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Abstract—In this paper we propose a Quantile Regression Deep
Neural Network capable of forecasting multiple quantiles in one
model using a combined quantile loss function, and apply it to
probabilistically forecast the prices of 8 European Day Ahead
Markets. We show that the proposed loss function significantly
reduces the quantile crossing problem to (near) 0% in all mar-
kets considered, while in some cases simultaneously increasing
forecasting performance based on classical point forecast metrics
applied to the expected value of the probabilistic forecast. The
models are optimized using an automated approach with an
elaborate feature- and hyperparameter search space, leading to
good model performance in all considered markets.

Index Terms—Quantile Regression, Electricity Price Forecast-
ing, Deep Neural Network, Day Ahead Market, Crossing Quantile
Problem

I. INTRODUCTION

Due to the increasing penetration of renewables in energy
systems around the world, electricity generation is becoming
more volatile. Consequently, electricity prices can become
more volatile [1], and harder to forecast [2]–[5]. Forecast-
ing prices accurately benefits market-based demand response,
resulting in a shift in demand due to price differences. In
Europe, the main market for short-term trading is the Day
Ahead Market (DAM). On the DAM energy is traded in
hourly blocks, with hourly prices. Market participants make
a bid before 12:00 AM at d-1, after which the market closes
and the Market Clearing Price (MCP) is decided. The actual
price is unknown when making a bid, motivating research in
Electricity Price Forecasting (EPF) in the context of the DAM.

Many different modelling approaches have been applied
to EPF in DAMs. Machine Learning (ML) methods have
been proven to be effective in EPF [6]–[8]. The MultiLayer
Perceptron was previously successfully applied to the Span-
ish and Pennsylvania-New Jersey-Maryland (PJM) electricity
markets [9], [10]. The Deep Neural Network (DNN) has
shown success in forecasting Belgian [11], [12], Dutch [13],
Nordpool, German, France and PJM markets [12]. While the

This work was supported by: TKI Watertechnologie.

DNN has been shown to be successful in price forecasting, the
Lasso Estimated Auto Regressive (LEAR) [14] was shown
to be a competitive non-ML method, even leading to the
highest forecasting accuracy in a benchmark study on the
Dutch market. However, as prices are becoming more volatile,
DNNs could start outperforming regularized linear regression
models like the LEAR [13].

Large forecasting errors can lead to sub-optimal dispatching
and a loss in both system efficiency and profits for the
user/producer. Since electricity prices are becoming harder to
forecast, probabilistic forecasting can be added value since
it gives a prediction interval, which is an indication of
the forecast uncertainty. It allows for risk management and
stochastic bidding/optimisation of assets [15]. Probabilistic
forecasting gained track in the energy sector after GEF-
COM2014, where the probabilistic forecasts outperformed
point forecasting methods [16].

One way to perform a probabilistic forecast is through
Quantile Regression [17] (QR). With QR, a model is trained
using a Quantile Loss or Pinball Loss function, where over-
and under-predictions are penalised differently. Using QR, a
conditional estimate (i.e. conditioned by a set of explanatory
variables or features) of the probability distribution can be
constructed that is likely to contain the real value [18]. QR
has been around for many years, but has recently been applied
to Neural Networks [19]–[21].

When quantiles are estimated independently using multiple
DNNs, it is possible that quantiles do not monotonically
increase in value. This is known as the crossing quantile
problem, and it is regarded as a serious modelling prob-
lem, possibly leading to invalid response distributions [22].
Multiple approaches have been applied to prevent crossing
quantiles. A 2-stage model was made to estimate the quantiles
after a point forecast is made [21] but quantiles are estimated
simultaneously. Another approach is to develop a specific NN
where the model is constrained using training [19]. Also,
smoothing the loss function has been applied with a penatly
and weight constraints during training [20].
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In this paper, we propose a combined quantile DNN (CQR-
DNN) trained with a mean quantile loss function. Through
this loss function, several quantile forecasts are combined
into a single DNN. The method is applied it to 8 European
Day Ahead Markets, using an increasing amount of quantiles.
The respective forecast performance is evaluated in both point
forecast metrics as probabilistic forecasting metrics. In order
to validate the added value of the proposed methodology, a
benchmark is performed using separate QR-DNNs that are
trained to forecast a single quantile. The models are optimized
by constructing an elaborate feature- and hyperparameter
search space and using the Tree Parzen Estimator algorithm
to optimize both features and hyperparameters simultaneously.
The automated approach leads to good forecasting perfor-
mance for all markets considered. Using the CQR-DNNs,
quantile crossing is substantially reduced compared to the sep-
arate QR-DNNs. We evaluate the forecasts on their Probability
Interval Coverage Percentage (PICP), the Probability Interval
Normalized Averaged Width (PINAW), the Winkler score [23],
and on the Mean Absolute Error (MAE) and relative MAE
(rMAE) [24] of the expected value of the forecasts. We show
that in some cases the expected value of the forecast improves
over a single model trained with the mean absolute error,
possibly indicating an improved generalisability of the models.

