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SUMMARY

The Internet, a global network of communicating computers, has profoundly changed
our lives, both in the way we work and relax. Quantum computers are a fundamentally
new type of computer which brings certain computational tasks within reach, for exam-
ple chemistry simulations for a reduction in global energy consumption. The Quantum
Internet, the vision of a global network of quantum computers, combines these two, with
applications such as secure quantum computing in the cloud.

A barrier to the realisation of a Quantum Internet is the loss of transmitted quan-
tum information, usually encoded in particles of light. This fundamental limit can be
overcome by splitting up the distance into segments and positioning so-called quantum
repeaters in between. In principle, chains of quantum repeaters can extend the trans-
mission range of quantum information to an arbitrarily long distance.

In this thesis, we consider the type of quantum repeater closest to experimental re-
alisation, which is based on quantum memories for storing quantum information and
probabilistically succeeding operations on them. Researchers have proposed a multi-
tude of such quantum repeater schemes on the drawing board. We develop tools to
analyse how these quantum repeater schemes will perform when implemented on real
hardware suffering from time-dependent noise, in particular imperfect quantum mem-
ories for storing quantum information. Such time-dependent noise is often hard to cap-
ture, due to its complex interplay with the random time that these quantum repeater
schemes need to finish. Our tools thus help to bridge the gap between theoretical pro-
posals for quantum repeaters and the hardware components that are currently experi-
mentally available. On the one hand, they enable optimisation over the design of quan-
tum repeaters, while on the other hand they provide us with an indication of the hard-
ware components whose improvement will pay off most to bring quantum repeaters to
realisation.

This thesis consists of two parts. In the first part, we abstract away from many of the
details of the hardware that quantum repeaters can be built of. In particular, we assume
that a repeater has an unlimited number of memories for storing quantum information,
and can perform any operation on the memories in parallel. We develop fast algorithms
for characterising the time that a large class of quantum repeater schemes need to finish,
as well as the quality of the quantum states they produce. We use one of the algorithms
to investigate how much quantum repeater schemes benefit from discarding of quan-
tum information after a maximum storage time. We optimise the storage time and find
that the use of the optimal storage time lowers the hardware quality threshold neces-
sary for quantum secure communication. Furthermore, we provide analytical bounds
on the completion time of quantum repeater chains which in some cases improve expo-
nentially upon existing work. We also prove that a commonly used approximation to the
average completion time is in essence an upper bound, which renders existing feasibility
analyses of quantum repeater schemes pessimistic.

ix
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In the second part, we introduce the quantum network simulator NetSquid to inves-
tigate more detailed hardware models. We simulate a quantum repeater chain of nitro-
gen vacancy centres (NV) in diamond, a promising hardware platform for building quan-
tum networks. Since an NV centre cannot perform multiple operations in parallel, this
required us to adapt the existing protocols. We use our simulation to show how much
better the various parts of the NV setup should become to meet various performance
targets. We also simulate a quantum switch, which can be thought of as a quantum re-
peater serving many users, with an abstract hardware model with a limited number of
memories.



SAMENVATTING

Het Internet, een wereldwijd netwerk van communicerende computers, heeft ons leven
grondig veranderd, zowel qua werk als ontspanning. Kwantumcomputers zijn een fun-
damenteel nieuw type computer die bepaalde rekentaken binnen handbereik brengen,
zoals bijvoorbeeld simulaties van scheikundige processen die kunnen leiden tot een ver-
mindering van het wereldwijd energieverbruik. Het Kwantuminternet, de visie van een
wereldwijd netwerk van kwantumcomputers, combineert deze twee, met toepassingen
zoals veilige kwantumberekeningen in the cloud.

Een hindernis voor de verwezenlijking van het Kwantuminternet is het verlies van
kwantuminformatie wanneer deze verstuurd wordt, meestal opgeslagen in lichtdeeltjes.
Deze fundamentele barrière kan overkomen worden door de afstand op te breken in
segmenten en zogenaamde kwantum repeaters ertussen te plaatsen. In principe kunnen
ketens van kwantum repeaters de afstand waarover kwantuminformatie verstuurd kan
worden willekeurig ver verlengen.

In dit proefschrift bestuderen we de kwantum repeater typen die het dichtst bij ver-
wezenlijking zijn. Deze zijn gebaseerd op het gebruik van kwantumgeheugen voor de
opslag van kwantuminformatie en aanpassingen (operaties) van dit geheugen die met
een zekere kans wél of niet slagen. Onderzoekers hebben een breed scala van zulke
kwantum repeater ontwerpen op de figuurlijke tekentafel bedacht. In dit proefschrift
ontwikkelen we theoretische instrumenten (tools) om te analyseren hoe goed zulke
kwantum repeater ontwerpen gaan werken als ze geïmplementeerd zijn op echte hard-
ware die, in het bijzonder, onderhevig is aan tijdsafhankelijke ruis. Onze instrumenten
helpen ons zo om het gat te dichten tussen theoretische kwantum repeater ontwerpen
en de hardware componenten die op dit moment beschikbaar zijn. Aan de ene kant
staan de instrumenten ons toe om kwantum repeater ontwerpen te optimaliseren, ter-
wijl ze ons aan de andere kant een indicatie geven welke hardware componenten we
zouden moeten verbeteren om kwantum repeaters zo snel mogelijk te verwezenlijken.

Dit proefschrift bestaat uit twee delen. In het eerste deel abstraheren we veel de-
tails van de kwantum repeater hardware weg. In het bijzonder nemen we aan dat een
repeater een onbeperkt aantal kwantumgeheugenplaatsen heeft, en bovendien opera-
ties op verschillende geheugenplaatsen tegelijkertijd uit kan voeren. We ontwikkelingen
snelle computeralgoritmen (voor een gewone computer, niet een kwantumcomputer)
om de tijd die een kwantum repeater nodig heeft om een verbinding tot stand te bren-
gen (de voltooiingstijd), te karakteriseren. De algoritmen berekenen ook de kwaliteit van
de verbinding. We gebruiken één van de algoritmen om uit te zoeken hoeveel kwantum
repeater ontwerpen profiteren van het weggooien van kwantuminformatie na een gege-
ven opslagtijd. We optimaliseren de opslagtijd en zien dat het gebruik van de optimale
opslagtijd de vereiste hardware kwaliteit om kwantumcommunicatie te laten werken,
naar beneden brengt. Daarnaast ontdekken we formules die de voltooiingstijd begren-
zen; in sommige gevallen zijn deze formules een exponentiële verbetering ten opzichte
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xii SAMENVATTING

van bestaand werk. We bewijzen bovendien dat een vaak gebruikte benadering van de
gemiddelde voltooiingstijd in essentie een bovengrens is, wat bestaande haalbaarheids-
studies pessimistisch maakt.

In het twee gedeelte introduceren we de kwantumnetwerksimulator NetSquid (een
software pakket) voor het bestuderen van gedetailleerdere hardware modellen. We si-
muleren een keten van kwantum repeaters gebaseerd op het stikstofgatdefect (nitrogen
vacancy) in diamant, een veelbelovend hardware platform voor de verwezenlijking van
kwantumnetwerken. Omdat een stikstofgatdefect het niet mogelijk maakt om meerdere
operaties tegelijkertijd uit te voeren, hebben we de bestaande kwantum repeater pro-
tocollen aangepast. We gebruiken onze computersimulaties om te laten zien hoeveel
minder ruizig de verscheidene onderdelen van het stikstofgatdefect moeten worden om
gegeven repeater doelstellingen te halen. We simuleren ook een kwantumschakelaar, die
gezien kan worden als kwantum repeater die meer dan twee gebruikers dient, met een
abstract hardware model en een beperkt kwantumgeheugen.
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PREFACE

Dear reader,

This thesis is the result of four years of PhD work. During that time, I have been
immersed in an environment of highly talented people, who taught me the language of
quantum networks. After so many hours in this community, I have become accustomed
to a particular jargon and way of writing – maybe accustomed too much. For that
reason, let me give a brief ‘reading guide’.

First, most researchers do not read scientific articles like a novel: from front to back.
Instead, they read the title and summary, then skim through the paper and look at the fig-
ures. If the article still looks interesting, then they read the introduction, and potentially
also the conclusion. By doing so, the reader establishes a ‘frame’ in which the rest of the
information of the article can be put (You could compare it to a wardrobe that contains
many drawers: it is neater to first have the wardrobe and then fill it with clothes, then to
first have a pile of clothes on the ground, after which you will build the wardrobe). With
this frame, it is much easier to read the rest of the paper – this time from front to back.

I propose that you, as reader of this dissertation, do exactly the same, at least at the
start: first read the title and the summary, then proceed to the introduction. At the
end of the introduction I will give an overview of the different chapters, which hope-
fully gives you an idea of what you would like to read next. Like most theses in the hard
sciences, the core of this dissertation consists of chapters which are modified versions
of (pre)published articles. Although these were written for an expert audience, please do
not feel held back to read them by reading title and summary, skim the figures, etc.

I believe the use of jargon can hardly ever be completely avoided. However, I have
noticed that many around me are increasingly often using field-specific terminology in
everyday conversations, often without noticing, and it would be naive to think I am any
different. For that reason, I have tried to compile a list of words that might be useful to
know when reading this thesis – already starting with the words in the title. If you find
that the dissertation is completely incomprehensible after having read this list and the
introductory chapters, then I welcome you to come over for a cup of tea (or something
stronger) and a good chat. I am more than willing to explain this dissertation’s content.

So here comes the list of words.
First of all, you will find that this dissertation is written in ‘we’ form (first person plu-

ral). Partially I decided to do so because this is common in the field. More importantly,
a lot of the work in the core chapters of this dissertation was done in collaboration with
others. For those chapters, it would therefore be not only impolite to say that ‘I did such
and such’, but simply incorrect.

Next, the phrase design of quantum networks refers to the fact that there are many
different ways of building a network of quantum computers, and we are trying to find

xv



xvi PREFACE

the best one. In particular, it does not mean that we are designing in the way that artists
do.

A model is a representation of reality. In this thesis, we will treat models which are
more or less idealised. That is, we abstract away from many details of reality; in this
case, from many details of the physical hardware that networks of quantum computers
are built of.

The word analytical in the context of this thesis refers to the use of formulas and
mathematics, as opposed to using computer code to arrive at a numerical analysis. By
semi-analytical, we mean a combined approach, where we use mathematics to arrive at
a formula that we then further investigate using numerics.

The abbreviations i.e. and e.g., or id est and exempli gratia, mean ‘that is’ and ‘for
example’, respectively.

In the current Internet, many computers are connected to each other. In this context,
we refer to a computer as a node in the network. We could also say that the Internet
consists of many remote parties.

A protocol is, loosely speaking, a computer program which runs at a node and de-
cides what information to send to another node, and to react to information the node
receives.

By experimental, we refer to the meaning of the word in the phrase ‘experimental
physicist’. That is, a physicist which performs scientific experiments. If a quantum net-
work has been ‘experimentally realised‘, it has been actually built in real life.

The most important word is maybe classical, which we use to indicate the conven-
tional counterparts of quantum technology: classical computers are the computers that
are currently available that do not specifically make use of particular features of quan-
tum physics. Similarly, we talk about classical networks, of which the current Internet is
an example.

Although this list is far from complete, I hope it helps in reading this thesis a bit more
easily. Let me repeat that I am more than willing to come talk to you to explain what I
have been doing for the past four years.

Tim Coopmans
Delft, May 2021



1
INTRODUCTION

Today, many of us use communication technology on a daily basis. We call by phone,
send text messages by chat or e-mail, read news websites, watch videos or digital tele-
vision, navigate over satellite-based GPS, connect to audio devices through bluetooth,
and so on. It is an understatement to say that the development of communication tech-
nology has had a profound impact on they way we live.

All these applications are about communication between electronic devices which
are, effectively, computers. In the realm of computers, the world has recently seen a
surge in development and interest in quantum computers: a fundamentally new type of
computer, explicitly taking advantage of the laws of quantum physics. Quantum physics
describes the behaviour of physical objects which are at least a billion times smaller than
the thickness of a human hair, such as atoms and electrons. Quantum computers [1] can
perform some computational tasks astronomically faster than their conventional coun-
terparts [2]. In particular, they bring tasks into reach for which today’s computers would
need ten thousands years [3] or longer, with promising applications such as chemistry
simulations for a reduction in energy consumption [4, 5] or fast algorithms for linear-
algebra tasks [6].

Given, on the one hand, the benefits of communication between computing devices,
and on the other hand the advantages of quantum computers, it is a natural question
whether communication technology could also benefit from quantum physics.

You will not be surprised that the answer is ‘yes’. The first example was shown in 1984,
when two researchers in North America found that the use of quantum physics enables
two people at a distance to communicate in such a secure way, that no-one could read
their messages, not even in principle [7]1 (Most of current secure data transfer is based
on the idea that a hacker should solve a mathematical problem which is expected to be
hard to solve, but not proven to be so. For quantum communication, it is known that it

1Specifically, this quantum key distribution allows two remote parties to generate a random password that no-
one else knows. With such a password, they can encode their messages so that no-one can read them if they
were intercepted.
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2 1. INTRODUCTION

is not only hard, but really impossible to break the security if the hacker wanted to read
the message2).

Since then, more potential applications of so-called quantum communication have
been found, such as performing a secret computation on a quantum computer in the
cloud [8] or very precise synchronisation of clocks [9]. Given the fact that many applica-
tions for present-day computers have emerged relatively recently, it is more than likely
that there are many applications for quantum communication that we have not found
yet.

1.1. THIS THESIS: QUANTUM REPEATERS
In this thesis, we are concerned with the fact that communication signals weaken over
a distance. This happens when you are talking to someone who is physically close (you
will have to shout beyond 50 meters, or beyond 10 centimetres in a dance club), but
also when your mobile device is too far from another bluetooth-enabled device or WiFi
hotspot to connect. For internet data transfer beyond tens of kilometres, which often
occurs through sending light pulses through glass fibre, the signal also weakens. In all
these cases, a solution to bridge the distance is to make use of a repeater, which is a
device that reads the weakened signal, amplifies it, and sends it on.

The same signal weakening happens for quantum communication, where often light
is transferred through glass fibre or free space. In the quantum case, however, reading
and amplifying the information is not possible in general3. For this reason, the way a
repeater works cannot be straightforwardly translated to the quantum case. Fortunately,
throughout the years researchers have come up with various alternative proposals for a
quantum repeater, as well as chains of quantum repeaters for covering large distances.
Although experimental progress towards building quantum repeaters has been enor-
mous, a setup of one or more quantum repeaters, bridging a distance that could not
have been bridged without, has not been realised yet4.

This thesis is about the type of quantum repeater chain that is, arguably, closest to
experimental reach (see Chapter 3 for a description). Central to this thesis is the ques-
tion: How close?

In the next chapters, we provide tools to analyse how the quantum repeater schemes
would perform when implemented using hardware that can currently be built in experi-
mentalists’ laboratories. We will see that in many cases the “most naive” implementation
does not work. In other words: there is a gap between the repeater design on paper and
what can be built in real life. We try to bridge this gap by changing the repeater design on
the one hand, while on the other hand identifying the key parts of the physical hardware
that need to be improved to most easily experimentally realise a quantum repeater.

We are not the first to analyse repeater schemes in this way. The novelty of this thesis
is our progress in capturing how fast quantum repeaters would be and how their delays
are affected by time-dependent effects.

2Provided quantum physics is correct.
3This is a famous result, which states that quantum information cannot be ‘cloned’.
4There is no crystal clear concensus in the quantum repeater research community on what kind of experiment

would count as a ‘realisation of a quantum repeater’. Similarly, on how close start-of-the-art experiments are
to such a realisation. I would like to refrain from such discussions here.
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Let us explain this in a bit more detail. The goal of a quantum repeater is to establish
a ‘connection’ between two quantum devices which are separated by a distance. (This
sentence is deliberately very vague. For now, you may think of a quantum repeater as a
magical means to transfer information, although that is not an entirely correct descrip-
tion.) The quantum repeaters we investigate are not equally fast every time they are
used: sometimes they establish a connection quickly, sometimes not, and our goal is to
exactly characterise this behaviour. That is, determine the probability that it takes longer
than a given time to complete. The delay of quantum repeaters influences how well it al-
lows us to transmit information. Particularly so because quantum information cannot
be stored for a long time, in the same way that fresh fruit goes bad after a while5. There
are also effects that work in the opposite direction (the worse the repeater, the longer it
takes to finish) and it is this interplay that we can capture using the tools that we present
in this thesis.

Another novelty of this thesis is the fact that we capture more details of the hardware
than before, and adjust the quantum repeater schemes to that. Arguably, this makes our
predictions of how well quantum repeaters will perform closer to reality than before.

1.2. NOT INCLUDED IN THIS THESIS
In this thesis, we will present various algorithms (computer programs, in this case for
conventional computers, not quantum computers) to predict how quantum repeaters
will perform on real hardware, at varying levels of detail. In the scenarios we consider
in this thesis, the bottleneck in the time that such computations take is the number of
quantum repeaters, but not the mimicking (simulation) of the quantum operations that
the quantum repeaters perform.

In contrast, simulating a quantum computation on a regular computer is generally
not feasible for any practical application that would run on a single quantum computer6.
For most quantum communication applications, however, the devices need only per-
form a limited set of operations on the quantum particles known as Clifford operations.
Fortunately, Clifford operations can be simulated quickly [12, 13], which allows us to
investigate large networks of quantum computers7. Part of the PhD project leading to
this thesis was devoted to thinking about further speedups for Clifford-based simulation
and about the possible states of quantum particles after performing Clifford operations
on them, known as stabiliser states. This work has not been included in this thesis; we
very briefly mention the results here.

First, we found new concise expressions of stabiliser states (namely, by noting that

5The timescales at which quantum information decays in memory are much shorter than for rotting fruit: on
the order of a second for nitrogen-vacancy centres in diamond, a hardware type which we will study in the
second part of this thesis [10, 11].

6By ‘not feasible’, we mean that the computer would take at least thousands of years to finish. The fact that
conventional computers cannot perform tasks that are relevant for quantum computers is true by definition
of ‘practical’: if we could perform them on a conventional computer within reasonable time, we would not
need a quantum computer for them.

7We emphasise that this fast simulation only holds for a quantum computer positioned at a single location.
In particular, the existence of fast simulation of a network of quantum computers on a (single) conventional
computer does not disprove the advantage of quantum computers for communication, for which quantum
computers are spatially separated.
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their ‘substates’ are local-Pauli-equivalent). We have combined this idea with deci-
sion diagrams, which is an existing framework for reasoning about computer programs
(specifically: for capturing boolean functions and operations on them). The result is a
new type of decision diagram, which is strictly more powerful than the union of both
stabiliser states and existing decision diagrams [14].

In addition, we have attempted to find fast algorithms for computing the overlap
between two quantum states for specific kinds of stabiliser states. These ideas initiated
the master thesis work of Matthijs Rijlaarsdam [15] (which, however, has taken a slightly
different direction).

1.3. CHAPTER OVERVIEW
This thesis starts with a brief introduction to the mathematics of quantum computing
(Chapter 2). This chapter assumes a background in linear algebra. Next, in Chapter 3,
we introduce the central topic of this thesis, quantum repeaters, in more detail. Although
the chapter content is quite technical and mostly aimed at those who have a background
in quantum information8, we believe it is fairly well readable to the non-expert. At least
it can be almost completely understood without having read Chapter 2.

The body of the thesis consists of the Chapters 4 to 8. It has been divided into two
parts. In the first part, we will abstract away from many of the details of the hardware
that quantum repeaters consist of and thus arrive at an abstract hardware model. We re-
view existing literature on the analysis of abstract models of quantum networks in Chap-
ter 4. In Chapter 5 we provide fast algorithms (computer programs) for characterising
the completion time of quantum repeater schemes. In Chapter 6 we improve the run-
time of one of these algorithms further and use it to investigate how much quantum
repeater schemes benefit from restarts. Chapter 7 finishes the first part by providing an-
alytical bounds (that is, formulas instead of numbers produced by a computer program)
on the average time that repeater schemes need to finish, and on the probability that
they need longer than some given time to do so.

In the second part, we incorporate more details of the hardware. This part consists of
a single chapter, Chapter 8, where we introduce the software package NetSquid for sim-
ulating detailed hardware models. We use NetSquid to investigate how a chain of quan-
tum repeaters would perform when built using nitrogen-vacancy centres in diamond, a
promising hardware type for building quantum networks. We also simulate a quantum
switch, which is a many-armed repeater. We finish with a conclusion in Chapter 9.

REFERENCES
[1] M. A. Nielsen and I. L. Chuang, Quantum information and quantum computation,

Cambridge: Cambridge University Press 2, 23 (2000).

[2] A. Montanaro, Quantum algorithms: an overview, npj Quantum Information 2,
15023 (2016).

8Chapter 3 will contain three mathematical formulas. According to a law that is attributed to Stephen Hawking,
this means that the potential audience for this chapter will be cut into half at least three times. Since an
individual reader cannot be cut in half without losing the ability to read, the number of people who will read
Chapter 3 is at least eight or larger (two times two times two). Which is precisely why I added the formulas.

http://dx.doi.org/10.1038/npjqi.2015.23
http://dx.doi.org/10.1038/npjqi.2015.23


REFERENCES

1

5

[3] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo,
F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins,
W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina,
R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoff-
mann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi,
J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark,
E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi,
K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu,
E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin,
D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher,
B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis,
Quantum supremacy using a programmable superconducting processor, Nature 574,
505 (2019).

[4] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, Elucidating reaction
mechanisms on quantum computers, Proceedings of the National Academy of Sci-
ences 114, 7555 (2017), https://www.pnas.org/content/114/29/7555.full.pdf .

[5] What problems will we solve with a quantum com-
puter? https://www.microsoft.com/en-us/research/blog/
problems-will-solve-quantum-computer/, accessed: 7 Oct. 2021.

[6] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of
equations, Phys. Rev. Lett. 103, 150502 (2009).

[7] C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and
coin tossing, Proceedings of IEEE International Conference on Computers, Systems
and Signal Processing 175 (1984).

[8] A. M. Childs, Secure assisted quantum computation, Quantum Info. Comput. 5, 456
(2005).

[9] R. Jozsa, D. S. Abrams, J. P. Dowling, and C. P. Williams, Quantum clock synchro-
nization based on shared prior entanglement, Phys. Rev. Lett. 85, 2010 (2000).

[10] M. H. Abobeih, J. Cramer, M. A. Bakker, N. Kalb, M. Markham, D. J. Twitchen, and
T. H. Taminiau, One-second coherence for a single electron spin coupled to a multi-
qubit nuclear-spin environment, Nature Communications 9, 2552 (2018).

[11] C. E. Bradley, J. Randall, M. H. Abobeih, R. C. Berrevoets, M. J. Degen, M. A. Bakker,
M. Markham, D. J. Twitchen, and T. H. Taminiau, A ten-qubit solid-state spin register
with quantum memory up to one minute, Phys. Rev. X 9, 031045 (2019).

[12] D. Gottesman, The Heisenberg representation of quantum computers, arXiv:quant-
ph/9807006v1 (1998).

[13] S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Physical
Review A 70, 052328 (2004).

http://dx.doi.org/10.1038/s41586-019-1666-5
http://dx.doi.org/10.1038/s41586-019-1666-5
http://dx.doi.org/10.1073/pnas.1619152114
http://dx.doi.org/10.1073/pnas.1619152114
http://arxiv.org/abs/https://www.pnas.org/content/114/29/7555.full.pdf
https://www.microsoft.com/en-us/research/blog/problems-will-solve-quantum-computer/
https://www.microsoft.com/en-us/research/blog/problems-will-solve-quantum-computer/
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dl.acm.org/citation.cfm?id=2011670.2011674
http://dl.acm.org/citation.cfm?id=2011670.2011674
http://dx.doi.org/ 10.1103/PhysRevLett.85.2010
http://dx.doi.org/ 10.1038/s41467-018-04916-z
http://dx.doi.org/10.1103/PhysRevX.9.031045


1

6 REFERENCES

[14] L. Vinkhuijzen, T. Coopmans, D. Elkouss, V. Dunjko, and A. Laarman, LIMDD: a
decision diagram for simulation of quantum computing including stabilizer states,
arXiv:2108.00931 (2021).

[15] M. Rijlaarsdam, Improvements of the classical simulation of quantum circuits: Us-
ing graph states with local cliffords (master thesis), Delft University of Technology
(2020).



2
QUANTUM COMPUTING IN A

NUTSHELL

In this chapter, we first provide a very brief and very much incomplete introduction to
the mathematical formalism of quantum computing (sec. 2.1-2.3), after which we de-
scribe a common model of the decay of quantum information when it is stored in mem-
ory. The first part is based on specific sections from the excellent textbook by Nielsen
and Chuang [1] and in this part, we will omit references to this work for brevity. For a
more thorough introduction to quantum computing than provided in this chapter, we
refer to their book. Together with the next chapter, Chapter 3, this chapter forms the
preliminaries to the core of this thesis, Chapters 4-8. These preliminaries should be suf-
ficient to understand most of this thesis. For this chapter, we assume that the reader is
familiar with basic linear algebra.

2.1. A QUANTUM BIT AND HOW TO OPERATE ON IT
Classical computing is based on the storage, reading out and modification of bits, which
take the value 0 or 1. The unit of quantum information is the quantum bit or qubit, which
one could view as a generalisation of the bit. The state of a qubit is described by a vector
of two complex numbers α and β (a complex 2-vector),(

α

β

)
with the constraint that |α|2 + |β|2 = 1. Here, |z|2 = a2 −b2 is the squared modulus of a
complex number z = a +b · i where a and b are real numbers and i is the complex unit

satisfying i 2 = 1. Usually, we write |0〉 =
(
1
0

)
and |1〉 =

(
0
1

)
so that the state of a qubit is

written as α |0〉 +β |1〉. We retrieve the two possible values that a regular bit can have
(zero or one) by setting α= 1 and β= 0 (for the state |0〉), or α= 0 and β= 1 (for the state
|1〉). If neither α nor β is zero, then we say that the qubit is in superposition of |0〉 and |1〉.

7
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The main operations on a single qubit, or single-qubit gates, are 2-by-2 unitary ma-
trices, i.e. matrices U satisfying U † ·U = 12. Here, · denotes matrix multiplication, we
use the symbol (.)† to denote the adjoint (obtained by taking the complex conjugate
a+bi 7→ a−bi of each matrix element following by transposing the matrix) and the ma-
trix 12 is the identity matrix (i.e. the unique matrix which maps each complex 2-vector
to itself) given by

12 =
(
1 0
0 1

)
.

A gate U maps a state |φ〉 to U |φ〉. Examples of single-qubit gates are the Pauli matrices,
which are 12 and

X=
(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z=

(
1 0
0 −1

)
or the Hadamard gate

H = 1p
2

(
1 1
1 −1

)
. (2.1)

As example measurement or readout of a single qubit, consider the computational
basis given by |0〉 and |1〉. Measuring a quantum state α |0〉+β |1〉 in this basis yields a
random outcome; the outcome 0 occurs with probability |α|2 and the outcome 1 with
probability |β|2. After measuring outcome 0 (1), the state of the qubit will be |0〉 (|1〉). In
general, if we say that we perform a projective measurement on a quantum state |φ〉 in
the orthonormal basis {|m0〉 , |m1〉}, then

Pr(outcome 0) = |〈φ|m0〉|2, Pr(outcome 1) = |〈φ|m1〉|2

where 〈φ|m〉 is the inner product between states |φ〉 and |m〉, given by the single entry of

〈φ| · |m〉 with 〈φ| = (|φ〉)†. Alternatively, we will say that we measured |φ〉 in the M-basis,
where M is the matrix M = |m0〉〈m0|− |m1〉〈m1|. Upon receiving outcome x ∈ {0,1}, the
post-measurement state is |mx〉.

In practice, we encounter scenarios such as: we do not know which quantum state
our particle is in, but it is either |0〉 or |1〉, each occurring with probability 1/2. For situa-
tions like this, it is convenient to use the density matrix, which in this example scenario
is

ρ = 1

2
|0〉〈0|+ 1

2
|1〉〈1| .

The density matrix is convenient if we are continuing to perform gates or measurement
on the qubit, without having to individually track the two possible scenarios (i.e. that
the qubit is either in state |0〉 or in state |1〉). In general, if we have a collection of states
|φ1〉 , |φ2〉 , . . . occurring with probabilities p1, p2, . . . , then the density matrix is defined as

ρ = p1
∣∣φ1

〉〈
φ1

∣∣+p2
∣∣φ2

〉〈
φ2

∣∣+ . . . . (2.2)

If one of the probabilities equals 1 (and hence the others are all zero), then we call ρ a
pure state, and a mixed state otherwise. If we apply a gate U to this qubit, the density
matrix is updated as ρ 7→ UρU †. Measuring ρ in the M-basis (where M = |m0〉〈m0| −
|m1〉〈m1| as above) yields binary outcome x with probability 〈mx |ρ|mx〉. Upon receiving
outcome x, the post-measurement density matrix is the pure state |mx〉〈mx |.
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2.2. MULTIPLE QUANTUM BITS AND ENTANGLEMENT

The state of n qubits is described by a vector of 2n complex entries, whose squared mod-
uli sum up to 1. As example, consider two qubits, which are individually in the states
|φ1〉 = 1p

2
|0〉+ ip

2
|1〉 and |φ2〉 = 2p

5|0〉 +
1p
5
|1〉. Their joint state is given by

|φ1〉⊗ |φ2〉 =


1p
2
· 2p

5
1p
2
· 1p

5
ip
2
· 2p

5
ip
2
· 1p

5

=


2p
10
1p
10

2ip
10
ip
10

 .

Here, the symbol ⊗ denotes the tensor product. We will omit it whenever it is clear from
the context we are dealing with a multi-qubit state; for example, instead of |0〉⊗ |1〉 we
will write |0〉 |1〉 or |01〉. We can repeat this reasoning to describe the joint state of more
than 2 qubits. The definition of the single-qubit density matrix in eq. 2.2 carries over
directly to a density matrix for multiple qubits.

A gate on n qubits is an 2n-by-2n unitary matrix. An example of a two-qubit gate is
the controlled-X gate (also called CNOT)

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.3)

When the two qubits to which the CNOT is applied are computational-basis states, the
CNOT ‘reads’ the value of the first qubit (control qubit), and flips the second qubit’s (tar-
get qubit) value. For example, CNOT |0〉 ⊗ |1〉 = |0〉 ⊗ |1〉 and CNOT |1〉 ⊗ |1〉 = |1〉 ⊗ |0〉.
Identical to the single-qubit case, an n-qubit gate U maps an n-qubit density matrix ρ
to UρU †.

If we perform a projective measurement the first qubit of an n-qubit state ρ in the
basis {|m0〉 , |m1〉}, then Pr(outcome x) = Tr(Sx ) for x = 0,1, where Tr denotes the trace of
a matrix, i.e. the sum of its diagonal elements, and

Sx =
|mx〉〈mx |⊗12 ⊗·· ·⊗12︸ ︷︷ ︸

n−1 times

ρ
|mx〉〈mx |⊗12 ⊗·· ·⊗12︸ ︷︷ ︸

n−1 times

 .

Upon receiving outcome x, the post measurement density matrix is Sx /Pr(outcome x).

A fascinating feature of multiple qubits is that they can be entangled, that is, that
their joint state cannot be described by simply giving the states of the individual qubits
(in fact, if qubits are entangled, it does not even make sense to talk about their individual
states). By definition, we call a two-qubit state separable if it can be written as eq. (2.2)
where all |φ�〉 for which p� 6= 0 can be written as tensor products of single-qubit states.
A two-qubit state is called entangled otherwise. A prime example of two-qubit entangled
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states are the Bell states

|Φ+〉 = (|00〉+ |11〉)/
p

2

|Ψ+〉 = (|01〉+ |10〉)/
p

2

|Φ−〉 = (|00〉− |11〉)/
p

2

|Ψ−〉 = (|01〉− |10〉)/
p

2

which are named after John Bell, who showed that entanglement enables correlations
between remote parties which is stronger than possible in classical systems [2]. They are
also referred to as the ‘Bell basis’, since the four Bell states form a basis of the two-qubit
vector space.

When we start with the product state |00〉, we can produce |Φ+〉 by first applying the
Hadamard gate from eq. (2.1) to the first qubit, followed by a CNOT gate from eq. (2.3)
where the control qubit is the first qubit. The other Bell states can be produced from
|Φ+〉 by applying one of the Pauli matrices to one of the two qubits. By applying any
combination of single-qubit gates to the Bell states, we obtain a class of states which
refer to as maximally-entangled two-qubit states or EPR pairs, named after the authors
(Einstein, Podolski and Rosen) of a famous thought experiment involving entanglement
[3].

We can now measure in the Bell basis by performing the reverse operation: we start
with a two-qubit state, then perform the CNOT, followed by the Hadamard, and measure
both qubits (denote the outcomes as a and b). If we started with one of the four Bell
states, then which of the four can be found from applying X a ·Z b to one of the qubits of
|Φ+〉.

2.3. STATE QUALITY
The gates and measurement as performed by real-life hardware are not perfect; thus, the
state that is actually produced (denoted by ρactual) is often different from the state ρideal

that we aimed to produce. A common measure for comparing ρactual to ρideal (on the
same number of qubits) is the fidelity, which is defined as

F (ρactual,ρideal) = Tr

(√p
ρσ

p
ρ

)2

.

If ρideal is the pure state
∣∣φideal

〉〈
φideal

∣∣, then the fidelity can also be written as

F (ρactual,
∣∣φideal

〉〈
φideal

∣∣) = 〈
φideal

∣∣ρactual
∣∣φideal

〉
. (2.4)

The fidelity is a value between 0 and 1. The value 1 is only achieved if the two states
ρactual and ρideal are equal. If |φideal〉 is a Bell state, then it straightforward to show that
its fidelity with a separable two-qubit state is never larger than 1

2 . Throughout the thesis
we will often say ‘fidelity’ when it is clear from the context we mean the Bell-state fidelity,
i.e. the fidelity with a perfect Bell state.

A common model for an imperfect quantum state makes use of the depolarising

channel N
depol

p , which maps an n-qubit quantum state ρ to

N
depol

p (ρ) = (1−p)ρ+p
12n

2n
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where p is the depolarising probability and 12n the identity operator on 2n-length com-
plex vectors. If ρ is a perfect Bell state, for example |Φ+〉, then we call the resulting state

w
∣∣Φ+〉〈

Φ+∣∣+ (1−w)14/4

a Werner state [4] and refer to w = 1−pdepol as the Werner parameter. It is straightfor-
ward to compute, using eq. (2.4), that the value w = 1 corresponds to a perfect Bell state
while any w < 1

4 corresponds to a Bell-state fidelity of less than 1
2 , i.e. below the classical

bound.
Another often-used single-qubit noise model is the Z -dephasing channel N

deph
p (or

dephasing channel for short), which maps a single-qubit state ρ to

N
deph

p (ρ) = (1−p)ρ+p ZρZ † (2.5)

with p the dephasing probability.
Finally, we mention the amplitude-damping channel N AD

p , defined as

N AD
p (ρ) = E0ρE †

0 +E1ρE †
1

where E0 = |0〉〈0| +√
1−p |1〉〈1| and E1 = p

p |0〉〈1|, where p ∈ [0,1] is the amplitude-
damping parameter.

Above, we have given a brief introduction to quantum mechanics; for a more com-
plete and elaborate introduction, we refer to [1].

2.4. IMPERFECT MEMORIES
Since the results presented in this thesis focus in particular on time-effects, we highlight
a model for a particularly relevant source of time-dependent state decay: memory noise.
That is, the decay of a single qubit’s quantum state, when stored in a quantum mem-
ory such as the spin of a particle, due to the qubit’s interaction with the environment.
Such decay is for example caused by interactions between the quantum memory and
surrounding spins, such as the nuclear spins surrounding the nitrogen-vacancy centre
we will introduce in sec. 3.4, inhomogeneity in an external magnetic field that is applied
or the exchange of energy with the environment, among others [1, 5]. In this thesis, we
follow a common description of the time evolution of the stored quantum state as de-
scribed by the two parameters T1 and T2 (see [5] for a more elaborate introduction). The
longitudinal coherence time or relaxation time T1 describes the rate at which our qubit
reaches its thermal state. The transverse coherence time or dephasing time T2 describes
how fast the qubit loses coherence, i.e. how fast a proper superposition of |0〉 and |1〉
tends to a classical mixture of |0〉〈0| and |1〉〈1|.

The description of coherence in terms of T1 and T2 as we give below relies on various
assumptions [6], in particular Markovianity: the environment does not have memory,
i.e. each interaction with our qubit is independent of any interactions in the past. Under
these assumptions, consider a qubit (e.g. spin- 1

2 particle) which was originally in the
state

ρinit =
(

a b
b∗ 1−a

)
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for a real number a and a complex number b. For a specific coupling of the spin to the
environment (details in [7]), the spin will decohere after time t to

ρ(t ) =
(
(a −a0)e−t/T1 +a0 be−t/T2

b∗e−t/T2 (a −a0)e−t/T1 +1−a0

)
(2.6)

where a0 |0〉〈0| + (1 − a0) |1〉〈1| is the thermal state of the qubit for a0 =
exp(ω/(kτ))/

[
exp(ω/(kτ))+exp(−ω/(kτ))

]
that depends on the environment’s tem-

perature τ and the energy gap ω between the |0〉 and |1〉 states [1, 7]. Given eq. (2.6),
we see that T1 and T2 live up to their names: a low relaxation time T1 yields faster
convergence of the diagonal entries of our qubit’s state to the thermal state, while a low
dephasing time T2 yields faster disappearance of the off-diagonal entries and so results
in decoherence.

In order to connect T1 and T2 to the noise maps from sec. 2.3, we consider two sce-
narios. First, a0 = 1

2 , which occurs if τ→∞ or ω = 0. In that case, the thermal state is
(|0〉〈0|+ |1〉〈1|)/2 and we can write eq. (2.6) as

ρ(t ) =N
depol

q

(
N

deph
p (ρinit)

)
(2.7)

where q = 1−e−t/T1 is the depolarising probability and p = 1
2

(
1−e−t/T2

)
is the dephasing

probability (N depol and N deph commute, so they may also be swapped in eq. (2.7)).
Another scenario is a0 = 1 which occurs when ω > 0 and τ = 0, i.e. the qubit’s state

will thermalise to the ground state |0〉. In this scenario, eq. (2.6) can be rewritten as

ρ(t ) =N AD
r

(
N

deph
p (ρinit)

)
(2.8)

where r = 1− e−t/T1 is the amplitude damping parameter and p = 1
2

(
1−e−t/T ′

2

)
is the

dephasing probability, where 1
T ′

2
= 1

T2
− 1

2T1
. (Note that N AD and N deph commute, so

they may also be swapped in eq. (2.8).)
Although in reality, the above picture does not always neatly capture the dynamics

of a quantum memory, experiments have confirmed that the use of a relaxation time T1

and a dephasing time T2 as above describes many situations fairly well [5–7]. In prac-
tice, there are inhomogeneities in the applied external fields and microscopic variations.
Such variations average to a much shorter observed dephasing time T ∗

2 [7], which can
be prolonged using dynamical decoupling techniques [8].

