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Chance-Constrained Collision Avoidance for MAVs
in Dynamic Environments

Hai Zhu and Javier Alonso-Mora

Abstract—Safe autonomous navigation of microair vehicles in
cluttered dynamic environments is challenging due to the uncer-
tainties arising from robot localization, sensing, and motion dis-
turbances. This letter presents a probabilistic collision avoidance
method for navigation among other robots and moving obstacles,
such as humans. The approach explicitly considers the collision
probability between each robot and obstacle and formulates a
chance constrained nonlinear model predictive control problem
(CCNMPC). A tight bound for approximation of collision probabil-
ity is developed, which makes the CCNMPC formulation tractable
and solvable in real time. For multirobot coordination, we de-
scribe three approaches, one distributed without communication
(constant velocity assumption), one distributed with communica-
tion (of previous plans), and one centralized (sequential planning).
We evaluate the proposed method in experiments with two quadro-
tors sharing thespace with two humans and verify the multirobot
coordination strategy in simulation with up to sixteen quadrotors.

Index Terms—Path planning for multiple mobile robots or
agents, collision avoidance, motion and path planning.

I. INTRODUCTION

ON-LINE generation of collision free trajectories is of ut-
most importance for safe navigation among other robots

and in human-populated environments. In these crowded and
dynamic scenarios, reasoning about the uncertainties in self-
localization, in estimation of the motion of other agents and in
motion execution becomes increasingly relevant. Furthermore,
tight coordination between the robots becomes essential.

In this letter, we present a probabilistic collision avoidance
method for Micro Aerial Vehicles (MAVs) that accounts for
robot localization and sensing uncertainties, as well as motion
disturbances. The method leverages chance-constrained nonlin-
ear model predictive control (CCNMPC) to plan a local tra-
jectory, which ensures that the collision probability between
each robot and obstacle is below a user specified threshold.
By assuming that the uncertainties are Gaussian distributed, we
transform the chance constraints into deterministic constraints
on the robots’ state mean and covariance. Thus, a tractable
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Fig. 1. Probabilistic collision avoidance among obstacles.

constrained optimization problem is obtained and solved in a
receding horizon fashion and on-line.

Furthermore, we discuss and compare three methods for plan-
ning among other robots, a distributed approach where only the
sensed velocity and position of neighboring robots are used, a
distributed approach where previous plans of other robots are
communicated, and a centralized approach for multi-robot co-
ordination where a sequential planning scheme is employed.

The main contributions of this work are:
� An on-line collision avoidance method for navigation in

three dimensional dynamic environments, which utilizes
stochastic nonlinear model predictive control to plan safe
trajectories with a specified probability of collision.

� A tighter bound for chance constraints over ellipsoidal
obstacles, which accounts for robot localization, sensing
uncertainties and disturbances.

� Incorporation of collision avoidance chance constraints
into three frameworks for multi-robot motion planning (se-
quential, distributed with/without communication).

We evaluate our proposed method in experiments with a team
of quadrotors, see Fig. 1 for an example with two quadrotors
avoiding two walking humans.

II. RELATED WORK

Several approaches exist for collision avoidance in dynamic
environments among other MAVs, which include velocity ob-
stacles [1], decentralized NMPC [2] and sequential NMPC [3].
However, these approaches were deterministic and did not ac-
count for uncertainties in perception and motion. The concept
of velocity obstacles was extended to handle motion uncertain-
ties by using conservative bounding volumes [4]. Yet, the robot
dynamics were not fully modeled and the motion was limited
by planning a constant velocity motion. These issues can be
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overcome by using NMPC for planning. [5] introduced a decen-
tralized NMPC where robot motion uncertainties were taken into
account by enlarging the robots with their 3-σ confidence ellip-
soids. However, bounding volumes can be conservative and lead
to infeasible solutions in cluttered environments. In this work
we explicitly consider the collision probability and formulate
a chance constrained NMPC problem. A chance constrained
MPC problem was formulated by [6] for systems with linear
dynamics and planar motion, where rectangular regions were
computed and overlaps avoided in a centralized mixed integer
program formulation. Our proposed approach is not centralized
and can be applied to robots with nonlinear dynamics navigating
in three-dimensional spaces.

If one assumes set-bounded motion uncertainty models, then
robust MPC can be employed to plan safe trajectories [7], or
a guaranteed trajectory tracking error bound [8] can be used.
However, uncertainties described by Gaussian probability dis-
tributions, such as those resulting from Kalman filters, are un-
bounded. If we consider Gaussian distributions, then objects can
be approximated by larger bounding volumes that correspond to
sigma hulls [9] which are based on confidence levels. With this
method collision checking can be performed very fast. How-
ever, the enlarged bounding volumes generally overestimate the
collision probability [10]. Hence, when navigating in cluttered
environments, the approach tends to lead to sub-optimal or in-
feasible solutions [11].