II. METHODOLOGY

In this section we will discuss the classical QR-DNN, the
proposed CQR-DNN, the Tree Parzen Estimator for feature-
and hyperparameter optimisation, and several evaluation cri-
teria.

A. Quantile Regression Deep Neural Network

A DNN is a feed forward Neural Network, trained using
back-propagation. During training, a loss function is mini-
mized to optimise the weights and biases of the activation
function in the neurons. In our case, the ReLU activation
function is applied. The Adam [25] optimizer was used to
optimise the weights and biases. The loss function indicates
the goal of the optimisation, in EPF it is common to minimise
the Mean Absolute Error (MAE) for point forecasting. For
quantile forecasts, the pinball loss function [17]

Lτ = max(τe, (1− τ)e), (1)

can be applied. In the equation, Lτ is the pinball loss of the
quantile τ and error e. In the pinball loss, over- and under-
forecasting is penalised differently. This leads to a quantile
forecast where τ% of the observations would be lower than
the forecast value. When the loss function is applied to train
neural networks to forecast separate quantiles (e.g. the QR-
DNN), the crossing quantile problem occurs. The crossing
quantile problem occurs when the quantile forecasts are not
monotonically increasing over the probability, which is contra-
dictory to the definition of quantiles. The phenomenon can be
partially explained due to differences in the stochastic optimi-
sation during training, however the black-box and non-linear
properties of DNNs complicate investigating the cause. Neural

Networks have been trained with non-crossing constraints [19],
however this was found to be quite computationally expensive.
We propose a combined quantile loss function, where the
mean pinball loss of all forecast quantiles is minimised. The
combined quantile loss function penalizes each output node
of the Neural Network differently, according to a different
quantile loss. The average pinball loss over all quantiles

LCQ =
1

N

N∑
n=1

Lτn , (2)

is minimised when training the DNN for N quantiles. In
Figure1, the CQR-DNN is shown for 5 quantiles (or per-
centiles). Forecasting all quantiles with the same model makes
sure the stochastics in training can’t affect the quantiles dif-
ferently, since they are trained with exactly the same routine.
Besides that, combining the quantiles allows the model to learn
relationships between quantiles, like non-crossing properties.

Fig. 1. A Combined Quantile Regression Deep Neural Network with nf

features, n1 nodes in hidden layer 1, n2 nodes in hidden layer 2 and 5
quantile output nodes of the same random variable.

B. Tree Parzen Estimator

The Tree Parzen Estimator [26] (TPE) algorithm was ap-
plied to optimise features and hyperparameters simultaneously.
The TPE is an efficient Sequential Models Based Optimisation
approach [27], [28], where a surrogate model is built using
Bayes rules and a defined search space. The surrogate model
describes the probability of the loss being higher (h(x)) and
lower (l(x)) than a certain threshold value (y∗), as a function
of the search space instantiation

p(y|x) = p(x|y) ∗ p(y)
p(x)

, (3)

where y is model performance and x is a search space
instantiation. Model performance is therefore estimated as a
function of the features and hyperparameters, where p(x|y) is
defined as

p(x|y) =

{
l(x) if y < y∗

h(x) if y ≥ y∗.
(4)



In the TPE algorithm, samples are taken from both l(x)

and h(x), after which the fraction l(x)
h(x) is evaluated for all

samples. The next suggested candidate is the candidate with
the highest expected improvement, i.e. the candidate with the
largest ratio between low and high probability in l(x) and h(x)
respectively.