We finish by emphasising the Markovianity assumption in the explanation above. If
we model the decay of a single-qubit quantum state in memory by a quantum chan-
nel Nt , where t is the time the qubit spent in memory, then the Markovian assumption
implies that Nt (Nt ′ (ρ)) = Nt+t ′ (ρ) for all times t , t ′ ≥ 0 and all single-qubit quantum
states ρ. It is straightforward to verify that the two scenarios described above, where

Nt = N
depol

q ◦N
deph

p and Nt = N AD
r ◦N

deph
p with p(t ), q(t ) and r (t ) as defined above,

indeed satisfy this property. Because of this Markovian feature, we do not have to apply
all noise at each time step in our analysis, but instead can ‘save’ all noise until the qubit
is taken out of the memory, or when it is acted upon.



REFERENCES

2

13

REFERENCES
[1] M. A. Nielsen and I. L. Chuang, Quantum information and quantum computation,

Cambridge: Cambridge University Press 2, 23 (2000).

[2] J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics Physique Fizika 1, 195
(1964).

[3] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of
physical reality be considered complete? Physical review 47, 777 (1935).

[4] R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a
hidden-variable model, Phys. Rev. A 40, 4277 (1989).
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3
PRELIMINARIES: BUILDING A

QUANTUM INTERNET, BASED ON

QUANTUM REPEATERS

The Quantum Internet is the vision of a worldwide network for transmitting both quan-
tum information as well as classical messages, enabling various applications that are
impossible by the classical Internet alone[1, 2]. The most commonly mentioned applica-
tion is secure communication through quantum key distribution (QKD), whose security
(no one else but the two communicating parties know the content of the messages) is
in principle guaranteed by the laws of quantum physics [3, 4]. The information carriers
over long distances are single photons, which carry a single quantum bit of information,
where the |0〉/ |1〉 states as for example encoded as presence/absence of the photon or as
horizontal/vertical polarisation [5]. Although metropolitan-size quantum key distribu-
tion networks based upon this line of research already exist [6], this approach does not
scale to a worldwide network due to photon loss in the transmission medium [5]. Typ-
ically, the medium is glass fibre, in which the photon loss increases exponentially with
the fibre’s length.

This problem is overcome by the use of quantum repeaters [7]. In classical network-
ing, a repeater is a device which amplifies the light pulse that encodes a classical mes-
sage [8]. Long distances can be bridged by dividing them into smaller segments and
positioning repeaters in between. For quantum information, however, the amplifica-
tion (i.e. reading information and transmitting it again) is prohibited by the no-cloning
theorem [9] and therefore the quantum equivalent of a repeater works differently.

The original proposal for a quantum repeater [7] is based on the generation of
entanglement between spatially-separated quantum devices which are relatively close
together, followed by the connection of this short-distance entanglement into long-
distance entanglement. The remote entanglement that is thus distributed by quantum
repeaters also enables a host of other applications, including clock synchronisation [10],
distributed sensing [11, 12], secure delegated quantum computing [13] and extending

15
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the baseline of telescopes [14]. Moreover, entanglement is also needed for QKD in the
ultimate cryptographic scenario, where one does not trust the devices that produce the
quantum bits [4].

In this chapter, we will describe the basic working of a quantum repeater and explain
the building blocks for the type of quantum repeaters which are closest to experimental
reach. These building blocks can be assembled in different ways, each giving rise to
a protocol which delivers entanglement between spatially-separated parties. We finish
by describing the two hardware models we study in this thesis for assessing the various
protocols that can be constructed from the building blocks.

3.1. HOW A QUANTUM REPEATER WORKS
In its simplest form, the original quantum repeater proposal [7] is based on quantum
teleportation [15], which is the transmission of a single qubit at the cost of consuming
an entangled pair of qubits (we call such a pair a ‘link’ from here on). The protocol starts
with two parties, which we call Alice and Bob. Alice has a single qubit she wants to trans-
mit to Bob; in addition, Alice and Bob share a link. The quantum teleportation protocol
is now as follows: first, Alice performs a measurement in the Bell basis on the two qubits
she holds. Next, she sends the measurement outcome as a classical message to Bob.
Last, Bob performs a local quantum operation on his qubit; which operation that is, de-
pends on the measurement outcome he received from Alice. The resulting situation is
that Bob’s qubit, which was originally part of the link with Alice, is now in precisely the
same state as the qubit Alice originally wanted to send.

The wonderful feature of teleportation is that the state of Alice’s qubit is also pre-
served if it were part of an entangled state before starting the teleportation protocol. In
the simplest form, a quantum repeater scheme makes use of this feature by consuming
one link to transmit one qubit of another link. More concretely, consider two parties,
Carol and Bob, who would like to be entangled. For this they use a third node posi-
tioned precisely in between them. This node, which we will call Alice, is the quantum
repeater. See fig. 3.1(a). Now, Carol first generates fresh entanglement with the repeater
Alice (we will describe more in detail how this fresh entanglement generation can be
done, in sec. 3.2.1). After that, Alice generates fresh entanglement with Bob. The last
step is that Alice and Bob perform the quantum teleportation scheme on the qubits they
hold (Bob holds a single qubit, while Alice holds two, one for each of the links Alice-Bob
and Alice-Carol). The result is that Bob holds the qubit state that Alice originally held,
which is now entangled with Carol.

When one performs the maths, one will find out that it is actually not needed that Al-
ice and Carol establish their entanglement first. In fact, entanglement may be generated
in parallel over both segments Alice-Carol and Alice-Bob, and the Bell-state measure-
ment is performed whenever both entangled pairs of qubits have been generated.

The single-repeater design as described above can be extended to multiple repeaters
[7], as depicted in fig. 3.1(b). This is done by dividing the distance between two parties
(which we call ‘end nodes’) into many segments which are short enough for generating
fresh entanglement (i.e. photon loss is at an acceptable level) and putting repeaters at
the segments’ edges. The repeaters perform Bell-state measurements on the two links
they generate, one to the left and one to the right, and send the outcome of the end
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Figure 3.1: A simple quantum repeater scheme for establishing entanglement between spatially separated
nodes. (a) A single repeater (Alice), positioned in between two nodes (Carol and Bob). First, (1) fresh en-
tanglement is generated over the segments Carol-Alice and Alice-Bob in parallel. (2) Entanglement has been
generated between Alice and Carol, but not yet between Alice and Bob. (3) As soon as entanglement has been
established between both Carol-Alice and Alice-Bob, the repeater node Alice performs an entanglement swap
(a Bell-state measurement) to connect the two entangled pairs of qubits, resulting into (4) entanglement be-
tween Carol and Bob. (b) A chain of quantum repeaters, which enables the distribution of entanglement over
in-principle arbitrarily long distances. The figure of the globe is only included to illustrate that Alice, Bob and
Charly are not at the same location; the distances between them are not necessarily realistic.

nodes. After all repeaters have performed their measurements, the end nodes will share
entanglement; they only need to perform the outcome-dependent correction operation
to correct their entangled state to a known form. In principle, chains of quantum re-
peaters could bridge arbitrarily large distances, and thus beat the photon-loss-limited
distance that can be covered by direct entanglement generation [16, 17].

In reality, however, various sources of noise result in an degradation of the produced
end-to-end entanglement when we add more repeaters [18]. For example, in current
hardware, the Bell-state measurement and correction operations are not perfect. Neither
are the memories which are used by a node to store qubits while the other necessary
links are being generated: the longer the qubit is stored, the more its state will decay (see
sec. 2.4). As a consequence of this noise, the entanglement between the end nodes of
the repeater chain will be lost and instead we will end up with a state that is useless for
quantum communication, for example below the tolerable error rates for QKD [19].

In the next section, we will see two ways to mitigate this noise. This first is entangle-
ment distillation [20], a probabilistic conversion of two or more low-quality links into a
single high-quality one. The other is a cut-off [21–32], where we discard entanglement
which is supposedly of low quality, but then have to regenerate it. Entanglement distilla-
tion enables boosting state quality beyond the quality of fresh generated entanglement
between adjacent nodes. In contrast, cut-offs, which mitigate memory noise, can only
prevent degradation. Unfortunately, both measures yield significantly longer delivery
times. Also, while distillation can boost state quality arbitrarily in the ideal case, it might
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even decrease state quality if the local operations and memories are too imperfect. It is
a priori therefore not clear how much distillation or cut-offs we should add, and how we
should incorporate these into the protocol, to meet a prespecified entanglement delivery
rate or state quality.

For this reason, we would like to explore various ways of building repeater protocols,
in order to find one that meets our performance targets. In the remainder of this section,
we will give a structured approach to constructing repeater protocols from the various
operations we have discussed so far and finish with notes on how to analyse such proto-
cols on real hardware.

This section, and the thesis in general, focuses on the so-called first generation quan-
tum repeater protocols. These rely on quantum memories, which are currently imper-
fect, and moreover are limited in the rate at which end-to-end entanglement can be
delivered due to two reasons: first, the fact that entanglement generation between ad-
jacent nodes requires two-way messaging (see sec. 3.2.1 below). Second, the fact that
operations on the thus produced entanglement, such as Bell-state measurements, are
probabilistic. There also exist repeater schemes which make use of quantum error cor-
rection to avoid the use of probabilistic operations. In addition, some schemes em-
ploy photon-loss-tolerant means of establishing entanglement between adjacent nodes.
Consequently, such schemes are no longer limited in rate. For these schemes, however,
the local operations (gates and measurements) should be of very high quality [18], which
are further out of reach of current hardware. In this thesis, we will not treat these later-
generation repeaters. For an overview of the different repeater generations, we refer to
the review paper [5].

3.2. BUILDING BLOCKS OF FIRST-GENERATION QUANTUM RE-
PEATERS

Here, we describe four building blocks for constructing quantum repeater protocols for
distributing entanglement over long-distances. We will also call the building blocks
PROTOCOL-UNITs.

3.2.1. HERALDED GENERATION OF FRESH ENTANGLEMENT

By entanglement generation (GENERATE), we refer to the delivery of a fresh Bell state be-
tween two nodes in the network which are directly connected through a communication
channel, such as an optical fibre. We refer to the generated entanglement as an ‘elemen-
tary link’. There exist multiple schemes for the generation of elementary links [5], and
they all rely on creating entanglement between a qubit, held by the node, together with
a photon that the node emits. In sec. 8.6.4, we will describe a commonly used scheme
[33, 34] where two nodes perform this local-entanglement generation, after which the
two photons are transmitted to a station, positioned in between the nodes. At the sta-
tion, the photon states interfere and proceed to two detectors. Depending on whether a
photon is detected in each of the two detectors, entanglement between the two nodes’
local qubits has been established. Whether the entanglement generation has succeeded,
is communicated by sending a classical message to the two nodes. Note that entan-
glement generation is thus heralded: the nodes know whether they will have gener-
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ated an elementary link, or whether they should try again. There exist more heralded-
entanglement-generation schemes (see [5] for references), and in each of them, the gen-
eration is performed in discrete attempts until the first successful attempt1 For each
scheme, the attempt duration cannot exceed L/c, where L is the distance between the
nodes and c speed of light in the photon transmission medium.

3.2.2. ENTANGLEMENT SWAPPING
The next building block is the Bell-state measurement at a quantum repeater, which con-
verts two short-distance links into a single long-distance one[36]. We refer to this opera-
tion as an entanglement swap (SWAP). As explained above, it consists of a local quantum
operation (including a measurement) which entangles the two remote qubits, together
with the transmission of a classical message to both involved nodes to inform them of
the measurement outcome, which determines the exact quantum state they hold. De-
pending on the used hardware, entanglement swaps either succeed with unit probabil-
ity, such as the spins in the nitrogen-vacancy centre as introduced in sec. 3.4 [37, 38]
or are probabilistic, for example when using atomic-ensemble memories where the en-
tanglement swap is implemented using photon interference [39]. In case of failure, the
short-distance links are lost (i.e. reduce to a separable state).

3.2.3. ENTANGLEMENT DISTILLATION
A quick calculation shows that if an entanglement swap is performed on two Werner
states (see sec. 2.3) with Werner parameters w A and wB , then the resulting entanglement
(after performing the correction operation) is a Werner state with parameter w A · wB .
Hence, if GENERATE produces Werner states with parameter w , then a chain of repeaters
will produce a single long-distance Werner state with parameter w M , where M is the
number of swaps. Thus, the end-to-end state’s Werner parameter, and hence its fidelity,
decreases exponentially with the number of swaps and will soon drop below the classical
bound (sec. 2.3), even if the swaps are implemented perfectly. As a consequence of this
exponential decrease, the number of quantum repeaters that can be used, and thus the
distance over which entanglement can be distributed, is limited.

This limit can be overcome by use of entanglement distillation (DISTILL) [40–42],
which probabilistically converts two imperfect links (non-maximally entangled two-
qubit states) into a single link of a higher quality (i.e. larger fidelity with the ideal Bell
state)2. There exist several entanglement distillation schemes; we have depicted a com-
monly used one [40] in fig. 3.2. When the two input states are Werner states with param-
eters w A and wB , each larger than 1/2 but strictly less than 1, then this scheme outputs
a Werner state with parameter (see sec. 5.7.1 for details of the derivation)

wout = w A +wB +4w A wB

6psuccess

1In some scenarios the photon emission can be repeated already before the arrival of the heralding message,
such as when local qubits can be measured directly after creating qubit-photon entanglement (e.g. in QKD)
or in particular cases of multiplexing [35]. In this thesis, however, we will assume that a local qubit cannot be
used until the heralding message for that qubit has arrived.

2There also exist entanglement distillation schemes which act on more than two links, but we will not consider
those in this thesis.
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Figure 3.2: The entanglement distillation scheme from [40] for probabilistically converting two low-quality
states into a single high-quality state. The figure depicts two nodes, Alice and Bob, who start out with with
two entangled states. In the scheme, both Alice and Bob first perform a local gate and a measurement, with
binary outcomes mA and mB . Next, Alice and Bob send a classical message to each other containing the
measurement outcome. In case the measurement outcomes are the same, then we declare the distillation
attempt a success and the resulting state is of higher quality than the states that Alice and Bob started out with.

with success probability

psuccess = 1+w A ·wB

2
.

Since wout is strictly larger than w A and wB , we see that this scheme in principle enables
boosting the quality of the state at the cost of having to produce two states as input.

3.2.4. DISCARDING ENTANGLEMENT: A CUT-OFF

Consider the scenario from fig. 3.1, where two end nodes first generate fresh entangle-
ment (GENERATE) with a single repeater positioned in between them, after which the
repeater performs an entanglement swap to establish entanglement between the two
end nodes. Since the entanglement generation occurs in probabilistically succeeding
attempts, it is likely that the two elementary links are not produced within the same at-
tempt. Consequently, one of the two links needs to wait before generation of the other,
and will be stored in a quantum memory in the meantime. If the quantum memory is
imperfect, the link’s quality will decrease; the longer it is stored, the lower its quality will
be.

We thus see that the quality of a link is not only affected by entanglement swaps
on imperfect links, but also by memory noise. Fortunately, the memory noise can be
mitigated by discarding the link after it has been stored in memory for longer than some
timeout time [21–32]. We refer to this discarding as a ‘timeout cut-off’ or, in case it is
clear we mean a timeout, simply ‘cut-off’ (CUT-OFF). The disadvantage of a cut-off is,
of course, that the link needs to be regenerated, and thus we can view the cutoff as a
trade-off between the quality and the delivery duration of an end-to-end link.
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3.3. HOW TO BUILD REPEATER PROTOCOLS FROM THESE

BUILDING BLOCKS
Here, we describe how to construct protocols for chains of quantum repeaters from the
building blocks described in sec. 3.2. We divide the possible protocols into two cate-
gories: tree-shaped and non-tree-shaped.

First, we introduce tree-shaped type protocols using fig. 3.3. Fig. 3.3(a) depicts the
building blocks and fig. 3.3(b) shows how building blocks can be stacked together. In
general, a tree-shaped protocol on a chain of nodes starts with one or multiple GEN

blocks between each pair of adjacent nodes for fresh elementary link generation. A pro-
tocol then consists of stacking instances of the other three PROTOCOL-UNITs in such a
way that the output link(s) of one are used as input link(s) to the other. The only restric-
tion on how the PROTOCOL-UNITs can be stacked is that both output links of CUT-OFF are
used as inputs for one DIST or SWAP block. As a consequence of the stacking, no pair of
building blocks wait for the same links before proceeding. Hence, the resulting protocol
has a tree structure. If a block at the root of a tree fails, then its input links are discarded
and the GEN blocks at the tree’s leaves will restart.

Fig. 3.3(c-e) show example tree-shaped protocols. Fig. 3.3(c) depicts the simplest
single-repeater scheme we have described several times in this section already: entan-
glement is generated over two segments in parallel, and the repeater node performs an
entanglement swap as soon as both elementary links have been generated. This protocol
can be performed in a nested fashion on any repeater chain where the number of nodes
is a power of 2, see fig. 3.3(c). We refer to this protocol as NESTED-SWAP-ONLY.

Next, in fig. 3.3(d) we depict a variant to the NESTED-SWAP-ONLY single-repeater pro-
tocol where the links that the entanglement swap acts upon, are not elementary links
but are links which are the result of successful entanglement distillation on two elemen-
tary links. Of course, one could perform the entanglement distillation multiple times
(d > 1) also: instead of with two elementary links, one then starts with 2d elementary
links, which are in a first nesting level distilled to 2d−1 links. This proceeds repeats over
the d nesting levels until a single link is outputted. Fig. 3.3(e) shows the resulting scheme
for d = 2.We will refer to these nested schemes as d-NESTED-WITH-DISTILL, or just as
NESTED-WITH-DISTILL in case d = 1. We note that the NESTED-SWAP-ONLY and NESTED-
WITH-DISTILL schemes were originally introduced by Briegel et al.[7, 43].

The NESTED-SWAP-ONLY and NESTED-WITH-DISTILL schemes, as they are described
here, act on a number of segments which is a power of two. However, the building blocks
can also be stacked in an asymmetric fashion. An example is the protocol depicted
fig. 3.3(e). Considering asymmetric protocols might be advantageous for example when
it is expected that part of the chain produces lower-quality links, so that we might want
to apply more rounds of entanglement distillation. Lower-quality links are produced, for
example, when the distances for GENERATE are not identical for the two segments. Since
the success probability of GENERATE decreases with growing distance (due to increased
photon loss), producing multiple elementary links in parallel over this segment implies
longer waiting times for the first finished link, which subsequently decays in memory.

In the tree-shaped-type protocols, the events (swap, distill, cutoff) are performed
in a predefined order. For example, in the NESTED-SWAP-ONLY scheme from fig. 3.3(d),
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node C will only perform an entanglement swap once it holds links with A and E, i.e.
when nodes B and D have swapped. Although convenient in the construction, it is not
clear that this order will yield the most performant repeater protocols. As alternative,
node C could swap whenever it holds entanglement with any node on its left and with
any node on its right, regardless of whether B and D have performed their entanglement
swap. Applying this logic to each node, where a node swaps as soon as possible (a.s.a.p.),
gives rise to a non-tree-shaped-type protocol we call SWAP-ASAP.

3.4. TWO MODELS FOR IMPLEMENTING THE BUILDING BLOCKS

IN HARDWARE
Above, we have described the construction of quantum repeater protocols from building
blocks on a high-level. In order to study how these protocols perform on real hardware,
in this thesis we consider two models for the hardware present at a node: an abstract
model and a more detailed model based on the nitrogen-vacancy (NV) centre in dia-
mond.

Abstract model. In the abstract model, a node is unrestricted in the type of protocol
unit it wants to perform, and when it does so. To be precise, we assume

• a node has an unlimited number of quantum memories, as well as an unlimited
number of connections (for transmission of photons and classical messages) to all
other nodes3;

• each quantum memory can be used both as storage qubit, as well as communica-
tion qubit (i.e. which can be used for heralded generation of fresh entanglement);

• a node can perform any quantum operation on any subset of its quantum memo-
ries;

• any two quantum operations, acting on disjoint sets of quantum memories, can
be performed in parallel.

Nitrogen-vacancy (NV) model. The NV centre is a defect in the lattice structure of
diamond, which consists of a nitrogen atom and an adjacent vacant site (for a thorough
overview of NV centre technology, see [44, 45] and references therein). It forms an elec-
tronic spin-1 system, of which two levels are used as the qubit. We will refer to the elec-
tron spin-1 system simply as ’the electron’. The system can be excited by optical laser
light, which produces a photon when it decays back; this property can be used for gen-
erating entanglement with a remote party. Single-qubit operations are performed either
using optical laser light (measurement, initialisation) or microwave pulses (gates).

A small (roughly 1%) fraction of the carbon atoms in naturally-occurring diamond
consists of carbon-13 isotopes. If such atoms are close to the electron, their nuclear
spins exhibit a hyperfine coupling with the electron and these couplings can be ad-
dressed through microwave pulses, and thus quantum operations can be performed on

3We mean that if at some point during the protocol the node requires an idle memory, then we assume such
a memory is present. This stands in contrast to the scenario where we would consider adding memories as
‘free’, because in that case, one could run an unlimited number of repeater chains in parallel, obtaining an
infinitely large rate of delivering end-to-end entanglement.
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Figure 3.3: Examples of tree-shaped-type protocols on chains of quantum repeaters, constructed with the
building blocks from sec. 3.2. (a) The four building blocks. The arrows depict the number of input and output
links. (b) A building block P obtains its input links as the output of blocks C A and CB . If the operation P is
probabilistic and fails, blocks C A and CB will have to regenerate the links. (c) The NESTED-SWAP-ONLY scheme
for a single repeater. A run of this scheme is depicted in fig. 3.1(a). (d) the NESTED-SWAP-ONLY scheme can be
nested to span a number of segments 2n for some integer n; depicted is the case n = 2. (e-f) the NESTED-WITH-
DISTILL scheme, which is the NESTED-SWAP-ONLY scheme with d nested rounds of entanglement distillation at
each swap nesting level. The figure depicts the cases (e) d = 1 and (f) d = 2. (g) An example repeater protocol
which is asymmetric.
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the nuclear spins. Moreover, through the use of dynamical decoupling pulse sequences,
the carbon nuclear spins can be decoupled from the electron spin; in addition to their
longer coherence times, this makes the carbon nuclear spins good candidates for quan-
tum memories.

Let us highlight some of the restrictions of a single NV centre that the abstract model
does not have:

• a node has many carbon nuclear memories, but only a single electron spin;

• only the electron spin can be used as communication qubit;

• the operations that can be performed on the carbon nuclear spins are limited;

• only a single operation can be performed at a time.

Let us compare the two models. Experimental control of a single NV has been
brought to a high level through years of development [45]. In particular, the NV has been
shown to be able to implement all four protocol building blocks [23, 34, 37, 38], which
makes it a promising candidate for quantum network hardware, with the realisation of a
three-node network at laboratory scale as a recent highlight [37]. The limitations listed
above, however, make the analysis and optimisation of long-distance quantum repeater
protocols and networks complicated. For example, the fact that only a single opera-
tion can be performed at a time necessitates the scheduling of operations and protocol
units [46]. Tracking all possible ways of scheduling operations, and their influence on
the decay of entanglement stored in memory in the meantime (recall that the electron
and carbon memories have finite coherence times) make analytical analysis of the NV
model highly challenging. The analysis of a detailed model of NV centres for quantum
networks, which takes all such aspects into account, has so far been done analytically
only for a single repeater[24].

In contrast, the abstract model is more demanding to realise but is easier to study an-
alytically. Also, although the abstract model does not apply to a node containing a single
NV centre, it is a natural one in the context of multiple in-parallel-operating memories,
where multi-qubit gates are performed probabilistically. An example of such a case are
proposals for atomic-ensemble based quantum memories with linear-optical Bell-state
measurements [39]. Also, the abstract-model assumptions can be made to hold for NV
at the cost of requiring many NV centres per node, and the use of schemes for multi-NV
quantum operations by consuming entanglement between them as resource (see for ex-
ample the nonlocal controlled-Z operation in [47]), and thus require the invocation of
GENERATE.

This thesis has been divided into two parts. In the first part, we will study the abstract
model for all tree-shaped-type protocols. We will analytically investigate the delivery
time and fidelity of such schemes, and develop fast algorithms for the evaluation of the
resulting mathematical expressions when they become to complicated to track by hand.
In the second part, we will introduce the discrete-event simulator NetSquid and use it to
simulate the NV model for both the NESTED-WITH-DISTILL (a tree-shaped-type proto-
col) and the SWAP-ASAP scheme (a non-tree-shaped-type protocol), and compare their
performance. Regarding the NESTED-WITH-DISTILL protocol, we will adjust the protocol
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to accommodate the restrictions of the NV centre as outlined above. We will also investi-
gate a quantum switch [48], which can be thought of as a quantum repeater for delivering
multipartite entangled states, and simulate a non-tree-shaped type protocol with the
abstract model with a limited number of memories.

We thus benefit from the advantages of both the abstract model (simpler, enables
analysis of large networks) and the more detailed NV model (closer to physical reality)
for the analysis and design of quantum networks.
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[27] K. Chakraborty, F. Rozpędek, A. Dahlberg, and S. Wehner, Distributed routing in a
quantum internet, arXiv:1907.11630 (2019), arXiv:1907.11630 .

[28] P. van Loock, W. Alt, C. Becher, O. Benson, H. Boche, C. Deppe, J. Eschner, S. Höfling,
D. Meschede, P. Michler, F. Schmidt, and H. Weinfurter, Extending quantum links:
Modules for fiber- and memory-based quantum repeaters, arXiv:1912.10123 (2019),
arXiv:1912.10123 .

[29] F. Schmidt and P. van Loock, Memory-assisted long-distance phase-matching quan-
tum key distribution, Phys. Rev. A 102, 042614 (2020).

[30] S. Khatri, C. T. Matyas, A. U. Siddiqui, and J. P. Dowling, Practical figures of merit and
thresholds for entanglement distribution in quantum networks, Phys. Rev. Research
1, 023032 (2019).

[31] E. Shchukin, F. Schmidt, and P. van Loock, Waiting time in quantum repeaters with
probabilistic entanglement swapping, Phys. Rev. A 100, 032322 (2019).

[32] Y. Wu, J. Liu, and C. Simon, Near-term performance of quantum repeaters with im-
perfect ensemble-based quantum memories, Phys. Rev. A 101, 042301 (2020).

[33] C. Cabrillo, J. I. Cirac, P. García-Fernández, and P. Zoller, Creation of entangled states
of distant atoms by interference, Phys. Rev. A 59, 1025 (1999).

[34] P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J.
Twitchen, M. Markham, and R. Hanson, Deterministic delivery of remote entangle-
ment on a quantum network, Nature 558, 268 (2018).

[35] S. B. van Dam, P. C. Humphreys, F. Rozpędek, S. Wehner, and R. Hanson, Multi-
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A. Stolk, P. Pawełczak, R. Knegjens, J. de Oliveira Filho, R. Hanson, and S. Wehner,
A link layer protocol for quantum networks, in Proceedings of the ACM Special In-
terest Group on Data Communication, SIGCOMM ’19 (Association for Computing
Machinery, New York, NY, USA, 2019) pp. 159–173.

[47] N. Nickerson, Practical fault-tolerant quantum computing (phd thesis), (2015).

[48] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, On the stochastic analysis of a quan-
tum entanglement switch, SIGMETRICS Perform. Eval. Rev. 47, 27 (2019).

http://dx.doi.org/ 10.1103/PhysRevLett.76.722
http://dx.doi.org/ 10.1103/PhysRevLett.77.2818
http://stacks.iop.org/0034-4885/70/i=8/a=R03
http://dx.doi.org/10.1103/PhysRevA.59.169
http://dx.doi.org/10.1016/j.physrep.2013.02.001
http://dx.doi.org/10.1038/s41566-018-0232-2
http://dx.doi.org/ 10.1145/3341302.3342070
http://dx.doi.org/ 10.1145/3341302.3342070
http://dx.doi.org/10.1145/3374888.3374899


I
ANALYSIS OF ABSTRACT MODELS OF

QUANTUM NETWORKS

29





4
REVIEW OF EXISTING TOOLS FOR

ASSESSING ABSTRACT QUANTUM

NETWORKS

In this chapter, we review existing analytical and semi-analytical tools for assessing quan-
tum networks using abstract models. Regarding quantum network simulators, which are
focused on more detailed models of hardware, we give a brief overview in Chapter 8.

In this chapter, we review analytical tools for characterising the performance of
quantum networks and the algorithms that immediately follow the analytical expres-
sions. In particular, we consider the literature that studies the time it takes to distribute
remote entanglement over a quantum network, referred to as the waiting time, and the
quality of the entanglement. Due to their more modest quantum information process-
ing requirements, we devote a large part of the chapter to quantum repeaters which
are built from probabilistic schemes, i.e. the so-called first-generation repeater [1]. As
a consequence of the probabilistic nature of such schemes, the waiting time is a random
variable; thus, it is not represented by a single number but instead by a probability dis-
tribution. Our presentation focuses on the fidelity with respect to the desired maximally
entangled state as a measure of entanglement quality. However, many of the tools can
directly be used for estimating other figures of merit such as the secret key rate.

This chapter is organised as follows. We start in Section 4.1 with the modelling of
a quantum network, which includes the mathematical abstraction of different compo-
nents in a quantum network. In Section 4.2, we discuss the analytical tools used in eval-
uating the performance of networks. In some cases, those analytical tools yield closed-
form expressions, of which the evaluation requires the assistance of numerical algo-
rithms. We discuss three such cases in Section 4.3: Markov chain methods, probability-
tracking algorithms, and sampling with Monte Carlo methods. Finally,we consider the

This chapter has been published, with minor changes, as part of: K. Azuma, S. Bäuml, T. Coopmans, D. Elkouss
and B. Li, Tools for quantum network design, AVS Quantum Science 3, 014101 (2021)
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analysis of quantum repeater protocols that include quantum error correction in Sec-
tion 4.4. We have chosen to limit the scope of this chapter to discrete variable protocols.

4.1. ABSTRACT MODELS OF QUANTUM NETWORKS
Here, we build upon the introduction of network components in Section 3.2 and sum-
marise common models for them, with an emphasis on how they contribute to the statis-
tics of the waiting time and quality of the entangled state. Similar to Section 3.2, we refer
in this section to a pair of entangled qubits shared by spatially-separated nodes, as a
‘link’.

Entanglement generation. Recall that by entanglement generation, we refer to the
production of a fresh Bell state (an ‘elementary link’) between two nodes in the network
which are directly connected through a communication channel, such as an optical fi-
bre. There are several schemes for the generation of elementary links [1], and in each of
them, the generation is performed in discrete attempts until the first successful attempt.
We assume that each attempt is of constant duration ∆ and has constant success prob-
ability pgen. The attempt duration ∆ is determined by the distance and speed of light in
the medium; in the rest of this section, we set ∆ = 1 for simplicity. It is also commonly
assumed that the distinct attempts are independent and thus that the state ρ that is pro-
duced is constant, i.e. it is independent of the number of attempts required to produce
it. The state ρ is a noisy Bell state which typically incorporates different sources of noise,
photon loss, and detector inefficiency.

Entanglement swapping. Quantum repeaters overcome the fundamental distance
limit over which elementary-link generation can be performed [2], see Chapter 3 Re-
peaters perform entanglement swaps to connect two short-distance links into a single
long-distance one [3]. Typically, entanglement swaps are probabilistic, with a fixed suc-
cess probability pswap which is normally independent of the states swapped but depends
on the physical implementation. For matter qubits that can be controlled directly, an en-
tanglement swap can be implemented with deterministic quantum gates, i.e. pswap = 1.
If entanglement swapping is implemented with optical components, the entanglement
swapping becomes probabilistic, i.e., pswap < 1 and typically pswap ≤ 0.5 [4]. There are
also more sophisticated optical swapping schemes with a probability larger than one
half [5–7]. In some models, where the memory decoherence to the vacuum state is con-
sidered, the success probability can also be a variable [8].

Entanglement distillation. Entanglement distillation is the probabilistic conversion
of multiple low-quality entangled pairs of qubits into a single one of high quality [9].
In contrast with entanglement swapping, the success probability pdist depends on the
entangled states that are distilled [9, 10].

Entangled state representation. Arguably, the simplest model of the fresh elementary
link state is a Werner state [11], which characterises the state with a single parameter w :

ρ̂ = w |Φ2〉〈Φ2|+ (1−w)Î /4 ,

where |Φ2〉 is the desired maximally-entangled two-qubit state and Î /4 the maximally
mixed state on two qubits. Although operations such as entanglement distillation do
not always output a Werner state, any two-qubit state can be transformed into a Werner
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state with LOCC without changing the fidelity [12]. A more general model is a proba-
bilistic mixture of the four Bell states. This representation is convenient as it includes
the resulting state after the application of random Pauli gates on a perfect Bell state. In
principle, one could also track the full density matrix, though many studies choose the
previous two representations to simplify the analysis. Given the density matrix ρ̂ of a
state, its fidelity with a pure target state |φ〉 is given by 〈φ| ρ̂ |φ〉. Throughout the section,
the target state will be a Bell state.

Noise modelling. Imperfections of the quantum devices, for example, operational
noise and detector inefficiencies, are commonly modelled by depolarising, dephasing,
or amplitude damping channels. The first two can be incorporated relatively simply into
analytical derivations as they correspond to the random application of Pauli gates. Am-
plitude damping requires tracking the full density matrix. One could, however, replace
an amplitude damping channel with the more pessimistic choice of a depolarisation
channel, which does not change the output state’s fidelity with the target state, or al-
ternatively twirl the damped state by applying random Pauli operations [13].

Particularly relevant in the context of entanglement generation using probabilistic
components is the noise caused by time-dependent memory decoherence: in case mul-
tiple links are needed, the earliest link is generally generated before the others are ready
and thus needs to be stored in a quantum memory. The storage time leads to a de-
crease in the quality of the entanglement, and the longer the qubit is stored, the more its
quality degrades. Due to the interplay between waiting time and time-dependent decay
of entanglement quality, memory noise is particularly hard to capture. Sometimes this
problem is sidestepped by analysing protocols with running time qualitatively shorter
than the memory decoherence time.

Node model. For simplicity, the network nodes can be modelled by a fully-connected
quantum information processing device capable of generating entanglement in paral-
lel with its neighbours. However, it is important to note that many platforms do not
conform to this model. For instance, NV-centres in a single diamond have a single opti-
cal interface. Hence, if nodes hold only a single NV centre, entanglement generation can
only be attempted with one adjacent node at a time. Moreover, the connectivity between
the qubits follows a star topology, i.e. direct two-qubit gates between arbitrary qubits are
not possible.

Cut-off. Due to memory decoherence, the quality of the stored entanglement de-
creases as the waiting time grows. One common strategy to compensate for memory
decoherence is cut-offs: if a link remains idle for too long, it is discarded. By discarding
entanglement whose storage time exceeds some pre-specified threshold, one improves
the quality of the delivered entanglement at the cost of longer waiting time.

Additionally, it is possible to build on top of this idea a simplified model of memory
decoherence: the quantum information is preserved perfectly for a fixed duration and
then lost [14, 15].

Note that the inclusion of cut-offs in entanglement distribution schemes compli-
cates their analysis because of the additional effect of waiting time on the state quality.

Nested protocols. One particularly relevant network topology is the repeater chain,
where all nodes are arranged in a line. Nested protocols offer a structured approach to
distributing entanglement across a repeater chain [16–23]. In this section, unless explic-
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Figure 4.1: Two examples of a nested (tree-shaped-type) repeater protocol. (a) The NESTED-WITH-
DISTILL protocol (Section 3.3) as example with d = 1 round of distillation and n = 1 nesting levels, on 2n +1 = 3
nodes. Nodes A and M generate two entangled pairs in parallel, followed by performing entanglement dis-
tillation on the two pairs, and repeat this procedure until the distillation step has succeeded. Since the
protocol is nested, nodes M and B do the same. Once both distillation steps on each side of M succeed,
M performs an entanglement swap, which produces entanglement between A and B . If the entanglement
swap fails, then the protocol restarts, i.e. A-M and M-B start with entanglement generation again. (b) The
NESTED-SWAP-ONLY scheme (Section 3.3) as an example with n = 2 nesting levels (5 nodes) without entangle-
ment distillation. At each nesting level, the distance that entanglement spans is doubled. By Tn , we denote
the random variable describing the delivery time of entanglement at level n. In Section 4, we consider nested
repeater protocols of entanglement generation and swapping such as in (b). Whenever the protocol includes
entanglement distillation, as in (a), or cut-offs, it is mentioned explicitly.

itly mentioned, we follow the BDCZ scheme[16], i.e. the tree-shaped-type schemes as
defined in Section 3, with the restriction that each entanglement swap doubles the dis-
tance that an entangled pair spans. In such a scheme, the number of repeater segments
is 2n (2n +1 nodes) where n is the number of nesting levels at which an entanglement
swap is performed. We depict examples of BDCZ protocols in Fig. 4.1. We denote the
waiting time random variable of a repeater scheme on 2n segments as Tn . Many of the
tools for determining the waiting time statistics and quality of the produced entangle-
ment discussed below also apply to other schemes than nested repeater protocols.

4.2. ANALYTICAL STUDY OF THE WAITING TIME AND FIDELITY
In this section, we present analytical tools to compute the waiting time and the fidelity
of the entangled state produced between the end nodes of a repeater chain.

We consider the nested repeater chain protocol on 2n segments (see Section 4.1) with
only entanglement swapping, i.e. no distillation or cut-offs unless explicitly mentioned.
For simplicity, we assume that the generation probability pgen is the same for each pair
of adjacent nodes and the swapping probability pswap is equal at each nesting level. We
also assume that the nodes are capable of generating entanglement in parallel. Finally,
we ignore the (constant) duration of local operations and classical communication for
simplicity, although all of the tools mentioned are capable of incorporating these.

We first investigate methods that instead of tracking the full probability distribution,
only track an approximation of the average waiting time and quantum state at each nest-
ing level of the entanglement-distribution protocol. To demonstrate the tools used in
computing the distributions, we include an explicit calculation for a protocol on two
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nodes with a single repeater positioned in between. As this exact calculation cannot
be directly generalised to a higher nesting level in a nested protocol with more than a
single repeater, we then consider the idea of approximating the waiting time by assum-
ing it follows the statistics of elementary-link generation, where the mean waiting time is
computed using the approximation from the previous level. Finally, we review the math-
ematical tools and approximation methods used to analyse deterministic swapping pro-
tocols and distillation-based repeater schemes.

4.2.1. THE MEAN-ONLY APPROACH

In many early analyses of repeater protocols, only the mean waiting time is considered
for each nesting level: it is assumed that the entanglement is delivered after a fixed time
duration determined by the generation rate. We refer to it as the mean-only approach.
In this approach, the mean waiting time is computed as the product of the mean wait-
ing time at each nesting level (1/pgen at the bottom level, 1/pswap at the higher levels),
yielding Tn = 1/pn

swappgen [16, 17]. This approach can be refined by noting that at each
nesting level the protocol proceeds only when two adjacent pairs are ready. Then, the
mean waiting time can be approximated by Tn = (3/2)n/pn

swappgen [19, 22, 24–29]. The
factor 3/2 comes from the fact that in the limit of very small success probability, the wait-
ing time of preparing two links is approximately 3/2 times that of one link. We discuss
the statistics behind this factor later in Section 4.2.3 and Chapter 7.

