. Both our B-UAVC method and the CCNMPC
method successfully navigates all robots without collision.
An average minimum distance of 0.72 m is observed in our
B-UAVC method, while the one of CCNMPC is 0.62 m,
which indicates our method is more conservative than the
CCNMPC.

B. Experimental Results

Experimental setup: Our experimental platform is the
Parrot Bebop 2 quadrotor [23]. An external motion capture
system (OptiTrack) is used to measure the pose of each
quadrotor, which is regarded as the real pose. We then
add Gaussian noise to the data to simulate the localization
uncertainties. The added measurements noise is zero mean
with covariance Σ = diag(0.04 m, 0.04 m, 0.04 m)2. Taking
the noisy measurements as inputs, an Unscented Kalman
Filter (UKF) is employed to estimate the state of quadrotors,
which results in an average estimated position uncertainty
covariance Σ′ = diag(0.03 m, 0.03 m, 0.03 m)2. A MPC
controller is implemented with the same setup as Section V-
A.2. The collision probability threshold is set as δ = 0.03.
Control commands are sent to the quadrotors using Robot
Operating System (ROS).

First experiment: Two quadrotors, initially located at
(1.4, 0, 1.2) m and (–1.4, 0, 1.2) m, are required to swap
their positions. We performed the swapping action multiple
times. Fig. 5a shows a snapshot from our experiment. Fig.
5b shows the distance between the two quadrotors over time
during the experiment. It can be seen that the distance was
always larger than the required safety value 0.6 m.

Second experiment: One of the quadrotors follows a
goal which moves with a period of 18 s along a lemniscate (a
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Fig. 5: Experimental results with two quadrotors swapping
their positions. (a) A snapshot during the experiment. (b)
Distance between the two quadrotors over time.
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Fig. 6: Experimental results with two quadrotors following
crossing paths. (a) Histogram of distance between the two
quadrotors. (b) Computation time of one control loop of each
quadrotor during the experiment (mean 28 ms).

∞-shaped curve) with semi-axes (1.3, 0.6) m and a constant
height 1.4 m, while the other quadrotor swaps its position
between two specified goals (–1.8, 0, 1.2) m and (1.8, 0,
1.5) m every 4 s. The paths of the two quadrotors are
crossing. Hence, they need to avoid collisions with each
other when following the path. In Fig. 6a we cumulate the
distance between the two quadrotors during the experiment.
A minimum safe distance of 0.6 m was maintained over the
entire run. In Fig. 6b we show the computation time of one
control loop of each quadrotor. The mean computation time
over the experiment is 28 ms, indicating the controller can
be executed efficiently online.

VI. CONCLUSION

In this paper we presented a distributed multi-robot col-
lision avoidance method that accounts for the robots’ lo-
calization uncertainties. By assuming the uncertainties are
according to Gaussian distributions, we compute a buffered
uncertainty-aware Voronoi cell (B-UAVC) for each robot.
The probability of collision between robots is guaranteed
to be below a specified threshold by constraining each
robot’s motion to be within its corresponding B-UAVC.
In simulation with six quadrotors, we showed that our
method can achieve the same level of safety compared with
the CCNMPC method, which is centralized and requires
robots to communicate future trajectories. We also validated
our method in experiments with two quadrotors following
crossing paths. Future work shall take into account static
and dynamic obstacles in the environments.
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[9] T. Nägeli, L. Meier, A. Domahidi, J. Alonso-Mora, and O. Hilliges,
“Real-time planning for automated multi-view drone cinematography,”
ACM Transactions on Graphics, vol. 36, no. 4, pp. 1–10, 2017.

[10] D. Claes, D. Hennes, K. Tuyls, and W. Meeussen, “Collision avoidance
under bounded localization uncertainty,” IEEE International Confer-
ence on Intelligent Robots and Systems, pp. 1192–1198, 2012.

[11] B. Gopalakrishnan, A. K. Singh, M. Kaushik, K. M. Krishna, and
D. Manocha, “PRVO: Probabilistic reciprocal velocity obstacle for

multi robot navigation under uncertainty,” IEEE International Con-
ference on Intelligent Robots and Systems, vol. 2017-Septe, pp. 1089–
1096, 2017.

[12] M. Kamel, J. Alonso-Mora, R. Siegwart, and J. Nieto, “Robust
collision avoidance for multiple micro aerial vehicles using nonlinear
model predictive control,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 236–243.

[13] D. Lyons, J. Calliess, and U. D. Hanebeck, “Chance constrained model
predictive control for multi-agent systems with coupling constraints,”
in 2012 American Control Conference (ACC). IEEE, 2012, pp. 1223–
1230.

[14] H. Zhu and J. Alonso-Mora, “Chance-constrained collision avoidance
for mavs in dynamic environments,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 776–783, 2019.

[15] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, on-
line collision avoidance for dynamic vehicles using buffered voronoi
cells,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1047–
1054, 2017.

[16] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial tessellations:
concepts and applications of Voronoi diagrams. John Wiley & Sons,
2009, vol. 501.

[17] T. W. Anderson and R. R. Bahadur, “Classification into two multi-
variate normal distributions with different covariance matrices,” The
Annals of Mathematical Statistics, vol. 33, no. 2, pp. 420–431, 1962.

[18] E. Nowakowska, J. Koronacki, and S. Lipovetsky, “Tractable measure
of component overlap for gaussian mixture models,” arXiv preprint
arXiv:1407.7172, 2014.

[19] L. C. Andrews, Special functions of mathematics for engineers. SPIE,
1997.

[20] L. Blackmore, M. Ono, and B. C. Williams, “Chance-constrained
optimal path planning with obstacles,” IEEE Transactions on Robotics,
vol. 27, no. 6, pp. 1080–1094, 2011.

[21] W. Honig, J. A. Preiss, T. K. Kumar, G. S. Sukhatme, and N. Ayanian,
“Trajectory planning for quadrotor swarms,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 856–869, 2018.

[22] A. Domahidi and J. Jerez, “Forces professional. embotech gmbh
(http://embotech. com/forces-pro),” 2014.

[23] “Parrot bebop 2,” https://www.parrot.com/us/drones/parrot-bebop-2.

168