By assuming a constant probability density of the robot posi-
tion within the obstacle, the collision probability can be approx-
imated by the density multiplied by the volume occupied by the
obstacle. [12] uses the probability density of the center of the
obstacle, while [10] uses the maximum density on the surface of
the obstacle to provide an upper bound of collision probability.
Both methods are fast, but they only work well when the sizes
of objects are relatively very small compared with their position
uncertainties. The collision probability can be computed directly
via sampling [13]. However, this is computationally intensive
and thus not eligible for real time collision avoidance.

Another alternative is to consider convex polygonal obstacles
[14], [15]. Under the assumption that object positions follow
Gaussian distributions, the resulting linear chance constraints
can be transformed directly into deterministic constraints of
the mean and covariance of the positions. However polygo-
nal obstacles are ill-posed for online constrained optimization,
where smooth shapes are preferred to avoid local minima. In
this letter, we consider spherical robots and ellipsoidal dynamic
obstacles. We locally linearize the nonlinear collision avoidance
constraints and the corresponding chance constraints are refor-
mulated into deterministic constraints on the robot’s state mean
and covariance. Such a linearization technique was used for
deterministic multi-agent collision avoidance [16]. We mathe-
matically formalize its use in the context of probability-based
stochastic collision avoidance.

III. PRELIMINARIES

Throughout this letter vectors are denoted in bold letters, x,
matrices in capital, M , and sets in mathcal, A. ‖x‖ denotes the
Euclidean norm of x and ‖x‖Q = xT Qx denotes the weighted

squared norm. A hat x̂ denotes the mean of a random variable
x. Pr[·] indicates the probability of an event and p[·] indicates
the probability density function. A superscript xT denotes the
transpose of x. The super index ·k indicates the value at time k.
The sub index ·i indicates robot or obstacle i.

A. Robot Model

Consider a multi-robot system with n robots moving in a
shared workspace W ⊆ R3 . We model each robot i ∈ I =
{1, 2, . . . , n} ⊂ N as an enclosing rigid sphereSi with radius ri .
The dynamics of each robot i ∈ I are described by a stochastic
nonlinear discrete-time model,

xk+1
i = fi(xki ,u

k
i ) + ωki , x0

i ∼ N (x̂0
i ,Γ

0
i ), (1)

where xki = [pki ,v
k
i , φ

k
i , θ

k
i , ψ

k
i ]
T ∈ Xi ⊂ Rnx denotes the

state of the robot (position, velocity and orienting) and uki ∈
Ui ⊂ Rnu the control inputs at time k. Xi and Ui are the state
space and control space respectively. The initial state x0

i is
considered as a Gaussian random variable with mean x̂0

i and
covariance Γ0

i , which are typically given by a state estimator
(we employ an Unscented Kalman Filter (UKF)). fi denotes the
nonlinear dynamics. We consider uncorrelated process noise
ωki ∼ N (0, Qk

i ) with diagonal covariance matrix Qk
i . In this

letter, we employ the Parrot Bebop2 quadrotor to evaluate our
method. See Appendix for the dynamics model.

B. Obstacle Model

For each obstacle o ∈ Io = {1, 2, . . . , no} ⊂ N at position
po ∈ R3 , we model it as a non-rotating enclosing ellipsoid So
with semi-principal axes (ao, bo , co) and rotation matrix Ro .
Static obstacle positions are assumed to be available for plan-
ning. For dynamic obstacles, as in [17], we assume a constant
velocity model with Gaussian noise ωo(t) ∼ N (0, Qo(t)) in
acceleration, i.e. p̈o(t) = ωo(t). Given measured obstacle’s po-
sition data, we estimate and predict their future positions and
uncertainties with a linear Kalman Filter.

C. Collision Chance Constraints

1) Collision Condition: The collision condition of robot i
with respect to robot j at time k is defined as

Ck
ij := {xki

∣
∣
∥
∥pki − pkj

∥
∥ ≤ ri + rj} . (2)

Collision checking between a robot i and an obstacle o re-
quires calculating the minimum distance between a sphere and
an ellipsoid, which can not be performed in closed form [18].
To this end, we approximate the obstacle with an enlarged ellip-
soid and check if the robot’s position is inside it. The collision
condition is

Ck
io := {xki

∣
∣
∣

∥
∥pki − pko

∥
∥

Ω i o
≤ 1} , (3)

where Ωio =RT
o diag(1/(ao + ri)2 , 1/(bo+ri)2 , 1/(co+ri)2)

Ro .
2) Chance Constraints: The positions of the robots and ob-

stacles are random variables described by unbounded probabil-
ity distributions. Hence, the collision avoidance constraints can
only be satisfied in a probabilistic manner, which are formulated
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as chance constraints for robot i:

Pr(xki /∈ Ck
ij ) ≥ 1 − δr , ∀j ∈ I, j 
= i (4)

Pr(xki /∈ Ck
io) ≥ 1 − δo , ∀o ∈ Io (5)

where δr , δo are the probability thresholds for inter-robot and
robot-obstacle collision respectively.