The mean-only approach is a good approximation when pgen and pswap are much
smaller than 1[24, 25]. However, it only approximates the mean, i.e. it does not provide
the entire probability distribution of the waiting time. Hence, it is not suited for inves-
tigating time-dependent aspects such as memory noise or cut-offs. With this method,
memory decoherence is either approximated by an inefficiency constant [28] or stud-
ied only for the communication time [30]. To provide a better estimation, one needs to
consider the waiting time distribution and the statistics it results in, which we discuss
below.

4.2.2. SINGLE REPEATER SWAP PROTOCOL

Here, we explicitly compute the probability distribution of the waiting time for the sim-
plest repeater chain: a single repeater between two end nodes. We also derive an expres-
sion for the mean fidelity decay due to memory decoherence. Many problems regarding
single-repeater protocols have an analytical solution because the entanglement genera-
tion follows a known distribution. By studying this simple scenario, we demonstrate the
common concepts and methods used to describe and compute the statistics of waiting
time and fidelity. In later sections, we use this calculation as a basis for the analysis of
nested repeater protocols of more nodes.

We describe the waiting time of elementary-link generation as a random variable T0,
following a geometric distribution given by

Pr(T0 = t ) = p(1−p)t−1, (4.1)

where t ∈ {1,2,3...} and p = pgen. This distribution plays a central role in the statistics of
entanglement distribution, as we see in the remaining part of this section. In the limit
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of pgen ¿ 1, the geometric distribution can be approximated by an exponential distribu-
tion,

Pr(T0 = t ) = pgen ·exp
(−pgent

)
(4.2)

which is a continuous distribution with t ≥ 0. Note that we have set the attempt duration
∆ of entanglement generation to 1 (Section 4.1).

To perform an entanglement swap, both elementary links have to be prepared first.
We define the time used in preparing them as M0:

M0 = max(T0,T ′
0), (4.3)

where T ′
0 is an independent copy of T0. The distribution of M0 can be computed using

the fact that

Pr(max(X ,Y ) ≤ t ) = Pr(X ≤ t ) ·Pr(Y ≤ t ) (4.4)

for any independent random variables X and Y . The mean of M0, i.e. the waiting time
until both elementary links have been prepared, is given by [26]:

E [M0] = 3−2pgen

(2−pgen)pgen
. (4.5)

After two elementary links are prepared, the repeater node performs an entanglement
swap, which is a probabilistic operation with success probability pswap. The total waiting
time for generating the entanglement between two end nodes is therefore

T1 =
K∑

k=1
M (k)

0 , (4.6)

where K represents the number of swap attempts until it succeeds and M (k)
0 are inde-

pendent copies of M0. Eq. (4.6) is referred to as a compound distribution since the num-
ber of summands K is also a random variable. For an entanglement swap, the number
of attempts K also follows a geometric distribution (Eq. (4.1)) with success probability
p = pswap. Because K and M0 are independent, the average waiting time is given by

E [T1] = E [M0] ·E [K ] = 3−2pgen

(2−pgen)pgen
· 1

pswap
. (4.7)

The intuition behind Eq. (4.7) is that, on average, the repeater node requires E [K ] swap
attempts until the first successful swap, and for each swap attempt, E [M0] attempts are
needed to prepare the two elementary links.

Computing the fidelity of the two elementary links just before swapping can be done
as follows. If the generation of elementary links is not deterministic, i.e. if pgen < 1, the
two elementary links are in general not produced at the same time, requiring the earlier
of the two to be stored in a quantum memory. This storage time results in decoherence
of the earlier link. To estimate the fidelity decrease, we need to first compute the distri-
bution of the memory storage time, i.e. the time difference between the generation of
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the earlier and the later link. We define qg = 1− pgen. The probability that one link is
prepared j steps before the other is given by [27, 31]

Pr
(
T0 −T ′

0 = j
)= ∞∑

t=1
p2

genq2(t−1)+ j
g = pgenq j

g

2−pgen
. (4.8)

Here we assume that T0 > T ′
0. Modelling the fidelity decrease as exponential-decaying

function of the storage time, the fidelity of the earlier link decays by a factor Γ =
E

[
exp

(−|T0 −T ′
0|/tcoh

)]
, where tcoh denotes the memory coherence time. Plugging in

Eq. (4.8), we obtain

Γ= pgen

2−pgen
+2

∞∑
j=1

exp

(
j

tcoh

)
· pgenq j

g

2−pgen
.

The factor 2 before the sum corresponds to the possibility that either link can be gener-
ated earlier than the other. Finally, the evaluation of the sum gives [27, 31]

Γ= pgen

2−pgen

1+ 2

1−qg exp
(
− 1

tcoh

)
 . (4.9)

In addition to the single-repeater scenario considered above, analytical results for
the memory decay have also been obtained for more advanced single repeater protocols
such as a protocol with cut-offs [14] or protocols where two elementary links have to be
prepared sequentially [32].

Unfortunately, for higher-level nested protocols, i.e. n ≥ 1, there is no analytical ex-
pression known for the mean waiting time E [Tn] with pswap < 1, because Ti for i > 0
does not follow a geometric distribution, in contrast to T0.

4.2.3. APPROXIMATION WITH THE GEOMETRIC DISTRIBUTION AT HIGHER

LEVELS
Above, we computed the waiting time probability distribution in the single-repeater sce-
nario. This calculation explicitly relied on the fact that the waiting time distribution
of elementary-link generation follows a simple distribution, the geometric distribution
(Eq. (4.1)). Unfortunately, for nested repeater chains with more than a single repeater,
no exact expression for the waiting time distribution has been found.

However, the waiting time distribution at higher nesting levels can be approximated
by assuming that, at a higher level, the waiting time distribution is still geometrically
or exponentially distributed (Eq. (4.2)). This approximation is usually used in an itera-
tive manner. One computes the average waiting time at the current level and uses it to
define a geometric distribution with the same expectation value. This new distribution
is then used to study the next nesting level. In Fig. 4.2, we compare the approximated
distribution with the exact one.

Let us give the explicit calculation under the approximation that the waiting time fol-
lows a geometric distribution at each nesting level. We first calculate E [Tn−1] and then
approximate the distribution of Tn−1 with a geometric distribution (Eq. (4.1)) parame-
terised by p = 1/E [Tn−1]. Under this assumption, the mean waiting time E [Tn] can be
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Figure 4.2: The probability distribution of the exact waiting time T2 of a nested swap protocol with 4 repeater
segments (computed with the algorithm from Chapter 6) and, as an approximation to the exact distribution,
the geometric distribution from Eq. (4.1) with the same mean, i.e. p = 1/E [T2]. (Top) We see that the two
distributions deviate most for short waiting times. This can be explained by noting that the exact probability
that all entanglement generation steps and entanglement swaps succeed in the first few steps is very small.
This fact is not captured by the approximation. (Bottom) We observe that for small swap success probabilities
pswap (both axes are rescaled to compare only the shape of the distributions), the deviation becomes smaller.
In Chapter 7, we will give analytical bounds on the waiting time distribution that show that in the limit pswap →
0, the waiting time distribution becomes an exponential distribution.

computed by a derivation analogous to the one leading to Eq. (4.7) in Section 4.2.2 and
is given by

E [Tn] = 3−2pn−1

(2−pn−1)pn−1pswap
(4.10)

with pn−1 = 1/E [Tn−1]. In the limit of pgen → 0 for the bottom level (n = 0) and pswap → 0
for higher levels (n > 0), the mean waiting time E [Tn−1] →∞ and thus pn−1 → 0. As a
consequence, Eq. (4.10) can be approximated as

E [Tn] ≈ 3

2pn−1pswap
. (4.11)

Effectively, it means that, on average, the waiting time of generating two links is approxi-
mately 3/2 times that of a single link. Applying Eq. (4.11) iteratively over all nesting levels
with E [T0] = 1/pgen yields

E [Tn] ≈ 3n

2n pn
swappgen

, (4.12)

which is precisely the 3-over-2 approximation mentioned in Section 4.2.1.
The error introduced by the approximations Eq. (4.12) and Eq. (4.10) is shown in

Fig. 4.3. As expected, the figure shows that the approximations behave well if the suc-
cess probabilities of elementary-link generation and swapping are small, i.e. pgen → 0
and pswap → 0. The figure also shows that the approximations are not so good for large
success probabilities; the deviation from the exact mean waiting time increases as pswap

grows, and the deviation is worse for Eq. (4.12) than for Eq. (4.10). In Chapter 7, we will
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provide two-sided analytical bounds on the mean waiting time which quantify the qual-
ity of the 3-over-2 approximation.

To approximate the fidelity of the produced link between the end nodes of the re-
peater chain in the presence of memory decoherence, one can use Eq. (4.9) by replacing
pgen with 1/E [Tn−1]. The approximation is computed analogously to the procedure de-
scribed for the average waiting time; that is, for a given level, the average infidelity for the
entanglement links just before a swap due to the memory decoherence is calculated and
used to derive the initial infidelity for entangled links at the next level. By assuming that
the distribution at every level is given by the exponential distribution (Eq. (4.2)), Kuzmin
et al. designed a semi-analytical method for computing fidelity with more sophisticated
memory decay models [34, 35] (see also Section 4.3.2).

A different approach to keep the waiting time distribution geometric at a higher level
is to design a special protocol. For example, Santra et al.[36] introduce a family of proto-
cols with a memory buffer time. This buffer time is a threshold on the total waiting time
for preparing the two links for the swap. If the links are not ready before the buffer time
is reached, the protocol aborts and restarts from entanglement generation. The buffer
time is slightly different from the memory cut-off (see Section 4.1); with a memory cut-
off the protocol aborts if the memory storage time of a single link (instead of both links)
exceeds a threshold.

The protocol is designed such that the buffer time at the current level becomes the
time step at the next level. As a consequence, the waiting time is geometrically dis-
tributed at each nesting level. Note that the protocol results in avoidable additional
memory decay as both links have to wait until the buffer time is reached even if they
are prepared before that. Despite this, by optimising the buffer time, Santra et al. show
that this protocol improves the final fidelity for some parameter regimes compared to
the nested repeater protocol without buffer times.

An alternative approach was taken for optimising repeater protocols including distil-
lation, where the buffer time is chosen large enough so that the protocol becomes nearly
deterministic [37]. At a cost of longer waiting time and lower fidelity, the variance in the
fidelity is kept small and the protocol can deliver entanglement at a pre-specified time
with high probability.

4.2.4. DETERMINISTIC ENTANGLEMENT SWAP
So far we have focused on the regime where the success probability of entanglement
swap is smaller than 1. In this section, we discuss nested repeater protocols with deter-
ministic entanglement swapping (pswap = 1) and without distillation.

First, let us compute the waiting time probability distribution in the case of deter-
ministic swaps without distillation or cut-offs. Recall that we assume that the time re-
quired to perform local operations is negligible so that the deterministic entanglement
swap has no contribution to the waiting time. For a repeater scheme with n nesting lev-
els, the total waiting time is the time until all N = 2n elementary links are prepared, i.e.
the maximum of N independent copies of T0:

TN = max(T (1)
0 ,T (2)

0 , . . . ,T (N )
0 ). (4.13)

The cumulative distribution of TN from Eq. (4.13) is given by the general version of
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Eq. (4.4) for the maximum of N independent and identically distributed random vari-
ables:

Pr(TN ≤ t ) = Pr
(
max(T (1)

0 , . . . ,T (N )
0 ) ≤ t

)
= Pr(T0 ≤ t )N

from which the probability distribution of TN can be computed using

Pr(TN = t ) = Pr(TN ≤ t )−Pr(TN ≤ t −1) .

By TN ,k , we denote the random variable describing the time at which the first k
elementary links of the N segments are generated. We first give the expression for
Pr

(
TN ,k ≤ t

)
, the probability that at least k links are generated before t . This is equiv-

alent to the probability that, at time t , the number of elementary links that have not yet
been generated is N −k or less [38]:

Pr
(
TN ,k ≤ t

)= N−k∑
j=0

(
N

j

)
(1−Pr(T0 ≤ t )) j Pr(T0 ≤ t )N− j

where Pr(T0 ≤ t ) = 1−(1−pgen)t since T0 is geometrically distributed with success prob-
ability pgen. The probability that precisely k of the N segments are generated at time t
is

Pr
(
TN ,k = t

)= Pr
(
TN ,k ≤ t

)−Pr
(
TN ,k ≤ t −1

)
,

from which the mean waiting time is calculated as

E
[
TN ,k

]= ∞∑
t=1

t ·Pr
(
TN ,k = t

)
. (4.14)

The mean waiting time E
[
TN ,k

]
from Eq. (4.14) can be computed by solving a recur-

rence formula where E
[
TN ,k

]
is expressed as function of E

[
TN ,k−1

]
[39, 40]. For k = N ,

i.e. the waiting time that all elementary entanglement are prepared [39], the solution
reads

E
[
TN ,N

]
(p) =

N∑
k=1

(
N

k

)
(−1)k+1

1− (1−pgen)k
. (4.15)

For pgen ¿ 1, this expression can be approximated by [31, 33, 38]

E
[
TN ,N

]
(p) ≈

N∑
k=1

(
N

k

)
(−1)k+1

kpgen
=

N∑
k=1

1

kpgen
= H(N )

pgen
(4.16)

with

H(N ) =
N∑

k=1

1

k
≈ γ+ ln(N )+ 1

2N
+O (

1

N 2 ),

where H(N ) is the N -th harmonic number and γ≈ 0.57721 is the Euler-Mascheroni con-
stant. In separate work, Praxmeyer included finite memory time with cut-off into the
calculation and obtained [40]

E
[
TN ,N

]= 1− (1−qτg )N + (1−q N
g )

[
τ−∑τ−1

j=1(1−q j
g )N

]
(1−qτ+1

g )N −q N
g (1−qτg )N

, (4.17)
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where τ is the cut-off threshold and qg = 1−pgen.

Similar derivations as the ones above can be used for the waiting time until the first,
instead of the last, elementary link has been generated. Those derivations are relevant
for the analysis of multiplexed repeater protocols and the mean waiting time in those
cases has been analysed in [14, 38].

To our knowledge, in contrast to the waiting time, there is no exact fidelity calculation
with exponential memory decoherence for deterministic swap. A lower bound on the
fidelity can be obtained by assuming the worst case, i.e. the swap is performed only after
all elementary links are generated [38, 39].

These expressions presented here for the deterministic-swap case also apply to re-
peater chains where the numbers of segments is not a power of 2, as well as to more
general network topology [41]. The reason for this is that if the swaps are deterministic,
the waiting time equals the time until all elementary links in the network have been pre-
pared. Thus, the nested structure does not exist and the only relevant parameters are the
number of elementary links and the elementary-link success probability pgen.

The waiting time in the deterministic-swap case can be used as an approximation to
the case where pswap is slightly lower than 1 and bounds from below the waiting time for
general pswap. The quality of the approximation is shown in Fig. 4.3.

4.2.5. METHODS FOR ANALYSING DISTILLATION-BASED REPEATER

SCHEMES WITH MEMORY-DECOHERENCE

In contrast to entanglement swapping, distillation has a fidelity-dependent success
probability. In the absence of decoherence, the fidelity of a pair does not decrease while
it is waiting for other components to succeed. Hence, the success probability pdist is a
constant for each level and distillation can be studied in the same way as entanglement
swapping. However, in the presence of decoherence, fidelity and success probability be-
come correlated, which complicates the analysis.

We finish by mentioning two tools for bounding the fidelity and generation rate of
distillation-based repeater schemes in the presence of memory decoherence. First, up-
per bounds on the achievable fidelity can be derived using fixed-point analysis [10, 16].
In this approach, one makes use of the fact that entanglement distillation does not im-
prove the fidelity when the quality of the input links is sufficiently high. Such a fidelity
is thus a fixed point of the entanglement distillation procedure and it depends on the
quality of the local operations [16] and memories [30]. If the fixed-point is an attractor
and the input links have fidelity lower than the fixed-point, repeated application of en-
tanglement distillation cannot boost fidelity beyond the fixed-point and it thus forms an
upper bound. Next, lower bounds on the fidelity can be trivially obtained for protocols
that impose a fidelity cut-off, i.e. protocols that discard the entanglement if the fidelity
is lower than a certain threshold [42]. Because the distillation success probability is a
monotonic function of the fidelity of the input states, a lower bound on the fidelity by a
cut-off also directly yields a lower bound on the success probability.



4.3. NUMERICAL TOOLS FOR EVALUATING ANALYTICAL EXPRESSIONS

4

43

4.3. NUMERICAL TOOLS FOR EVALUATING ANALYTICAL EX-
PRESSIONS

Above, in Section 4.2, we reviewed analytical tools for computing the probability distri-
bution of the waiting time for generating remote entanglement and of the entanglement
quality. For models that do not include memory decoherence, distillation, or cutoffs,
these tools are sufficient. For more complex models and for the analysis of many-node
networks, the tools presented above are often still applicable but analytically evaluating
the resulting expressions to compact, closed-form expressions is unfeasible. An exam-
ple of such a case is a nested repeater chain with cut-offs and non-deterministic swap-
ping. In this case, no concise analytical expression for the waiting time is known. A
priory, it is possible to write down a recursive analytical expression for the waiting time
using a similar reasoning to Section 4.2.2, where the single-repeater case was treated.
However, the recursion relation has so far not been solved for general repeater chains.
Fortunately, numerical tools enable the evaluation of such expressions. In this section,
we treat three classes of such tools: Markov Chain algorithms, probability-tracking algo-
rithms and Monte Carlo methods for abstract models.

4.3.1. MARKOV CHAIN METHODS

In many repeater protocols, the change of the entanglement in the network in the next
time step only depends on the existing entanglement. Shchukin et al. used this idea to
model the network as a discrete Markov chain [33], which can be visually depicted as a
directed graph, an example of which is shown in Fig. 4.4. A vertex in this graph is a state
of the network, i.e. the collection of entanglement that exists at a given point in time.
The network transitions from one state to the other with a fixed probability, which is
visualised by directed edges of the labelled graph. At each time step, a network randomly
transitions from its current state to the next state according to the transition probabilities
over outgoing edges. For example, in the single-repeater protocol depicted in Fig. 4.4, the
transition from the ‘an entangled pair exists on each of the two segments’ state (11) to
‘entanglement exists between end nodes’ (11) occurs with the entanglement swapping
success probability pswap (entanglement swapping succeeded), whereas the transition
to ‘no entanglement’ (state 00) has probability 1−pswap (entanglement swapping failed
and the two involved links are lost).

An equivalent representation of a Markov chain is the transition probability matrix
(TPM), where entry ( j ,k) represents the transition probability from state j to state k.
Since a single transition corresponds to a single time step, the waiting time distribution
equals the distribution of the number of edges traversed before reaching a predefined
target state, such as ‘entanglement between the end nodes of the repeater chain’ (11 in
Fig. 4.4). Shchukin et al. used this equivalence to compute the average waiting time,
as well as its variance, by solving a linear equation system that has the same size as the
number of states in the Markov chain.

The original proposal by Shchukin et al. included an analysis of the waiting time.
Later, the idea was refined to include memory decoherence by Vinay et al. [42] They com-
puted the fidelity distribution by assigning a noise parameter to certain transition edges
and calculated how many times the edges are traversed given that the entanglement dis-
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Figure 4.4: The directed graph for a Markov chain of the single repeater swapping protocol, which consists of
two end nodes with a repeater node positioned in between. A vertex in the graph corresponds to a state of the
network, while the labelled edges represent possible transitions between states with corresponding transition
probabilities. The Markov state 00 represents the initial state with no entanglement; state 01 (10) is the state
with one elementary link on the right (left) segment; state 11 is the state with an elementary link on both
segments; state 11 denotes the state after the successful entanglement swapping by the repeater node, yielding
entanglement between the end nodes. The double cycle indicates that this Markov state is absorbing, i.e. has
only incoming transitions. Such an absorbing state corresponds to the protocol being finished. Reprinted
with permission from E. Shchukin, F. Schmidt, and P. van Loock, Phys. Rev. A, vol. 100, p. 032322, (2019)[33].
Copyright 2019 by the American Physical Society.
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tribution is completed at time t . With this noise model, the Markov chain method was
used to study the BDCZ protocol [16], which includes entanglement distillation. Due to
the assumption of the Markov process, i.e. the system has no memory of the past, this
method cannot handle fidelity-dependent success probability without assigning each
possible fidelity a state representation. As an alternative, Vinay et al. provided a lower
bound to the final fidelity using fidelity cutoffs (see Section 4.2.5).

Apart from repeater chain protocols, Markov chains have also been used to study
more general network protocols, such as a quantum switch by Vardoyan et al. [43, 44],
who used the continuous-time Markov chains as an approximation to discrete-time
Markov chains. In this model, the transition probability is replaced by the transition
rate. Compared to their discrete counterparts, continuous-time Markov chains simplify
the analysis in various aspects. For instance, Vardoyan et al. included a model of deco-
herence where the states are lost at a fixed rate by adding an additional transition edge
indicating the loss of one entangled pair. Moreover, Vardoyan et al. show that the quality
of the approximation is high in many scenarios [43].

The Markov chain method is rather general and flexible: in principle, the waiting
time of any entanglement distribution protocol with predefined transition probabilities
can be calculated, regardless of the topology or entanglement swapping policy (such as
swapping as soon as two links are available, regardless of the segments on which this en-
tanglement has been produced, or swapping only between predefined segments). How-
ever, this method is computationally expensive. The size of the TPM is the same as the
number of possible Markov states and, in general, grows exponentially with the number
of nodes.

This rapid growth of the size of TPM can be partially mitigated. For instance, by
grouping equivalent Markov states and treating them as one state, the complexity can
be drastically reduced. With this technique, Shchukin et al. gave examples for the BDCZ
protocol with analytical expressions for up to 4 nodes, while numerically they reached
32 nodes [33]. Vinay et al. reduced the computational complexity of this approach using
probability generating functions and complex analysis, but the scaling remains expo-
nential [42]. To process a larger number of nodes, Shchukin et al. proposed to use the
average waiting time to replace the random variable for low-level sub-protocols. This
idea is similar to approximating the waiting time distribution at every nesting level of a
repeater protocol with the bottom-level distribution (see Section 4.2.3).

Finally, in a recent development, Khatri [45] introduced a method for describing net-
work protocols based on quantum partially observable Markov decision processes [46].
A quantum partially observable Markov decision process is a reinforcement-learning
based framework for protocol optimisation. In this framework, the protocol obtains
feedback from its actions in the form of classical information about the quantum state
that the network holds, which it uses to optimise the next action it will perform. As an
application of the method, Khatri found analytical solutions for optimising a cut-off for
elementary link generation under different constraints. It is an interesting open ques-
tion whether this approach can be extended for efficiently characterising and optimising
protocols over large repeater chains and networks.



4

46 4. REVIEW OF EXISTING TOOLS FOR ASSESSING ABSTRACT QUANTUM NETWORKS

4.3.2. PROBABILITY-TRACKING ALGORITHMS

Next, we treat the algorithm that we have developed in [47, 48] and which we present
in more detail in Chapters 5 (initial version) and 6 (runtime improvement). The algo-
rithm tracks the full waiting time probability distribution and the average fidelity of the
delivered quantum state. We explain this method via a concrete example, a symmetric
nested repeater protocol with 2n segments and no entanglement distillation (depicted
in Fig. 4.1(b) for n = 2). In Section 4.2.2, we treated the case for n = 1, which resulted in
an expression for the waiting time random variable consisting of the maximum of two
copies of the waiting time of the bottom level (Eq. (4.3)) and a compound sum (Eq. (4.6)).
The first element, the maximum, corresponds to the fact that an entanglement swap acts
on two links that need both be generated, so one needs to wait until the latest of the two
links has been prepared. The second element is the sum of the waiting time until the
first successful swap attempt. Since the number of attempts is probabilistic, the result
is a compound sum. The analysis for the n = 1 case can be generalised to an arbitrary
number of nesting levels n and yields a recursive expression of the waiting time Tn which
alternates between compound sums and maximums of two copies of the waiting time
Tn−1 on the previous level. Unfortunately, as discussed in Section 4.2, to our knowledge,
this recursive expression of Tn has not been analytically evaluated for n > 1. Hence,
various approximation methods were introduced in that section. The exact evaluation
can, however, be achieved with numerical tools. By truncating the waiting time at a pre-
specified time ttrunc, the waiting time distribution becomes finite. The evaluation with
numerical tools leads to an algorithm that tracks both the truncated probability distri-
bution of Tn and the associated fidelity, see [47, 48] and Chapters 5 and 6.

On the 2n-segment nested repeater protocol, the algorithm computes the waiting
time distribution as follows. If n = 0, i.e. if there is no repeater and the two end nodes
obtain entanglement by direct generation, the waiting time T0 follows a geometric dis-
tribution (Eq. (4.1)). If n = 1, i.e. there is a single repeater and two segments, then the
algorithm evaluates Eq. (4.6), which describes how the probability distribution of the
waiting time T1 can be obtained from the distribution of T0. Although the two elements
in Eq. (4.6), the maximum and the geometric compound sum, can in principle be eval-
uated sequentially[47], a computationally faster approach is to separate the probability
distributions of failed and successful swap attempts[48]. For n > 1, the algorithm is ap-
plied iteratively over the nesting levels until level n has been reached. The algorithm can
be extended in polynomial time to also track the average fidelity of the produced quan-
tum state. This fidelity is a function of the delivery time and it can include the effect of
memory decoherence.

Although the example protocol above only consists of entanglement swapping, the
algorithm is applicable to any protocol which is composed of entanglement distillation
and cut-offs, in addition to entanglement swaps[48]. The algorithm presupposes that the
protocol is composed of these three operations in a predefined order, e.g. which entan-
gled pairs are swapped must be known in advance. The algorithm scales polynomially
in the number of nodes and in the truncation time ttrunc and has been used to track over
1000 nodes for some parameter regimes [47].

A related approach to the probability-tracking algorithm explained above is taken by
Kuzmin et al. [34, 35]. This method assumes that the waiting time of an elementary link
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is exponentially distributed (Eq. (4.2)), after which the mean waiting time for the next
level is computed by evaluating a continuous integral, as well as the quantum state in
the presence of memory decay. These are then used as input to the next nesting level,
by assuming that at that level, the waiting time follows an exponential distribution also.
With this approximation, the calculation of the maximum in Eq. (4.3) is simplified.

4.3.3. SAMPLING THE ANALYTICAL EXPRESSIONS WITH MONTE CARLO

METHODS

So far in this section, we have discussed two methods that compute the statistical distri-
bution of the waiting time and produced quantum state. For a given model, both of them
evaluate the analytical expression exactly up to machine precision. An alternative to this
semi-analytical computation is to sample the expressions on random variables for the
waiting time and the delivered state using a Monte Carlo approach, which we developed
in [47] and explain in more detail in Chapter 5. Instead of tracking the whole distribu-
tion, this approach samples a pair of waiting time and the produced state between the
end nodes. By sampling many times, the probability distribution of the waiting time and
the quantum state can be reconstructed.

Again, let us take the 2n-segment nested repeater protocol as an example to explain
the algorithm. The individual sample pairs are produced by iterating over the different
components of the repeater protocol, following its nested structure. At each component,
a pair is sampled recursively, following the expressions on random variables, which thus
become expressions on individual events. For instance, Eq. (4.3) requires sampling two
instances of T0 for entanglement generation and then taking the maximum of both to
produce a sample of M0. Also, memory decoherence can be calculated from the time
difference of two events. Similarly, the method can handle cut-offs. Furthermore, dis-
tillation can also be included in the protocol, since the input states to a distillation at-
tempt, which determine its success probability, are also sampled. For nested protocols,
the Monte Carlo algorithm can be defined as a recursive function, following the nested
structure of the protocols.

4.4. SECOND AND THIRD GENERATION REPEATER PROTOCOLS
So far, we have only treated first-generation quantum repeater protocols, i.e. protocols
for which the building blocks – fresh entanglement generation, entanglement swapping,
and entanglement distillation – are probabilistic operations. The quantum repeater pro-
posals that do not fall into this category make explicit use of quantum error correc-
tion codes and are referred to as second-generation (probabilistic entanglement gen-
eration, deterministic entanglement swapping, and one-way quantum error correction)
and third-generation repeaters (loss-tolerant entanglement generation) [1, 49].

In first-generation repeaters, entanglement generation and swapping are probabilis-
tic, and once it has succeeded, the entanglement is kept in quantum memories and
needs to wait until other components performed in parallel have succeeded. Conse-
quently, the waiting time probability distribution and state quality are a complex func-
tion of the success probabilities of components in the repeater chain.

In contrast, for second-generation repeater protocols, such as [50–53], entanglement
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swapping and (one-way) quantum error correction are no longer probabilistic (although
entanglement generation is still probabilistic, it may be parallelised to achieve near-unit
generation success probability). As a result, the time at which the entire repeater chain
finishes with a single attempt at generating end-to-end entanglement is simply a sum of
the (constant) times that the individual components take. Not only there is no waiting
for other components, but there are also no feedback loops here, i.e. components that
need to restart in case others have failed. The unit time step at which such repeater
chains operate is an attempt at end-to-end entanglement generation (i.e. the sum of
the individual component times); the probability that such an attempt succeeds is the
product of all individual steps succeeding. For this reason, the distribution of the waiting
time is a geometric distribution.

A similar reasoning applies to third generation repeaters [49, 54–64], where entan-
glement between adjacent nodes is established almost deterministically, rather than
probabilistically, by encoding part of locally-generated entanglement into a large state of
photons, followed by transmission of the encoded state. Commonly, the analysis of the
propagation of operational errors (for 2nd and 3rd generation) and the propagation of
physical loss errors into logical errors (for 3rd generation) is based on work on quantum
error correction codes (combined with explicit counting of the combinations of losses
of photons which yield errors beyond recovery) and optical quantum computation. We
consider such tools out of scope for this review chapter.
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5
EFFICIENT COMPUTATION OF THE

WAITING TIME AND FIDELITY IN

QUANTUM REPEATER CHAINS

In this chapter, we provide two efficient algorithms for determining the generation time
and fidelity of the first generated entangled pair between the end nodes of a quantum re-
peater chain. The runtime of the algorithms increases polynomially with the number of
segments of the chain, which improves upon the exponential runtime of existing algo-
rithms. Our first algorithm is probabilistic and can analyse refined versions of repeater
chain protocols which include intermediate entanglement distillation. Our second algo-
rithm computes the waiting time distribution up to a pre-specified truncation time, has
faster runtime than the first one and is moreover exact up to machine precision (we will
give an even faster version of the algorithm in Chapter 6). Using our proof-of-principle
implementation, we are able to analyse repeater chains of thousands of segments for some
parameter regimes. The algorithms thus serve as useful tools for the analysis of large quan-
tum repeater chain protocols and topologies of the future quantum internet.

This chapter has been published, with minor changes, as: S. Brand∗, T. Coopmans∗ and D. Elkouss, Efficient
computation of the waiting time and fidelity in quantum repeater chains, IEEE Journal on Selected Areas in
Communications 38, 619 (2020), where ∗ denotes equally contributing authors.
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In Chapter 3, we have seen that the quantum internet enables many applications
that are impossible with its classical counterpart. One of the key elements to enable the
applications is the distribution of entanglement between remote parties. In this chapter,
we aim at fully characterising the behaviour of an important class of entanglement dis-
tribution protocols over repeater chains as a tool for the analysis of quantum networks.

A large number of quantum repeater protocols have been proposed [1–22] and to a
large extent they can be classified [17, 23] depending on whether or not they use error
correction codes to handle these issues. In the absence of coding, losses can be dealt
with via heralded entanglement generation and errors via entanglement distillation [24–
31]. In this chapter, we will focus our interest in this type of protocols as their implemen-
tation is closer to experimental reach.

Existing analytical work is mostly aimed at estimating the mean waiting time or fi-
delity (see also [12, 32, 33] for other figures of merit). Some of this work builds on
an approximation of the mean waiting time under the small-probability assumption
[6, 13, 21, 34], while for a small number of segments or for some protocols it is possi-
ble to compute the waiting time probability distribution exactly [2, 20, 33, 35, 36]. How-
ever, depending on the application different statistics become relevant. For instance, in
the presence of decoherence, one is also interested in the variations around the mean. In
order to connect two segments via an intermediate repeater, both segments need to pro-
duce an entangled pair. When the first pair in one of the segments is ready, it has to wait
until the second segment finalises, and it decoheres while waiting. In this context, one
may need to discard the entanglement after some maximum amount of time [33, 37, 38].
Entanglement is also used as a resource for implementing non-local gates in distributed
quantum computers [39]. In this context, it is relevant to understand the time it takes to
generate a pair of the desired quality with probability larger than some threshold, i.e. in
the cumulative distribution. Here, we undertake the problem of fully characterising the
probability distribution of the waiting time and the associated fidelity to the maximally
entangled state.

An algorithm to characterise the full waiting time distribution was first obtained in
[35] using Markov chain theory (see also sec. 4.3.1 in Chapter 4). Its runtime scales with
the number of vertices in the Markov chain, which grows exponentially with the num-
ber of repeater segments. In more recent work, Vinay and Kok show how to improve the
runtime using results from complex analysis [36]. However, this method still remains
exponential in the number of repeater segments. Here, we provide two algorithms for
computing the full distribution of the waiting time and fidelity following the same model
as in [35]. Both algorithms are polynomial in the number of segments. Our main tool is
the description of the waiting time and fidelity of the first produced end-to-end link as a
recursively defined random variable, in line with the recursive structure of the repeater
chain protocol. The first algorithm is a Monte Carlo algorithm which samples from this
random variable, whereas our second algorithm is deterministic and computes the wait-
ing time distribution up to a pre-specified truncation time. The power of the former al-
gorithm lies in its extendability: it can be used to analyse refined versions of repeater
chain protocols which include intermediate entanglement distillation. The second al-
gorithm is faster and exact: it computes the probability distribution of the waiting time
and corresponding fidelity up to a pre-specified truncation point where the only source
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of error is machine precision. The speed of our algorithms allows us to analyse repeater
chains with more than a thousand segments for some parameter regimes.

The organisation of this chapter is as follows. In sec. 5.1, we introduce notation and
the family of repeater protocols under study. Then, in sec. 5.2, we recursively define the
waiting time and fidelity of the generation of a single entangled pair between the end
nodes as a random variable. In sec. 5.3, we provide the two algorithms for computing
the probability distribution of this random variable. We show in sec. 5.4 how to calculate
tighter numerical bounds on the mean waiting time than known in previous work. Nu-
merical results are given in sec. 5.5. In Section 5.6 we discuss the results obtained and
provide an outlook for future research.

5.1. PRELIMINARIES
In this section, we elaborate on the repeater chain protocols we study in this chapter and
explain how we model the quantum repeater hardware.

5.1.1. QUANTUM REPEATER CHAINS

In the family of repeater chain protocols we study in this chapter, nodes are able to
perform the following three actions: generate fresh entanglement with adjacent nodes,
transform short-range entanglement into long-range entanglement by means of entan-
glement swapping, and increase the quality of links through entanglement distillation.
We refer to sec. 3.2 in Chapter 3 for a more in-detail description of these three actions.
We model the entanglement swap and entanglement distillation as operations which
succeed probabilistically: in the case of failure, both involved entangled pairs are lost.

The repeater chain protocols we study in this chapter are the tree-shaped-type
protocols, which are all based on the seminal work of Briegel et al. [7]. Their
scheme was designed for a repeater chain of N = W n segments with n ∈ {1,2, . . . };
for simplicity, we assume W = 2 here. We distinguish between two versions of the
protocol: NESTED-SWAP-ONLY and d-NESTED-WITH-DISTILL. In NESTED-SWAP-ONLY,
nodes generate elementary entanglement and transform it into end-to-end entangle-
ment by means of entanglement swaps in a particular order explained below. The
d-NESTED-WITH-DISTILL scheme is identical to the NESTED-SWAP-ONLY version except
for the fact that every n-hop link is produced 2d times for some integer d ≥ 1 and then
turned into a single high-quality link by performing entanglement distillation multiple
times (more details below). We introduced these schemes briefly in Chapter 3 and will
describe them in more detail here.

We start by explaining how the NESTED-SWAP-ONLY protocol works for two seg-
ments and subsequently generalise to 2n segments. On a chain of two segments, the
NESTED-SWAP-ONLY scheme starts with both end nodes generating a single entangled
pair with the repeater node (fig. 5.1(a)). Once a link is generated, the two involved nodes
store the state in memory. As soon as both pairs have been produced, the repeater node
performs an entanglement swap on the two qubits it holds, which probabilistically pro-
duces a 2-hop link between the end nodes. In the case that the entanglement swap did
not succeed, both end nodes will be notified of the failure by the heralding message from
the repeater node and subsequently each restart generation of the single-hop entangle-
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ment.

In the generalisation to repeater chains of 2n segments (fig. 5.1(b) and (c)), the
NESTED-SWAP-ONLY scheme starts with the two-segment repeater scheme as explained
above on the first and second segment, on the third and fourth, and so on until seg-
ments 2n −1 and 2n . Approximately half of the intermediate nodes are thus involved in
two instances of the scheme; as soon as both instances have finished generating 2-hop
entanglement, the node will perform an entanglement swap to generate a single 4-hop
entangled link. In case the entanglement swap fails, all nodes under the span of the 4
hops will start to generate single-hop entanglement again as part of the two-segment
scheme. In general, to produce entanglement that spans 2` hops, the node that is lo-
cated precisely in the middle of this span will wait for the production of two 2`−1-hop
links and then perform an entanglement swap (see also fig. 5.1(c)). The failure of this
swap requires to regenerate both 2`−1-hop links. We refer to ` ∈ {0,1, . . . ,n} as the ‘nest-
ing level’ of the protocol, such that single-hop entanglement is produced at the base
level `= 0 and the entanglement swap at level `≥ 1 transforms two 2`−1-hop links into
a single 2`-hop entangled pair.

In addition to the steps of the NESTED-SWAP-ONLY version as described above, the
original proposal of Briegel et al. included entanglement distillation in order to increase
the quality of the input links to each entanglement swap. In this work, we specifically
define a version of the repeater protocol, denoted by d-NESTED-WITH-DISTILL for some
d ≥ 1, where d rounds of distillation are performed at every nesting level. That is, instead
of a single link, 2d links are generated at every nesting level. These links are subsequently
used as input to a recurrence distillation scheme: our description of this scheme follows
the review work by Dür and Briegel [24]. In the first step of the recurrence protocol, the 2d

links are split up in pairs and used as input to entanglement distillation, which produces
2d−1 entangled pairs of higher quality. This process is repeated with the remaining links
until only a single link is left, which is then used by the repeater node as input link to the
entanglement swap. Rather than waiting for all 2d links to have been generated before
performing the first distillation step, the protocol performs the entanglement distillation
as soon as two links are available. The failure of a distillation step requires the two in-
volved nodes to regenerate the links. For d = 0, the d-NESTED-WITH-DISTILL scheme is
identical to NESTED-SWAP-ONLY since no distillation is performed.

Generating, distilling and swapping entanglement can in general all be probabilistic
operations, which makes the total time it takes to distribute a single entangled pair be-
tween the end nodes of a repeater chain a random variable. We use the notation Tn to
refer to the waiting time until a single end-to-end link in a 2n-segment repeater chain
has been produced. By Fn we refer to the link’s fidelity, a measure of the quality of the
state (see sec. 5.1.2). Every time the quantities Tn and Fn are used in this chapter we
explicitly state whether they correspond to the waiting time of the NESTED-SWAP-ONLY

version or the d-NESTED-WITH-DISTILL version for given d . The goal of this chapter is to
find the joint probability distribution of Tn and Fn for both schemes.