C. Evaluation criteria

To evaluate a model’s forecasting performance, several
metrics are used. Both point-forecast metrics and interval
metrics are used. When a point forecasting metric is applied to
a stochastic forecast, the expected value of the forecast is used
to calculate the metric. As custom in EPF using point forecasts,
the Mean Absolute Error (MAE) and the relative-MAE [24]
(rMAE) are calculated for all models. The rMAE shows the
MAE relative to the MAE of a naive forecast. Besides that, the
Prediction Interval Coverage Percentage (PICP) and Prediction
Interval Normalised Average Width (PINAW) are used. The
PICP shows the percentage of variables that are covered in the
80% prediction interval (PI) (quantile 0.1 - 0.9). The PINAW
represents the average width of the PI as a percentage of
the maximum observed price range. Besides that, we show
the percentage of observed crossing quantiles to demonstrate
the added value of the combined quantile loss function of
Equation (2). Finally, the Winkler Score (WS) [23] is applied
to score the quantile forecasts for certain prediction intervals.
It is calculated using

Wα,t =


(uα,t − lα,t) + 2

α (lα,t − yt) if yt < lα,t

(uα,t − lα,t) if lα,t ≤ yt ≤ uα,t
(uα,t − lα,t) + 2

α (yt − uα,t) if yt > uα,t,

(5)

where the Winkler score Wα,t is calculated for the α% (PI),
given by [lα,t, uα,t]. The Winkler score calculated the PI
width, and penalises any observation yt that falls outside of
the PI.

III. DATA

The data and features included in the model are open-
source data from the ENTSO-E transparency platform [29]
exclusively. The data that was used are the historic DAM
prices, historic load and the day-ahead load forecast and the
day-ahead renewable generation forecasts. Due to the lack of
good actual generation data by energy source on ENTSO-E,
the day-ahead generation forecasts are used. The day-ahead
forecasts might even contain more information on DAM prices
than actual generation, due to the day-ahead market closure of
the DAM. For the analysis performed in this paper, data from
2015-2019 was used. Data from 2019 was used to test the
models. To be able to include the most recent data (2018)
for training, data from 2017 was used as a validation set for
feature selection, hyperparameter selection and early stopping
during training. Information leakage is limited to a minimum
through lagged variables. No data leakage occurs in the test
set. Figure 2 shows the price, load and load forecast of France

Fig. 2. French historic price, load and load-forecast with train, validation and
test splits indicated for model training.

with the train, validation and test sets clearly indicated by
color.

IV. FEATURE AND HYPERPARAMETER OPTIMISATION

Features and hyperparameters are optimised simultaneously
using the TPE algorithm described in Section II-B. The
hyperparameters considered in the optimisation of the DNN
and the corresponding search range in the optimisation are
shown in Table I.

TABLE I
HYPERPARAMETER SEARCH SPACE FOR THE DNN MODEL OPTIMISATION

USING THE TPE ALGORITHM.

Hyperparameter Variable type Search space
Number of layers Integer [1,2]

Nodes per layer Integer Layer 1: 50 - 450
Layer 2: 50 - 250

Dropout rate Continuous 0 - 0.5
Batch size Integer 71 - 74

Regularisation (l2-norm) Continuous 1e−5 - 5e−2

Batch normalisation Binary [False, True]
Random seed Integer 1 - 300

The feature search space is quite extensive to account for
large difference between markets. First, the length of the
training data is considered in the search. Because markets
aren’t stationary, the optimal data training length can differ
between the different bidding zones. The considered training
data lengths are 1 (2018), 2 (2018, 2016) and 3 (2018, 2016,
2015) years. Different price series can have different auto-
correlation, therefore the optimal amount of lagged prices that
are used in the forecast can differ as well. The prices of d-1,
d-2, d-3 and d-7 are always considered, however the lagged
prices from d-4 to d-6 are included in the search space. The
load of d-1 is always considered, where the load of d-2 to
d-7 are included in the search space. The load of d-7 is added
to the search space as a separate binary choice option, so it
can be included as a feature independently from the other