D. Problem Formulation

We formulate a distributed collision avoidance problem. For
each robot i ∈ I, we formulate a discrete time chance con-
strained optimization problem with N time steps and planning
horizon τ = NΔt, where Δt is the time step.

Problem 1: (Probabilistic Collision Avoidance with Chance
Constraints) For robot i, given the position distributions p0:N

j

of other robots j ∈ I, j 
= i and position distributions p0:N
o of

obstacles o ∈ Io , the initial state x̂0
i with uncertainty covariance

Γ0
i , the goal position pig , and the collision probability thresh-

olds δr , δo , the objective is to compute optimal trajectories and
control inputs for the robot to progress from its initial state to its
goal while the collision probability with each obstacle and robot
is below given thresholds. The resulting optimization problem is

min
x̂1 :N
i ,u0 :N −1

i

N−1∑

k=0

Jki (x̂ki ,u
k
i ) + JNi (x̂Ni ) (6a)

s.t. x0
i = x̂i(0), x̂ki = fi(x̂k−1

i ,uk−1
i ), (6b)

Pr(xki /∈ Ck
ij ) ≥ 1 − δr ,∀j ∈ I, j 
= i (6c)

Pr(xki /∈ Ck
io) ≥ 1 − δo ,∀o ∈ Io (6d)

uk−1
i ∈ Ui , x̂ki ∈ Xi ,

∀k ∈ {1, . . . , N}. (6e)

where Jki denotes the cost term of the robot at time k and JNi
denotes the terminal cost.

Remark 1: The positions of other robots and obstacles p0:N
j ,

p0:N
o are assumed to follow a Gaussian distribution.

Remark 2: In Section V, we describe several assumptions to
obtain the predicted positions p0:N

j of other robots.

E. Approximate Uncertainty Propagation

Evaluating the chance constraints (6c) and (6d) requires cal-
culating the uncertainty covariance at each time step, i.e. uncer-
tainty propagation. There are many methods to perform uncer-
tainty propagation for nonlinear systems, for example the un-
scented transformation [19] and polynomial chaos expansions
[20]. The readers can refer to [21] to get a comprehensive review.
However, these methods are mostly computationally intensive
and only outperform linearization methods when the propaga-
tion time is very long. In our case where the planning horizon
is short, to achieve real time performance, we propagate uncer-
tainties using a EKF-type update, i.e. Γk+1

i = Fk
i Γki F

k
i
T +Qk

i ,
where Γki is the state uncertainty covariance at time k,Qk

i is the
process noise and Fk

i = ∂ fi
∂x i

|x̂k −1
i ,uk

i
is the state transition ma-

trix of the robot. We further denote by Σk
i the 3 × 3 covariance

matrix of the position pki , extracted from Γki .

Remark 3: The covariance dynamics are dependent on the
robot state and control inputs. Hence, it requires N

2 (n2
x + nx)

additional variables in the optimization Problem 1, which can
increase the computation time greatly. In this letter, to avoid
the need of additional variables, and similar to [22], we propa-
gate the robot uncertainties based on its last-loop trajectory and
control inputs.

Remark 4: If the initial state uncertainty is Gaussian, the pre-
dicted state uncertainties are Gaussian distributed when propa-
gated using the linearized update with Fk

i computed from the
last-loop trajectory and control inputs.

IV. CHANCE CONSTRAINTS FORMULATION

We now present the method to address the chance constraints
of Eq. (6c) and (6d). The basic idea is to first linearize the colli-
sion conditions of Eq. (2) and (3) to get linear chance constraints
and then reformulate them into deterministic constraints on the
mean and covariance of the robot states.

A. Linear Chance Constraints

Consider a linear chance constraint in the form Pr(aT x ≤
b) ≤ δ, where x ∈ Rnx is a random variable, a ∈ Rnx , b ∈ R
are constants and δ is the level of confidence. Assuming that
x follows a Gaussian distribution, the chance constraint can be
transformed into a deterministic constraint [14].