5.1.2. MODEL

In the quantum repeater protocols we study (see sec. 5.1.1), nodes can generate, store,
distill and swap entangled links. We show here how we model each of these four opera-
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(a) (b)

(c)

Figure 5.1: The NESTED-SWAP-ONLY version of the BDCZ protocol [7] and its completion time Tn as a random
variable, where 2n is the number of segments in the repeater chain (see also sec. 5.1.1). (a) For two segments,
T0 represents the waiting time for the generation of a single link between two nodes without any intermediate
repeater nodes. (b) Nested level structure of the protocol over 21 = 2 segments. The production of entangle-
ment over two segments first requires the generation of two links, each of which spans a single segment. The
total time until both links have been generated equals M0, the maximum of their individual generation times

T (A)
0 and T (B)

0 , which are independent random variables that are identically distributed (i.i.d.). Once the two
links have been produced, a probabilistic entanglement swap is performed at both links. Failure of the entan-
glement swap requires the two single-hop links to be regenerated, each of which adds to the total waiting time
T1. The random variable K corresponds to the number of failing entanglement swaps up to and including the
first successful swap. In this chapter we assume that K follows a geometric distribution with parameter pswap
(see sec. 5.2.1). (c) A link that spans 2n segments is produced in a nested fashion, where at each nesting level
two links are produced and subsequently swapped.

tions.

For the generation of single-hop entanglement between two adjacent nodes, we
choose generation schemes which perform heralded attempts of fixed duration L/c
where c is the speed of light and L is the distance over which entanglement is gener-
ated [23]. In this chapter we study the topology where all nodes are equally spaced with
distance L = L0.

We model entanglement generation to succeed with a fixed probability 0 < pgen ≤ 1.
For simplicity, we also assume that the success probability pgen is identical for all pairs of
adjacent nodes. This implies independence between different entanglement generation
attempts, i.e. the success or failure of a previous attempt has no influence on future
attempts.

The first step of the entanglement swapping, the Bell-state measurement, is mod-
elled as a probabilistic operation with fixed success probability 0 < pswap ≤ 1 which is
identical for all nodes. This success probability is independent of the state of the qubits
that it acts upon. For simplicity, we assume that the duration of the Bell-state measure-
ment is negligible. The Bell-state measurement is followed by a classical heralding signal
to notify the nodes holding the other sides of the pair whether the Bell-state measure-
ment was successful. An entanglement swap on two 2n-hop links thus takes 2n · L0/c
time. Although our algorithms can account for this communication time (see sec. 5.2.3),
we will assume this time to be negligible in most of this work.
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The fidelity F (ρ,σ) ∈ [0,1] between two quantum states on the same number of
qubits, represented as density matrices ρ and σ, is a measure of their closeness, defined
as

F (ρ,σ) := Tr

(√p
ρσ

p
ρ

)2

which implies that F (ρ,σ) = 1 precisely if ρ = σ. By Bell-state fidelity, we mean the fi-
delity between σ and ρ = ∣∣Φ+〉〈

Φ+∣∣ where |Φ+〉 = (|00〉+ |11〉)/
p

2 is a Bell state.
We assume that the single-hop entangled states that are generated are two-qubit

Werner states parameterised by a single parameter 0 ≤ w0 ≤ 1 [40]:

ρ(w0) = w0
∣∣Φ+〉〈

Φ+∣∣+ (1−w0)
14

4
(5.1)

where 14/4 = (|00〉〈00| + |01〉〈01| + |10〉〈10| + |11〉〈11|)/4 is the maximally-mixed state on
two qubits. A straightforward computation shows that the fidelity between ρ(w) and the
Bell state |Φ+〉 equals

F
(
ρ(w),

∣∣Φ+〉〈
Φ+∣∣)= 〈

Φ+∣∣ρ(w)
∣∣Φ+〉= (1+3w)/4. (5.2)

Quantum states that are stored in the memories decohere over time with the follow-
ing noise: a Werner state ρ(w) residing in memory for a time ∆t will transform into the
Werner state ρ(wdecayed) with

wdecayed = w ·e−∆t/Tcoh (5.3)

where Tcoh is the joint coherence time of the two quantum memories holding the qubits.
We assume that access to a quantum memory is on-demand, i.e. the quantum states can
be stored and retrieved at any time and moreover there is no fidelity penalty associated
with such memory access.

A successful entanglement swap acting on two Werner states ρ(w) and ρ(w ′) will
produce the Werner state

ρswap = ρ(w ·w ′). (5.4)

We assume that the Bell-state measurement and the local operations that the entangle-
ment swap consists of are noiseless and instantaneous.

As base for entanglement distillation, we use the BBPSSW-scheme [26]. We modify
it slightly by bringing the output state back into Werner form. The last step does not
change the Bell-state fidelity of the output state. If two Werner states with parameters
w A and wB are used as input to entanglement distillation, both the output Werner pa-
rameter wdist and the success probability pdist depend on the Werner parameters w A

and wB of the states it acts upon (see appendix 5.7.1):

wdist(w A , wB ) = 1+w A +wB +5w A wB

6pdist
− 1

3
(5.5)

pdist(w A , wB ) = (1+w A wB )/2. (5.6)

The two nodes involved in distillation on two 2n-hop states send their individual mea-
surement outcomes to each other, which takes 2n · (L0/c) time but we will assume this
time to be negligible for simplicity. We also assume that the duration of the local opera-
tions needed for the distillation is negligible.
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5.1.3. NOTATION: RANDOM VARIABLES
In this section, we fix notation on random variables and operations on them.

Most random variables in this chapter are discrete with (a subset of) the nonneg-
ative integers as domain. Let X be such a random variable, then its probability dis-
tribution function pX : x 7→ Pr(X = x) describes the probability that its outcome will
be x ∈ {0,1,2, . . . }. Equivalently, X is described by its cumulative distribution function
Pr(X ≤ x) =∑x

y=0 Pr
(
X = y

)
, which is transformed to the probability distribution function

as Pr(X = x) = Pr(X ≤ x)−Pr(X ≤ x −1). Two random variables X and Y are independent
if Pr

(
X = x and Y = y

)= Pr(X = x) ·Pr
(
Y = y

)
for all x and y in the domain. By a ‘copy’ of

X , we mean a fresh random variable which is independent from X and identically dis-
tributed (i.i.d.). We will denote a copy by a superscript in parentheses. For example,
X (1), X (142) and X (A) are all copies of X .

The mean of X is denoted by E [X ] =∑∞
x=0 Pr(X = x) · x and can equivalently be com-

puted as E [X ] =∑∞
x=1 Pr(X ≥ x). If f is a function which takes two nonnegative integers

as input, then the random variable f (X ,Y ) has probability distribution function

Pr
(

f (X ,Y ) = z
)

:=
∞∑

x=0,y=0:
f (x,y)=z

Pr
(
X = x and Y = y

)
.

An example of such a function is addition. Define Z := X +Y where X and Y are in-
dependent, then the probability distribution pZ of Z is given by the convolution of the
distributions pX and pY , denoted as pZ = pX ∗pY , which means [41]

pZ (z) = Pr(Z = z) =
z∑

x=0
pX (x) ·pY (z −x).

The convolution operator ∗ is associative ((a ∗b)∗ c = a ∗ (b ∗ c)) and thus writing a∗b∗
c is well-defined, for functions a,b,c from the nonnegative integers to the real numbers.
In general, the probability distribution of sums of independent random variables equals
the convolutions of their individual probability distribution functions.

5.2. RECURSIVE EXPRESSIONS FOR THE WAITING TIME AND FI-
DELITY AS A RANDOM VARIABLE

In this section, we derive expressions for the waiting time and fidelity of the first gen-
erated end-to-end link in the NESTED-SWAP-ONLY repeater chain protocol. First, in
sec. 5.2.1, we derive a recursive definition for the random variable Tn , which represents
the waiting time in a 2n-segment repeater chain. Section 5.2.2 is devoted to extending
this definition to the Werner parameter Wn of the pair, which stands in one-to-one cor-
respondence to its fidelity Fn using eq. (5.2):

Fn = (1+3Wn)/4. (5.7)

In sec. 5.2.3, we show how to include the communication time after the entanglement
swap and in sec. 5.2.4, we extend the analysis of the waiting time and Werner parameter
in the NESTED-SWAP-ONLY protocol to the d-NESTED-WITH-DISTILL scheme.
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5.2.1. RECURSIVE EXPRESSION FOR THE WAITING TIME IN THE

NESTED-SWAP-ONLY PROTOCOL
In the following, we will derive a recursive expression for the waiting time Tn of a
NESTED-SWAP-ONLY repeater chain of 2n segments (see also fig. 5.1).

Before stating the expression, let us note that all three operations in the repeater
chain protocols we study in this work, entanglement generation over a single hop, dis-
tillation and swapping, take a duration that is a multiple of L0/c, the time to send in-
formation over a single segment (see sec. 5.1.2 for our assumptions on the duration of
operations). For this reason, it is common to denote the waiting time in discrete units of
L0/c, which is a convention we comply with for Tn .

Let us first state the description of Tn before explaining it.

Waiting time in the NESTED-SWAP-ONLY protocol

We recursively describe the random variable Tn that represents the waiting time until the
first end-to-end link in a 2n-segment NESTED-SWAP-ONLY repeater chain is generated,
for n ∈ {0,1, . . . }. The waiting time T0 for generating point-to-point entanglement follows
a geometric distribution with parameter pgen. At the recursive step, the waiting time is
given as the geometric compound sum

Tn+1 :=
Kn∑
j=1

M ( j )
n (5.8)

where Mn is an auxiliary random variable given by

Mn := gT
(
T (A)

n ,T (B)
n

)
(5.9)

and the function gT is defined as

gT(tA , tB ) := max{tA , tB }. (5.10)

The sum in eq. (5.8) is taken over the number of entanglement swaps Kn until the first
success, which is geometrically distributed with parameter pswap for every n. See fig. 5.1
for a depiction of Tn and Kn .

Let us now elaborate on each of the steps in the expression of Tn .
We start with the base case T0, the waiting time for the generation of elementary en-

tanglement. Since we model the generation of single-hop entanglement by attempts
which succeed with a fixed probability pgen (see sec. 5.1.2), the waiting time T0 is a
discrete random variable (in units of L0/c) which follows a geometric distribution with
probability distribution given by Pr(T0 = t ) = pgen(1−pgen)t−1 for t ∈ {1,2,3, . . . }. For what
follows, it will be more convenient to specify T0 by its cumulative distribution function

Pr(T0 ≤ t ) = 1− (1−pgen)t . (5.11)
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Let us now assume that we have found an expression for Tn and we want to construct
Tn+1. In order to perform the entanglement swap to produce a single 2n+1-hop link, a
node needs to wait for the production of two 2n-hop links, one on each side. Denote the
waiting time for one of the pairs by T (A)

n and the other by T (B)
n , both of which are i.i.d.

with Tn . The time until both pairs are available is now given by Mn := max(T (A)
n ,T (B)

n )
which is distributed according to

Pr(Mn ≤ t ) = Pr
(
T (A)

n ≤ t and T (B)
n ≤ t

)
= Pr(Tn ≤ t )2 (5.12)

where the last equality follows from the fact that T (A)
n ,T (B)

n and Tn are pairwise i.i.d.
Since we assume that both the duration of the Bell-state measurement and the com-
munication time of the heralding signal after the entanglement swap are negligible (see
sec. 5.1.2), Mn is also the time at which the entanglement swap ends. We will drop the
assumption on negligible communication time in sec. 5.2.3.

In order to find the relation between Mn and Tn+1, first note that the number of
swaps Kn at level n until the first successful swap follows a geometric distribution with
parameter pswap. This is a direct consequence of our choice to model the success prob-
ability pswap to be independent of the state of the two input links (see sec. 5.1.2). Next,
recall that the two input links of a failing entanglement swap are lost and need to be re-
generated. The regeneration of fresh entanglement after each failing entanglement swap
adds to the waiting time. Thus, Tn+1 is a compound random variable: it is the sum of Kn

copies of Mn . Since the number of entanglement swaps Kn is geometrically distributed,
we say that Tn+1 is a geometric compound sum of Kn copies of Mn . To be precise, we
write

Tn+1 =
Kn∑

k=1
M (k)

n (5.13)

which means that the probability distribution of the waiting time Tn+1 is computed as
the marginal of the waiting time conditioned on a fixed number of swaps:

Pr(Tn+1 = t ) =
∞∑

k=1
Pr(Kn = k) ·Pr

[(
k∑

j=1
M ( j )

n

)
= t

]

where the M ( j )
n are copies of Mn .

The waiting time Tn is the same quantity as was studied by Shchukin et al. [35]. In-
deed, in sec. 5.5, we show that our algorithms for computing the probability distribution
of Tn recover their numerical results.

5.2.2. JOINT RECURSIVE EXPRESSION OF WAITING TIME AND WERNER PA-
RAMETER FOR THE NESTED-SWAP-ONLY PROTOCOL

In this section, we extend the expression of the waiting time for the first end-to-end
link produced using the NESTED-SWAP-ONLY protocol with the link’s state. To be pre-
cise, we give a recursive expression for the waiting time Tn and Werner parameter Wn

of this state, which is well-defined since all states that the NESTED-SWAP-ONLY repeater
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chain protocol holds at any time during its execution are Werner states. The latter state-
ment is a direct consequence of the fact that in our modelling, all operations in the
NESTED-SWAP-ONLY protocol only output Werner states: we choose to model the gen-
erated single-hop entanglement as Werner states and furthermore the class of Werner
states is invariant under memory errors and entanglement swaps (see sec. 5.1.2). The
fidelity Fn of the first end-to-end state on 2n segments can be computed from its Werner
parameter using eq. (5.7).

We express the waiting time and Werner parameter as a joint random variable
(Tn ,Wn). Describing the two as a tuple allows us to capture the fact that the Werner
parameter of a link depends on the time it was produced at. In sec. 5.2.1, we found
that the failure of multiple swapping attempts corresponds to the sum of their waiting
times. In order to extend this description to the tuple of waiting time and Werner param-
eter, we define the forgetting sum

∑̂
on sequences of tuples {(x j , y j )|1 ≤ j ≤ m} for some

m ∈ {1,2, . . . } as

∑̂m

j=1(x j , y j ) :=
([

m∑
j=1

x j

]
, ym

)
. (5.14)

In analogy to the geometric compound sum from eq. (5.13), we define the geometric

compound forgetting sum (X ′,Y ′) := ∑̂K
j=1(X ,Y ), which formally means

Pr
(
X ′ = x and Y ′ = y

)
=

∞∑
k=1

p(1−p)k−1 ·Pr

(∑̂k

j=1(X ,Y )( j ) = (x, y)

)

where X and Y and their primed version are random variables, and K is a geometrically
distributed random variable with parameter p.

Making use of the compound forgetting sum, we give the expression for the joint
random variable of waiting time Tn and Werner parameter Wn .
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Waiting time and Werner parameter in the NESTED-SWAP-ONLY protocol

The joint random variable (Tn ,Wn) is defined as follows. The waiting time T0 is the same
as in sec. 5.2.1 and Pr(W0 = w0) = 1 where w0 ∈ [0,1] is some pre-specified constant that
determines the state of the single-hop entanglement that is produced between adjacent
nodes. At the recursive step, the waiting time and Werner parameter are given by the
geometric compound forgetting sum

(Tn+1,Wn+1) := ∑̂Kn

k=1(Mn ,Vn)(k) (5.15)

where, as in sec. 5.2.1, Kn follows a geometric distribution with parameter pswap. The
auxiliary joint random variable (Mn ,Vn) is defined as

(Mn ,Vn) := g
(
(Tn ,Wn)(A), (Tn ,Wn)(B)) . (5.16)

The function g is given by

g ((tA , w A), (tB , wB )) := (5.17)

(gT(tA , tB ), gW((tA , w A), (tB , wB )))

where gT is defined in eq. 5.10 and

gW((tA , w A), (tB , wB )) := w A ·wB ·e−|tA−tB |/Tcoh (5.18)

with Tcoh the quantum memory coherence time as described in sec. 5.1.2.

We now explain the above expressions. For a single segment (n = 0), the waiting
time and Werner parameter are uncorrelated because we model the attempts at gen-
erating single-hop entanglement to be independent and to each take equally long (see
sec. 5.1.2). At the recursive step, an entanglement swap which produces 2n+1-hop en-
tanglement requires the generation of two 2n-hop links. The expression for the waiting
time Tn+1 is identical to eq. (5.8) in sec. 5.2.1. In order to argue that eq. (5.15) also gives
the correct expression for Wn+1, we first show that the Werner parameter of the output
link of an entanglement swap is given by Vn in eq. (5.16), provided the swap succeeded.
Since Mn as defined in eq. (5.16) is identical to its expression in eq. (5.9) in sec. 5.2.1, we
only need to argue why gW in eq. (5.18) correctly computes the Werner parameter of the
output link after an entanglement swap.

In order to do so, denote by A and B the input links to the entanglement swap and
denote by (tA , w A) and (tB , wB ) their respective delivery times and Werner parameters.
Without loss of generality, choose tA ≥ tB , i.e. link A is produced after link B . Link A is
produced last, so the entanglement swap will be performed directly after its generation
and hence link A will enter the entanglement swap with Werner parameter w A . Link B is
produced earliest and will therefore decohere until production of link A. It follows from
eq. (5.3) that B ’s Werner parameter immediately before the swap equals

w ′
B = wB ·e−|tA−tB |/Tcoh . (5.19)

Once two links have been delivered, the entanglement swap would produce the 2n+1-
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hop state with Werner parameter
w A ·w ′

B (5.20)

as in eq. (5.4), provided the swap is successful. Combining eqs. (5.19) and (5.20) yields
the definition of gW in eq. (5.18).

Note that in the definition of gW in eq. (5.18) we used the same assumption on the
duration of the entanglement swap as in sec. 5.2.1, i.e. that both the Bell-state measure-
ment and the subsequent communication time are negligible (see also sec. 5.1.2). This
implies that Vn in eq. (5.16) expresses the Werner parameter of the produced 2n+1-hop
link in case the swap is successful. We treat the case of nonzero communication time in
sec. 5.2.3.

The last step in finding the Werner parameter Wn+1 in eq. (5.15) is to bridge the gap
with (Mn ,Vn) from eq. (5.16). If the entanglement swap fails, then the 2n+1-hop link
with its Werner parameter in eq. (5.20) will never be produced since both initial 2n-hop
entangled pairs are lost. Instead, two fresh 2n-hop links will be generated. In order to
find how the Werner parameter on level n + 1 is expressed as a function of the waiting
times and Werner parameters at level n, consider a sequence (m j , v j ) of waiting times
m j and Werner parameters v j , where j runs from 1 to the first successful swap k. The
m j correspond to the waiting time until the end of the entanglement swap that trans-
forms two 2n-hop links into a single 2n+1-hop link and the v j to the output link’s Werner
parameter if the swap were successful. We have found in sec. 5.2.1 that the total wait-
ing time is given by

∑k
j=1 m j , the sum of the duration of the production of the lost pairs

(see eq. (5.8)). Note, however, that the Werner parameter of the 2n+1-hop link is only
influenced by the links that the successful entanglement swap acted upon. Since the en-
tanglement swaps are performed until the first successful one, the output link is the last
produced link and therefore its Werner parameter equals vk . We thus find that the wait-
ing time tfinal of the first 2n+1-hop link and its Werner parameter wfinal are given by the
forgetting sum from eq. (5.14):

(tfinal, wfinal) =
(

k∑
j=1

m j , vk

)
= ∑̂k

j=1(m j , v j ).

Taking into account that the number of swaps k that need to be performed until the first
successful one is an instance of the random variable Kn , we arrive at the full recursive
expression for the waiting time and Werner parameter at level n+1 as given in eq. (5.15).

It is not hard to see that the projection (Tn ,Wn) 7→ Tn recovers the definition of wait-
ing time from 5.2.1. Indeed, following the recursive definition of (Tn ,Wn) in eqs. (5.15)-
(5.18), the waiting time Tn is not affected by the Werner parameters W` at lower nesting
levels `< n.

5.2.3. INCLUDING COMMUNICATION TIME
While deriving the expressions for waiting time and Werner parameter of the first pro-
duced end-to-end link in secs. 5.2.1 and 5.2.2, we have explicitly assumed that the total
time the entanglement swap takes is negligible. Here, we include the communication
time of the heralding signal from the entanglement swap into the expressions for Mn

and Vn (eqs. (5.9) and (5.16)), which represent the waiting time and Werner parameter
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directly after the entanglement swap if it were successful. This communication time
equals 2n time steps (in units of L0/c) for a swap that transforms two 2n-hop links into
a single 2n+1-hop link (see sec. 5.1.2). The expressions for Mn and Vn are modified by
replacing gT in eq. 5.10 by

g n
T (tA , tB ) := gT(tA , tB )+2n . (5.21)

and replacing gW from eq. (5.18) by

g n
W((tA , w A), (tB , wB ))

:= gW((tA , w A), (tB , wB )) ·e−2n /Tcoh . (5.22)

Equation (5.21) expresses that the entanglement swap takes 2n timesteps longer, while
eq. (5.22) captures the decoherence of the state during the communication time of the
entanglement swap, following eq. (5.3).

5.2.4. WAITING TIME AND WERNER PARAMETER FOR THE

d -NESTED-WITH-DISTILL PROTOCOL

In this section, we sketch how to extend the expression of the waiting time Tn and Werner
parameter Wn from secs. 5.2.1-5.2.3 to the case of the d-NESTED-WITH-DISTILL repeater
protocol presented in sec. 5.1.1. Recall that the d-NESTED-WITH-DISTILL protocol is
identical to the NESTED-SWAP-ONLY protocol except for the fact that each entanglement
swap is performed on the output of a recurrence distillation scheme with d nesting lev-
els. By a d ′-distilled 2n-hop link we denote a 2n-hop link which is the result of successful
entanglement distillation on two (d ′− 1)-distilled 2n-hop links and by a 0-distilled 2n-
hop link we mean a link that is the result of a successful entanglement swap on two
2n-hop links. Thus, every entanglement swap in the d-NESTED-WITH-DISTILL protocol
is performed on d-distilled links only.

Note that at every level of the nested swapping, there are d levels of nested distilla-
tion. To tackle the ‘double nesting’ we modify the waiting time in the NESTED-SWAP-ONLY

protocol by splitting up the tuple of random variables (Tn ,Wn) in eq. (5.15), which rep-
resents the waiting time and Werner parameter at level n, into d +1 tuples of random
variables (T d ′

n ,W d ′
n ) for d ′ ∈ {0,1, . . . ,d}. The random variable T d ′

n corresponds to the
waiting time until the end of the first successful distillation attempt on two d ′-distilled
2n-hop links, and W d ′

n to the link’s Werner parameter.

We first analyse the recurrence distillation protocol at a single swapping nesting level
and subsequently tie this analysis in with the nested swapping structure.

If we fix the nesting level n, we can straightforwardly apply the analysis of sec. 5.2.2 to
the nested distillation. First, we define (M d ′

n ,V d ′
n ), which characterises a link after a single

distillation attempt on two 2n-hop d ′-distilled links in case the attempt is successful.
This joint random variable is the analogue of (Mn ,Vn) from eq. (5.16), which has the
same interpretation but in this case for a swapping attempt. The analysis resulting in
eq. (5.16) carries over and yields

(M d ′
n ,V d ′

n ) := gD

(
(T d ′

n ,W d ′
n )(A), (T d ′

n ,W d ′
n )(B)

)
. (5.23)
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where gD is the analogue of g in eq. (5.17) and describes how two input links are trans-
formed into one high-quality link by a successful distillation step:

gD((tA , w A), (tB , wB )) = (
gT(tA , w A), w

)
where

w :=
{

wdist
(
w A ·e−|tA−tB |/Tcoh , wB

)
if tA ≤ tB

wdist
(
w A , wB ·e−|tA−tB |/Tcoh

)
if tA > tB

and wdist is given in eq. (5.5). The function gD outputs a tuple of waiting time and Werner
parameter of the output state after distillation. The waiting time requires two links to be
generated and is thus given by gT in eq. (5.10). The Werner parameter equals the Werner
parameter of distillation as given by wdist in eq. (5.5) on the two input links, of which the
earlier suffered decoherence as given in eq. (5.3).

The random variables (T d ′
n ,W d ′

n ) correspond to the waiting time and Werner param-
eter after the first successful distillation attempt on two d ′-distilled 2n-hop links, so in
line with the analysis leading to eq. (5.15) we obtain

(T d ′+1
n ,W d ′+1

n ) = ∑̂Dd ′
n

j=1

(
M d ′

n ,V d ′
n

)( j )
. (5.24)

The random variable Dd ′
n corresponds to the number of distillation attempts with two

d ′-distilled 2n-hop links as input, up to and including the first successful attempt. It is
the analogue of Kn in eq. (5.15), the number of swap attempts until the first success.

At this point, we have an expression for (T d
n ,W d

n ), the waiting time and Werner pa-
rameter of the resulting link after performing a d-level recurrence protocol on 0-distilled
input links that each span 2n hops. Since the recurrence protocol is performed at every
swapping nesting level of the d-NESTED-WITH-DISTILL protocol, we can insert this ex-
pression into our previous analysis using the following two remarks. First, a 0-distilled
link is the output of an entanglement swap, so (T 0

n ,W 0
n ) in the d-NESTED-WITH-DISTILL

scheme takes the role that (Tn ,Wn) has in the NESTED-SWAP-ONLY protocol:

(T 0
n ,W 0

n ) = (Tn ,Wn). (5.25)

Second, since an entanglement swap takes as input two d-distilled links, we find that
we should replace the definition of (Mn ,Vn) in eq. (5.16) by

(Mn ,Vn) = g

((
T d

n ,W d
n

)(A)
,
(
T d

n ,W d
n

)(B)
)

. (5.26)

where g is defined in eq. (5.17).
We finish this section by remarking that for the d-NESTED-WITH-DISTILL protocol,

we cannot treat waiting time independently of the Werner parameter of the produced
link, as we did for the NESTED-SWAP-ONLY scheme in sec. 5.2.1. The reason behind this
is the following difference between the nested swaps and the nested distillation: in the
former, the success probability pswap and therefore the number of swaps Kn is inde-
pendent of the time and state of the produced links, whereas the success probability of
entanglement distillation is a function of their states (see eq. (5.6)). Consequently, the
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summation bound Dd ′
n and the Werner parameter V d ′

n in the summands
(
M d ′

n ,V d ′
n

)
in

eq. (5.24) are correlated. Therefore, both the waiting time and Werner parameter at any
swapping level depend on both waiting time and Werner parameter at the levels below.

5.3. ALGORITHMS FOR COMPUTING WAITING TIME AND FI-
DELITY OF THE FIRST END-TO-END LINK

In this section, we present two algorithms for determining the probability distribution of
the waiting time Tn and average Werner parameter Wn of the first end-to-end link pro-
duced by the repeater chain (see sec. 5.2). The first algorithm is a Monte Carlo algorithm
which applies to both families of repeater chain protocols considered in this chapter:
NESTED-SWAP-ONLY and d-NESTED-WITH-DISTILL. The second algorithm only applies to
the NESTED-SWAP-ONLY protocol and is faster than the first. In Chapter 6 we will present
a variant to the second algorithm which can also handle d-NESTED-WITH-DISTILL, and is
moreover faster than the one presented here. We summarise the runtime of the different
algorithms presented in this section in table 5.1.

5.3.1. FIRST ALGORITHM: MONTE CARLO SIMULATION

The first algorithm is a randomised function which produces a sample from the proba-
bility distribution of the joint random variable (Tn ,Wn). By running the algorithm many
times, sufficient statistics can be produced to reconstruct the distribution of the joint
random variable up to arbitrary precision (see below for a rigorous statement). We first
outline the algorithm that samples from the waiting time in the NESTED-SWAP-ONLY pro-
tocol following sec. 5.2.1, after which we show how to extend it to track the Werner pa-
rameter (sec. 5.2.2), how to include the communication time after a swap (sec. 5.2.3) and
how to adjust it for the d-NESTED-WITH-DISTILL protocol (sec. 5.2.4). Pseudocode can
be found in algorithm 1.

We start by explaining the Monte Carlo algorithm for the waiting time in the
NESTED-SWAP-ONLY protocol. Let s(X ) denote a randomised function that yields a sam-
ple from the random variable X . We remark that if the cumulative distribution function
of X is known, then sampling from X can be done efficiently using inverse transform
sampling, which is a standard technique to produce a sample from an arbitrary distri-
bution by evaluating its inverse cumulative distribution function on a sample from the
uniform distribution on the interval [0,1]. We can thus construct the sampler from the
waiting time for elementary entanglement, T0, using the inverse of the cumulative dis-
tribution function of T0 as given in eq. (5.11):

s(T0) = dlog(1−p)(1− s(U ))e (5.27)

where U is a random variable which is distributed uniformly at random on [0,1] and d.e
denotes the ceiling function.

For sampling from higher levels, we first note that we can easily transform a sampler
s(X ) into a sampler ssum(X , p) from a geometric sum

∑K
j=1 X ( j ), where K is geometrically

distributed with parameter p. The sampler from the geometric sum probabilistically
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calls itself:

ssum(X , p) :=
{

s(X ) with prob. p,

s(X )+ ssum(X , p) with prob. 1−p.

From the recursive expression for the waiting time Tn in sec. 5.2.1 it now follows directly
that we can construct a sampler from Tn for n ≥ 1:

s(Tn) = ssum(Mn , pswap)

which, per definition of ssum, makes a call to s(Mn) which is given by

s(Mn) = gT(s(Tn−1), s(Tn−1))

where gT is defined in eq. (5.10).
Using the Dvoretzky-Kiefer-Wolfowitz inequality [42], we determine how many sam-

ples from (Tn ,Wn) we need in order to obtain bounds on its cumulative probabilities. It
follows from this inequality that if q(t ) := Pr(Tn ≤ t ) denotes the cumulative probability
function of the waiting time Tn and qm(t ) the empirical cumulative probabilities after
having drawn m samples, then the difference between q and qm is bounded as

Pr
(|q(t )−qm(t )| > ε)≤ 2e−2mε2

for all t ≥ 0. Thus we can bound the probability that the empirical estimate qm(t ) de-

viates from q(t ) at most ε for any value of t by z = 2e−2mε2
if the number of samples to

draw equals
m =− log(z/2)/(2ε2) (5.28)

Let us emphasise that this number of samples is independent of any parameters of the
repeater chain, for instance the number of segments, and thus its contribution to the
runtime or space usage of the Monte Carlo algorithm is at most a multiplicative constant,
independent of any such parameters.

Following sec. 5.2.2, we modify the Monte Carlo algorithm to also compute the
Werner parameter of the sampled produced entangled pair (for pseudocode see algo-
rithm 1). First note that the notation s(X ) which samples from a random variable X can
also be applied to a joint random variable (X ,Y ), so that s((X ,Y )) returns a tuple. We will
now define a sampler s((Tn ,Wn)) where (Tn ,Wn) is the joint random variable represent-
ing waiting time and Werner parameter of a 2n-segment NESTED-SWAP-ONLY repeater
chain (see sec. 5.2.2). For this, we first need to adapt the sampler of the geometric com-
pound sum ssum to a sampler of the geometric compound forgetting sum (eq. (5.14)) by
defining ŝsum((X ,Y ), p) where X and Y are arbitrary random variables and p ∈ [0,1] is
the parameter of the geometric distribution:

ŝsum((X ,Y ), p) :=


s((X ,Y )) with prob. p,

π(s((X ,Y )))+ ŝsum((X ,Y ), p)

with prob. 1−p.
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where ‘+’ denotes pairwise addition and π is the projector onto the first element of a
tuple: π((x, y)) = (x,0) for any numbers x, y .

A recursive definition of the joint sampling function from (Tn ,Wn) follows directly
from the joint expression for waiting time Tn and Werner parameter Wn in eqs. (5.15)-
(5.18):

s((T0,W0)) = (s(T0), w0)

s((Tn ,Wn)) = ŝsum((Mn ,Vn), pswap)

s((Mn ,Vn)) = g (s(Tn−1,Wn−1), s(Tn−1,Wn−1)) (5.29)

where w0 is the Werner parameter of each single-hop link at the time it is produced (see
sec. 5.1.2) and the function g is defined in eq. (5.17). In this pseudocode for this Monte
Carlo algorithm in algorithm 1, the sampler s(Tn ,Wn) is denoted by sample_swap.

Since the expression for (Tn ,Wn) from sec. 5.2.2 assumes that the communication
time for the heralding signal after the entanglement swap takes negligible time, it is not
included in the Monte Carlo algorithm above. Fortunately, the adaptation to include this
communication time as in sec. 5.2.3 directly carries over to the Monte Carlo algorithm
by replacing g in eq. (5.29) with

g n((tA , w A), (tB , wB )) := (g n
T (tA , tB ), g n

W((tA , w A), (tB , wB ))

where g n
T and g n

W are defined in eqs. (5.21) and (5.22).
The time complexity of the Monte Carlo algorithm is a random variable since it is

a randomised algorithm. Every call to s(Tn+1,Wn+1) performs the auxiliary function
ŝsum on average 1/pswap times, each of which calls s(Mn ,Wn) precisely once and thus
s(Tn ,Wn) exactly twice by eq. (5.29). Given access to a constant-time sampler from the
uniform distribution on [0,1], a sample from the base level s(T0,W0) can be obtained
in constant time, so a simple inductive argument shows that a drawing a single sample
from (Tn ,Wn) has average runtime O

(
(2/pswap)n

)
, which equals

O
(
N log2(2/pswap)

)
which is polynomial in the number of segments N = 2n .

Following sec. 5.2.4, we also adjust the Monte Carlo algorithm to determine the wait-
ing time and average Werner parameter in the d-NESTED-WITH-DISTILL repeater chain
protocol. We add a recursive function sample_dist in algorithm 1 for sampling from
the random variable T d ′

n from eq. (5.24), which represents the waiting time at each level
d ′ ∈ {0,1, . . . ,d} of the nested distillation scheme. The relation between the random vari-

able tuples
(
T d ′

n ,W d ′
n

)
and

(
M d ′

n ,V d ′
n

)
on the one hand and (Tn ,Wn) and (Mn ,Vn) on

the other is mirrored in their implementations sample_dist and sample_swap, respec-
tively: the function sample_swap calls sample_dist following eq. (5.26), which subse-
quently calls itself recursively for d nesting levels following eq. (5.23) and eq. (5.24) and
calls sample_swap at the lowest level in line with eq. (5.25). See algorithm 1 for the full
pseudocode of the d-dependent sampler sample_swap for the d-NESTED-WITH-DISTILL

protocol.
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The average runtime of the sampler for the d-NESTED-WITH-DISTILL protocol is
upper bounded by O

(
4d · (2/pswap)n

)
. In order to derive this, note that the proba-

bility that a distillation attempt succeeds (see eq. (5.6)) is lower bounded by 1/2 and
hence a call to sample_dist(n,d) recursively performs at most (2/(1/2))d = 4d calls to
sample_swap(n −1) on average. The average runtime of the full algorithm is the prod-
uct of this number of calls and the average runtime of the NESTED-SWAP-ONLY algorithm
O

(
(2/pswap)n

)
since the recurrence distillation scheme is performed at every swapping

level.

Let us finish this section with an analysis of the algorithm’s space complexity. For
generating a single sample of (Tn ,Wn) of the NESTED-SWAP-ONLY protocol, the number
of variables that need to be stored grows linearly in the number of segments n. To see
this, first note that at level ` the algorithm only needs to keep track of two samples of
(T`−1,W`−1) at a time, since in the case of a failed swap it may discard the samples af-
ter updating the total time used and subsequently reuse the space for storing two fresh
samples. In addition, for producing these two samples, only two samples need to be
stored at every level < `. The insight here is that at each level the required two samples
can be drawn in sequence rather than in parallel1, so that the space needed to draw the
first sample can be reused for the second. Therefore, the algorithm needs to keep track
of at most two samples at every level, which implies that the total number of variables
it stores is linear in the number of levels and thus in the number of segments n. For
the d-NESTED-WITH-DISTILL protocol, the scaling is linear in n ·d with d the number of
distillation steps per nesting level, which can be shown by an analogous argument.

The number of samples that is required to generate a probability distribution his-
togram with pre-specified precision is independent of the number of segments (see ex-
planation directly below eq. (5.28)). For constructing the histogram, we only need to
store the waiting times for which at least a single sample was drawn and hence the num-
ber of such waiting times is also independent of the number of segments. We conclude
that reproducing the probability distribution of (Tn ,Wn) using the Monte Carlo algo-

1Note that in our runtime analysis, we already assumed sequentiality since we showed that the average number
of calls to s(T0,W0) is at most polynomial in the number of segments n.
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rithm will not exceed polynomial space usage in the number of segments n.

Algorithm 1: Monte-Carlo algorithm sample_swap(n) for producing a sin-
gle sample of the joint waiting time and Werner parameter (Tn ,Wn) for
a d-NESTED-WITH-DISTILL quantum repeater chain of 2n segments as in
sec. 5.2.2. Setting d = 0 corresponds to the NESTED-SWAP-ONLY repeater chain
protocol.

Input : Success probabilities pgen and pswap, Werner parameter of single-hop
links w0, nesting level n, number of distillation rounds at each level d .

Output: Single sample from (Tn ,Wn).
1 if n = 0 then
2 u ← uniform random sample from [0,1]
3 return (dlog(1−p)(1−u)e, w0) // (eq. (5.27))
4 else if n ≥ 1 then
5 (tA , w A) ← sample_dist(n,d)
6 (tB , wB ) ← sample_dist(n,d)
7 t , w ← g ((tA , w A), (tB , wB )) // (eq. (5.17))
8 u ← uniform random sample from [0,1]
9 if u ≤ pswap then

10 return t , w
11 else
12 tretry, wretry ← sample_swap(n)
13 return t + tretry, wretry

14 end
15 end

16 Auxiliary function sample_dist(n,d) :
17 if d = 0 then
18 return sample_swap(n −1)
19 else
20 (tA , w A) ← sample_dist(n,d −1)
21 (tB , wB ) ← sample_dist(n,d −1)
22 t , w ← gD ((tA , w A), (tB , wB )) // eq. (5.24)
23 u ← uniform random sample from [0,1]

// Success probability: eq. (5.6)
24 if u ≤ pdist(w A , wB ) then
25 return t , w
26 else
27 tretry, wretry ← sample_dist(n,d)
28 return t + tretry, wretry

29 end
30 end
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Algorithm 2: Deterministic algorithm for computing the probability distribu-
tion of the waiting time Tn of the NESTED-SWAP-ONLY protocol at nesting level
n. The subroutine fast_convolution_algorithm computes the distribution of the
sum of two random variables A and B , each represented by an array of size
ttrunc +1 with their probabilities Pr(A = t ) and Pr(B = t ) for t ∈ {0,1,2, . . . , ttrunc}.