lagged variables. Similarly, the load forecast for the next day is
included in the search space as a binary choice option. Renew-
able energy generation forecasts is included in the search space
for features as binary choice option per renewable generation
source (solar, wind onshore, wind offshore). The generation
forecasts are included in the same way as the load is included
in the model features, meaning that the generation forecasts are
included on the days at which either the actual load or load
forecast are included as features as well. Finally, including
European market integration features in a price forecasting
model has been shown to improve forecast accuracy in both
the Netherlands [13] and Belgium [30]. For all considered mar-
kets, the external market with highest feature importance [13]
was picked as a candidate feature. For simplicity, only load
features are considered as they were shown to be an important
feature in the Belgian market [30]. Similarly to the renewable
energy forecasts, the market integration features ‘follow’ the
native load features. The features included in the search space,
and their corresponding search range are shown in Table II.

TABLE II
FEATURE SEARCH SPACE FOR THE DNN MODEL OPTIMISATION USING

THE TPE ALGORITHM.

Feature Variable type Search space
N of years in training data Integer 1 - 3 years
N of lagged price days Integer 3 - 6 days
N of lagged load days Integer 1 - 6 days
Load of d-7 Binary [False, True]
Load forecast Binary [False, True]
Solar energy generation Binary [False, True]
Onshore wind generation Binary [False, True]
Offshore wind generation Binary [False, True]
EU market integration Binary [False, True]

V. RESULTS AND DISCUSSION

In this section we will discuss some of the features and
hyperparameters resulting from the TPE search, the forecasting
performance of the point forecasts, and the quantile regression
forecasts.

A. Feature and hyperparameter optimisation

The feature optimisation results can be seen in Table III.
In all considered markets, the maximum amount of training
data resulted in the lowest validation losses. The amount of
lagged price and load days do vary over the markets. The
load forecast seems to be a good feature in all markets, and
the load of d-7 in most. For a considerable amount of markets,
external market features are included in the best performing
model. In all markets except the French, which relies heavily
on nuclear energy generation, renewable energy generation
was included as a feature. For the French case, their (inflex-
ible) nuclear power generation capacity could explain why
no market integration features were selected. Similarly, the
flexible hydro-dominated Norwegian generation could explain
why Norwegian features are good for other markets, but the
relationship goes one way [13].

B. Point forecast performance

Figure 3 shows the rMAE of the models, showing the
relative performance of the CQR-DNN compared to the naive
forecast. The feature- and hyperparameter optimisation pro-
cedure resulted in competitive forecasting performance. For
the Dutch case, the model beats the best performing DNN in
an earlier benchmark [13]. A benchmark involving multiple
markets reports slightly worse performance in general, but
these were tested on a different year. Table III also shows
the absolute MAE in [C/MWh]. Figure3 also shows that in

Fig. 3. rMAE of the expected value of the QR-DNN’s over the amount of
quantiles that are forecast.

general, the point forecast loss is decreased when multiple
quantiles are included in the model. This could be due to an
increase generalisation ability of the model. Although for the
Dutch case, an outlier is present at the CQR-DNN with three
included quantiles in the forecast. Possibly this is due to over-
fitting on the validation data, leading to a high test loss and
low validation loss.

C. Quantile Regression

Figure 4 shows the day-ahead probabilistic forecast for
France and the Netherlands using the CQR-DNN forecasting
13 simultaneous quantiles. We evaluate the quantile forecast-
ing models on four main criteria: the percentage of crossing
quantiles, the PICP, the PINAW and the Winkler score. The
PICP, PINAW and Winkler score are calculated for the 80%
prediction interval. Figure 5 shows the percentage of crossing
quantiles for both the CQR-DNN and the regular QR-DNN. It
shows that with our proposed loss function described in Equa-
tion 2, quantile crossing occurs significantly less. Especially
when a large amount of quantiles are included in the model.

Figures 6 and 7 show the PICP and the PINAW for the
CQR-DNN and the QR-DNN. The PICP and PINAW don’t
differ over the amount of quantiles for the separate quantile
forecasts, since the quantiles are only trained once and the
prediction interval stays the same (80%). The method resulting
in the highest PICP differs between the markets, but the
PINAW is generally lower for the CQR-DNN. A narrow PI
with similar coverage probability would be preferable for a
probabilistic forecast.