Lemma 1: Given a multivariate random variable x ∼ N (x̂,
Σ), then

Pr(aT x ≤ b) =
1
2

+
1
2

erf

(
b− aT x̂√
2aT Σa

)

,

where erf(·) is the standard error function defined as erf(x) =
2√
π

∫ x

0 e
−t2 dt.

Lemma 2: Given a multivariate random variable x ∼ N
(x̂,Σ) and a probability threshold δ ∈ (0, 0.5), then

Pr(aT x ≤ b) ≤ δ ⇐⇒ aT x̂ − b ≥ c,

where c = erf−1(1 − 2δ)
√

2aT Σa.
Given the level of confidence, the corresponding error func-

tion and its inverse can be obtained by table look-up or using
series approximation techniques.

B. Inter-Robot Collision Avoidance Chance Constraints

We now consider the inter-robot collision avoidance con-
straints, Eq. (6c). For simplicity, we omit the superscript ·k
in this section. Given positions and uncertainty covariances of
the two robots pi ∼ N (p̂i ,Σi), pj ∼ N (p̂j ,Σj ), the instanta-
neous collision probability of robot i with robot j is

Pr(xi ∈ Cij ) =
∫

R3
IC (pi ,pj )p(pi)p(pj )dpidpj , (7)

where IC is the indicator function

IC (pi ,pj ) =

{

1, if ‖pi − pj‖ ≤ ri + rj ;
0, otherwise.

We assume that pi and pj are independent Gaussian dis-
tributions, then pi − pj is also a Gaussian distribution, i.e.
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Fig. 2. Chance constraints linearization. Red: collision region. Blue: confidence ellipsoid representation of the Gaussian distributed robot-robot/obstacle relative
position. (a) Collision constraint with a sphere region; (b) Linearization with a half space; (c) Collision constraint with an ellipsoid region; (d) Transformation into
a unit sphere region and linearization.

pi − pj ∼ N (p̂i − p̂j ,Σi + Σj ). Hence, the collision proba-
bility defined by Eq. (7) can be written as

Pr(xi ∈ Cij ) =
∫

‖p i−pj ‖≤ri +rj
p(pi − pj )d(pi − pj ),

which is an integral of a multivariate Gaussian probability den-
sity function over a sphere, as illustrated in Fig. 2(a).

However, there is no closed form to calculate the collision
probability. But we can obtain an approximated upper bound by
linearizing the collision condition. As shown in Fig. 2(b), we
enlarge the spherical collision region Cij into a half space C̃ij ,
which is defined as

C̃ij :=
{

x
∣
∣aTij (pi − pj ) ≤ bij

}

,

where aij = (p̂i − p̂j )/ ‖p̂i − p̂j‖ and bij = ri + rj .
It is apparent that Cij ⊂ C̃ij , thus Pr(xi ∈ Cij ) ≤ Pr(xi ∈

C̃ij ). Hence, following Lemma 1, we can obtain an upper bound
of the collision probability between two robots:

Pr(xi ∈ Cij ) ≤
1
2

+
1
2

erf

⎛

⎝
bij − aTij (p̂i − p̂j )
√

2aTij (Σi + Σj )aij

⎞

⎠ . (8)

Following Lemma 2, the collision chance constraint of Eq. (6c)
can be transformed into a deterministic constraint,

aTij (p̂i − p̂j ) − bij ≥ erf−1(1 − 2δr )
√

2aTij (Σi + Σj )aij .

(9)

C. Robot-Obstacle Collision Chance Constraints

For the collision avoidance constraints of Eq. (6d), by assum-
ing that the positions of the robot and obstacle are independent
random variables, the collision probability is

Pr(xi ∈ Cio) =
∫

‖p i−po ‖Ω i o
≤1
p(pi − po)d(pi − po), (10)

where the collision region Cio described by Ωio is an ellipsoid
instead of a sphere, as shown in Fig. 2(c).

To linearize the collision condition, we first do the affine co-

ordinate transformation ỹ = Ω
1
2
ioy. Then the collision region is

transformed into a unit sphere C̃io , as illustrated in Fig. 2(d). The
robot and obstacle positions are transformed to new Gaussian

TABLE I
COMPARISON OF COLLISION PROBABILITY ALGORITHMS

distributions, i.e. p̃i ∼ N (ˆ̃pi , Σ̃i), p̃o ∼ N (ˆ̃po , Σ̃o), where

ˆ̃pi = Ω
1
2
io p̂i , Σ̃i = Ω

1
2 T
io ΣiΩ

1
2
io ;

ˆ̃po = Ω
1
2
io p̂o , Σ̃o = Ω

1
2 T
io ΣoΩ

1
2
io .