Input : Success probs. pgen and pswap, nesting level n
Output: Two-dimensional array of size (n+1)× (ttrunc +1) with entries Pr(T` = t )

for ` ∈ {0,1,2, . . . ,n} and t ∈ {0,1,2, . . . , ttrunc}.
1 C ← 3-dim. array of zeros,
2 size (n +1)× (ttrunc +1)× (ttrunc +1)
3 T ← 2-dim. array of zeros, size (n +1)× (ttrunc +1)
4 M ← 1-dim. array of zeros, of size (ttrunc +1)

// Base level probs (eq. (5.11))
5 for t ∈ {0,1, . . . , ttrunc} do
6 T [0, t ] ← 1− (1−pgen)t

7 end

// Probabilities on higher levels
8 for ` ∈ {0,1, . . . ,n −1} do

// Maximum of two copies (eq. (5.30))
9 for t ∈ {1,2, . . . , ttrunc} do

10 M [t ] ← T [`, t ]2 −T [`, t −1]2

11 end

// Conditional probs... (eq.(5.31))
12 for k ∈ {1,2, . . . , ttrunc} do
13 set column C [`,k] to output of convolve(C[`,k−1],k,M)
14 end

// ...and the marginals (eq. (5.32))
15 for t ∈ {1,2, . . . , ttrunc} do
16 for k ∈ {1,2, . . . , ttrunc} do
17 term ← pswap(1−pswap)k−1 ·C [`,k, t ]
18 add term to T [`+1, t ]
19 end
20 end

// Convert T to cumulative probs
21 for t ∈ {1,2, . . . , ttrunc} do
22 T [`+1, t ] ← T [`+1, t ]+T [`+1, t −1]
23 end
24 end
25 return T

26 Auxiliary function convolve(S,k, M) :
27 if k = 1 then
28 return M
29 else

// Compute convolution of two arrays using Fast Fourier
Transforms

30 array_with_sum_distribution ← fast_convolution_algorithm(S, M)
31 return array_with_sum_distribution
32 end
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Algorithm 3: Extension to algorithm 2 for computing Wn , the average Werner
parameter of the end-to-end state produced at time t ∈ {0,1, . . . , ttrunc} by a 2n-
segment repeater chain with the NESTED-SWAP-ONLY protocol. The algorithm is
an extension to algorithm 2 and contains of several parts that should be inserted
into that algorithm.

The following should be inserted directly after line 4
in algorithm 2:

W ← 2-dim. array of zeros, size (n +1)× (ttrunc +1)
for t ∈ {0,1,2, . . . , ttrunc} do

W [0, t ] ← w0

end

The following should be inserted directly after line 23
within the loop over ` in algorithm 2:

for k ∈ {1,2, . . . , ttrunc} do
for tA ∈ {1,2, . . . , ttrunc} do

for tB ∈ {1,2, . . . , ttrunc} do
// The average Werner parameter (eq. (5.35))
w A ←W [`, tA]
wB ←W [`, tB ]
t , w ← g ((tA , w A), (tB , wB )) // (see eq. (5.17))
// Add terms to the numerator of eq. (5.33)...

p ← pswap
(
1−pswap

)k−1

p ← p ·T [`, tA] ·T [`, tB ]
if k = 1 then

// ... in the case of a single swap (eq. (5.34))
W [`+1, t ] ←W [`+1, t ]+w ·p

else
// ... in the case of multiple swaps (eq. (5.36))
for tfail ∈ {0,1,2, . . . , ttrunc −1} do

tdeliver ← t + tfail

add w ·p ·C [`+1,k −1, tfail] to W [`+1, tdeliver]
end

end
end

end
end
for t ∈ {1,2, . . . , ttrunc} do

// Normalise by dividing by the denominator of eq. (5.33)
W [`+1, t ] ← W [`+1, t ]/T [`+1, t ]

end
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5.3.2. SECOND ALGORITHM: DETERMINISTIC COMPUTATION
In this section, we present our full second algorithm, which computes the probability
distribution of the waiting time and average Werner parameter up to some pre-specified
truncation time ttrunc. The algorithm applies to the NESTED-SWAP-ONLY repeater proto-
col. In what follows, we first show how to compute the probability distribution of the
waiting time Tn of the NESTED-SWAP-ONLY protocol by recursion (see sec. 5.2.1). After
this, we outline how our algorithm performs a modified version of this computation on
the finite domain {1,2, . . . , ttrunc}. We finish the section by extending its computation to
include the average Werner parameter (sec. 5.2.2).

Let us start by showing how to derive the probability distribution of the waiting time
Tn in the NESTED-SWAP-ONLY protocol. For a single repeater segment (n = 0), the wait-
ing time follows the geometric distribution as given in eq. (5.11). For nesting levels
` ∈ {0,1,2, . . . ,n}, the relation between the probability distributions of M` and T` follows
straightforwardly from eq. (5.12):

Pr(M` = t ) = Pr(T` ≤ t )2 −Pr(T` ≤ t −1)2. (5.30)

Now we compute the probability distribution of T`+1|K`, which is the waiting time con-
ditioned on the number of swaps needed that transform 2`-hop entanglement to the
final 2`+1-hop entanglement:

Pr(T`+1 = t |K` = k) = Pr

(
k∑

j=1
M ( j )
`

= t

)

=
 k∗

j=1
m`

 (t ) (5.31)

where we have denoted m`(t ) := Pr(M` = t ) and ∗ denotes convolution of functions (see
sec. 5.1.3). The marginal probability distribution of T`+1 is calculated from the distribu-
tion of the conditional random variable T`+1|K` as

Pr(T`+1 = t ) =
∞∑

k=1
pswap(1−pswap)k−1 Pr(T`+1 = t |K` = k) (5.32)

where we used the fact that the number of swaps K` is geometrically distributed with
parameter pswap.

Our algorithm computes the probability distribution of Tn by iterating the proce-
dure in the eqs. (5.30), (5.31) and (5.32) over ` from 0 to n − 1 and is outlined in al-
gorithm 2. Its implementation follows naturally from the equations above except for
the following remarks. First, in the algorithm, the sum in eq. (5.32) is truncated at the
pre-specified truncation time ttrunc. That this truncation yields correct probabilities
Pr(T`+1 = t ) for all t ∈ {0,1, . . . , ttrunc} follows from the fact that Pr(T`+1 = t |K` > t ) = 0
since the generation of entanglement over any number of hops takes at least a single
time step. Second, the convolutions in eq. (5.31) can be computed iteratively over k
by noting that Pr(T`+1 = t |K` = k +1) equals the convolution of Pr(T`+1 = t |K` = k) and
m`(t ). Moreover, for a single convolution we use a well-known algorithm based on
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Fast Fourier Transforms [43] which we denote by fast_convolution_algorithm in algo-
rithm 2. This subroutine computes the convolution of two arrays of size ttrunc in time
Θ(ttrunc log ttrunc).

The time complexity of the deterministic algorithm 2 equalsΘ(n ·t 2
trunc log ttrunc): the

iteration over a single level is dominated by the Θ(t 2
trunc log ttrunc) runtime of the convo-

lutions in eq. (5.31) because eqs. (5.30) and (5.32) are performed in linear time in ttrunc by
looping through an array of ttrunc elements. In sec. 5.4.2, we give an explicit expression
for the truncation time ttrunc which ensures that Pr(Tn ≤ ttrunc) ≥ 0.99. This expression is
polynomial in the number of repeater segments, which implies that algorithm 2 runs in
polynomial time in the number of segments also.

We extend our deterministic algorithm to also compute the average Werner param-
eter Wn(t ) := E [Wn |Tn = t ] of the end-to-end link produced at time t by a 2n-segment
NESTED-SWAP-ONLY repeater chain (see sec. 5.2.2). The computation of the average
Werner parameter at each level from 0 to n is performed after completion of the compu-
tation of the waiting time probabilities at the same level.

Let us explain the algorithm here (see algorithm (3) for pseudocode). At the base
level the fidelity W0(t ) equals the constant Werner parameter w0 as in sec. 5.2.2 for all
t ∈ {1,2, . . . , ttrunc}. At a higher level, the Werner parameter of a link which is delivered
at time t is the output of gW from eq. (5.18), averaged over all possible realisations of
waiting times Tn which yield Tn = t . In order to precisely define what we mean by ‘re-
alisation’, note that the waiting time Tn and average Werner parameter Wn as expressed
recursively in sec. 5.2.2 are a function of Kn copies of (Tn−1,Wn−1), the waiting time and
Werner parameter at one level lower. Regarding (Tn ,Wn) as a function with Kn and all
such copies of (Tn−1,Wn−1) as input, we define a ‘realisation’ of (Tn ,Wn) as its evaluation
on particular instances of these copies.

Using the notion of realisation, we obtain the Werner parameter of the 2`-hop link at
levels ` ∈ {1,2, . . . ,n}, given that it was produced at time t :

W`(t ) =

∑
r :

r delivers link at t

p`(r ) ·W av
`

(r )

∑
r :

r delivers link at t

p`(r )
(5.33)

where r is a realisation of (T`,W`) and W av
`

(r ) denotes the average Werner parameter of

the 2`-hop that realisation r delivers with p`(r ) its probability of occurrence.

In what follows, we will derive expressions for p`(r ) and W av
`

(r ). This will give us an
explicit expression for W`(t ) and it is this expression that our algorithm evaluates. We
distinguish between two cases of realisations for computing p`(r ). In the first case, only
a single swap (i.e. K` = 1) is needed to produce the 2`-hop entanglement, i.e. the first
swap from level `−1 to ` is successful. The realisations r that belong to this case can be
parameterised by the times tA and tB at which the two 2`−1-hop links are generated. The
total probability of occurrence of these realisations, each of which delivers a 2`-hop link
at time gT(tA , tB ) (see eq. (5.10)), is given by

p`(r ) = Pr(K` = 1)Pr(T` = tA)Pr(T` = tB ) (5.34)
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and the average Werner parameter of the produced 2`-hop entangled link is

W av
` (r ) = gW((tA ,W`−1(tA)), (tB ,W`−1(tB ))) (5.35)

where gW is given in eq. 5.18.
In the second case, at least a single entanglement swap to produce 2`-hop entangle-

ment fails. Note that the average Werner parameter only depends on the states of the
two 2`−1-hops that are produced as input to the last swap since the entanglement in-
putted into the failing swaps is lost. In the case of multiple swaps we can therefore group
together the realisations for which the following four quantities are identical: the wait-
ing times tA and tB for the production of the last two 2`−1-hop links with in addition the
number of swaps k and the time tfail that these failed swaps need. The total probability
of occurrence of such a group of realisations equals the product of four probabilities,

p`(r ) = Pr(K` = k) ·Pr(T` = tfail|K` = k −1)

·Pr(T` = tA) ·Pr(T` = tB ) (5.36)

while the average Werner parameter W av
`

(r ) of the 2`-hop that is produced by each of
these realisations is identical to the first case and is given in eq. (5.35). Each realisation
in this group delivers a 2`-hop link at time tfail + gT(tA , tB ) (see eq. (5.10)).

Our algorithm loops over each group of realisations, evaluates their probabilities of
success in eqs. (5.34) and (5.36) and their average Werner parameter in eq. (5.35) and
subsequently computes W`(t ) using eq. (5.33). The domain of the time parameters tA , tB

and tfail is bounded from above by ttrunc since no short-range link that is used to pro-
duce a long-range link at time ≤ ttrunc can take longer than ttrunc. Also, the total number
of swaps Kn runs up to ttrunc since it cannot exceed the time at which the end-to-end
link is delivered by the same reasoning as the truncation of the sum in eq. (5.32), i.e.
Pr(Tn+1 = t |Kn > t ) = 0. The pseudocode of the deterministic algorithm for computing
the average Werner parameter can be found in algorithm 3.

The time complexity of the Werner-parameter algorithm can be inferred directly
from algorithm 3 by the four loops with domain of size Θ(ttrunc), which implies that the
full time complexity is Θ(n · t 4

trunc). This is polynomial in the number of repeater chain
segments (see sec. 5.4.2).

5.3.3. POSSIBLE EXTENSIONS
In this section, we give examples of possible extensions of the Monte Carlo algorithm and
the deterministic algorithm. First, we provide an example of how the two algorithms can
be extended to different quantum state and noise models than the Werner states and de-
polarising decoherence noise used in this work. We also give an example of an extension
to a different network topology than a chain. We finish the section by sketching what is
needed to extend the deterministic algorithm to the d-NESTED-WITH-DISTILL protocol
in the future.

An example of applying the algorithms to more general quantum states is to track
states that are diagonal in the Bell basis, i.e. we assume that the generated single-hop
states can be written as ∑

j∈{±}

∑
k∈{±}

p j ,k
∣∣φ j ,k

〉〈
φ j ,k

∣∣
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where |φ+±〉 := (|0〉⊗ |0〉± |1〉⊗ |1〉)/
p

2 and |φ−±〉 := (|0〉⊗ |1〉± |1〉⊗ |0〉)/
p

2 are the four
Bell states and the Bell coefficients p j ,k are probabilities which sum to 1. The imple-
mentation of the Monte Carlo method would have the Werner parameter Wn replaced
by a joint random variable on the four2 Bell coefficients (p++, p+−, p−+, p−−), while the
deterministic algorithm would compute the average over each of these four coefficients
individually in a fashion similar to the average of the Werner parameter (eq. (5.33)). Suc-
cessful entanglement swap and distillation operations both map Bell-diagonal states to
Bell-diagonal states [24] and could thus each be formulated as an operation on the four
Bell coefficients.
An example of a different model of memory decoherence noise (currently eq. (5.3)) is the
application of the Pauli operator Z := |0〉〈0|− |1〉〈1| on one of the two qubits with proba-
bility

q(∆t ) := 1

2

(
1−e−∆t/Tcoh

)
where∆t is the time that the state has resided in memory and Tcoh is the joint coherence
time of the two memories that hold the two qubits. This probabilistic application of Z
acts on the Bell coefficients as

p j ,k 7→ (1−q(∆t )) ·p j ,k +q(∆t ) ·pm,`

where pm,` is the coefficient belonging to |φm,`〉 := (12 ⊗Z ) |φ j ,k〉 with
12 := |0〉〈0|+ |1〉〈1|. Lastly, the algorithm could be generalised by modelling the
swapping and distillation operations as noisy operations by concatenating the perfect
operation with a noise map that can be written as operation on the four Bell coefficients.

In addition to more general state and noise models, both algorithms could also be
applied to more general network topologies than a chain. An example is the genera-
tion of a Greenberger-Horne-Zeilinger (GHZ) state [44] in a star network, where there is
a single central node and each of the other nodes (the leaves) is connected to this sin-
gle central node only. All leave nodes start by generating an elementary link with the
central node, after which the central node performs a local operation to convert these
links into a single GHZ state on all the leave nodes, e.g. by a combination of two-qubit
controlled-rotation gates and single-qubit measurements [39]. Similar to our model of
the swap operation, we could model the local operation that produces the GHZ state as
probabilistic, motivated by probabilistic two-qubit operations in linear photonics [45].
In the same spirit as the NESTED-SWAP-ONLY protocol and our analysis of it in sec. 5.2,
the central node waits for all links to have been generated (which corresponds to the
maximum of their individual waiting times) while failure of the local operation requires
regeneration of the elementary links (which corresponds to the geometric compound
sum). Since both maximums and geometric sums of random variables can be treated by
the two algorithms, both could be used to sample the produced state and waiting time
in the star network.

2In fact, tracking only three of these coefficients already completely characterise a Bell-diagonal state since
they sum to one.
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5.4. BOUNDS ON THE MEAN WAITING TIME
In this section, we first show how to use the deterministic algorithm from section 5.3.2 to
obtain bounds on the mean of the waiting time Tn , which improve upon a common an-
alytical approximation. Then we give an explicit expression for the choice of truncation
time in the algorithm for which 99% of probability mass of Tn is captured.

5.4.1. NUMERICAL MEAN USING THE DETERMINISTIC ALGORITHM
Here, we show how to obtain bounds on the mean of Tn using the deterministic algo-
rithm from section 5.3.2. Such bounds are interesting since a common approximation
to the mean in the regime of small success probabilities pgen and pswap, the 3-over-2-
formula [6, 13, 21, 34]

E [Tn] ≈
(

3

2pswap

)n

· 1

pgen
, (5.37)

overestimates the waiting time for large success probabilities. For example, it can be
seen in [35, fig. 7(a)] (reproduced in this chapter as fig. 5.7, top plot) that for pgen =
pswap = 1, the ratio [true mean]/[approximation] of the true mean E [Tn] and the ap-
proximation in eq. (5.37) decreases as a function of the number of segments and equals
0.2 for a chain of 16 segments, i.e. an overestimation by a factor 1

0.2 = 5. In fig. 5.7 (bot-

tom plot), it can be seen that this overestimation grows to more than a factor 1
0.05 = 20

for a chain of 2048 segments.
The bounds are obtained in two steps. First, we perform the deterministic algorithm

to compute the probability distribution of Tn , as described in section 5.3.2. Since this
probability distribution is only computed by the algorithm on the truncated domain
{0,1, . . . , ttrunc}, we cannot calculate the mean of Tn . Instead, we compute its empirical
mean, which we define for random variable X with the nonnegative integers as domain
as

E [X , ttrunc] :=
ttrunc∑
t=1

Pr(X ≥ t ). (5.38)

Note that the empirical mean reduces to the real mean for ttrunc →∞ (see section 5.1.3).
In the second step, we quantify how well the empirical mean of Tn approximates

its real mean. We need two tools for doing so. As first tool, we introduce the random
variable T upper

n , which is identical to Tn except for the fact that the two links required
for the entanglement swap are produced sequentially at every level rather than in par-
allel. We proceed analogously to the first step: we perform a modified version of the
deterministic algorithm to compute the probability distribution of T upper

n and we com-
pute its empirical mean (details and formal definition of T upper

n can be found in ap-
pendix 5.7.2). In contrast to Tn , we are able to compute the real mean of T upper

n , which
equals E [T upper

n ] = (2/pswap)n ·1/pgen (proof in appendix 5.7.2). The second tool is the
following proposition, which states that for Tn the empirical mean converges at least as
fast to the real mean with increasing truncation time as for T upper

n .

Proposition 1. The difference between the real mean and the empirical mean (eq. (5.38))
of the waiting time is bounded as

0 ≤ E [Tn]−E [Tn , ttrunc] ≤
(

2

pswap

)n

· 1

pgen
−E

[
T upper

n , ttrunc
]
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and the two bounds coincide for ttrunc →∞. The random variable T upper
n is formally de-

fined in appendix 5.7.2.

The main tool for proving proposition 1 is the fact that T upper
n stochastically domi-

nates Tn for every nesting level n, which means that Pr(Tn ≥ t ) ≤ Pr
(
T upper

n ≥ t
)

for all
t ∈ {0,1,2, . . . }. We formally prove the proposition and give a more detailed version of the
computation of the probability distribution of T upper

n in appendix 5.7.2.

5.4.2. CHOOSING A TRUNCATION TIME FOR THE DETERMINISTIC ALGO-
RITHM

The truncation time that is inputted into the deterministic algorithm determines how
much probability mass will be captured by the algorithm. The captured probability mass
can be bounded from above using Markov’s inequality:

Pr(Tn ≥ ttrunc) ≤ E [Tn]/ttrunc. (5.39)

We upper bound the mean of Tn in eq. (5.39) by invoking proposition 1 with ttrunc = 0.
The latter reduces to E [Tn] ≤ (2/pswap)n ·1/pgen and thus implies

Pr(Tn ≥ ttrunc) ≤
(

2

pswap

)n

· 1

pgen · ttrunc
.

Consequently, setting

ttrunc =
(

2

pswap

)n

· 1

pgen
· 1

1−0.99
(5.40)

ensures that an end-to-end link will be produced with probability Pr(Tn < t ) = 99%.

5.5. NUMERICAL RESULTS
In this section we investigate different repeater chain protocols with the help of our
two algorithms. We start with the NESTED-SWAP-ONLY protocol, first considering the
waiting time distribution of the first produced end-to-end link and subsequently also
its average fidelity. We also show how fidelity and waiting time are affected by the
d-NESTED-WITH-DISTILL protocol. Finally we consider the effect of including the com-
munication time in swap operations.

Our proof-of-principle implementation can be found in [46]. The reported computa-
tion times have been obtained from single-threaded computations on commodity hard-
ware (specifically: a single logical processor of an Intel i7-4770K CPU @ 3.85 GHz). In the
plot captions in this section, we state the computation time for the largest number of
repeater segments because computing the distribution of (Tn ,Wn) requires finding the
distribution of (Tn−1,Wn−1) first (see sec. 5.2).

First we consider the waiting time in the NESTED-SWAP-ONLY protocol. Our algo-
rithms are able to recover the results from Shchukin et al. [35], both the full distribution
of waiting time exactly (fig. 5.2, top plot) as well as its mean up to arbitrary precision
(fig. 5.7, top plot), and extend these results from 16 to 8192 and to 2048 repeater seg-
ments, respectively (figs. 5.2, 5.3 and 5.7). In fig. 5.3 we compare results from both our
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Figure 5.2: Probability distributions of the waiting time and bounds on the mean (vertical shaded areas,
see 5.4.1) calculated by the deterministic algorithm for the NESTED-SWAP-ONLY protocol. The repeater chain
parameters are pgen = 0.1, pswap = 0.9, and the number of repeater segments is given by N . The top plot
recovers the results from Shchukin et al. [35, Fig.10(a)]. Computation time ≈ 5 seconds for N = 8192.

Monte Carlo and deterministic algorithm and find that there is good agreement between
the two. For high swapping success probability pswap the deterministic algorithm can
compute probability distributions up to thousands of nodes, as illustrated in fig. 5.2. For
small pswap, we have found that the number of repeater segments N = 2n that we can
simulate is limited in practice. This is a consequence of the fact that ttrunc grows fast
in N for small pswap if we want the guarantee that 99% of the probability distribution is
captured (see eq. (5.40)), and the polynomial scaling in ttrunc of the algorithm’s runtime.

Secondly, we consider the average fidelity of the NESTED-SWAP-ONLY and
d-NESTED-WITH-DISTILL protocols. We investigate the NESTED-SWAP-ONLY protocol
with a small number of segments (N = 1,2,4), see fig. 5.4. We observe that fidelity sta-
bilises as the waiting time increases, and it stabilises at values for which the state remains
entangled in spite of the absence of distillation. Again, the deterministic and Monte
Carlo algorithms show good agreement. Adding the calculation of fidelity increases the
time complexity of the deterministic algorithm, which reduced the maximum number
of segments that we could simulate. We found that the Monte Carlo algorithm is able
to simulate a larger number of segments, as its computational complexity is unchanged
when also tracking the fidelity.
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Figure 5.3: The probability distributions of waiting time for repeater chains with varying number of segments
N for the NESTED-SWAP-ONLY protocol, computed using the deterministic algorithm (left plots) and generated
from 15,000 samples from the Monte Carlo simulation (right plots). Vertical shaded areas indicate bounds on
the mean in the left plots (see sec. 5.4.1) and the sample mean ± one standard error in the right plot. In the bot-
tom right plot the shaded bands are confidence bands for a probability z = 0.01 that the actual distribution lies
outside of these bands, obtained from the Dvoretzky-Kiefer-Wolfowitz inequality [42] discussed in sec. 5.3.1.
The repeater chain parameters are pgen = 0.1, pswap = 0.5. The computation time for the deterministic algo-
rithm ≈ 9 minutes, while for the Monte Carlo algorithm ≈ 30 minutes.

Third, we consider the d-NESTED-WITH-DISTILL protocol. In fig. 5.5, we study the
effects of distillation in a repeater chain of 4 segments comparing one distillation round
(d = 1) against no distillation rounds (d = 0) for two different memory coherence times.
We first observe the increase in the waiting times caused by the generation of the addi-
tional links necessary for distillation. An increase in waiting time is accompanied by an
increase in memory decoherence, which implies that the degree to which distillation is
beneficial depends on the memory coherence time. The values for the coherence time
we chose allow to show both types of behaviour.

Finally, we incorporate the communication time for the entanglement swap into
our model following sec. 5.3.1. Fig. 5.6 shows how the output probability distributions
change when we include this communication time. We confirm that, as stated by Brask
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Figure 5.4: The average fidelity of links delivered at time t by an N -segment NESTED-SWAP-ONLY repeater
chain (top row), and the corresponding probability distributions (bottom row), from both the deterministic
algorithm (left column) and the Monte Carlo algorithm (right column) using 250,000 samples. For the deter-
ministic figures the vertical shaded areas indicate numerical bounds on the mean (see sec. 5.4.1), and for the
Monte Carlo figures these indicate the sample mean ± one standard error. The repeater chain parameters for
NESTED-SWAP-ONLY protocol are pgen = 0.1, pswap = 0.5, Tcoh = 50 time steps and the fidelity of the elementary
links equals F0 = 0.95, which corresponds to Werner parameter w0 = (4 ·0.95−1)/3 ≈ 0.93 following eq. (5.2).
The computation time for the deterministic algorithm ≈ 15 minutes, while for the Monte Carlo algorithm ≈ 20
seconds.

and Sørensen [6], omitting this communication time gives a good approximation for
small pgen, but not for larger pgen.

In order to get a rough analytical understanding of the probability distributions for
the waiting time that our algorithms have computed, we fitted a generalised extreme
value (GEV) distribution to them, which has cumulative distribution function

Pr(X ≤ t ) = exp
(
−(1+ξs)−1/ξ

)
(5.41)

where X is a random variable following the GEV distribution, s = (t −µ)/σ, and ξ > 0,
σ > 0 and µ ∈ R are the free parameters [47]. Fig. 5.8 shows a typical result of such a
fit. We find that the fit seems rather close to the computed distribution, although the
difference in the means indicates that the fit should only be used to make approximate
statements.

A good fit could provide a speedup for the deterministic algorithm, since the algo-
rithm computes the distribution at each level from the distribution at the previous level.
To be precise, the algorithm’s runtime can be reduced by starting the computation at
the fitted distribution instead of computing the distribution at level n, and subsequently
using this distribution to have the algorithm compute the distribution at level n +1. In
order to ensure that the distribution at the final level > n still approximates the real dis-
tribution, careful analysis of the acquired error of the distribution at higher levels is re-
quired. We leave such error accumulation analysis, based on a distribution that forms a
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Figure 5.5: Comparison between the d-NESTED-WITH-DISTILL protocol with a single distillation round on every
level (d = 1) and the NESTED-SWAP-ONLY protocol (no distillation) for a repeater chain with N = 4 segments, for
longer and shorter memory coherence times Tcoh. The additional repeater chain parameters are pgen = 0.1,
pswap = 0.5, and F0 = 0.95, which corresponds to w0 ≈ 0.93. While the goal of distillation is to improve the
fidelity of delivered links, when the coherence time is too short compared to the time needed to deliver a link,
adding distillation actually decreases the fidelity (orange arrow). For longer coherence times adding distilla-
tion does improve the fidelity (blue arrow). In both cases the waiting time increases because entanglement
distillation requires more links to be generated. For the NESTED-SWAP-ONLY protocol, the waiting time is in-
dependent of the memory coherence time (in contrast to fidelity), which can be observed from the identical
waiting times in the bottom plot. Each curve has been generated from 250,000 Monte Carlo algorithm samples.
Computation time ≈ 15 seconds without distillation, ≈ 100 seconds with distillation.

phenomenological fit, for future work.

5.6. DISCUSSION

Quantum networks enable the implementation of communication tasks with qualita-
tive advantages with respect to classical networks. A key ingredient is the delivery of
entanglement between the relevant parties. In this chapter, we provide two algorithms
for computing the probability that an entangled pair is produced by a quantum repeater
chain at any given time and also show how to compute the pair’s Bell-state fidelity. The
first algorithm is a probabilistic Monte Carlo algorithm whose precision can be rigor-
ously estimated using standard techniques. The second one is deterministic and exact
up to a chosen truncation time.

Both algorithms run in time polynomial in the number of nodes, which is faster than
the exponential runtime of previous algorithms. The workhorse behind the improved
complexity is a formal recursive definition of the waiting time and the state produced
by the chain. We developed an open source proof-of-principle implementation in [46],
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Figure 5.6: Waiting time distributions with and without communication time for entanglement swapping for
the NESTED-SWAP-ONLY protocol, with entanglement generation success probabilities pgen = 0.1 (left) and
pgen = 0.9 (right), generated from 250,000 samples from the Monte Carlo algorithm. The vertical bars indi-
cate the mean ± one standard error. As stated by Brask and Sørensen [6] omitting this communication time
gives a good approximation when pgen is small. The repeater chain has N = 16 segments and pswap = 0.5.
Computation time ≈ 5 minutes per curve.

which allows to analyse repeater chains with several thousands of segments for some
parameter regimes.

The deterministic algorithm is the fastest of the two for a large set of success proba-
bilities for generating single-hop entanglement pgen and entanglement swapping pswap.
The Monte Carlo algorithm could be sped up to a factor proportional to the number of
samples by parallelisation. A second option to reduce the runtime would be to construct
estimates of the random variables at each level of a repeater chain and sample from the
estimates to estimate the following level. A careful analysis would be necessary to ensure
that the speed up does not vanish when taking the accumulated precision error into ac-
count.

We have been able to adapt our algorithms to several protocols for repeater chains.
More concretely, we have studied the NESTED-SWAP-ONLY protocol and two generalisa-
tions. The first one includes distillation d-NESTED-WITH-DISTILL, the second one takes
into account the communication time in the swap operations. We believe that the tools
we have developed here can be extended to several other protocols without losing the
polynomial runtime. Some examples which we leave for further work include tracking
the full density matrix, variations of d-NESTED-WITH-DISTILL with unequal spacing of
the nodes or with a number of segments different than a power of two, and the investiga-
tion of more general network topologies. Inspired by hardware, it would also be interest-
ing to model decaying memory efficiency and nodes that can not generate entanglement
concurrently with both adjacent neighbours.

In summary, we have proposed two efficient algorithms to characterise the be-
haviour of repeater chain protocols. We expect our algorithms to find use in the study
and analysis of future quantum networks. Moreover, the existence of protocols capa-
ble of efficiently characterising the state produced opens the door to real-time decision
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Figure 5.7: Ratio between the bound on the mean computed by the deterministic algorithm and the 3-over-2
approximation eq. (5.37) as a function of entanglement generation success probability pgen with deterministic
swapping (pswap = 1). For each number of segments N , the figures show two lines: one for the upper and
lower bound on the mean (see sec. 5.4.1). The fact that for each N only a single thick line rather than two
lines can be seen indicates that the bounds on the mean almost coincide. The top figure recovers work by
Shchukin et al. [35, fig. 7(a)], whose exponential-time algorithm based on Markov chains is able to compute the
mean exactly while our algorithms can get arbitrarily tight bounds on the mean (deterministic algorithm) or
approximate the mean with arbitrary precision (Monte Carlo algorithm) at the benefit of polynomial runtime.
The runtime improvement over the Markov-chain approach allows us to extend the results of Shchukin et al. to
more than 2000 segments (bottom figure). Each curve was generated by running the deterministic algorithm
for 40 different values of pgen (0.025,0.05, . . . ,1) and the truncation time was set to ttrunc = 1000. Computation
time for each curve . 2 seconds.

taking at the nodes based on this knowledge.

5.7. APPENDIX

5.7.1. DISTILLATION OF WERNER STATES

In this appendix, we find the state after successful entanglement distillation on two
Werner states. Performing entanglement distillation on two Werner states with Bell-state
fidelities FA and FB yields a state with Bell-state fidelity [24]

(
FAFB + 1

9 F̄A F̄B
)

pdist
(5.42)
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Figure 5.8: Waiting time distribution (64 segments, pgen = 0.1, pswap = 0.5), computed with the deterministic
algorithm (sec. 5.3.2), and a fit to the same distribution using the generalised extreme value (GEV) distribution
(see eq. (5.41); fitting parameters: ξ≈−0.5997,µ≈ 3092.7,σ≈ 2694.9). Although the two distributions seem to
coincide fairly well by eye, the difference between the means (vertical lines) is relatively large (a factor ≈ 1.5).
For different number of segments and success probabilities pgen and pswap, the difference between fitted and
computed distribution is similar.

where the probability of success pdist is given by

FAFB + 1

3
FA F̄B + 1

3
F̄AFB + 5

9
F̄A F̄B (5.43)

where we have denoted F̄ = 1−F . Although the output state is not a Werner state, it is
always possible to transform it into a Werner state with the same Bell-state fidelity by
local operations. We rewrite eqs. (5.42) and (5.43) as function of the Werner parameters
w A and wB of the input states rather than their fidelities FA and FB using eq. (5.2), which
yields eqs. (5.5) and (5.6).

5.7.2. COMPUTATION OF T upper
n

In this appendix, we first prove proposition 1 and subsequently show how a modified
version of the deterministic algorithm from section 5.3.2 computes the empirical mean
E

[
T upper

n , ttrunc
]

from eq. (5.38).

PROOF OF PROPOSITION 1

The random variable T upper
n for n ∈ {0,1,2, . . . } is recursively defined as

T upper
0 = T0 (5.44)

M upper
n+1 = (

T upper
n

)(A) + (
T upper

n
)(B)

(5.45)

T upper
n+1 =

Kn∑
k=1

(
M upper

n
)(k)

(5.46)
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where T0 is defined in section 5.2.1 and Kn is geometrically distributed with parameter
pgen for all n.

For random variables X and Y , both defined on a subset D of the nonnegative inte-
gers, we say that the random variable Y stochastically dominates the random variable X ,
denoted by X ≤st Y , if Pr(X ≤ x) ≥ Pr(Y ≤ x) for all x ∈D. We prove that T upper

n stochasti-
cally dominates Tn for all n ≥ 0, for which we need the following lemma.

Lemma 1. Let X ,Y , A and B each be discrete random variables taking values in the non-
negative integers and let X ′ (Y ′) denote an i.i.d. copy of X (Y ). Then the following hold:

(a) If X ≤st Y , then max
{

X , X ′}≤st Y +Y ′.

(b) If X ≤st Y , then A+X ≤st A+Y .

(c) If X ≤st Y and A ≤st B, then A+X ≤st B +Y .

(d) If m ∈ {1,2, . . . } and X ≤st Y , then
∑m

j=1 X ( j ) ≤st
∑m

j=1 Y ( j ).

(e) If K and K ′ are i.i.d. geometric random variables with parameter p and X ≤st Y ,
then

∑K
j=1 X ( j ) ≤st

∑K ′
j=1 Y ( j )

where we use the notation X (.) to denote an i.i.d. copy of X , following sec. 5.1.3.

Proof. For statement (a), we explicitly use that Y only takes nonnegative values so that
we can write

Pr
(
Y +Y ′ ≤ y

)= y∑
z=0

Pr
(
Y ≤ y − z

)
Pr

(
Y ′ = z

)
.

which is, by the fact that any cumulative distribution function is monotone increasing,
smaller than

y∑
z=0

Pr
(
Y ≤ y

)
Pr

(
Y ′ = z

) = Pr
(
Y ≤ y

)2

≤ Pr
(
X ≤ y

)2

= Pr
(
max

{
X , X ′}≤ y

)
where the inequality is immediate by X ≤st Y . Statement (b) is proven as

Pr(A+X ≤ z) =
∞∑

a=0
Pr(A = a)Pr(X ≤ z −a)

≥
∞∑

a=0
Pr(A = a)Pr(Y ≤ z −a)

= Pr(A+Y ≤ z)

and statement (c) follows by repeated application of (b):

A+X ≤st A+Y = Y + A ≤st Y +B = B +Y .
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Statement (d) can be proven using the fact that
∑m

j=1 X ( j ) = X (m) +∑m−1
j=1 X ( j ) and state-

ment (c) by induction on m. For proving statement (e), first note that
∑K

k=1 X (k) where K
is geometrically distributed with parameter p has cumulative distribution function

Pr

(
K∑

k=1
X (k) ≤ x

)
= p ·

∞∑
k=1

(1−p)k ·Pr

(
k∑

j=1
X ( j ) ≤ x

)

which is a linear combination of the functions f X
k : x 7→ Pr

(∑k
j=1 X ( j ) ≤ x

)
. Positivity of

the weights p · (1−p)k together with the fact that the f X
m (x) ≥ f Y

m (x) for all m ∈ {1,2, . . . }
and all x ∈ {0,1, . . . } (see (d)) imply (e).

Using lemma 1, it is straightforward to prove that T upper
n stochastically dominates Tn .

Proposition 2. It holds that Tn ≤st T upper
n for all n ≥ 0.

Proof. We use induction on n. The base case n = 0 is immediate since T upper
0 = T0

(eq. (5.45)). Now suppose that Tn ≤st T upper
n for some n ≥ 0. It follows directly from

lemma 1(a) that Mn ≤st M upper
n , where Mn is given in eq. (5.9) and M upper

n in eq. (5.45).
Using lemma 1(e), we find that the dominance Mn ≤st M upper

n implies Tn+1 ≤st T upper
n+1

where Tn+1 and T upper
n+1 are defined in eqs. (5.8) and (5.46), respectively. This concludes

our proof.

Using this stochastic dominance on the waiting time on each nesting level, we are
now ready to prove proposition 1. First, notice that, in contrast to Tn , the mean of T upper

n
can be computed analytically.

Lemma 2.

E
[
T upper

n
]= (

2

pswap

)n

· 1

pgen

Proof. We use induction on n. Since T upper
0 equals T0, which is geometrically distributed

with parameter pgen, we have E
[
T upper

0

]= 1/pgen. For the induction step, first note that
by linearity of the mean, we have

E
[
M upper

n
]= E

[(
T upper

n
)(A)

]
+E

[(
T upper

n
)(B)

]
= 2E

[
T upper

n
]

.

The last step is given by Wald’s identity [48], which states that the mean of a compound
sum equals the product of the mean of the summand and the random variable that is
the summation upper bound:

E
[
T upper

n+1

]= E [Kn] ·E
[
M upper

n
]= 1

pswap
·2E

[
T upper

n
]

.

Closing the recursion relation on E
[
T upper

n
]

yields the expression in the lemma.

The following lemma, which states that stochastic domination implies domination
of the empirical mean from eq. (5.38) provides the last step in proving proposition 1.
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Lemma 3. Let X and Y be discrete random variables, both defined on the nonnegative
integers. If X ≤st Y , then

0 ≤ E [X ]−E [X , ttrunc] ≤ E [Y ]−E [Y , ttrunc]

for each ttrunc ∈ {0,1, . . . }. In particular, for ttrunc = 0 it follows that E [X ] ≤ E [Y ].

Proof. The lower bound is an immediate consequence of positivity of probabilities and

E [X ]−E [X , ttrunc] =
∞∑

t=ttrunc+1
Pr(X ≥ t ). (5.47)

The upper bound follows from eq. (5.47) and the definition of stochastic dominance:
Pr(X ≥ t ) ≤ Pr(Y ≥ t ) for all t ∈ {0,1, . . . }.

Proposition 1 follows from lemma 3 by replacing X by Tn and Y by T upper
n , and sub-

stituting E
[
T upper

n
]

by the expression in lemma 2.

COMPUTING THE EMPIRICAL MEAN OF T upper
n

Here, we outline how the deterministic algorithm computes E
[
T upper

n , ttrunc
]
, which is

needed for determining a bound on the mean of Tn using proposition 1. First note
that T upper

n and Tn are identical except for the difference between Mn in eq. (5.9), which
equals the maximum of two copies of the waiting time, and M upper

n in eq. (5.45), which
equals their sum. We modify the algorithm to account for this difference by replacing
the computation of the probability distribution of Mn in eq. (5.30) by the convolution

Pr
(
M upper

n = t
)= t∑

j=0
Pr

(
T upper

n−1 = j
)

Pr
(
T upper

n−1 = t − j
)
.