Figure 8 shows the Winkler score at the 80% PI for the
CQR-DNN and the separate quantile forecasts. A low Winkler



TABLE III
FEATURES RESULTING FROM THE TPE OPTIMISATION, WHERE Θ1 IS THE LENGTH OF THE TRAINING DATA IN YEARS, Θ2 THE AMOUNT OF LAGGED
PRICE DAYS, Θ3 THE AMOUNT OF LAGGED LOAD DAYS, Θ4 WHETHER THE LOAD FORECAST IS USED, Θ5 WHETHER THE LOAD OF D-7 IS USED, Θ6

SHOWS WHETHER EU MARKET INTEGRATION FEATURES ARE CONSIDERED WITH THE EXTERNAL MARKET IN BRACKETS, Θ7 , Θ8 AND Θ9 INDICATE
WHETHER SOLAR, ONSHORE WIND AND OFFSHORE WIND GENERATION DATA IS USED. THE MODELS WITH LOWEST MAE IN [C/MWH] IS PICKED OVER

ALL QR-DNNS WITH VARYING AMOUNT OF QUANTILES.

Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 Θ7 Θ8 Θ9 N Quantiles MAE
BE 3 6 1 True False True (FR) False False True 3 5.31
DE 3 3 1 True True False (GB) True True True 13 4.74
DK-1 3 4 1 True True True (NO-2) False True True 13 5.18
FR 3 5 3 True True False (NO-2) False False False 3 4.14
GB 3 3 2 True True True (NL) True True True 5 4.04
IT-NORD 3 3 1 True False True (GB) False True False 3 4.27
NL 3 6 3 True True True (NO-2) False True False 5 4.14
NO-2 3 3 1 True True False (IT-NORD) False False True 1 1.68

Fig. 4. Day-ahead quantile forecast for French and Dutch DAM price.

Fig. 5. Percentage of crossing quantiles per amount of quantiles included in
the forecast, for both the QR-DNN and the separate quantile forecasts.

score indicates a higher performance. The score is calculated
using the PI width, while penalising observations that fall
outside the PI. For all considered markets, the CQR-DNN
leads to a quantile forecast with lower Winkler score than
the separate QR-DNN’s.

VI. CONCLUSIONS

In this paper, we propose a loss function that can be
applied to forecast multiple quantiles using a single DNN.
The resulting CQR-DNN is applied to forecast the DAM

Fig. 6. The 80% prediction interval coverage probability for the CQR-DNN
and the QR-DNN’s.

Fig. 7. The 80% prediction interval normalised average width for the CQR-
DNN and the QR-DNN’s.

prices of 8 European bidding zones, and compared with
regular QR-DNN’s trained to forecast a single quantile per
model. The models were optimised for both features and
hyperparameters, using an elaborate search space and the TPE
algorithm. The automated approach lead to good results for
all markets considered. We show that by using the CQR-
DNN, quantile crossing occurs significantly less, with most
CQR-DNNs not showing any crossing quantiles. This can
be explained by the elimination of differences in training
between quantiles due to the stochastic nature of Machine
Learning methods. Also, by having all quantiles present in the
output layer allows the model to find relationships between
quantiles, like non-crossing properties. The proposed CQR-
DNN also outperforms the standard DNN on point-forecast
metrics applied to the expected value. This can be explained
by an increased generalisation ability of the model, due to the



Fig. 8. The 80% PI Winkler score for the QR-DNN’s and the separate quantile
forecasts.

inclusion of multiple quantiles. Also, the loss function could
be smoothed due to the combination of all quantile losses,
leading to more efficient training. Finally, it could be that
the knowledge of surrounding quantiles helps with estimating
the expected value. Based on the PICP, the two approaches
are equally good. However, the PINAW of the combined QR-
DNN is lower for most markets. A narrow PINAW, combined
with a high PICP is preferable for a stochastic forecast. The
Winkler score does favor the CQR-DNN, with lower scores
for all considered markets compared to the separate quantile
forecasts.
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