(11)

In the new coordinate framework, let

Pr(x̃i ∈ C̃io) =
∫

‖p̃ i−p̃o ‖≤1
p(p̃i − p̃o)d(p̃i − p̃o),

then we have Pr(xi ∈ Cio) = Pr(x̃i ∈ C̃io).
Now, we can use the same linearization method as for the

sphere region with aio = (ˆ̃pi − ˆ̃po)/||ˆ̃pi − ˆ̃po || and bio = 1.
The collision chance constraint of Eq. (6d) can thus be trans-
formed into a deterministic constraint:

aTioΩ
1
2
io(p̂i − p̂j ) − bio ≥ erf−1(1 − 2δo)

·
√

2aTioΩ
1
2
io(Σi + Σj )Ω

1
2 T
io aio .

(12)

D. Comparison to Other Methods

We compare our method with several state-of-the-art collision
probability approximation algorithms using a robot-obstacle
proximity example. A point robot at position mean (0.7, 0.7, 0.8)
m with covariance diag(0.04, 0.04, 0.01) m2 is close to an ellip-
soid obstacle at origin with semi-principle axes (0.6, 0.6, 2.2)
m. See Table I for the collision probability computation results.
The numerical integration result is the exact collision probability
and gives a collision probability of 0.011. If we define the colli-
sion probability threshold to be δ = 0.03 (thus confidence level
0.97), which corresponds to the 3σ confidence ellipsoid [23],
then this configuration is feasible. However, when employing
the enlarged bounding volume method [24], or the cube approx-
imation [11], the configuration would be deemed infeasible. The
center point PDF approximation approach [12] can give feasible
checking results, but the resulting collision probability is sig-
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nificantly smaller than the real value, which may lead to unsafe
trajectory planning. Our method thus provides a tighter bound.

V. LOCAL PLANNING

We now present a tractable MPC formulation for each robot,
followed by three approaches to obtain future position informa-
tion of other robots and a theoretical discussion.

A. Deterministic MPC Formulation

Let pig be the goal position of robot i, we minimize the dis-
placement between its terminal position at the planning horizon
and its goal. To this end, the terminal cost is

JNi (x̂Ni ) = lNi
∥
∥pig − p̂Ni

∥
∥/
∥
∥pig − p̂0

i

∥
∥, (13)

where lNi is the weight coefficient.
The stage cost is to minimize the robot control inputs

Jki,u (u
k
i ) = lki,u

∥
∥uki

∥
∥ , k = {0, 1, . . . , N − 1}, (14)

where lki,u is the weight coefficient.
We also introduce a potential field cost to increase the sep-

aration between robots and obstacles. Denote by dij = ‖p̂i −
p̂j‖Ω i j

the distance between robot i and robot/obstacle j. For
time step k the potential field cost is Jki,c(x̂

k
i ) =

∑

j∈I∪Io ,j 
=i
Jki,j,c(x̂

k
i ), with Jki,j,c(x̂

k
i ) = lki,c(d

safe
ij − dij ) if dij < dsafe

ij or
Jki,j,c(x̂

k
i ) = 0 otherwise, where dsafe

ij is the safe potential field
distance and lki,c is the weight coefficient.

By transforming the chance constraints into the deterministic
constraints presented in Section IV and utilizing the above cost
terms, the following tractable deterministic MPC formulation
for Problem 1 can be derived:

min
x̂1 :N
i ,u0 :N −1

i

JNi (x̂Ni ) +
N−1∑

k=0

Jki,u (u
k
i ) +

N∑

k=1

Jki,c(x̂
k
i )

s.t. x0
i = x̂i(0), x̂ki = fi(x̂k−1

i ,uk−1
i ),

gkij (x̂
k
i , p̂

k
j ,Σ

k
i ,Σ

k
j , δr ) ≤ 0,

gkio(x̂
k
i , p̂

k
o ,Σ

k
i ,Σ

k
o , δo) ≤ 0,

uk−1
i ∈ Ui , x̂ki ∈ Xi ,

∀j 
= i ∈ I; ∀o ∈ Io ; ∀k ∈ {1, . . . , N}.

(15)

where gkij and gkio denote the deterministic constraints of Eq. (9)
and (12) for probabilistic inter-robot and robot-obstacle collision
avoidance respectively, and the position uncertainty covariances
Σk
i are computed as discussed in Remark 3.

B. Multi-Robot Planning

In the CCNMPC formulation the position distribution for
all other robots j 
= i, given by p̂0:N

j and Σ0:N
j , is assumed

known. Next we discuss three methods to obtain these values,
but the CCNMPC formulation is general and other coordination
approaches could be devised.