In order to determine E
[
T upper

n , ttrunc
]
, we first run the modified algorithm to compute

the cumulative probability distribution Pr
(
T upper

n ≤ t
)

for t ∈ {0,1, . . . , ttrunc}, after which
we calculate

E
[
T upper

n , ttrunc
]= ttrunc∑

t=1

[
1−Pr

(
T upper

n ≤ t −1
)]

.
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[38] F. Rozpędek, R. Yehia, K. Goodenough, M. Ruf, P. C. Humphreys, R. Han-
son, S. Wehner, and D. Elkouss, Near-term quantum-repeater experiments with
nitrogen-vacancy centers: Overcoming the limitations of direct transmission, Phys.
Rev. A 99, 052330 (2019).

[39] J. Cirac, A. Ekert, S. Huelga, and C. Macchiavello, Distributed quantum computa-
tion over noisy channels, Physical Review A 59, 4249 (1999).

[40] R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting
a hidden-variable model, Phys. Rev. A 40, 4277 (1989).

[41] W. Feller, An introduction to probability theory and its applications, Vol. I (John Wi-
ley and Sons, New York, 1957) p. 461.

[42] A. Dvoretzky, J. Kiefer, and J. Wolfowitz, Asymptotic minimax character of the sam-
ple distribution function and of the classical multinomial estimator, Ann. Math.
Statist. 27, 642 (1956).

[43] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex
fourier series, Mathematics of Computation 19, 297 (1965).

[44] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going beyond Bell’s theorem,
arXiv:0712.0921 (2007).

[45] M. A. Nielsen, Optical quantum computation using cluster states, Phys. Rev. Lett. 93,
040503 (2004).

[46] git, Waiting time and fidelity in quantum repeater chains, https://github.com/
sebastiaanbrand/waiting-time-quantum-repeater-chains (2019).

[47] M. Charras-Garrido and P. Lezaud, Extreme value analysis: an introduction, Journal
de la Société Française de Statistique 154, pp (2013).

[48] A. Wald, Sequential Analysis (Courier Corporation, Dover, New York, 1947).

http://dx.doi.org/ 10.1103/PhysRevA.99.042313
http://dx.doi.org/10.1103/PhysRevA.99.052330
http://dx.doi.org/10.1103/PhysRevA.99.052330
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1214/aoms/1177728174
http://dx.doi.org/10.1214/aoms/1177728174
http://dx.doi.org/ 10.2307/2003354
http://dx.doi.org/ 10.1103/PhysRevLett.93.040503
http://dx.doi.org/ 10.1103/PhysRevLett.93.040503
https://github.com/sebastiaanbrand/waiting-time-quantum-repeater-chains
https://github.com/sebastiaanbrand/waiting-time-quantum-repeater-chains




6
EFFICIENT OPTIMISATION OF

CUT-OFFS IN QUANTUM REPEATER

CHAINS

In this chapter, we investigate how repeater protocols can be improved by adding a cut-
off, for instance, a maximum storage time for entanglement after which it is discarded.
We will first develop an improved version of the algorithm of Chapter 5 for computing
the probability distribution of the waiting time and fidelity of entanglement produced
by repeater chain protocols. The algorithm from this chapter is faster and moreover can
handle protocols which include cut-offs. Next, we use the algorithm to optimise cut-offs
in order to maximise secret-key rate between the end nodes of the repeater chain. We find
that the use of the optimal cut-off extends the parameter regime for which secret key can
be generated and moreover significantly increases the secret-key rate for a large range of
parameters.

This chapter is a modified version of the publication: B. Li, T. Coopmans and D. Elkouss, Efficient optimization
of cut-offs in quantum repeater chains, IEEE Transactions on Quantum Engineering (2021) .
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Most quantum repeater schemes require quantum memories [1, 2], which makes
them suffer from memory noise if the memories are imperfect. To see how, we note
that in many protocols an entangled pair is generated that needs to wait in a quantum
memory until the generation of an additional pair. During this waiting time the first
pair decoheres, reducing the quality of the final entanglement produced. At the cost of
a lower rate, this effect can be mitigated by imposing a cut-off condition. For instance, a
maximum storage time for entanglement after which it is discarded [3].

Cut-offs have been considered for entanglement generation in different contexts [3–
14]. Notably, they play a key role for generating entanglement already in multi-pair ex-
periments between adjacent nodes [5]. They also promise to be helpful in near-term
quantum repeater experiments [6, 7, 11]. In the multi-repeater case, it is possible to ob-
tain analytical expressions for the waiting time for general families of protocols [12, 13],
though in general it appears challenging to extend those methods to characterise the
quality of the states produced. Santra et al. [8] analytically optimised the distillable en-
tanglement for a restricted class of quantum repeater schemes.

In this chapter, we first characterise the performance of a very general class of re-
peater schemes including cut-offs, probabilistic swapping, distillation and memory de-
coherence. We sidestep the challenge of analytical characterisation by computing the
probability distribution of the waiting time and fidelity of the first generated entangled
pair between the repeater’s end nodes. For this, we improve the closed-form expres-
sions from Chapter 5 to get faster algorithm runtimes and extend the expressions to re-
peater schemes which involve distillation and cut-offs. The runtime of the algorithm
which evaluates these expressions is polynomial in the pre-specified size of the com-
puted probability distribution’s support.

In the second part of the chapter, we optimise the choices of the cut-off to maximise
the secret-key rate. We study different cut-off strategies and find that the use of the op-
timal cut-off extends the parameter regime for which secret key can be generated and
moreover significantly increases the secret-key rate for a large range of parameters. We
also analyse the dependence of the optimal cut-off on different properties of the hard-
ware and find that memory quality highly influences the effectiveness of the cut-off,
whereas the influence is small for success probability of entanglement swapping. In
addition, our numerical simulations show that for symmetric repeater protocols with
evenly spaced nodes, a nonuniform cut-off (different cut-off time in different parts of
the repeater chain) does not yield a significant improvement in end-to-end node secret
key rate compared to a uniform cut-off.

This chapter is organised as follows. In section 6.1, we describe the class of repeater
schemes under study and elaborate on the hardware model used in our simulations.
Section 6.2 presents the closed-form expressions and their evaluation algorithms for the
waiting time distribution and output quantum states of repeater schemes which include
cut-offs. The second part of the chapter, on optimisation of the cut-off, consists of sec-
tion 6.3, where we provide details on the optimisation procedure, and the results of the
numerical optimisation as presented in section 6.4. Section 6.5 ends the chapter with a
conclusion.
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6.1. PRELIMINARIES
The algorithm we describe in this chapter is applicable to all tree-shaped-type quan-
tum repeater protocols, which are constructed from four building blocks or PROTOCOL-
UNITs: GENERATE, SWAP, DISTILL, CUT-OFF. We refer to sec. 3.3 in Chapter 3 for an expla-
nation of these building blocks. See Fig. 6.1(a) for a visualisation of the building blocks
and Fig. 6.1(b) for an example tree-shaped-type protocol, composed of these building
blocks.

Note that the class the algorithm from this section is applicable to, is an extension of
the class studied in Chapter 5 with the addition of cut-offs. The CUT-OFF building block
takes two links as input (not necessarily between the same nodes). It accepts or rejects
the two input links depending on a success condition. In case of success, it leaves the
two input links untouched and outputs them again. In case of failure, both input links
are discarded. In this chapter, we study three different success conditions. In the first
two, DIF-TIME-CUT-OFF and MAX-TIME-CUT-OFF, ‘success’ is declared if respectively the
difference or the maximum of the input links’ production times does not exceed some
prespecified cut-off threshold. In the third strategy, FIDELITY-CUT-OFF, the input states
are passed on only if they are both of sufficient quality. This success condition translates
to a cut-off on the individual input states’ fidelity with a maximally-entangled state (see
section 6.1.1).

In the remainder of this section, we first summarise the hardware model we use,
which is identical to the one used in Chapter 5 and finish with a brief note on the limita-
tions of our use of cut-offs.

6.1.1. MODEL
We here describe how we model each of the four PROTOCOL-UNITs described in sec-
tion 6.1, which is identical to the modelling in Chapter 5, except for the newly introduced
CUT-OFF unit. For each PROTOCOL-UNIT, we describe the success condition as well as the
quantum state that it outputs.

First, we model the fresh entanglement generation (GEN) using schemes which gen-
erate links in heralded attempts of duration Linternode/c, where Linternode is the intern-
ode distance and c is the speed of light in the used transmission medium, e.g. glass
fibre [1]. We assume that each attempt is independent and succeeds with constant prob-
ability 0 < pgen ≤ 1. For simplicity, we assume that the nodes are equally spaced with in-
ternode distance L0, so that each attempt in elementary link generation takes duration
∆t0 = L0/c, which will be the time unit in our numerical simulation.

We model the elementary link as a Werner state ρ(w) with constant Werner parame-
ter w = w0 [15]:

ρ(w) = w
∣∣Φ+〉〈

Φ+∣∣+ (1−w)
14

4
(6.1)

where the Bell state

|Φ+〉 = (|00〉+ |11〉)/
p

2 (6.2)

is a maximally-entangled two-qubit state and

14/4 = (|0〉〈0|+ |1〉〈1|)⊗ (|0〉〈0|+ |1〉〈1|)/4
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GEN
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GENGEN GEN
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Node
𝐴𝐴

Node
𝑀𝑀
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𝐵𝐵

Figure 6.1: In this chapter, we consider the tree-shaped-type repeater protocols as introduced in Chapter 3,
composed of four different types of PROTOCOL-UNITs. (a) The four PROTOCOL-UNITs: elementary-link gen-
eration between adjacent nodes (GEN), entanglement swapping for connecting two short-distance links in
a single long-distance one (SWAP), entanglement distillation for converting two low-quality links in a single
high-quality link (DIST) and discarding two links (CUT-OFF), for example if their generation times differ by
more than a pre-specified cut-off time. The repeater chain protocols we consider in this chapter are composed
of combinations of the four PROTOCOL-UNITs, provided that each CUT-OFF is succeeded by a SWAP or DIST.
The in-/outgoing arrows of each PROTOCOL-UNIT indicate the number of entangled links that the block con-
sumes/produces. (b) An example of a composite tree-shaped-type protocol on three nodes (end nodes A
and B and single repeater M). At the start of the protocol, two fresh elementary links are generated (GEN) in
parallel between adjacent nodes A and M and subsequently selected through a CUT-OFF block. The first two
links that survive the cut-off are then distilled (DIST) into a single link of higher quality. Asynchronously, the
nodes M and B generate (GEN) pairs of links until the distillation (DIST) succeeds. Once distillation on both
sides of node M has succeeded, the resulting links A ↔ M and M ↔ B are converted via a SWAP into a single
entangled link between the end nodes A and B .

is the maximally-mixed state on two qubits. We refer to the parameter w with 0 ≤ w ≤ 1
as the Werner parameter. Since a Werner state is completely determined by its Werner
parameter, we use the Werner parameter to indicate the quantum state.

Equivalently to the Werner parameter, we will also express the state’s quality using
the fidelity, which for general density matrices ρ and σ is defined as

F (ρ,σ) := Tr

(√p
ρσ

p
ρ

)2

.

The fidelity between a Werner state ρ(w) and
∣∣Φ+〉〈

Φ+∣∣ equals

F = 1+3w

4
.

For the other PROTOCOL-UNITs, the success conditions are summarised in Table 6.1.
In short: we model entanglement swapping (SWAP) as succeeding with a constant prob-
ability pswap. For entanglement distillation (DIST), we use the BBPSSW protocol [16]
which we adapt by bringing the output state back into Werner form. The latter oper-
ation does not change the output state’s fidelity with the target state |Φ+〉. The success
probability pdist of distillation is a function of the input states’ Werner parameters (see
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Chapter 5 for details). The cut-off (CUT-OFF) success condition depends deterministi-
cally on the waiting time or the fidelity of the input links.

The states that any PROTOCOL-UNIT outputs are Werner states at any time of the ex-
ecution of the protocol. Indeed, a successful entanglement swap or distillation attempt
maps Werner states to Werner states (see Chapter 5 for a brief explanation). Also, the
CUT-OFF leaves the input states untouched in case of success, thereby outputting Werner
states if it got those as input. For each PROTOCOL-UNIT, the Werner parameters of the
output links wout are a function of those of the input links and are given in Table 6.1.

In addition to the fact that the PROTOCOL-UNITs change the quantum states they
handle, the local quantum memories that are used to store the links are imperfect. In
our model, a link with initial Werner parameter w , which lives in memory for time ∆t
until it is retrieved, decoheres to Werner parameter

wdecayed = w ·e−∆t/tcoh . (6.3)

where tcoh is the joint coherence time of the two involved memories.
For simplicity, we ignore the time needed for classical communication between the

nodes in this chapter as well as the time to perform the local operations. The algorithm
we provide can be easily extended to include these features, following the extension de-
scribed in Chapter 5.

In summary, for a given composite protocol (including the cut-off condition τ or wcut

for each CUT-OFF block), the simulation of the entanglement distribution process is de-
termined by 4 hardware parameters: the success probability of elementary link genera-
tion pgen, the swap success probability pswap, the Werner parameter of the elementary
link w0 and the memory coherence time tcoh.

6.1.2. WAITING TIME AND PRODUCED END-TO-END STATE IN REPEATER

SCHEMES USING PROBABILISTIC COMPONENTS
In this chapter, we study the time until the first entangled pair of qubits is generated
between the end nodes of the repeater chain (called ‘waiting time’ from here on) and
the state’s quality, expressed as its Werner parameter (recall that the end-to-end state
is a Werner state, see section 6.1.1). Because the repeater chain protocols we study in
this chapter are composed of probabilistic components, both the waiting time and the
end-to-end state’s Werner parameter are random variables. For an illustration of the
random behaviour of the waiting time, see Fig. 6.2. We characterise the quality by the
averaged Werner parameters of all states generated at the same time step t . The algo-
rithm we present in this chapter computes the probability distribution Pr(T = t ) of the
waiting time T and the average Werner parameter W (t ) of the end-to-end state which is
delivered at time t .

We finish this section by noting that by considering the average Werner parameter,
we ignore the ‘history’ of a link, resulting in a suboptimal estimation of the fidelity of the
states. To see this, consider for example the three-node protocol of Fig. 6.1(b). In this
protocol, the following two series of events lead to an output entangled pair between
nodes A and B at time t = 10: (i) all GEN blocks fail at each timestep t < 10 but suc-
ceed at time t = 10, after which all other PROTOCOL-UNITs also succeed immediately, (ii)
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Pr 𝑇A = 𝑡

𝑊A(𝑡)
PROTOCOL-UNIT

(SWAP/DIST)
Pr 𝑇B = 𝑡

𝑊B(𝑡)

Pr 𝑇out = 𝑡

𝑊out(𝑡)

Figure 6.3: The workflow of the algorithm for one PROTOCOL-UNIT (SWAP or DIST). It takes the waiting time
distribution and Werner parameter of the two input links and computes those of the output.

the PROTOCOL-UNITs between A and M all succeed at time t = 1, while the GEN blocks
between M and B succeed at time t = 10, followed by all other remaining PROTOCOL-
UNITs also succeeding at time t = 10. In case (i), no entanglement has waited in mem-
ory, whereas in case (ii), the produced link between A and M has waited 10 timesteps
and decohered in that time. By keeping track of the timestamps at which the several
PROTOCOL-UNITs succeeded, one could distinguish these two scenarios. Since the re-
sulting fidelity estimation computation is rather complex and in this chapter, we focus
on quantifying the effect of a cut-off, we leave such advanced fidelity estimation for fu-
ture work.

6.2. COMPUTING THE WAITING TIME DISTRIBUTION AND THE

OUTPUT WERNER PARAMETER
In this section, we present closed-form expressions of the waiting time probability distri-
bution and Werner parameter of the output links for each PROTOCOL-UNIT, as function
of waiting time distribution and Werner parameter of its input links. Expressions for a
composite protocol are obtained by iterative application over the PROTOCOL-UNITs that
the protocol consists of. These expressions naturally lead to an algorithm for their eval-
uation, which we also present in this section.

Closed-form expressions for GEN and SWAP were already obtained Chapter 5, where
we explicitly mentioned that the approach does not generalise straightforwardly to DIST.
Here, we include DIST and even CUT-OFF, provided the latter is succeeded by SWAP or
DIST. The novel idea is to use separate expressions for the waiting time probability dis-
tribution of a successful and failed attempt. We then express the total waiting time dis-
tribution and the Werner parameter as those of the successful attempt averaged by the
occurrence probability of all possible sequences of failed attempts, where the weighted
average is efficiently computed using convolution. As an additional benefit, the evalua-
tion algorithm for SWAP is faster than the one presented in Chapter 5.

In the following, we first derive general closed-form expressions for the waiting time
distribution and Werner parameter of one PROTOCOL-UNIT in section 6.2.1. We then give
specific expressions for each PROTOCOL-UNIT individually in sections 6.2.2 to 6.2.5. In
the last section (section 6.2.6), we show how these expressions can be converted into an
efficient algorithm. We also explain how to modify the closed-form expressions using the
discrete Fourier transform, motivated by its use in [17, 18]. These modified expressions
lead to an even faster algorithm for computing the waiting time and Werner parameter,
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which we provide in Appendix 6.6.2. We denote the random variables of the waiting time
and average Werner parameter as T and W (t ), with subscript A and B for the input links
and ‘out’ for the output link (see Fig. 6.3).

6.2.1. GENERAL CLOSED-FORM EXPRESSIONS FOR WAITING TIME AND PRO-
DUCED STATES FOR ALL PROTOCOL-UNITS

RANDOM VARIABLE EXPRESSION FOR THE WAITING TIME OF PROTOCOL-UNITS

We start by presenting an expression for the random variable Tout. To study the waiting
time distribution, we divide the total waiting time into the waiting time for each attempt.
An attempt can fail or succeed and it repeats until the first successful attempt occurs (see
Fig. 6.2). The total waiting time Tout is given by

Tout =
K∑

i=1
M (i ) (6.4)

where M (i ) are i.i.d. random variables characterising the waiting time of each attempt
and therefore each is a function of the waiting time of two input links TA, TB. For exam-
ple, for SWAP, we have M = max(TA,TB), i.e. we need to wait until both links are ready
to perform the operation. K is the number of attempts we need until the first successful
attempt occurs, which is also a random variable.

The success or failure of one attempt is characterised by a probability p. The suc-
cess probability p of one attempt is independent of that of others and is given by
p = p(tA, tB, wA, wB) (Table 6.1). We reduce the Werner parameter dependence to time
dependence by plugging in w A = WA(tA) and wB = WB(tB). Hence, we write p(tA, tB) in
the rest of this section.

The time dependence of p implies that, in general, K is correlated to M ( j ). To make
this correlation between K and M in (6.4) explicit, we introduce a random variable Y .
Y denotes the binary random variable describing success (1) or failure (0) of a single at-
tempt, subjected to the success probability p(tA, tB). The time-dependent success prob-
ability can be understood as the success probability with given waiting time tA, tB of the
input links:

p(tA, tB) = Pr(Y = 1|TA = tA,TB = tB).

We then rewrite (6.4) with a sum over all possible number of attempts weighted by its
occurrence probability[3]:

Tout =
∞∑

k=1

{(
Y (k)

k−1∏
j=1

(
1−Y ( j )

))
·

k∑
i=1

M (i )

}
. (6.5)

The expression in round brackets evaluates to 1 precisely if Y (k) = 1 and Y ( j ) = 0 for all
j < k, and to 0 in all other cases. This factor thus makes that only the sum

∑k
i=1 M (k) is

taken for which k is the first successful attempt. Notice that Y ( j ) and M (i ) are correlated
for all i = j because they describe the same attempts. In the next section, we go further
to compute the probability distribution of Tout.
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A CLOSED-FORM EXPRESSION FOR THE WAITING TIME DISTRIBUTION

In the following, we give an expression of the waiting time distribution Pr(Tout = t ) for
one PROTOCOL-UNIT.

We consider the generation time of a successful or failed attempt separately and use
the joint distribution of M and Y . We define the joint distribution that one attempt
succeeds/fails and takes time t as

Ps(t ) :=Pr(M = t ,Y = 1)

=∑
tA,tB:max(tA,tB)=t

Pr(TA = tA,TB = tB) ·p(tA, tB), (6.6)

Pf(t ) :=Pr(M = t ,Y = 0)

=∑
tA,tB:max(tA,tB)=t

Pr(TA = tA,TB = tB) · [1−p](tA, tB). (6.7)

In the above equation, we iterate over all possible combinations of the input links’ gen-
eration time tA, tB that leads to a waiting time t for this attempt.

With the definition (6.6) and (6.7), the sum of the waiting time for all attempts can be
obtained by

Pr(Tout = t ) =
∞∑

k=1

 k−1∗
j=1

P ( j )
f

∗Ps

 (t ) (6.8)

where ∗ is the notation for convolution and the sum over k considers all the possible

numbers of attempts. The notation
k−1∗
j=1

P ( j )
f represents the convolution of k − 1 inde-

pendent functions Pf. In the above equation, the discrete linear convolution is defined
by

[ f1 ∗ f2](t ) =
t∑

t ′=0

f1(t − t ′) · f2(t ′). (6.9)

If f1, f2 describe two probability distributions of two random variables, their convolution
is the distribution of the sum of those two random variables. However, neither Pf or Ps

characterises a random variable since they are joint distributions including Y . That is to
say, Ps and Pf do not sum up to 1. Instead, we have∑

t
Pf(t )+∑

t
Ps(t ) = 1.

Therefore, the convolution here cannot be simply interpreted as a sum of two random
variables. Instead, it is the summed waiting time conditioned on the success/failure of
each attempt.

As we will show in sec. 6.2.6, eq. (6.8) is sufficient for the derivation of the main algo-
rithm for computing the probability distribution of Tout we present in this chapter. The
algorithm’s runtime is partially determined by the sum and the convolution in the sum-
mand in eq. (6.8). Fortunately, these can be eliminated by the use of the discrete Fourier
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transform, resulting in a faster alternative algorithm. Below, we use the Fourier trans-
form to derive an equivalent expression to eq. (6.8). The alternative algorithm is given in
Appendix 6.6.2

Since the discrete Fourier transform acts on a finite sequence of numbers, we first
truncate the probability distribution at a fixed time L, i.e. we obtain the finite sequence
{Pr(Tout = t )|t = 0,1,2, . . . ,L}. If ~x := x0, x1, . . . , xL−1 is a sequence of complex numbers,
then its Fourier transform F (~x) is the sequence y0, y1, . . . , yL−1 given by

y j =
L−1∑
k=0

xk ·exp
(−2πi · j ·k/L

)
(6.10)

where i is the complex unit. The Fourier transform is a linear map and moreover it con-
verts convolutions into element-wise multiplication, i.e. F (~x ∗~x ′) = F (~x) ·F (~x ′). As a
consequence, taking the Fourier transform of both sides of eq. (6.8) yields

F [Pr(Tout = t )] =
∞∑

k=1

[(
k−1∏
j=1

F (Pf)
( j )

)
·F [Ps]

]
(t ).

Because, P ( j )
f are identical distribution for all j , we use the identity

∑∞
k=1 x(k−1) = 1/(1−x)

to obtain

Pr(Tout = t ) =F−1
[

F [Ps]

1−F [Pf]

]
(t ). (6.11)

A CLOSED-FORM EXPRESSION FOR THE WERNER PARAMETER

Here, we derive the expression for the Werner parameter Wout(t ).
To arrive at Wout(t ), we first compute the average Werner parameter of the output

link of one attempt, given that it succeeds and finishes at time t :

Ws(t ) =

∑
tA,tB:max(tA,tB)=t

Pr(TA = tA,TB = tB) · [p ·wout](tA, tB)

Ps(t )
. (6.12)

Here, wout is the Werner parameter of the output link of a successful attempt and p
the success probability (Table 6.1). We again simplify the notation with wout(tA, tB) =
wout(tA, tB,WA(tA),WB(tB)).

Next, we take a weighted average of W ′
s over all possible sequences of failed attempts,

followed by a single successful attempt:

Wout(t ) =

∞∑
k=1

 k−1∗
j=1

Pf

∗ (Ps ·Ws)

 (t )

Pr(Tout = t )
. (6.13)

where
k−1∗
j=1

P ( j )
f computes the waiting time distribution of k −1 failed attempts and the

additional convolution is the weighted average.
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For eq. (6.8), which is an expression for the probability distribution of Tout, we ob-
tained a more compact equivalent, eq. (6.11), by moving to Fourier space. By an analo-
gous derivation, we can get a more compact expression for Wout than eq. (6.13):

Wout(t ) =F−1
[
F [Ps ·Ws]

1−F [Pf]

]
1

Pr(Tout = t )
(t ). (6.14)

6.2.2. SPECIFIC CASE: GEN
We give here the expression for PROTOCOL-UNIT GEN. Since GEN does not have input
links, the output does not rely on the expression introduced in the section 6.2.1. Because
one attempt in GEN takes one time step and the success probability pgen is a constant,
the waiting time can be described by a geometric distribution

Pr(Tout = t ) = pgen(1−pgen)t−1.

The output state is a Werner state with Werner parameter w0 as described in sec-
tion 6.1.1.

6.2.3. SPECIFIC CASE: SWAP
For entanglement swap, since pswap is constant, Y is not correlated with M . As a result,
Ps and Pf differ only by a constant coefficient (see (6.6) and (6.7)). Therefore, we can
factor the constant out and get

Pr(Tout = t ) =
∞∑

k=1
pswap(1−pswap)k−1

 k∗
j=1

m


where

m(t ) := Pr (M = t ) =∑
tA,tB:max(tA,tB)=t

Pr(TA = tA,TB = tB).

This is exactly the geometric compound distribution obtained in Chapter 5.
For the Werner parameter, we can directly use (6.13) and obtain

Wout =
∞∑

k=1
pswap(1−pswap)k−1

 k−1∗
j=1

m

∗ (
m ·W ′

s

) . (6.15)

Compared to the expression in Chapter 5, this expression replaces the iteration over all
pair of possible input Werner parameters for each k by convolution.

Both expressions above can also be written in Fourier space by substituting Ps =
pswapm(t ) and Pf = (1−pswap)m(t ) in (6.11) and (6.14).

6.2.4. SPECIFIC CASE: DIST
For entanglement distillation, the success probability depends on the Werner parame-
ters. As discussed in section 6.2.1, we can compute Tout and Wout because we iterate
over all possible combinations of tA and tB and we use W (t ) to reduce the dependence
on Werner parameters to the dependence on the waiting time. The calculation goes as
follows. First, we compute Pf and Ps using p(tA , tB ) = pdist(W (tA),W (tB )) (Table 6.1).
Then, we plug in Pf and Ps in (6.8) to compute Tout. Finally, Wout can be calculated sim-
ilarly using Table 6.1, (6.12) and (6.13).
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6.2.5. SPECIFIC CASE: CUT-OFF
CUT-OFF selects the input links and accepts them if the cut-off condition described in
section 6.1.1 is fulfilled. We consider only the case where CUT-OFF is followed by SWAP or
DIST, so that the two blocks together output a single entangled link.

THE WAITING TIME DISTRIBUTION

We define a new binary variable Ycut representing whether the cut-off condition is ful-
filled. The corresponding success probability is described by pcut in Table 6.1. In addi-
tion, we also define the waiting time of one cut-off attempt as Z , in contrast to M for a
swap or distillation attempt. For CUT-OFF, we need to distinguish the waiting time of a
successful and a failed attempt. In the case of success, we always have Zs = max(TA,TB),
i.e. we wait until two links are produced. However, in the case of failure, the wait-
ing time is different for different cut-off strategies. With the notation Zf = tfail(TA,TB),
we have the following: for DIF-TIME-CUT-OFF, tfail(TA,TB) = min(TA,TB) + τ, because
there is no need to wait for the second link longer than the cut-off threshold. For
MAX-TIME-CUT-OFF, tfail(TA,TB) is the constant τ, i.e. the maximal allowed waiting time.
For FIDELITY-CUT-OFF, it is tfail(TA,TB) = max(TA,TB).

Similar as the nested structure shown in Fig. 6.2, a swap or distillation attempt is now
composed of several cut-off attempts. We can write its waiting time M as

M =∑
k

{[
Y (k)

cut

k−1∏
j=1

(
1−Y ( j )

cut

)]
·
[

Z (k)
s +

k−1∑
i=1

(
Z (i )

f

)]}

This expression will replace M = max(TA,TB) used in (6.5). For τ=∞ or wcut = 0, i.e. no
cut-off, Ycut is always 1. Therefore, k = 1 is the only surviving term and the two expres-
sions coincide.

To calculate the waiting time distribution, we need three joint distributions: P ′
f for

unsuccessful input link preparation because of the cut-off, P ′
s,f for successful preparation

but unsuccessful swap/distillation and P ′
s,s for both successful:

P ′
f (t ) =Pr(M = t ,Ycut = 0)

=∑
tA,tB:tfail(tA,tB)=t

Pr(TA = tA,TB = tB) · [1−pcut](TA,TB)

P ′
s,f(t ) =Pr(M = t ,Ycut = 1,Y = 0)

=∑
tA,tB:max(tA,tB)=t

Pr(TA = tA,TB = tB) · [pcut · (1−p)](tA, tB)

P ′
s,s(t ) =Pr(M = t ,Ycut = 1,Y = 1)

=∑
tA,tB:max(tA,tB)=t

Pr(TA = tA,TB = tB) · [pcut ·p](tA, tB).

The prime notation indicates that they describe the waiting time of one attempt in CUT-
OFF, in contrast to one attempt in swap or distillation.
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For one attempt in swap/distillation with time-out, we then get similarly to (6.8)

Ps(t ) = Pr(M = t ,Y = 1) =
∑
k

 k−1∗
j=1

P ′( j )
f

∗P ′
s,s

 (t )

Pf(t ) = Pr(M = t ,Y = 0) =
∑
k

 k−1∗
j=1

P ′( j )
f

∗P ′
s,f

 (t )

as well as the expressions in Fourier space analogous to (6.11)

Ps(t ) = Pr(M = t ,Y = 1) =F−1

[
F [P ′

s,s]

1−F [P ′
f ]

]
,

Pf(t ) = Pr(M = t ,Y = 0) =F−1

[
F [P ′

s,f]

1−F [P ′
f ]

]
.

The total waiting time then follows by substituting the expressions for Pf and Ps above in
(6.8) or (6.11).

For entanglement swap, i.e. constant success probability pswap, simplification can be
made for this calculation. In this special case, P ′

s,f and P ′
s,s differ only by a constant and

the same holds for Ps and Pf.

THE WERNER PARAMETER

For the Werner parameter, we now need three steps.
We start from calculating the resulting Werner parameter of a swap or distillation for

the very last preparation attempt where Ycut = Y = 1. It is denoted by W ′
s and we only

need to replace Ps by P ′
s,s and p ·wout by pcut ·p ·wout in (6.12).

Next, we compute the Werner parameter Ws(t ) as a function of time t that includes
the failed cut-off attempts, in analogue to the derivation of eq. (6.13). Ws(t ) is the Werner
parameter that the pair of output links of CUT-OFF will produce, given that the swap or
distillation operation following is successful:

Ws(t ) =

∞∑
k=1

 k−1∗
j=1

P ′
f

∗ (P ′
s,s ·W ′

s )

 (t )

Ps(t )
.

Finally, we consider the time consumed by failed attempts in SWAP or DIST and obtain

Wout(t ) =

∞∑
k=1

 k−1∗
j=1

Pf

∗ (Ps ·Ws)

 (t )

Pr(Tout = t )
.

Using the Fourier transform, the two expressions above become

Ws(t ) =F−1

[
F [P ′

s,s ·W ′
s ]

1−F [P ′
f ]

]
1

Ps
,

Wout(t ) =F−1
[
F [Ps ·Ws]

1−F [Pf]

]
1

Pr(Tout = t )
.
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6.2.6. CONVERTING THE CLOSED-FORM EXPRESSIONS INTO AN EFFICIENT

ALGORITHM

In the sections above, we presented closed-form expressions for Tout and Wout for each
of the four PROTOCOL-UNITs, as a function of waiting time distribution and Werner pa-
rameter of the input links. In order to convert these expressions into an algorithm, we
take the same approach as in Chapter 5 and cap the infinite sum in (6.8) and (6.13) by
a pre-specified truncation time ttrunc. This yields a correct Pr(Tout = t ) and Wout(t ) for
t ∈ {1, . . . , ttrunc} since in each of the expressions with an infinite sum above, Pr(Tout = t )
and Wout(t ) are only dependent on waiting time and Werner parameter of input links
produced at time t ′ ≤ t .

We now show that the algorithm scales polynomially in terms of ttrunc. To analyse the
complexity, we divide the algorithm into two parts: computing the distribution for one
attempt, i.e. the iteration over all possible values of TA, TB ((6.6), (6.7) and (6.12)) and for
the whole PROTOCOL-UNIT((6.8) and (6.13)).

The complexity for the first part is O (t 2
trunc) since it iterates over two discrete ran-

dom variables up to ttrunc. For the second part, because we need at least one time
step in each attempt, i.e. Pr(T = 0) = 0, only the first ttrunc convolutions will have non-
zero contribution. We can perform the convolution iteratively for each k using at
most ttrunc convolutions. The complexity of one convolution with fast Fourier trans-
form (FFT) is O (ttrunc log ttrunc) [19]. Thus, the complexity of the second part scales as
O (t 2

trunc log ttrunc). The overall complexity, therefore, is O (t 2
trunc log ttrunc).

In appendix 6.6.2, we show that with further simplification of (6.6) and (6.7) as well as
expressions in Fourier space (equations (6.11) and (6.14)), the complexity can be reduced
to O (ttrunc log ttrunc), with an exponentially vanishing error.

The preceding discussion shows that the algorithm is efficient as a function of the
truncation time. However, for fixed truncation time, the probability mass captured by
the algorithm decreases as the number of nodes increases. For protocols without cut-off,
variations of the arguments in Chapter 5 would allow to prove that the algorithm intro-
duced here is also efficient for fixed probability mass. Unfortunately, the arguments do
not translate to protocols with cut-off. This is because for these protocols, the trunca-
tion time that covers a fixed probability mass can grow exponentially with the number
of nodes, i.e. such an algorithm can not exist.

As an example, consider a nested protocol on 2n repeater segments (n = 0,1,2, . . . ),
which for n = 1 consists of a GEN block only, and for each additional level n > 1, each
pair of adjacent links is connected by a CUT-OFF followed by a SWAP. We set τ = 0 for
each cut-off, i.e. all elementary links need to be generated at the same time and also
all entanglement swaps should succeed at the first attempt for the links to survive all
the cut-offs. Since 2n elementary links need to be generated and the protocol consists
of 2n − 1 swaps, the probability of successful end-to-end entanglement before time t
equals 1− (1− p)t with p = pN−1

gen · pN−2
swap, i.e. decreases exponentially in the number of

nodes N = 2n +1.
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6.3. OPTIMISATION
In this section, we describe the details of our optimisation over cut-offs, including the
figure of merit and optimisation method.

In our numerical study, we use the secret-key rate of the BB84 protocol [20] as a figure
of merit to assess the performance of composite repeater protocols. We compute the
secret-key rate R as the secret-key fraction divided by the average waiting time

R = r

T̄
. (6.16)

The secret-key fraction r describes the amount of secret key that can be extracted from
the generated entanglement and is given by [21, 22]

r (w) = max{0,1−h[eX (w)]−h[eZ (w)]}

where h(p) = −p log2(p)− (1−p) log2(1−p) is the binary entropy function and eX (eZ )
is the quantum bit error rate in the X (Z ) basis. Since the quantum states tracked by
our algorithm are Werner states at any point in the execution of the composite repeater
protocol (see section 6.1), the quantum bit error rate can be expressed as function of the
end-to-end state’s Werner parameter:

eZ (w) = 〈01|ρ(w) |01〉+〈10|ρ(w) |10〉 = 1−w

2

for a Werner state ρ(w) defined in (6.1). The same result holds for eX because of the
symmetry of the Werner state. In section 6.6.3, we detail how we compute the secret-key
rate with truncated waiting time distribution and Werner parameter obtained from the
algorithm in section 6.2.6.

Since we have discrete time steps, we need an optimisation algorithm which is com-
patible with a discrete search space. We choose the differential evolution algorithm
implemented in the SciPy-optimisation library of the Python programming language
[23, 24].

6.4. NUMERICAL RESULTS
In this section, we optimise over repeater protocols with cut-offs in order to maximise
the rate at which secret key can be extracted from the produced end-to-end entangle-
ment. First, we use our algorithm from section 6.2 and the DIF-TIME-CUT-OFF strategy
(section 6.1) to study the effect of the cut-off on the waiting time and fidelity and show
that the use of a cut-off boosts secret-key rate. We then extend our study to two other
cut-off strategies, MAX-TIME-CUT-OFF and FIDELITY-CUT-OFF, and compare their perfor-
mance. For all three cut-off strategies, we observe that the resulting repeater protocols
produce secret key at significantly higher rates than their no-cut-off alternatives. Finally,
we focus on the DIF-TIME-CUT-OFF strategy and analyse the sensitivity of the optimal
cut-off threshold with respect to the hardware parameters.

We investigate repeater protocols with 3 nesting levels where at each nesting level the
range of entanglement is doubled by an entanglement swap. The protocol thus spans
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23 = 8 segments (8+1 = 9 nodes). Each entanglement swap operation is preceded by a
cut-off, i.e. the scheme is of the form

GEN → (→ CUT-OFF → SWAP)3. (6.17)

The numerical results in this section were obtained using our open-source imple-
mentation [25] of the algorithm from section 6.2 on consumer-market hardware (In-
tel i7-8700 CPU). We validated correctness of the implementation by comparison with
an extended version of the Monte Carlo algorithm from Chapter 5 (see Fig. 6.4 and ap-
pendix 6.6.1 for details).
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Figure 6.4: The probability distribution of the waiting time T and the average fidelity F (t ) of the end-to-end
link for a protocol with and without a cut-off on entanglements’ production time differences (solid lines) for
a 9-node repeater protocol of the form as in (6.17) (unit of time is the attempt duration of elementary link
generation, L0/c). We observe that the fidelity increases for most times t while the probability that the link is
produced at time t shifts to larger t , indicating a longer waiting time. The secret-key rates computed from the
data are 0 (without cut-off) and 0.32 ·10−7 (with cut-off). The parameters used are pgen = 10−4, pswap = 0.5,

w0 = 0.98, tcoh = 4·105 and the cut-offs for the three nesting levels are τ= (1.7,3.2,5.5)·104 (in increasing order
of number of segments spanned by the CUT-OFF block). Computation time ≈ 20 seconds for 3 ·106 time steps.
We observe good agreement with a Monte Carlo algorithm (dots), which we use for validating the correctness
of our implementation (see appendix 6.6.1 for details).

6.4.1. EFFECT OF DIF-TIME-CUT-OFF ON THE WAITING TIME AND FI-
DELITY

We start by investigating the DIF-TIME-CUT-OFF strategy, where links are discarded if
their production times differ by more than a predetermined threshold τ. We compute
waiting time and average fidelity for a particular choice of the cut-off threshold at each
of the three levels and compare it with the protocol without cut-off (cut-off duration
τ=∞ at each nesting level), see Fig. 6.4. We observe that the cut-off increases fidelity at
the cost of longer waiting time, as one would intuitively expect. We further quantify the
time-fidelity trade-off for a range of cut-offs in Fig. 6.5. For maximising the secret key
rate, we observe a single optimal choice of the cut-off threshold τ.
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Figure 6.5: Influence of choice of cut-off on average waiting time, average fidelity and secret-key rate for re-
peater protocols of the form (6.17) where the cut-off strategy is DIF-TIME-CUT-OFF. (Top) Increasing the cut-off
yields higher average generation rate (reciprocal of average waiting time T̄ ) but lower average fidelity F̄ . (Bot-
tom) The secret key rate R as a function of the cut-off time. The used parameters are pgen = 10−3, pswap = 0.5,

w0 = 0.98 and tcoh = 4 ·104. The chosen truncation time is 5 ·105. The cut-off time is chosen identical for all
three swap levels. Unit of time is the attempt duration of elementary link generation.

6.4.2. EXTENSION TO OTHER CUT-OFF STRATEGIES
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Figure 6.6: Comparison between three different cut-off strategies: cut-off on the difference of entangle-
ments’ production time (DIF-TIME-CUT-OFF), the fidelity (FIDELITY-CUT-OFF) and the total waiting time
(MAX-TIME-CUT-OFF, see sec. 6.1 for definitions). For each strategy, we find the optimised cut-off threshold
when applied to the 9-node repeater chain protocol from (6.17) with parameters: pgen = 0.1, pswap = 0.4,
w0 = 0.98, tcoh = 600. For each cut-off strategy, the plot shows the numerically found waiting time and fi-
delity distribution for the optimal protocol. We observe that the FIDELITY-CUT-OFF strategy yields the largest
secret-key rate. However, the DIF-TIME-CUT-OFF strategy only performs slightly worse. We observed the same
behaviour for all other parameter regimes we investigated.

We extend the analysis of the previous sub-section to two other cut-off strate-
gies: a cut-off on the fidelity (FIDELITY-CUT-OFF) and on the total waiting time
(MAX-TIME-CUT-OFF, see section 6.1 and Table 6.1 for definitions). To be precise,
we choose the same 9-node protocol from (6.17) and use FIDELITY-CUT-OFF and
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MAX-TIME-CUT-OFF as the CUT-OFF unit, respectively.
We observe that a single optimal cut-off threshold exists for both strategies, as we

saw before already for the DIF-TIME-CUT-OFF strategy in Fig. 6.5. For each strategy,
we optimise their cut-off parameters and plot the waiting time distribution and fi-
delity distribution in Fig. 6.6. As shown in the figure, although the FIDELITY-CUT-OFF

yields the highest secret-key rate, the distribution and resulting secret-key rate of the
DIF-TIME-CUT-OFF strategy are very close to those of the FIDELITY-CUT-OFF strategy. In
contrast, the MAX-TIME-CUT-OFF strategy performs significantly worse in the achieved
secret-key rate (≈ 10%). We find similar behaviour also in other parameter regimes.

Since the DIF-TIME-CUT-OFF strategy is straightforward to implement in experi-
ments while it performs only marginally worse than the best of the three strategies
(FIDELITY-CUT-OFF), we focus on this strategy for further analysis.

6.4.3. PERFORMANCE OF THE OPTIMAL CUT-OFF FOR VARYING HARDWARE

PARAMETERS
We proceed with optimising the cut-off in the DIF-TIME-CUT-OFF strategy to maximise
the secret key rate for a range of parameters. The maximal secret-key rates for differ-
ent repeater parameters are shown in Fig. 6.7(a-d). We observe that cut-offs extend the
parameter regime for which secret key can be generated. To see how much one can
gain in the secret key rate by using cut-offs, we choose two parameters tcoh and w0 and
plot the absolute increase in Fig. 6.8. We observe that the use of the optimal cut-off in-
creases the secret key rate for the entire parameter range plotted and the improvement
is largest close to the threshold parameters at which the no-cut-off protocol starts to
produce nonzero secret key.

In addition, we compare uniform and non-uniform cut-offs, where ‘uniform’ means
that we choose the same cut-off time for each nesting level. For the parameter
regimes studied, we observe that non-uniform and uniform cut-off perform similarly,
see Fig. 6.7(a-d).

Our next step is the sensitivity analysis of cut-off performance in the hardware pa-
rameters. For this, we first choose baseline values for the four hardware parameters and
find the corresponding optimal cut-off τbaseline. Given a target set of parameters that
deviates slightly from the baseline values (optimal cut-off τtarget), we quantify the sensi-
tivity by their relative performance difference

R(τtarget)−R(τbaseline)

R(τtarget)
(6.18)

where R is the secret-key rate achieved by the repeater protocol. If this relative difference
is small, the performance of cut-off is insensitive to the parameter deviation.

In Fig. 6.7(e-h), we plot the relative performance difference for deviations in each of
the four hardware parameters separately. We find that the performance of the baseline
cut-off is influenced most by variation in coherence time, while it is largely insensitive to
change in the swap success probability. For the coherence time and the remaining two
parameters, the elementary link quality and the success probability of elementary link
generation, we distinguish the case where the parameter is improved and the regime
where the parameter is made worse. We observe that a worse parameter results in a
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Figure 6.8: The absolute increase in secret key rate with the optimal cut-off compared to no cut-off as a func-
tion of memory coherence time and fidelity of the elementary links (= (1+ 3w0)/4, see section 6.1), for the
9-node repeater protocols as in (6.17) where the used cut-off strategy is DIF-TIME-CUT-OFF. The black solid
line separates the area where the no-cut-off protocol produces no secret key (left of the line) and where its
secret-key rate is strictly larger than zero (right of the line). We observe that for the entire parameter range
depicted in the figure, cut-offs increase the secret key rate and the absolute improvement is largest for param-
eters close to the key-producing threshold for the no-cut-off protocol (i.e. close to the black solid line). The
plot consists of 126 data points on a grid and the used parameters are pgen = 0.001 and pswap = 0.5. Time unit
is the duration of a single elementary link generation attempt.

significant performance difference with the optimal cutoff, while the performance dif-
ference is small when the parameter is improved.

We finish by investigating the most influential parameter, the coherence time, in
Fig. 6.9. We observe that the optimal threshold depends approximately linearly on the
memory coherence time, which could serve as a heuristic for choosing a performant
cut-off.

6.5. CONCLUSION
In this chapter, we optimised the secret key rate over repeater protocols including cut-
offs. Our main tool is an algorithm for computing the probability distribution of waiting
time and fidelity of the first generated end-to-end link. The algorithm is applicable to
a large class of quantum repeater schemes that can include cut-off strategies and dis-
tillation. Its runtime is polynomial in the support size of the probability distribution of
waiting time.

Our simulations show that the use of the optimal cut-off lowers the hardware quality
threshold at which secret key can be generated compared to the no-cut-off alternative.
Furthermore, we observed an increase in secret-key rate for the entire regime studied for
which the no-cut-off protocol produces nonzero key.
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Figure 6.9: Optimal cut-off as a function of the memory coherence time in the nested 9-node repeater protocols
from (6.17), where the cut-off strategy is (DIF-TIME-CUT-OFF). We observe that the numerically found optimal
cut-off (dots) is a linear function of the coherence time. Solid lines are linear fits. The hardware parameters
used are the same as those for Fig. 6.7 (d). When considering the same protocol on fewer nesting levels (3 and
5 nodes, respectively), we observe similar behaviour.

Regarding the choice of cut-off, we find that uniform cut-offs lead to a negligible
reduction in the secret key rate compared to the optimal set of cut-offs which differ per
nesting level. Moreover, the optimal uniform cut-off is highly sensitive to the quality of
the memory, while it is barely influenced by the success probability of swapping. Such
sensitivity could guide the heuristic cut-off optimisation of more complex protocols.

6.6. APPENDIX

6.6.1. VALIDATION AGAINST A MONTE CARLO ALGORITHM
In this section, we verify that our implementation of the deterministic algorithm pre-
sented in section 6.2 is correct by validation against the Monte Carlo sampling algorithm
from Chapter 5. For all repeater schemes we ran (up to 210 +1 nodes for some param-
eters), we observed good agreement between the waiting time probability distribution
and Werner parameter the algorithms computed, which is convincing evidence that our
implementation is correct. Fig. 6.4 depicts the result of a typical run.

What follows is a brief description of the Monte Carlo algorithm from Chapter 5, in-
cluding an extension to CUT-OFF. Each run of the Monte Carlo algorithm samples a tuple
of waiting time and Werner parameter. It is defined recursively by having a dedicated
function for each PROTOCOL-UNIT (described below) call the dedicated functions of the
two PROTOCOL-UNITs that produce its two input links. The recursion follows the repeater
protocol’s tree structure (see Fig. 6.1), resulting in a sampling algorithm of waiting time
and Werner parameter of the entire repeater protocol.

The dedicated functions for each of the four PROTOCOL-UNITs are as follows. If the
protocol is only a GEN, the Monte Carlo algorithm samples the waiting time from the
geometric distribution with parameter pgen and the Werner parameter is the constant
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w0. For the other PROTOCOL-UNITs, each of which takes two links as input, the algorithm
begins by initialising the total elapsed time t = 0. Then, it enters a loop which starts
by calling the dedicated functions of the PROTOCOL-UNITs that produce the two input
links, resulting in two samples (tA , w A) and (tB , wB ). The algorithm randomly declares
‘success’ or ‘failure’ according to the success probability in Table 6.1. If it succeeds, the
function breaks the loop and outputs t +max(tA , tB ) and the resulting Werner parameter
wout(tA , w A , tB , wB ) (see Table 6.1). If it fails, the total elapsed time t is increased by the
waiting time (max(tA , tB ) for SWAP and DIST, min(tA , tB )+τ for CUT-OFF) and the function
goes back to the start of the loop.

6.6.2. ALTERNATIVE ALGORITHM AND ITS COMPLEXITY

In section 6.2.6, we presented an O (t 2
trunc log ttrunc)-algorithm for evaluating analytically-

derived expressions for the waiting time distribution and average fidelity. Here, we
outline how the algorithm can be modified to achieve a complexity reduction to
O (ttrunc log ttrunc) for protocols composed of PROTOCOL-UNITs in Table 6.1 except for
FIDELITY-CUT-OFF. Similar to the algorithm from the main text, the modified algorithm
consists of two steps: first, evaluating the expressions regarding a single attempt (equa-
tions (6.6), (6.7) and (6.12)), followed by computing expressions regarding the whole
PROTOCOL-UNIT (equations (6.11) and (6.14)). We show a complexity reduction for both.

For the first part, we show how to evaluate (6.6), (6.7) and (6.12) in time O (ttrunc),
improving on the O (t 2

trunc) runtime of the algorithm in the main text. Our insight here is
that p and p ·wout, for SWAP and DIST (see Table 6.1), can always be written in the form∑

i
f (i )(tA) · g (i )(tB) (6.19)

where the f (i ) and g (i ) are arbitrary functions on the real numbers. For instance,
given tA ≥ tB, we can write the success probability of distillation pdist with f (1)(tA) = 1

2 ,

g (1)(tB) = 1 and f (2)(tA) = 1
2 pswapwA(tA)exp

(
− tA

tcoh

)
, g (2)(tB) = wB(tB )exp

(
tB

tcoh

)
. Conse-

quently, each of (6.6), (6.7) and (6.12) can be written in the form∑
tA,tB:max(tA,tB)=t

Pr(TA = tA,TB = tB) ·
∑

i
f (i )(tA)g (i )(tB) (6.20)

which can be rewritten by splitting up the sum in the regime tA ≥ tB and tB > tA :

t∑
tB=0

Pr(TA = t ,TB = tB) ·
∑

i
f (i )(t )g (i )(tB)

+
t−1∑

tA=0
Pr(TA = tA,TB = t ) ·

∑
i

f (i )(tA)g (i )(t ). (6.21)

The first term in (6.21) can be written as

Pr(TA = t ) ·
∑

i
f (i )(t ) ·G (i )(t ) (6.22)

where we have defined

G (i )(t ) =
t∑

tB=0
Pr(TB = tB)g (i )(tB).
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The expression for the second term in (6.21) can be found analogously. Computing (6.22)
for all t is now performed by first computing G (i )(t ) for all t , which requires linear time in
ttrunc, and then evaluating (6.22) for fixed t in constant time. Therefore, the complexity
for computing (6.22) and also for (6.20) for all t scales as O (ttrunc).

This complexity holds also for protocols with DIF-TIME-CUT-OFF and
MAX-TIME-CUT-OFF, as the cut-off condition appears only as an additional con-
straint on tA and tB in the sum of (6.21). For the third cut-off strategy we consider in this
chapter, FIDELITY-CUT-OFF, the cut-off condition is not a function of time and therefore
the above method does not work.

The second part regards the evaluation of (6.8) and (6.13) which is done exactly
by the algorithm from the main text in time O (t 2

trunc log ttrunc). Here, we give an
O (ttrunc log ttrunc)-algorithm which evaluates the equivalent expressions in Fourier space
given in section 6.2.6 (equations (6.11) and (6.14)) with arbitrarily small error. We pro-
ceed in two steps. First, we show how to evaluate the expressions in Fourier space exactly
in time O (t 2

trunc log t 2
trunc). Then, we show how to achieve a reduction to O (ttrunc log ttrunc)

with an arbitrarily small error.
The expressions in Fourier space (equations (6.11) and (6.14)) hold for any t in case

Ps , P f and Ws are defined for all t ≥ 0. However, in the implementation, we truncate the
distribution and only have access to them for 0 ≤ t < ttrunc, each stored as an array of
length ttrunc, and use the discrete Fourier transform defined in (6.10). The convolution
defined in this way is a circular convolution:

[ f1∗̃ f2](t ) =
t∑

t ′=0

f1(t − t ′) · f2(t ′)+
L−1∑

t ′=t+1

f1(L+ t − t ′) · f2(t ′) (6.23)

where L is the length of the array and ∗̃ denotes the circular convolution. The circular
convolution introduces discrepancy compared to the linear convolution defined in (6.9)
because [ f1∗̃ f2](t ) = [ f1 ∗ f2](t )+ [ f1 ∗ f2](L + t ). To avoid this, we pad the arrays of Ps ,
P f and Ws with zeroes until a length of L = t 2

trunc, which is longer than the size of ttrunc

times convolution of arrays of size ttrunc (see equivalent expressions (6.8) and (6.13), and
the algorithm presented in section 6.2.6). That is, we set Ps (t ) = 0 and P f (t ) = 0 for
ttrunc ≤ t < L = t 2

trunc. With this setup, the summand in the circular convolution is al-
ways 0 for t ′ > t and it coincides with the linear one. The complexity of the obtained
algorithm evaluating (6.11) and (6.14) is dominated by one Fourier transform and one
inverse Fourier transform on an array of length O (t 2

trunc). Since a Fourier transform on
an array of length L can be performed in time O (L logL), the algorithm has a complexity
of O (t 2

trunc log t 2
trunc).

We now show that we can reduce this complexity by zero-padding the arrays only
until a length of C ttrunc for some predefined constant C , yielding an exponentially small
error

ε= max
t

(|Pr(Tout = t )−Pr
(
Tapprox = t

)|)
in C of the distribution Pr

(
Tapprox = t

)
obtained with circular convolution. The resulting

algorithm has complexity of O (C ttrunc log(C ttrunc)) =O (ttrunc log ttrunc).
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The motivation behind this reduction is that Pr(Tout = t ) is the sum of all possible se-
quences of failed attempts (see (6.8)) and is exponentially decreasing for large t . For
a fixed number of attempts k, the probability results from a successful attempt after
at least k − 1 failed attempts. Therefore, it has an occurrence probability of at most
(1− p)k−1, where p is the success probability for a PROTOCOL-UNIT. To see this math-
ematically, we use the Young’s convolution inequality [26] and obtain∥∥∥∥∥∥

k−1∗
j=1

P ( j )
f ∗Ps

∥∥∥∥∥∥≤ ‖Pf‖k−1 ‖Ps‖ ≤ (1−p)k−1

where the norm is defined by
∥∥ f (t )

∥∥=∑
t f (t ). In addition, note that k−1∗

j=1
P ( j )

f ∗Ps

 (t ) = 0 for t ≥ kttrunc

because Pf(t ) and Ps(t ) are finite arrays of length ttrunc. Hence, for t ≥ K ttrunc, we only
need to consider the terms with k ≥ K +1, i.e. cases with at least K failed attempts. As a
result, we obtain a bound for the probability given in (6.8) for t ≥ K ttrunc:

Pr(Tout = t ) ≤
∞∑

k=K+1
(1−p)k−1 = (1−p)K

p
.

The above expression bounds the distribution with an exponentially decreasing
probability with respect to the minimal number of failed attempts, which we now use
to bound the error. Because of the circular convolution (6.23), if we only zero-pad to
C ttrunc, the obtained distribution is given by

Pr
(
Tapprox = t

)= ∞∑
j=0

Pr
(
Tout = t + jC ttrunc

)
for 0 ≤ t <C ttrunc. That is, the probability for t >C ttrunc ( j > 0) will be added to the first
C ttrunc elements, introducing an error in the final result. This error is bounded by

ε=
∞∑

j=1

(1−p) jC

p
≤ (1−p)C

p2 ,

which is exponentially small in C . The same bound can be given in analogue for the
calculation of Wout(t ) defined in (6.13) by noticing that Ws(t ) ≤ 1.

The above bound is only for a single PROTOCOL-UNIT and does not account for the
propagation of noise among different levels. However, in practice, as long as one chooses
a C large enough so that the error on each array value is below the numerical accuracy,
this improved algorithm gives the same result as the algorithm provided in the main text.
In addition, the above bound is very loose. In our numerical study, we find that, if the
truncation time ttrunc is chosen so that more than 99% distribution is covered, it suffices
to triple the size of the array during the calculation, i.e. set C = 3.

Although in general there exists no efficient algorithm which captures a constant
fraction of the probability mass for protocols including a cut-off (see section 6.2.6), we
numerically find that the algorithm outlined above scales polynomially in the number
of nodes in some parameter regimes, see Fig. 6.10.
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Figure 6.10: Computation time of the algorithm from appendix 6.6.2 as a function of the number of nodes in
the repeater chain using consumer-market hardware (Intel i7-8700 CPU). We plot the computation time for
three different pswap and for protocols of the form GEN → (→ CUT-OFF → SWAP)n , similar to (6.17), where n
is the nesting level and the number of nodes is 2n + 1. The truncation time is chosen such, that 99% of the
probability mass is covered. Note that the plot’s axes are both given in logarithmic scale; in such a log-log
plot, a polynomial function is represented as a line. The used cut-off strategy is DIF-TIME-CUT-OFF and the
other parameters used are: pgen = 0.1, w0 = 1.0, tcoh = 500/pn−1

swap, τ = 42/pn−1
swap. In this plot, the number of

truncation time steps goes up to about 106.

6.6.3. CALCULATION OF THE SECRET-KEY RATE
Here, we show how we calculate the secret-key rate with truncated waiting time distri-
bution.

One could think of the secret-key rate, computed with finite truncation time ttrunc <
∞, as an approximation of the real secret-key rate or, alternatively, as the rate achieved
by the following repeater protocol. The protocol starts with the two parties at the end
nodes agree on a truncation time ttrunc. If up to t = ttrunc the end-to-end link has not
been delivered, the protocol terminates and restarts from GEN. Therefore, the number
of protocol executions follows the geometric distribution with success probability ptr =
Pr(T ≤ ttrunc). The waiting time for a failed protocol is ttrunc while for a successful one
it follows the waiting time distribution Pr(T = t ) for t < ttrunc. The average total waiting
time is then the sum of the time consumed in failed and successful executions:

T̄ = ttrunc ·
( ∞∑

k=1
k ·ptr(1−ptr)k

)
+

∑ttrunc
t=1 t ·Pr(T = t )

Pr(T ≤ ttrunc)
.

Accordingly, the average Werner parameter is an average over the successful execution

W̄ =
∑ttrunc

t=1 W (t ) ·Pr(T = t )

Pr(T ≤ ttrunc)
.

With the above equations, we calculate the secret-key rate defined in (6.16). In this chap-
ter, we choose heuristically a ttrunc such that Pr(T ≤ ttrunc) ≥ 99%. With this choice, the
difference in the secret key rate between protocols with finite and infinite ttrunc is negli-
gibly small.
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[9] K. Chakraborty, F. Rozpędek, A. Dahlberg, and S. Wehner, Distributed routing in a
quantum internet, arXiv:1907.11630 (2019), arXiv:1907.11630 .

[10] P. van Loock, W. Alt, C. Becher, O. Benson, H. Boche, C. Deppe, J. Eschner, S. Höfling,
D. Meschede, P. Michler, F. Schmidt, and H. Weinfurter, Extending quantum links:
Modules for fiber- and memory-based quantum repeaters, arXiv:1912.10123 (2019),
arXiv:1912.10123 .

[11] F. Schmidt and P. van Loock, Memory-assisted long-distance phase-matching quan-
tum key distribution, Phys. Rev. A 102, 042614 (2020).

[12] S. Khatri, C. T. Matyas, A. U. Siddiqui, and J. P. Dowling, Practical figures of merit and
thresholds for entanglement distribution in quantum networks, Phys. Rev. Research
1, 023032 (2019).

[13] E. Shchukin, F. Schmidt, and P. van Loock, Waiting time in quantum repeaters with
probabilistic entanglement swapping, Phys. Rev. A 100, 032322 (2019).

http://dx.doi.org/ 10.1109/jstqe.2015.2392076
http://dx.doi.org/ 10.1109/jstqe.2015.2392076
http://dx.doi.org/10.1038/srep20463
http://dx.doi.org/10.1038/srep20463
http://dx.doi.org/ 10.1103/PhysRevLett.98.060502
https://arxiv.org/abs/1309.3407
https://arxiv.org/abs/1309.3407
http://arxiv.org/abs/arXiv:1309.3407
http://dx.doi.org/10.1126/science.aan0070
http://dx.doi.org/10.1126/science.aan0070
http://dx.doi.org/10.1103/PhysRevA.99.052330
http://dx.doi.org/10.1103/PhysRevA.99.052330
http://iopscience.iop.org/10.1088/2058-9565/aab31b
http://dx.doi.org/ 10.1088/2058-9565/ab0bc2
http://dx.doi.org/ 10.1088/2058-9565/ab0bc2
http://arxiv.org/abs/1907.11630
http://arxiv.org/abs/arXiv:1907.11630
https://arxiv.org/abs/1912.10123
http://arxiv.org/abs/arXiv:1912.10123
http://dx.doi.org/ 10.1103/PhysRevA.102.042614
http://dx.doi.org/10.1103/PhysRevResearch.1.023032
http://dx.doi.org/10.1103/PhysRevResearch.1.023032
http://dx.doi.org/ 10.1103/PhysRevA.100.032322


6

122 REFERENCES

[14] Y. Wu, J. Liu, and C. Simon, Near-term performance of quantum repeaters with im-
perfect ensemble-based quantum memories, Phys. Rev. A 101, 042301 (2020).

[15] R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting
a hidden-variable model, Phys. Rev. A 40, 4277 (1989).

[16] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Woot-
ters, Purification of noisy entanglement and faithful teleportation via noisy chan-
nels, Phys. Rev. Lett. 76, 722 (1996).

[17] V. V. Kuzmin, D. V. Vasilyev, N. Sangouard, W. Dür, and C. A. Muschik, Scalable re-
peater architectures for multi-party states, npj Quantum Information 5, 115 (2019).

[18] V. V. Kuzmin and D. V. Vasilyev, Diagrammatic technique for simulation of large-scale
quantum repeater networks with dissipating quantum memories, Physical Review A
103, 032618 (2021).

[19] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex
fourier series, Mathematics of Computation 19, 297 (1965).

[20] C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and
coin tossing, Proceedings of IEEE International Conference on Computers, Systems
and Signal Processing 175 (1984).

[21] P. W. Shor and J. Preskill, Simple proof of security of the BB84 quantum key distribu-
tion protocol, Phys. Rev. Lett. 85, 441 (2000).

[22] H.-K. Lo, H. F. Chau, and M. Ardehali, Efficient quantum key distribution scheme
and a proof of its unconditional security, Journal of Cryptology 18, 133 (2005).

[23] R. Storn and K. Price, Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces, Journal of global optimization 11, 341
(1997).

[24] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al., SciPy 1.0: fundamental algo-
rithms for scientific computing in Python, Nature methods , 1 (2020).

[25] git, Optimization of cut-offs for repeater chains, https://github.com/BoxiLi/
repeater-cut-off-optimization (2019).

[26] V. I. Bogachev, Measure theory, Vol. 1 (Springer Science & Business Media, 2007).

http://dx.doi.org/ 10.1103/PhysRevA.101.042301
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/ 10.1103/PhysRevLett.76.722
http://dx.doi.org/ 10.1038/s41534-019-0230-3
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.032618
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.032618
http://dx.doi.org/ 10.2307/2003354
http://dx.doi.org/ 10.1103/PhysRevLett.85.441
http://dx.doi.org/ 10.1007/s00145-004-0142-y
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1038/s41592-019-0686-2
https://github.com/BoxiLi/repeater-cut-off-optimization
https://github.com/BoxiLi/repeater-cut-off-optimization
https://www.springer.com/gp/book/9783540345138


7
IMPROVED ANALYTICAL BOUNDS

ON DELIVERY TIMES OF

LONG-DISTANCE ENTANGLEMENT

In this chapter, we provide improved analytical bounds on the mean and quantiles of the
completion time of all tree-shaped-type long-distance entanglement delivery schemes
(see Chapter 3) in case the success probability of the individual components is bounded by
a constant from below. A canonical example of such a protocol is the NESTED-SWAP-ONLY

scheme which was introduced in Chapter 3: a symmetric nested quantum repeater scheme
which consists of heralded entanglement generation and entanglement swaps. For this
scheme specifically, our results imply that a common approximation to the mean entan-
glement distribution time, the 3-over-2 formula, is in essence an upper bound to the real
time. Another example we treat is a quantum switch, which distributes multipartite en-
tanglement. Our results rely on a novel connection with reliability theory.

This chapter has been accepted, with minor changes, for publication in Physical Review A:
T. Coopmans, S. Brand and D. Elkouss, Improved analytical bounds on delivery times of long-distance entan-
glement. A preprint can be found on: arXiv:2103.11454 (2021).
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ENTANGLEMENT

Knowledge of the time that quantum repeater schemes take to deliver entanglement
is highly relevant, for several reasons. Most evidently, the delivery rate should be suf-
ficiently high for the application. Secure communication over video, for example, re-
quires transmission rates of at least hundreds of kbits per second [1]. Furthermore, for
the repeater proposals which make use of quantum memories and do not rely on error
correcting codes, i.e. the ones that are closest to experimental reach, the delivery time
influences the quality of the produced entanglement. The reason for this is that in these
schemes, an entangled pair that is generated often needs to wait for another pair before
the scheme can continue, and decoheres in memory while waiting. In addition, some
memory types suffer from effects which are effectively time-dependent, such as noise
which is induced each time the quantum processor attempts to generate remote entan-
glement [2], while for others the probability of extracting the state degrades over time [3].
Thus, the quality of the produced entanglement is a function of the time its generation
takes. This implies that knowledge of the delivery time is crucial for assessing the viabil-
ity of schemes for long-distance entanglement distribution using near-term hardware.

Analysis of the delivery time is generally challenging for the entanglement-
distribution schemes that are closest to experimental reach because they consist of prob-
abilistic components. The completion time of a such a scheme is not a single number
but instead a random variable, which for many schemes has a complex structure due to
the feedback loops and restarts. Although numerically, progress has recently been made
in determining the completion time for increasingly larger networks (see Chapters 5 and
6, and also [4–9]), numerical approaches provide only limited intuition and moreover are
demanding in computation time when performing large-scale optimisation over many
network designs and hardware parameters. For this reason, analytical results are more
convenient.

Unfortunately, due to the complexity of the problem, even the average completion
time is known exactly only in limited cases: for quantum repeater chains consisting of at
most four repeater nodes [5, 10] and a star network with a single node in the centre and
an arbitrary number of leaves [11]. For larger networks, analytical results only include
approximations or loose bounds on the mean entanglement delivery time [12]. The ap-
proximations are based on the assumption that the success probabilities of some of the
network components are very small [13–16] or close to 1 [12, 17, 18]. Neither approxi-
mations are ideal, since some success probabilities can be boosted by techniques such
as multiplexing, while others are bounded well below 1 for some setups[19]. Indeed,
numerics have shown for some of the approximations that they become increasingly
bad as the size of the network grows [5, 6]. Another scenario in which the completion
time probability distribution is brought back to a known form includes the discarding
of entanglement [20, 21]. See Chapter 4 for a review of the completion time analysis for
entanglement distribution schemes.

A canonical use case which has found particularly much application is a symmetric
nested repeater scheme NESTED-SWAP-ONLY[22, 23], introduced in Chapter 3, where at
each nesting level two entangled pairs of qubits, spanning an equal number of nodes, are
connected. Consequently, the entanglement span doubles at each nesting level. For this
scheme, it was empirically known [24] that for small success probabilities of connecting
the pairs, the average time to in-parallel create both required initial pairs at each nesting
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level is roughly 3/2 times the average time for a single pair. This results in an approx-
imation to the average completion time of the repeater scheme which is known as the
3-over-2 formula (we already gave a brief derivation of this approximation in Chapter 4).
It has been frequently used since [13, 17, 24, 25, 25, 26, 26–39]. Analytically finding the
exact factor, for an arbitrary number of nesting levels and for any value of the success
probabilities, has been an open problem for more than ten years [13].

In this chapter, we provide analytical bounds on the completion time which not only
improve significantly upon existing bounds, but also show how good some of the previ-
ous approximations are because the bounds become exact in the small probability limit.
To be precise, we give analytical bounds on the mean and quantiles of the completion
time random variable for entanglement-distributing protocols which are constructed of
probabilistic components whose success probability can be bounded by a constant from
below. This includes feedback loops in which failure of one component requires restart
of other components, as long as no two components wait for the same other component
to finish. Regarding the symmetric nested repeater protocol, our bounds imply that the
3-over-2 approximation is, in essence, an upper bound to the mean completion time, rig-
orously rendering analyses based on this approximation pessimistic. Other protocols we
can treat include nested repeater chains with distillation and multipartite-entanglement
generation schemes [8, 11, 40], among others.

This chapter is organised as follows. First, in Sec. 7.1 we describe the class of proto-
cols our bounds apply to and introduce concepts from reliability theory we will use in the
bounds’ derivation. Sec. 7.2 contains our main results: analytical bounds on the mean
completion time of such protocols and the tail of its probability distribution. Next, we
obtain improved bounds with respect to existing work by applying these results to two
use cases: a nested quantum repeater chain (Sec. 7.3) and a quantum switch in a star
network (Sec. 7.4). We prove the main results in Sec. 7.5 and finish with a discussion in
Sec. 7.6.

7.1. PRELIMINARIES

7.1.1. PROTOCOLS

In this chapter, we consider tree-shaped-type protocols and their generalisations
for distributing multipartite entanglement. (These kind of protocols were introduced
in Chapter 3 and more formally defined in sec. 7.1 of Chapter 6). We will divide
the building blocks that they are composed of in two categories: GENERATE and
RESTART-UNTIL-SUCCESS. We treat them individually.

First, recall from Chapter 3 that by GENERATE we refer to heralded generation of fresh
entanglement. In our model, entanglement generation is performed in discrete attempts
of fixed duration, each of which succeeds with a given constant probability pgen [31]. The
success is heralded, i.e. the nodes are aware which attempts fail and which succeed. The
duration of a single attempt equals L/c, where L is the distance between the nodes and
c is the speed of light in the transmission medium. We use L/c as the unit of time. As
a consequence, the completion time of entanglement generation is a discrete random
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variable following the geometric distribution:

Pr
(
Tgen = t

)={
pgen(1−pgen)t−1 if t ≥ 1 is an integer

0 otherwise.
. (7.1)

We will denote the mean of this distribution by µgen = 1/pgen.
We will also consider the exponential distribution, which is the continuous analogue

of the geometric distribution and is defined as follows: if X follows the exponential dis-
tribution with parameter λ> 0, then

Pr(X > x) = e−λx (7.2)

for any real number x ≥ 0. For small pgen, the completion time of entanglement gen-
eration is sometimes approximated by an exponential random variable T approx

gen with the
same mean, which is achieved by setting λ= 1/µgen.

Next, we use the term RESTART-UNTIL-SUCCESS for an operation which takes entan-
glement as input, performs a probabilistic operation onto it, and demands the regener-
ation of the input entanglement in the case of failure. Its success probability can be a
function of properties of the input entanglement, such as its quality or its delivery time,
but it may also be a constant. By SWAP-UNTIL-SUCCESS and DISTILL-UNTIL-SUCCESS, we
refer to instantiations of RESTART-UNTIL-SUCCESS where the probabilistic operation is
entanglement swapping and entanglement distillation, respectively (see Chapter 3 for
an introduction to entanglement swaps and distillation).

We model the entanglement swap success with probability 0 < pswap ≤ 1, which is a
constant that is independent of the states upon which the swap acts. We model fusion,
the generalisation of the entanglement swap which converts more than 2 input links
to a multipartite entangled state, in similar fashion. The success probability of distilla-
tion depends on the states of the two links, and is lower bounded by 1

2 for the schemes
considered here. We assume that the durations of the entanglement swap, fusion, and
distillation operations are negligible.

7.1.2. PROBABILITY THEORY AND THE NBU PROPERTY
In this chapter, we will make extensive use of a class of probability distributions called
new-better-than-used (NBU), which have been studied in the context of reliability the-
ory and life distributions [41]. In order to mathematically define new-better-than-used,
we first revisit some notions from probability theory. All random variables in this chapter
that are continuous have the positive reals as domain, i.e. a continuous random variable
X with Pr(X < 0) = 0. The cumulative distribution function (CDF) of random variable
X is x 7→ Pr(X ≤ x), and the co-CDF is x 7→ Pr(X > x). This co-CDF is also referred to as
the survival function or the reliability, since it states the probability that X will survive
at least up to time x. The residual life distribution of X is given by the conditional prob-
ability Pr

(
X > x + y |X > y

)
and describes the time that X will survive at least up another

interval x given that it has already survived time y . We now say that a real-valued random
variable X is new-better-than-used (NBU) or that it has the NBU property if its residual
life distribution is upper bounded by the original reliability, i.e.

∀x, y ≥ 0 : Pr
(
X > x + y |X > y

)≤ Pr(X > x). (7.3)
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Intuitively, new-better-than-used random variables describe ageing over time. As an ex-
ample, consider the lifetime of a car: the probability that an old car (one that is already
y years old) will survive another x years is smaller than the probability that a brand new
car will reach the age of x years.

For clarity, we separately state the definition of NBU, where we use an expression
equivalent to eq. (7.3) for convenience of our proofs later on.

Definition 1. A real-valued random variable X with Pr(X < 0) = 0 , is called new-better-
than-used (NBU) if

∀x, y ≥ 0 : Pr
(
X > x + y

)≤ Pr(X > x) ·Pr
(
X > y

)
.

It is called new-worse-than-used (NWU) if the reverse inequality holds.

We give two examples of NBU distributions.

Example 1. A delta-peak distribution Pr(X = x0) = 1 for some fixed x0 ≥ 0 is NBU, since

Pr(X > x)Pr
(
X > y

)={
1 if x < x0 and y < x0

0 otherwise

while

Pr
(
X > x + y

)={
1 if x + y < x0

0 otherwise.

Since x + y < x0 implies x < x0 and y < x0 for any x, y ≥ 0, we see that Pr
(
X > x + y

) ≤
Pr(X > x)Pr

(
X > y

)
and thus X is NBU.

Example 2. The exponential distribution, defined in eq. (7.2), satisfies Pr
(
X > x + y

) =
Pr(X > x)Pr

(
X > y

)
for all x, y ≥ 0 and is therefore both NBU and NWU.

Lastly, we will use the notion of stochastic dominance.

Definition 2. Let X and Y be two random variables with common domain D, a subset of
the real numbers. We say that X stochastically dominates Y and write X ≥st Y if

Pr(X > z) ≥ Pr(Y > z)

for all z ∈ D.

In particular, we will use the following lemma, which states that stochastic domi-
nance of one random variable over the other implies an ordering of their means.

Lemma 4. Let X and Y be two random variables with domain [0,∞). If X ≥st Y , then
E [X ] ≥ E [Y ].

Proof. The lemma directly follows from the definition of stochastic dominance, together
with the fact that the mean of X can be written as an integral over the co-CDF,

E [X ] =
∫ ∞

0
Pr(X > x)d x,

and similarly for Y .



7

128
7. IMPROVED ANALYTICAL BOUNDS ON DELIVERY TIMES OF LONG-DISTANCE

ENTANGLEMENT

7.2. MAIN RESULTS
In this section, we give our main results in Prop. 3 and 4: bounds on the completion
time distribution for protocols composed of elementary-link generation (GENERATE) and
RESTART-UNTIL-SUCCESS operations. The proofs to the main results can be found in
Sec. 7.5.

Our results bound continuous completion times, whereas the completion time of
elementary-link generation is the discrete random variable Tgen (see Sec. 7.1). Therefore,
before starting our main result we first remark that Tgen is stochastically dominated by a
continuous NBU random variable we denote as T upper

gen .

Lemma 5. The completion time Tgen of elementary-link generation is stochastically dom-
inated (Def. 2) by the continuous random variable T upper

gen = 1+Texp where Texp is expo-

nentially distributed with parameter −1
log(1−pgen) . That is,

Pr
(
Tgen > t

) ≤ Pr
(
T upper

gen > t
)

=
{

1 if 0 ≤ t ≤ 1

exp
(
(t −1)/log

(
1−pgen

))
if t ≥ 1

The mean of Tgen is upper bounded by the mean of T upper
gen which is given by

µ
upper
gen = 1− 1

log
(
1−pgen

) = 1

pgen
+ 1

2
+O(pgen) (7.4)

where O(pgen) contains terms that scale with pgen or powers of it. The means of Tgen and
T upper

gen differ only slightly, both in difference and in ratio:

0 ≤µupper
gen −µgen ≤ 1

2
and 1 ≤ µ

upper
gen

µgen
≤ 1+ pgen

2
(7.5)

for any pgen ∈ [0,1]. Moreover, T upper
gen is NBU.

As consequence of Lemma 5, we may assume that the duration of elementary-link
generation is described by T upper

gen if we are looking for upper bounds on a protocol’s
completion time. Indeed, an upper bound on the co-CDF or the mean of the resulting
completion time will automatically also become an upper bound on the real completion
time (see Def. 2 and Lemma 4).

Now let us state our bounds on continuous completion times. For legibility, we first
state a special case of our main result: the scenario where a SWAP-UNTIL-SUCCESS oper-
ation with constant success probability is performed on two quantum states. We assume
that the time it takes until a state is produced is a random variable, and that this random
variable is the same for both input states; that is, their completion times are independent
and identically distributed.
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(2) (3)

T2T1

(1)

Tti
m
e

(a) Consider an entanglement distribution pro-
cess (1), whose completion time is a random
variable T and has mean E [T ] (2). If T is NBU,
completing two such independent and identi-
cally distributed processes in parallel has a mean
time ≤ 3

2 ·E [T ] (3).

delivery time (t)
(b) The probability distribution of the delivery
time of entanglement distribution processes can
be bounded by exponentially-fast decaying lower
and upper bounds.