1) Constant Velocity Model Without Communication: By re-
garding all other robots as dynamic obstacles and employing
a constant velocity model, one robot can predict other robots

future behaviors based on onboard measurements. Hence, each
robot can plan its own trajectory independently and without
communication, which leads to a distributed planning scheme
for multi-robot collision avoidance.

Given the current position and velocity distribution p̂0
j , v̂

0
j

and Σ0
j,pv of robot j, we compute

[p̂kj , v̂
k
j ]
T = Fk

j [p̂k−1
j , v̂k−1

j ]T ,

Σk
j,pv = Fk

j Σk−1
j,pvF

k
j

T
+Qk

j,pv ,
(16)

where the state transition matrix Fk
j = [ I3

O
ΔtI3
I3

], Δt is the time

step for prediction, Qk
i,pv is the additive process noise of the

model. The position uncertainty covariance is Σk
j = Σk

j,pv (1 :
3, 1 : 3).

2) Sequential Planning With Communication: If the team of
robots is centrally controlled, or a fast communication channel
is available, higher coordination can be achieved by planning
trajectories sequentially, i.e., each robot plans a trajectory that
avoids the trajectories of all other robots and then communicates
its trajectory (given by p̂0:N

i and Σ0:N
i ).

Denote by T t
i = {p̂0:N

i ,Σ0:N
i }|t the trajectory for robot i

planned at time t. At the initial time t = 0 robot i avoids only
the plans T 0

j of other robots with j < i, in a priority scheme. In
subsequent time steps, robot i plans a trajectory T t

i that avoids
T t
j for all j < i and T t−Δt

j for all j > i.
3) Distributed Planning With Communication: Robots com-

municate their planned trajectories. At every time step, every
robot avoids the planned trajectories of all other robots in the
previous time-step. That is, at time t, robot i plans a trajectory
T t
i that avoids T t−Δt

j for all j 
= i ∈ I.

C. Theoretical Discussion

1) Collision Avoidance: Our formulation imposes, by con-
struction, that the probability of collision with respect to each
obstacle and at every stage of the plan is less or equal than
δo under a constant velocity assumption for moving obstacles
(Section III-B) and a simplified propagation model (Section III-
E). For collision avoidance with other robots in the team, guar-
antees vary according to the coordination methods (and the
associated assumptions) described in Section V-B.

2) Probability of Collision With any Given Obstacle: From
V-C1, the probability of collision of robot i at time step k with
respect to any given obstacle can be bounded by

Pr

(

xki ∈
no⋃

o=1

Ck
io

)

≤
no∑

o=1

Pr(xki ∈ Ck
io) = noδo ,

where no is the number of obstacles. By choosing δo = δall/no ,
one may specify a joint threshold of collision δall .

3) Probability of Collision for the Planned Trajectory: From
V-C1, at all stages the probability of collision with any given
obstacle is less or equal than the specified threshold δo . The
probability of collision for the whole trajectory of robot i with
respect to each obstacle can be bounded by

Pr

(
N∨

k=1

(xki ∈ Ck
io)

)

≤
N∑

k=1

Pr(xki ∈ Ck
io).
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In our case this bound would be Nδo , but it is over conserva-
tive in practice. We argue that, in the context of online receding
horizon planning it is beneficial to impose a probability of col-
lision of δo for each individual stage - instead of for the whole
trajectory - thanks to the fast re-planning and relatively small
displacement between stages.

Furthermore, our formulation is consistent with a stochastic
formulation of the MPC problem where the chance constraint
is defined as a discounted sum of violation probabilities in the
finite horizon, as proposed for example by [25]. The rational-
ity with this formulation is also that by penalizing violation
probabilities close to the initial time and relaxing the penalty of
violation probabilities in the far future, feasibility of the online
optimization is enabled.

The discounted chance constraint with respect to an obstacles
is defined as:

N∑

k=1

(γ)kPr(xki ∈ Ck
io) ≤ δo , (17)

where γ ∈ (0, 1) is the discounting factor.
Lemma 3: Our formulation provides an upper bound in the

discounted probability of collision, i.e. Equation (17) is satisfied,
if the discounting factor γ < 0.5.

Proof: Our formulation guarantees that Pr(xki ∈ Ck
io) ≤

δo ,∀k = 1, . . . , N . Hence, the discounted probability of col-
lision satisfies

N∑

k=1

(γ)kPr(xki ∈ Ck
io) ≤ δo

N∑

k=1

(γ)k =
γ(1 − γN )

1 − γ
δo .

Given γ<0.5, we have γ(1−γN )−(1−γ)=2γ−1−γN+1 <

0. Thus, γ (1−γN )
1−γ <1. Hence,

∑N
k=1(γ)

kPr(xki ∈Ck
io)≤δo . �

In this proof we also employ the conservative bound on the
joint probability of collision. Future works should look at ob-
taining tighter bounds on the joint probability of collision over
the whole trajectory.

4) Feasibility: Due to unmodeled dynamics, disturbances,
or deviations from the simplifying assumptions, the optimiza-
tion problem may become infeasible. In those rare situations,
our approach is to command the MAVs to decelerate. Typically,
the problem becomes feasible again after a small number of
steps (below half a second, see Section VI-C).

VI. RESULTS

In this section we describe our implementation of the pro-
posed method and evaluate it in experiments and simulations. A
video demonstrating the results accompanies this letter can be
found at https://youtu.be/P7SUFEKUP9Q.

A. Experimental Setup

Our experimental platform is the Parrot Bebop 2 quadrotor.
The radius of each quadrotor is set as 0.3 m. An external motion
capture system (OptiTrack) is used to measure the pose of each
quadrotor, which is regarded as the “real” pose. We then add
Gaussian noise to the data to simulate the localization uncer-
tainties. The added measurements noise is zero mean with co-
variance Σ = diag(0.06 m, 0.06 m, 0.06 m, 0.4 deg, 0.4 deg)2 .

Taking the noisy measurements as inputs, an UKF is em-
ployed to estimate the state of quadrotors. Based on our ex-
perimental data, the average resulted state estimation error is
‖p̂ − p‖ = 0.05 m in terms of the quadrotors’ position. We
use an Intel i7 CPU@2.6 GHz computer for the planner and
use Robot Operating System (ROS) to send commands to the
quadrotors. We rely on the solver Forces Pro [26] to generate
optimized NMPC code. The collision probability thresholds are
set to δr = 0.03 and δo = 0.03. By default, the time step used
in the NMPC is Δt = 0.05 s and the total number of steps is
N = 20. This planning horizon, of one second, is based on the
experience and analysis of our previous work [3], [17] and works
well in practice in our scenarios.

B. Trajectory Safety and Efficiency Comparisons

In this scenario, we compare our method with a bounding
volume MPC approach [5] and a deterministic MPC approach
[3]. For all three methods we compute trajectories sequentially
and the only difference is the way in which the uncertain-
ties are treated. In the experiment, two quadrotors, initially at
(−1.6,0, 1.2) m and (1.6, 0, 1.2) m, are required to swap their
positions. For each approach, we performed the experiment 50
times under three levels of measurements noise: 1/4Σ, Σ and
4Σ. The corresponding average state estimation error for the
position, i.e. ‖p̂ − p‖, was 0.03 m, 0.05 m and 0.09 m respec-
tively. We measured the minimum distance between the two
quadrotors as a safety metric and the total trajectory length and
duration as efficiency metrics.

The results of the three approaches are shown in Table II. Un-
der measurements noise of Σ, the purely deterministic approach
succeeded in 64% of the trials. With the larger noise level of 4Σ
its performance deteriorated to a success rate of only 36%. The
two probabilistic approaches succeeded in all runs. However,
thanks to a tighter bound for the collision probability approx-
imation, our method achieves the same level of safety as [5]
but with more efficient collision avoidance, i.e., the trajectory
length and duration are shorter. This efficiency is more apparent
when the measurements noise is larger, e.g. with covariance 4Σ.

C. Collision Avoidance in Dynamic Environments

Fig. 1 showed a snapshot from our experiment. In Fig. 3(a) we
cumulate the distance between the two drones. They maintained
a safe distance of 0.6 m over the entire run. In Fig. 3(b) we cumu-
late the distance between each drone and each moving human.
The distance is computed as the closest distance between the
quadrotor’s position and the ellipsoid’s surface. In all instances
a minimum safe separation of 0.3 m was achieved. Close dis-
tances between robots and obstacles are observed, since they
share a quite confined space. In Fig. 3(c) we show the com-
putation time of each NMPC solver and the central sequential
planning framework. The mean computation time of the NMPC
solver is 14.3 ms and that of the total framework is 71.3 ms. The
framework includes state estimation, uncertainty propagation,
obstacles’ prediction, communication and solving both NMPC
problems. Among all NMPC solutions over the entire run, the
percentage of infeasible solutions was 2.8% and the longest
infeasible period was 9 time steps (corresponding to 0.45 s).
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TABLE II
TRAJECTORY SAFETY AND EFFICIENCY COMPARISONS OF PLANNING ALGORITHMS WITH DIFFERENT LEVELS OF MEASUREMENTS NOISE. THE VALUES ARE

COMPUTED ONLY FROM SUCCESSFUL RUNS. (dm in : AVERAGE MINIMUM DISTANCE (M); l: AVERAGE TRAJECTORY LENGTH (M); T : AVERAGE TRAJECTORY

DURATION (S); sr: SUCCESS RATE.)

Fig. 3. Experimental results of two quadrotors following predefined paths while avoiding two walking humans.

Fig. 4. Simulation results of multiple quadrotors exchanging positions. Solid lines represent the trajectories executed by the quadrotors. The upper and lower
plots show the top view (X-Y) and side view (X-Z) respectively.

TABLE III
STATISTICS FOR COORDINATION STRATEGIES WITH SIX DRONES. CV:

CONSTANT VELOCITY MODEL; SP: SEQUENTIAL PLANNING; DC: DISTRIBUTED

PLANNING WITH COMMUNICATION

D. Comparison of Multi-Robot Planning Strategies

We evaluate our method in simulation with multiple quadro-
tors exchanging their initial positions, and compare the three
multi-robot coordination strategies described in Section V-B,
with a noise level of Σ. Figures 4(a)–4(c) show the trajectories
of six quadrotors, where the only difference is the coordina-
tion strategies. Table III shows the minimum distance among
quadrotors and statistics of their trajectories. We report the av-
erage computation time and the trajectory length for all six
quadrotors (minimum, maximum, mean value and standard de-
viation to compare cooperativeness).

We observe that the minimum distance when using the con-
stant velocity model (0.56 m) is smaller than the safe distance
(0.6 m). Thus, collisions happened due to the mismatch between
the predicted trajectories (constant velocity) and the executed
trajectories by the quadrotors. This indicates that the 97% con-
fidence level is not enough when the constant velocity model
is employed and should be increased. Instead, sequential plan-
ning (SP) and distributed planning with communication (DC)
can achieve safe navigation. While SP showed better perfor-
mance, it suffers from a computation burden due to its central-
ized scheme (the computational cost grows linearly with the
number of robots). The DC approach performs well at a much
lower computational cost.

Since the DC approach is scalable, in Fig. 4(d) we show the
trajectories of sixteen quadrotors exchanging antipodal posi-
tions on the circle. We note that the computational time of solv-
ing the CCMPC for each robot does increase with the number
of obstacles and robots, due to the larger number of constraints.
In our experiments, the average computation time of a CCMPC
planning step was 14.3 ms for two robots, 14.4 ms for four
robots, 16.2 ms for six robots and 24.7 ms for sixteen robots.
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This indicates that the DC approach scales well with the number
of robots.

VII. CONCLUSION

In this letter we showed that robust probabilistic collision
avoidance among robots and obstacles can be achieved via
chance constrained nonlinear model predictive control when the
obstacles are modeled as ellipsoids. By assuming that the un-
certainties are Gaussian distributed, we developed a tight bound
for approximation of collision probability between each robot
and obstacle. In experiments with two quadrotors we showed
that our method can generate more efficient trajectories for the
robots while maintaining the same level of safety compared
with the bounding volume approach. In simulations with six
quadrotors we showed that the strategies where the planned tra-
jectories are exchanged outperform the constant velocity model.
Furthermore, while distributed planning with communication is
less cooperative than sequential planning, it scales well with
the number of robots. Future works shall explore more elab-
orated approaches for multi-robot coordination and deadlock
avoidance, which may occur since the method is local. By com-
bining our method with a global planner these problems might
be resolved.

APPENDIX

Based on the Parrot Bebop2 SDK, the control inputs to the
quadrotor are given by u = [φc, θc , vzc , ψ̇c ]

T ∈ R4 , where φc
and θc are commanded roll and pitch angles, vzc is the com-
manded velocity in vertical z direction and ψ̇c is the commanded
angular velocity around the z-body axis. The state x ∈ R9 was
defined in Section III-A. We use a first order low-pass Euler
approximation of the quadrotor dynamics [27], where the dy-
namics of the state velocity vector are

⎧

⎪⎨

⎪⎩

[

v̇x

v̇y

]

= RZ (ψ)

[

tan θ
− tanφ

]

g − kD

[

vx

vy

]

,

v̇z = 1
τv z

(kvz vzc − vz ),

where g = 9.81 m/s2 is the earth’s gravity, RZ (ψ) ∈ SO(2)
is the rotation matrix along the z-body axis, kD is the drag
coefficient, kvz and τvz are the gain and time constant of vertical
velocity.

As in [5], the attitude dynamics of the quadrotor are

φ̇ =
1
τφ

(kφφc − φ), θ̇ =
1
τθ

(kθθc − θ), ψ̇ = ψ̇c ,

where kφ , kθ and τφ , τθ are the gains and time constant of roll
and pitch angles respectively.
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