Figure 7.1: Visual overview of this chapter’s bounds on the completion time of entanglement distribution pro-
tocols. The first result (7.1a) is a bound on the mean completion time of two parallel entanglement distribution
processes, given that these processes possess the NBU property (Def. 1). Our second result (7.1b) is a two-sided
bound on the probability distribution of the completion time of such processes.
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Completion time of swapping: two states & IID

Proposition 3. Consider the time Toutput of a SWAP-UNTIL-SUCCESS protocol with con-
stant success probability p, acting on two quantum states, produced with identically-
distributed independent completion times Tinput. If Tinput is a continuous random vari-
able and it is NBU (Def. 1), then:

(a) Toutput is NBU;

(b) the mean of Toutput is upper bounded as

E [Toutput] ≤
3E [Tinput]

2p
;

(c) for all t , the probability that Toutput takes longer than t timesteps decays exponen-
tially fast:

Pr
(
Toutput > t

)≤ exp

(
p − 2pt

3E [Tinput]

)
while it is lower bounded as

Pr
(
Toutput > t

)≥ exp

( −2pt

3E [Tinput]
· 1

1−p

)
.

(d) in the limit p → 0, the normalised completion time Toutput/E
[
Toutput

]
approaches

the exponential distribution with mean 1, and thus E [Toutput] ·2p/(3E [Tinput]) → 1.

The bounds from Prop. 3 are visually depicted in Fig. 7.1.
Although Prop. 3 regards a SWAP-UNTIL-SUCCESS protocol, it also finds application

to
DISTILL-UNTIL-SUCCESS, which has nonconstant success probability:

Remark 1. Consider Prop. 3 where SWAP-UNTIL-SUCCESS is replaced by
DISTILL-UNTIL-SUCCESS. Note:

(a) Prop 3(a)-(c) still hold in case the quantum states produced with completion times
Tinput do not decohere over time, because then the distillation success probability p
is a constant, independent of the production times of the input states;

The success probability of distillation is general lower bounded by 1/2, resulting in

(b) E [Toutput] ≤ 3E [Tinput].

Since the upper bound in Prop 3(c) is monotonically decreasing in p in the regime t ≥
3E [Tinput]/2, we may replace p by its lower bound 1/2 to obtain:

(c) for t ≥ 3E [Tinput]/2, we have

Pr
(
Toutput > t

)≤ exp

(
1

2
− t

3E [Tinput]

)
.
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Prop. 3 is a special case of a more general version of Prop. 4 for
RESTART-UNTIL-SUCCESS protocols that act on two or more quantum states whose
completion times are independent, but not necessarily identically distributed.

General case: completion time of RESTART-UNTIL-SUCCESS protocol

Proposition 4. Consider the time Toutput of a RESTART-UNTIL-SUCCESS protocol with con-
stant success probability p, acting on n ≥ 2 quantum states, produced with independent
completion times T1, . . . ,Tn , which need not be identically distributed. Suppose that each
of Toutput and T1, . . . ,Tn is a continuous random variable. Denote m = E [max(T1, . . . ,Tn)].
If all T1, . . . ,Tn are NBU (Def. 1), then:

(a) Toutput is NBU;

(b) the mean of Toutput equals E [Toutput] = m/p;

(c) for all t , the probability that Toutput takes longer than t timesteps is exponentially
bounded from above as

Pr
(
Toutput > t

)≤ exp

(
p − p · t

m

)
.

while it is bounded from below by

Pr
(
Toutput > t

)≥ exp

(−p · t

m
· 1

1−p

)
.

(d) in the limit p → 0, the normalised completion time Toutput/E
[
Toutput

]
approaches

the exponential distribution with mean 1, and thus E [Toutput] ·p/m → 1.

(e) We have

max
1≤ j≤n

E [T j ] ≤ m ≤
n∑

j=1
E [T j ].

(f) In case all T j are identically distributed with mean E [T ], then a tighter bound than
(e) exists:

1 ≤ m

E [T ]
≤ n −1+ 1

n
.

We finish this section by generalising Remark 1.

Remark 2. Consider a RESTART-UNTIL-SUCCESS protocol whose success probability is
lower bounded by a constant c. Then the upper bounds in Prop. 4(e) and (f) still
hold, while Prop. 4(b) and (c) can respectively be replaced by E [Toutput] ≤ m/c and
Pr

(
Toutput > t

)≤ exp
(
c − ct

m

)
for t ≥ m.

In the next sections, we give two use cases for the bounds derived in this section: a
quantum repeater chain scheme and a quantum switch protocol.
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7.3. FIRST APPLICATION: THE NESTED-SWAP-ONLY QUANTUM

REPEATER CHAIN
In this section, we apply our bounds on the completion time of entanglement distribu-
tion protocols to the extensively-studied NESTED-SWAP-ONLY protocol, a nested repeater
chain protocol [22, 23] which was introduced in Chapter 3. For completeness, we briefly
explain the protocol for the case where the number of segments is 2n for some integer
n ≥ 0 (i.e. the chain consists of 2n +1 nodes). See also Fig. 7.2. If n = 0, then the network
consists of two end nodes only (no repeaters), which use heralded entanglement gener-
ation (see Sec. 7.1) to generate a single elementary link. If n > 0, then the chain has a
middle node (since the number of segments is even). In parallel, a 2n−1-hop-spanning
link is produced on the left side of the middle node, as well as a link on its right side.
As soon as both links have been prepared, the middle node performs an entanglement
swap to convert the two links into a single 2n-hop-spanning link. This scheme can also
be extended with one or multiple rounds of entanglement distillation at each nesting
level, in a nested fashion [22].

The exact completion time distribution of the nested repeater scheme has so far not
been analytically found beyond the single-repeater case. The problem was first fully ex-
plained by Sangouard et al. [13], although it was already partially described in earlier
work [24–26]. Sangouard et al., remarked that while the completion time of elementary-
link generation at the bottom level follows a well-known distribution (the geometric dis-
tribution, Sec. 7.1), this is no longer the case for higher levels.

To circumvent this issue, many have resorted to approximating the probability dis-
tribution at each level with an exponential distribution, combined with the small-
probability assumptions pswap ¿ 1 and pgen ¿ 1. We recall from Chapter 4 that this ap-
proximation leads to an expression for the mean entanglement delivery time as follows.
At each nesting level, the protocol can only continue if both input states to the entangle-
ment swap have been produced. Mathematically, this is expressed as the maximum of
the delivery time of the two links. The mean of the maximum of two independent and
identically distributed (i.i.d.) exponential random variables with mean µ is 3

2 ·µ. Next,
if the swap success probability is pswap, then on average 1/pswap attempts are needed
until success. Thus, for each nesting level, the mean entanglement delivery time should
be multiplied by a factor 3/(2pswap), resulting into an expression for the mean delivery
time known as the 3-over-2-approximation:(

3

2pswap

)n

· 1

pgen
. (7.6)

The 3-over-2 approximation was first used by Jiang et al.[24], who mentioned that
the factor 3/2 agreed well with simulations in the small-probability regime. Since then,
the approximation has been frequently used [13, 17, 25–39].

However, the quality of this approximation is not known exactly and has only been
very loosely bounded, as follows. As noted by Sangouard et al. [13], the mean of the max-
imum of two nonnegative i.i.d random variables with mean µ is lower bounded by µ and
upper bounded by 2µ. These bounds correspond to the scenario where one waits only
for a single link to be ready, or for both links to be prepared sequentially, respectively.
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Consequently, (
1

pswap

)n

· 1

pgen
≤ E [T ] ≤

(
2

pswap

)n

· 1

pgen
. (7.7)

Now we use Markov’s inequality, Pr(T ≥ t ) ≤ E [T ]/t , which can be rephrased

Pr(T > t ) ≤ E [T ] · 1

t +1
, (7.8)

since T only takes integral values. Substituting E [T ] by its upper bound from eq. (7.7)
leads to

Pr(T > t ) ≤
(

2

pswap

)n

· 1

pgen
· 1

t +1
. (7.9)

Both the mean bound from eq. (7.7) and the tail bound from eq. (7.9) are quite loose
bounds, see Fig. 7.3 and 7.4. Only recently, it was shown analytically by Kuzmin and
Vasilyev that the factor 3/2 from eq. (7.6) is exact in the limit of vanishing swap success
probability, and moreover that the delivery time probability distribution after an entan-
glement swap in this limit is indeed an exponential distribution [14].

Our bounds from Sec. 7.2 allow us to go beyond these results. In particular, we show
the following. First, we analytically show that the 3-over-2 approximation is, in essence,
an upper bound to the mean completion time. This implies that the 3-over-2 approxima-
tion is pessimistic, confirming numerical simulations [5, 17]. Next, we derive two-sided
bounds on the tail of the probability distribution of the repeater chain’s completion time.
Both the mean bound and the tail bounds coincide in the limit of vanishing success
probabilities. We give the bounds below and plot them in Fig. 7.3 (mean bounds) and
Fig. 7.4 (tail bounds).

Proposition 5. Consider the completion time Tn of an equally-spaced, symmetric nested
repeater scheme (no distillation) on 2n segments, such as the example in Fig. 7.2 for n = 2.
If n > 0, then:

(a) the mean completion time is upper bounded as

E [Tn] ≤
(

3

2pswap

)n

·µ0.

Here, µ0 is the mean of any real-valued NBU random variable which stochasti-
cally dominates the completion time Tgen of elementary-link generation. In case
the elementary-link generation is modelled as discrete attempts which succeed with
probability pgen, then we choose T upper

gen for this random variable (see Lemma 5),
resulting in

µ0 = E [T upper
gen ] = 1− 1

log
(
1−pgen

) .

If instead the completion time of elementary-link generation is described by the
exponentially-distributed random variable T approx

gen (see Sec. 7.1.1), which is NBU
itself, then
µ0 = E [T approx

gen ] = 1/pgen. By Lemma 5, the two models’ means only differ slightly:

0 ≤ E [T upper
gen ]−E [T approx

gen ] ≤ 1
2 and 1 ≤ E [T upper

gen ]/E [T approx
gen ] ≤ 1+pgen/2.
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(b) the mean completion time is lower bounded as

E [Tn] ≥ 1

pswap
·
(

3−2pswap

pswap(2−pswap)

)n−1

·ν0.

Here, ν0 is the mean time until the latest of two parallel elementary-link generation
processes has finished. In case elementary-link generation is modelled as discrete
attempts which succeed with probability pgen, then

ν0 =
3−2pgen

pgen(2−pgen)

while if its completion time is modelled by an exponential distribution, then ν0 =
3/(2pgen).

(c) the co-CDF of Tn differs from the co-CDF of an exponential distribution by at most
a factor exp

(
pswap

)
from above,

Pr(Tn > t ) ≤ exp
(
pswap

) ·exp

(
−pswap · t

mupper

)
while it is lower bounded as

Pr(Tn > t ) ≥ exp

(−pswap · t

mlower
· 1

1−pswap

)
.

Here, we have denoted

mupper = 3

2
·
(

3

2pswap

)n−1

·µ0

and

mlower =
(

3−2pswap

pswap(2−pswap)

)n−1

·ν0

where µ0 and ν0 are given in Prop. 5(a) and (b).

(d) in the limit where both pswap → 0 and pgen → 0, the normalised random variable
Tn/E [Tn] follows the exponential distribution with mean 1, and moreover

lim
pswap→0,pgen→0

E [Tn]/Ln = 1

with

Ln =
(

3

2pswap

)n

· 1

pgen
.

(e) If the completion time of elementary-link generation is described by the
exponentially-distributed T approx

gen , then Tn is NBU, while if it is modelled as discrete
attempts, then Tn is stochastically dominated (Def. 2) by an NBU random variable
which satisfies the bounds in items (a-c).
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Most statements in Prop. 5 directly follow by applying Prop. 3 in Sec. 7.2 iteratively
over the number of nesting levels. In particular, a useful feature following from Prop. 3(a)
is that at each nesting level, the completion time possesses the NBU property (Def. 1).
Consequently, the mean upper bound in Prop. 3(c), which is only applicable to NBU
random variables, can be used at each nesting level. Only the lower bound in (b) and the
expression for mlower in (c) do not follow from Prop. 3. These can be found by noting that
the maximum of two sums dominates a single sum whose length is the maximum of the
original two sum lengths. We give the full proof in Appendix 7.7.2.

Alice Bob

GENERATE GENERATE GENERATE GENERATE

SWAP SWAP

SWAP

Figure 7.2: Schematic of the NESTED-SWAP-ONLY quantum repeater protocol on five nodes (figure is identical
to fig. 3.3(d) from Chapter 3; we added it here so that the chapter is self-explanatory) . The figure depicts the
protocol for delivering entanglement between remote parties Alice and Bob through three repeater nodes. At
the start of the protocol, all nodes attempt to generate an elementary link with each of their neighbours in
parallel. An entanglement swap is performed once the two leftmost links are ready, and similarly for the two
rightmost links. Once both swaps have succeeded (failure requires regeneration of the involved links), the
middle node performs an entanglement swap, which yields entanglement between Alice and Bob.

We finish this section by noting a stronger two-sided bound on the completion time
T of an equally-spaced repeater chain than Prop. 5(a-b) in the case of deterministic
swapping (pswap = 1). The number of segments can be any integer N ≥ 2. Since we as-
sume that the entanglement swaps take no time (Sec. 7.1.1), the mean completion time
for this scenario is

E [T ] = E [max(T (1)
gen,T (2)

gen, . . . ,T (N )
gen )]

where T (k)
gen is an independent and identically distributed copy of Tgen and describes

the completion time of entanglement generation over the kth segment. By replacing
Tgen → T approx

gen , i.e. assuming that the completion time of entanglement generation fol-
lows the exponential distribution with mean 1/pgen, the following approximation to E [T ]
has been derived [5, 15]:

E [T ] ≈ 1

pgen
·HN (7.10)

where

HN :=
N∑

k=1

1

k
= γ+ log(N )+O

(
1

N

)
(7.11)

is the N -th harmonic number and γ≈ 0.5772 is the Euler-Mascheroni constant. An alter-
native to eq. (7.10) is to replace Tgen → Texp, where Texp is the exponentially-distributed
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Figure 7.3: The ratio of different upper and lower bounds on the mean completion time of a nested repeater
protocol, as compared to the numerically calculated mean with the deterministic algorithm from [6], for a
repeater chain with 17 nodes (pgen = 0.5, entanglement generation is performed in discrete attempts). The
figure shows bounds known before this work (eq. (7.7)) and the tighter bounds from this work in Prop. 5(a) and
(b).
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Figure 7.4: Probability distribution of the completion time T of a nested repeater protocol. The figures show
the numerically computed distributions using the deterministic algorithm from [6], a polynomially-decaying
bound known before this work which is derived from Markov’s inequality and a bound on the mean completion
time (eq. (7.9)), and two improvements on eq. (7.9) we achieve in this chapter: first, a simple improvement by
using Markov’s inequality and the improved bound on the mean completion time (Prop. 6(a)), followed by the
exponentially-decaying two-sided tail bounds from Prop. 5(c). The plots show results for a repeater chain with
17 nodes (pgen = 0.1) where entanglement generation is performed in discrete attempts. The swap success
probability is pswap = 0.5 (top), and pswap = 0.2 (bottom).
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random variable from Lemma 5, which results into

E [T ] ≈ −1

log
(
1−pgen

) ·HN =
(

1

pgen
− 1

2
+O(pgen)

)
·HN . (7.12)

We remark that eq. (7.10) and eq. (7.12) only differ slightly and that their ratio goes to 1
in the limit of pgen → 0. The quality of the second approximation, eq. (7.12), has been
bounded in work by Eisenberg [42] and to our knowledge no-one has so far noted it in
the context of completion times of quantum network protocols. We state it below.

Proposition 6. [42] Suppose that entanglement swapping is deterministic (pswap = 1). Let
E [T ] denote the mean completion time of a repeater chain over N segments. Then E [T ] is
bounded as

a ·HN ≤ E [T ] ≤ 1+a ·HN

where HN is the N -th harmonic number given in eq. (7.11) and

a =µupper
gen −1 = −1

log
(
1−pgen

) = 1

pgen
− 1

2
+O(pgen).

7.4. SECOND APPLICATION: A QUANTUM SWITCH
Here, we apply our results to a quantum switch. A quantum switch serves k user nodes.
Each user is connected to the switch by an arm, which produces bipartite entanglement
(a link) between switch and user. As soon as each user has produced a link with the
switch, the switch performs a k-fuse operation, i.e. a probabilistic operation converting
k bipartite links into a single k-partite entangled state on the user nodes.

Vardoyan et al., considered the scenario in which each user produces entanglement
continuously with the switch and the switch fuses whenever it can [11]. They obtained
analytical expressions for the rate at which the switch produces multipartite entangle-
ment in the steady-state regime. Here, we consider the alternative protocol where the
goal is to produce only a single k-partite state. We go beyond the model of Vardoyan
et al., by replacing the arms, which connect the switch to the user, by an arbitrary
entanglement-distribution network whose completion time is NBU. An example choice
for such a network is the symmetric repeater chain from Sec.7.3, yielding the network
topology as depicted in Fig. 7.5, Our tools allow us to achieve bounds on the completion
time of the switch, as described in the following proposition.

Proposition 7. Consider a k-armed quantum switch with fusion success probability pfuse.
Suppose that the completion times of the different arms are independent and identically
distributed according to an NBU random variable S. Denote by T the time until the switch
performs the first successful k-fuse attempt. Then:

(a) T is NBU;

(b) The mean of T is bounded as

E [T ] ≤
(
k −1+ 1

k

)
· E [S]

pfuse
.
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user
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Figure 7.5: A quantum switch with 3 users, each connected to the switch by an identical repeater chain which
produces links between user and switch. The switch produces 3-partite entangled states, shared between the
users, by performing a probabilistic operation on 3 links, one with each user node, as soon as these 3 links are
available.

(c) T ’s tail decays exponentially fast:

Pr(T > t ) ≤ exp

(
pfuse −

pfuse · t

(k −1+1/k) ·E [S]

)
.

Prop. 7(a) follows directly from Prop. 4(a) (Sec. 7.2). Prop. 7(b) is a consequence of the
expression for the mean completion time in Prop. 4(b) and the upper bound in Prop. 4(f),
while Prop. 7(c) is an instantiation of the tail bound of Prop. 4(c) combined with the
mean upper bound of Prop. 7(b).

7.5. PROOFS OF MAIN RESULTS
In this section, we prove our main results from Sec. 7.2. We provide proofs in the follow-
ing order. First, a proof of Lemma 5. Then, we will prove Prop. 4. Since Prop. 3 is a special
case of Prop. 4, we do not prove it separately.

7.5.1. PROOF OF LEMMA 5
Here, we prove the four parts of Lemma 5: (i) that Tgen, the completion time of heralded
entanglement generation with probability pgen, is stochastically dominated by T upper

gen =
1+Texp, where Texp is exponentially distributed with parameter −1/log

(
1−pgen

)
. Next,

(ii) that the mean of T upper
gen equals

1− 1

log
(
1−pgen

) = 1

pgen
+ 1

2
+O(pgen).
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Then, (iii) that 0 ≤ E [T upper
gen ]−E [Tgen] ≤ 1

2 and (iv) that 0 ≤ E [T upper
gen ]/E [Tgen] ≤ 1+pgen/2.

Fifth, (v) that T upper
gen is NBU.

Regarding (i), we use the definition of the geometric distribution in eq. (7.1), from
which it follows that the survival function of Tgen is given by

Pr
(
Tgen > t

)= (1−pgen)btc

for all t ≥ 1, where btc denotes the floor of t : btc = t if t is an integer and it equals the
largest integer strictly smaller than t otherwise. For 0 ≤ t < 1, we have Pr

(
Tgen > t

)= 1 =
Pr

(
T upper

gen > t
)
, so the definition of stochastic dominance (Def. 2) is trivially satisfied on

the interval t ∈ [0,1). We therefore only need to consider t ≥ 1. Using the notation from
Lemma 5, we now bound

Pr
(
Tgen > t

) = (1−pgen)btc

≤ (1−pgen)t−1

= exp
[
(t −1) · log

(
1−pgen

)]
∗= Pr

(
Texp > t −1

)
= Pr

(
1+Texp > t

)
,

where in ∗, we have used the definition of the exponential distribution from eq. (7.2).
For proving (ii), we recall that the mean of an exponential distribution with co-CDF e−λt

with parameter λ> 0 is 1/λ, hence the mean of T upper
gen is

E [T upper
gen ] = E [1+Texp]

= 1+E [Texp]

= 1− 1

log
(
1−pgen

)
= 1

pgen
+ 1

2
+O(pgen)

where in the last equation, we used the expansion of 1/log(1+x) for |x| < 1 by Kowalenko
[43]. We show (iii) by computing the derivative of E [T upper

gen ]−E [Tgen] as function of pgen,
which equals

−1

(1−pgen) log2(1−pgen)
+ 1

p2
gen

. (7.13)

It is not hard to see that eq. (7.13) is upper bounded by 0 for all pgen ∈ (0,1): we start with
the well-established inequality[44]

log(x) ≥ x −1p
x

for 0 < x ≤ 1, which after the substitution x → 1−pgen becomes

log
(
1−pgen

)≥ −pgen√
1−pgen

. (7.14)
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Since both sides of eq. (7.14) are negative and the squaring function x 7→ x2 is monoton-
ically decreasing for x ≤ 0, squaring both sides requires the inequality sign to flip,

log2(1−pgen) ≤
p2

gen

1−pgen

and hence (1 − pgen) log2(1 − pgen) ≤ p2
gen, implying that the derivative in eq. (7.13) is

upper bounded by 0 for all pgen ∈ (0,1). Therefore, E [T upper
gen ]−E [Tgen] is monotonically

decreasing in that regime and achieves its optima at pgen ↓ 0 and pgen ↑ 1, which are 1
2

and 0, respectively, yielding precisely the bound in (iii). For showing (iv), divide each
side of 0 ≤ E [T upper

gen ]−E [Tgen] ≤ 1
2 by E [Tgen] to obtain

0 ≤ E [T upper
gen ]

E [Tgen]
−1 ≤ 1

2E [Tgen]
= pgen

2

from which (iv) directly follows. For proving (v), that T upper
gen = 1+Texp is an NBU random

variable, we consider two cases with respect to the definition of NBU (Def. 1):

• both x < 1 and y < 1. Then

Pr
(
1+Texp > x

)= Pr
(
1+Texp > y

)= 1

so the definition of NBU trivially holds by the fact that Pr
(
1+Texp > x + y

)
cannot

exceed 1;

• at least one of x or y is 1 or larger. Assume without loss of generality that y ≥ 1.
Then note that Pr

(
1+Texp > x + y

)
equals

Pr
(
Texp > x + (y −1)

)
≤ Pr

(
Texp > x

)
Pr

(
Texp > y −1

)
= Pr

(
Texp > x

)
Pr

(
1+Texp > y

)
where the inequality holds by the fact that Texp is itself NBU (see Example 2).
The proof finishes by noting that 1 + Texp stochastically dominates Texp, i.e.
Pr

(
1+Texp > y

)≥ Pr
(
Texp > y

)
.

7.5.2. PROOF OF PROPOSITION 4
Now, we prove Prop. 4, which automatically proves its special case Prop. 3. For our
proof, we first give a formal definition of Toutput, following Brand et al. [6]. The
RESTART-UNTIL-SUCCESS acts on n quantum states, which first need to have been de-
livered. Thus, we define a fresh random variable to refer to the time until the last of n
quantum states has been delivered:

M := max(T1, . . . ,Tn).

The restarts of the RESTART-UNTIL-SUCCESS protocol, according to a constant success
probability p, result in the fact that Toutput can be written as a geometric sum of copies of
M :

Toutput =
K∑

k=1
M (k) (7.15)
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where M (k) is an i.i.d. copy of M and K is a geometrically distributed random variable
with parameter p:

Pr(K = k) = p(1−p)k−1. (7.16)

Eq. (7.15) reflects the fact that the RESTART-UNTIL-SUCCESS protocol needs to perform K
attempts at success, each of which takes time given by a fresh instance of M (for a more
thorough explanation, see [6]).

Now we will prove each of the statements (a-f) from Prop. 4. For statement (a), we
need to show that Toutput is NBU. This follows directly from the following two facts:

(i) NBU-ness is preserved under the maximum: if T1, . . . ,Tn are NBU random vari-
ables, then so is M ;

(ii) NBU-ness is preserved under the geometric sum: if M is an NBU random vari-
ables, then so is Toutput =∑K

k=1 M (k).

We prove item (i) in Appendix 7.7.1, while item (ii) was proven by Brown, see Sec. 3.2 in
[45] 1.

For proving statement (b), E [Toutput] = m/p with m = E [M ], we apply a well-known
fact of randomised sums called Wald’s Lemma [46] to eq. (7.15), which results in

E [Toutput] = E [M ] ·E [K ]

and hence E [Toutput] = m · 1
p .

Statement (c) describes a two-sided bound on the co-CDF of Toutput:

exp

(−p · t

m
· 1

1−p

)
≤ Pr

(
Toutput > t

)≤ exp

(
p − p · t

m

)
.

These bounds follow from the following lemma from Brown, see eq.3.2.4 in [45]:

Lemma 6. [45] Let X be a real-valued random variable with Pr(X < 0) = 0. Define the geo-
metric compound sum of i.i.d. copies of X as Y :=∑K

k=1 X (k), where K follows the geomet-

ric distribution with success probability p (eq. (7.16)). Moreover, define Y0 := ∑K0
k=1 X (k),

where K0 = K −1. Then

Pr(Y > t ) ≤ exp
(
p

)
exp(−t/E [Y ])

while

Pr(Y > t ) ≥ exp(−t/E [Y0]) .

Now interpret Y → Toutput and X → M in Lemma 6. The upper bound in state-
ment (c) follows directly from Lemma 6 by the use of statement (b), which says that

1Let us clarify here that the work by Brown proves that the NBU property is preserved under the geometric sum
if K is distributed according to eq. (7.16). However, the same paper also proves that if K is shifted by 1, i.e.
Pr(K = k) = p(1−p)k , then the geometric sum is always NWU, irrespective of the summand random variable.
However, we will not use the latter case here.
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E [Toutput] = m/p, while for the lower bound in statement (c) we use

E [Y0] = E [K0] ·E [X ]

= E [K0] ·E [M ]

=
(

1

p
−1

)
·m

= (1−p) · m

p
.

Next, (d) states that Toutput/E [Toutput] approaches the exponential distribution with
mean 1. For proving this statement, we substitute t → t ·E [Toutput] = tm/p in statement
(c). The result is a bound on

Pr
(
Toutput > t ·E [Toutput]

)= Pr
(
Toutput/E [Toutput] > t

)
given by

exp

(
−t · 1

1−p

)
≤ Pr

(
Toutput/E [Toutput] > t

)≤ exp
(
p − t

)
.

Letting p → 0, the bounds on both sides coincide, and thus

lim
p→0

Pr
(
Toutput/E [Toutput] > t

)= exp(−t )

which is precisely the co-CDF of the exponential distribution with parameter 1.
For showing the upper bound in statement (e),

m ≤
n∑

j=1
E [T j ]

we use the fact that for all j = 1, . . . ,n, it holds that T j ≥ 0. The maximum of of nonnega-
tive numbers is upper bounded by its sum, and thus

m = E [max(T1, . . . ,Tn)]

= ∑
t1,...,tn

Pr(T1 = t1, . . . ,Tn = tn)max(t1, . . . , tn)

≤ ∑
t1,...,tn

Pr(T1 = t1, . . . ,Tn = tn) (t1 +·· ·+ tn)

∗=
n∑

j=1

∑
t j

Pr
(
T j = t j

)
t j

= E

[
n∑

j=1
T j

]

where for ∗ we made use of the fact that all T j are independent. The proof for the
lower bound in statement (e), max1≤ j≤n E [T j ] ≤ m, is similar and relies on the fact that
max(t1, . . . , tn) ≥ t j for all 1 ≤ j ≤ n, where t1, . . . , tn are nonnegative numbers. Last, (f)
states that if all T j are identically distributed with mean E [T ], then

1 ≤ m

E [T ]
≤ n −1+ 1

n
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where we recall that m = E [max(T1, . . . ,Tn)]. For proving this statement, we need the
following lemma from Hu and Lin [47, Lemma 2.2.].

Lemma 7. [47] If X1, . . . , Xn are independent and identically distributed copies of an NBU
random variable X on the domain [0,∞), then E [min(X1, . . . , Xn)] ≥ E [X ]/n.

Proof. The proof is based on two facts. First, note that

Pr(min(X1, . . . , Xn) > x) =
n∏

j=1
Pr

(
X j > x

)= Pr(X > x)n .

Second, note that if X is NBU, then by repeated application of the definition of NBU
(Def. 1), we find that

Pr

(
X >

n∑
j=1

x j

)
≤

n∏
j=1

Pr
(
X > x j

)
for any nonnegative numbers x j ,1 ≤ j ≤ n. When choosing all x j identical, say, to some
constant nonnegative number x, this reduces to

Pr(X > nx) ≤ Pr(X > x)n .

Using these two facts, we can now prove the lemma:

E [min(X1, . . . , Xn)] =
∫ ∞

0
Pr(X > x)nd x

≥
∫ ∞

0
Pr(X > nx)d x

=
∫ ∞

0
Pr(X /n > x)d x

= E [X /n]

= E [X ]/n

where we have used the fact that for any real-valued random variable X with Pr(X < 0) =
0, the mean can be computed as E [X ] = ∫ ∞

0 Pr(X > x)d x.

Statement (f) is proven by noting that for nonnegative numbers t1, . . . , tn , it holds that
t j ≥ min(t1, . . . , tn) for all j = 1, . . . ,n, and therefore

t1 + . . . tn ≥ max(t1, . . . , tn)+ (n −1) ·min(t1, . . . , tn).

Translating this to the T j yields

E

[
n∑

j=1
T j

]
≥ (n −1) ·E [min(T1, . . . ,Tn]

+E [max(T1, . . . ,Tn)]. (7.17)
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The left hand side of eq. (7.17) equals n ·E [T ] by the fact that the T j are i.i.d., while the
right hand side is lower bounded by (n −1)/n ·E [T ]+E [max(T1, . . . ,Tn)] by Lemma 7.
Reshuffling yields

E [max(T1, . . . ,Tn) ≤ n ·E [T ]− n −1

n
E [T ]

=
(
n −1+ 1

n

)
E [T ].

which is what we set out to prove.

7.6. DISCUSSION
The distribution of remote entanglement is a key element of many quantum network ap-
plications. In this chapter, we provided analytical bounds on both the mean and quan-
tiles of entanglement delivery times for a large class of protocols. We applied these re-
sults to a nested quantum repeater chain scheme and to a quantum switch, and obtained
bounds which are tighter than present in the literature.

In particular, we considered a frequently-used approximation to the mean
entanglement-delivery time in the nested repeater chain scheme, known as the 3-over-2
formula. This approximation is derived by assuming that the delivery time follows an
exponential distribution at each nesting level. It was not known in general how good
this approximation is. Moreover, finding the exact mean delivery time has been an open
problem for more than ten years [13]. We made a large step towards solving this question
by showing that the co-CDF of the delivery time, i.e. the probability that entanglement
is delivered after time t , is lower bounded by the co-CDF of an exponential distribution,
and upper bounded by the co-CDF of an exponential distribution multiplied by a factor
which is independent of t . In the limit of small success probabilities of the repeater’s
components, the bounds coincide. Second, we show that the 3-over-2 formula is, in
essence, an upper bound to the mean delivery time, rendering old analyses building
upon this approximation pessimistic.

Regarding future work, note that in many quantum internet scenarios, already-
produced entanglement waits for the generation of other entanglement and in the
meantime suffers from memory noise. We leave for future work converting our bounds
on the delivery time to bounds on the amount of memory noise, and thus on the quality
of the produced state.

In this chapter we only focused on the first remote entanglement that is delivered.
Some protocols, however, might deliver entanglement while still holding residual entan-
glement, for example at lower levels in case of the nested repeater chain. In such a case,
it is not optimal to restart the protocol for producing a second entangled pair of qubits,
since that would require discarding the residual entanglement. Hence, another possibil-
ity for future work would be to extend our results to protocols which produce multiple
entangled pairs without discarding existing entanglement in between.

Our bounds are partially based on a novel connection with reliability theory. We ex-
pect that reliability-theoretic tools will be useful in solving other open problems in quan-
tum networks too.
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7.7. APPENDIX

7.7.1. PROOF THAT THE NBU PROPERTY IS PRESERVED UNDER THE MAXI-
MUM

Here, we prove that the NBU property is preserved under the maximum of independent
random variables.

Lemma 8. Suppose X1, . . . , Xn are independent random variables (not necessarily identi-
cally distributed). If all X j are NBU random variables, then so is max(X1, . . . , Xn).

We first prove the special case for n = 2, from which the statement for general n fol-
lows.

Lemma 9. Let A and B be independent nonnegative real-valued random variables (not
necessarily identically distributed). If both are NBU, then so is max(A,B).

Proof. Let us denote az := Pr(A > z) and bz := Pr(B > z) for z ≥ 0. Assume that A and B
possess the NBU property (Def. 1), so that

ax+y ≤ ax ay and bx+y ≤ bx by for all x, y ≥ 0. (7.18)

We also write mz := Pr(max(A,B) ≥ z) and compute

mz = Pr(max(A,B) > z)

= 1−Pr(max(A,B) ≤ z)

= 1−Pr(A ≤ z)Pr(B ≤ z)

= 1− (1−az )(1−bz ) (7.19)

= az +bz −az bz

= az +bz (1−az ). (7.20)

We will prove that max(A,B) is NBU, which in our notation becomes mx+y ≤ mx my for
all x, y ≥ 0. To begin, we write out the expressions for both sides, i.e. for mx+y and for
mx my . First, using eq. (7.19), we write out

mx+y = 1− (1−ax+y )(1−bx+y ). (7.21)

Since mx+y from eq. (7.21) is monotonically increasing in ax+y and moreover ax+y ≤
ax ay (eq. (7.18)), we obtain

mx+y ≤ 1− (1−ax ay )(1−bx+y ). (7.22)

We use the same insight again, but now for bx+y : the right-hand side of eq. (7.22)
is monotonically increasing in bx+y , which combined with the fact that bx+y ≤ bx by

(eq. (7.18)) yields

mx+y ≤ 1− (1−ax ay )(1−bx by ) = ax ay +bx by (1−ax ay ). (7.23)

Next, by eq. (7.20) we have

mx my = (ax +bx (1−ax )) · (ay +by (1−ay )
)

= ax ay +ax by (1−ay )+ay bx (1−ax )+bx by (1−ax )(1−ay ). (7.24)

In order to prove that mx+y ≤ mx my we consider three cases.
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• Case bx = 0. In this case eq. (7.23) reduces to mx+y ≤ ax ay and eq. (7.24) becomes

mx my = ax ay +ax by (1−ay ). (7.25)

Since ax , ay ,bx and by are all cumulative probabilities, they take values in the
interval [0,1], and therefore the second term of eq. (7.25) is nonnegative, which
yields mx my ≥ ax ay ≥ mx+y .

• Case by = 0. By the fact that both the right hand side of eq. (7.23) as well as the
expression for mx my (eq. (7.24)) are invariant under exchanging bx and by , this
case is proven identically to the first case.

• Case bx 6= 0 and by 6= 0. Using eq. (7.23) and eq. (7.24), we expand

mx+y −mx my

bx by
= ax ay

bx by
+ bx by

bx by

(
1−ax ay

)− ax ay

bx by
− ax by

bx by

(
1−ay

)
−ay bx

bx by
(1−ax )− bx by

bx by
(1−ax ) · (1−ay

)
= 1−ax ay − ax

bx

(
1−ay

)− ay

by
(1−ax )− (1−ax ) · (1−ay

)
Using the fact that bx ,by ≤ 1, we obtain

mx+y −mx my

bx by
≤ 1−ax ay −ax

(
1−ay

)−ay (1−ax )− (1−ax ) · (1−ay
)= 0.

Since bx and by are positive numbers, it follows that mx+y −mx my ≤ 0. This con-
cludes our proof.

Let us now show how Lemma 8 follows from Lemma 9. Let X1, . . . , Xn be n NBU
independent random variables, for n ≥ 2. We use induction on n. The case n = 2 is
proven in Lemma 9. Now suppose Lemma 8 holds for n = m for some m ≥ 2. We show
that Lemma 9 also holds for n = m + 1. For this, choose A = max(X1, . . . , Xm) and B =
Xm+1. By assumption, B is NBU, and so is A by the induction hypothesis. Note that

max(X1, . . . , Xm , Xm+1) = max(max(X1, . . . , Xm) , Xm+1)

= max(A,B) ,

so it follows from Lemma 9 that max(X1, . . . , Xm+1) is also NBU, which concludes the
proof of Lemma 8.

7.7.2. PROOF OF THE LOWER BOUNDS IN PROPOSITION 5
Here, we prove the two lower bounds in Prop. 5: first, Prop. 5(b), followed by the lower
bound on the quantiles from Prop. 5(c).

Throughout the appendix, we will use the notation X (1), X (2), . . . to denote indepen-
dent and identically distributed copies of a random variable X . Before proving the
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bounds on the mean and tail of Tn , let us formally define it. Regarding the base case
n = 0, which describes elementary-link generation between adjacent nodes, we use ei-
ther of two flavors: we either set T0 = Tgen, i.e. T0 follows the geometric distribution with
parameter pgen, or we set T0 = T approx

gen , i.e. T0 follows the exponential distribution with
parameter pgen. For each statement about Tn in this appendix, either the statement will
hold for both flavors, or it will be clear from the context which of the two flavors is used.
Regardless of the choice for n = 0, we define Tn for n > 0 as

Tn+1 =
K∑

k=1
M (k)

n (7.26)

where K is geometrically distributed with parameter pswap and Mn is defined as

Mn = max(T (1)
n ,T (2)

n ). (7.27)

Eq. (7.26) was given in [6] and can be found by applying eq. (7.15) to each nesting level
of the repeater protocol, where M = Mn in eq. (7.15) describes the time until the last of
two links, each spanning 2n repeater segments, has been delivered.

PROOF OF PROPOSITION 5(B)
Here, we will prove the lower bound on the mean completion time Tn of the nested re-
peater protocol on n nesting levels. Informally stated, the insight is that

max

(
K (1)∑
k=1

X (k),
K (2)∑
k=1

X (k)

)
≥st

max(K (1),K (2))∑
k=1

X (k) (informal)

i.e. considering sums with independent and identically distributed summands, the max-
imum of two sums stochastically dominates the “longest” of the two. Since the definition
of Mn in eq. (7.27) contains the maximum of two such sums, we use this idea to define
a new random variable Rn as the “longest” of the two sums; by the insight above, Rn

is stochastically dominated by Mn . Using Lemma 4, this stochastic domination can be
converted to E [Mn] ≥ E [Rn], after which the bound on the mean of Tn as described in
Prop. 5(b) follows by noting that E [Tn] = E [Mn]/pswap.

We now give the formal proof, which we divide into three steps. First, we define Rn

and compute its mean. Next, we show that Mn ≥st Rn for all n > 0, from which we infer a
lower bound on the mean of Tn as third step.

For the first step, we define Rn :

R0 = max(T (1)
0 ,T (2)

0 ),

Rn+1 =
N∑

j=1
R( j )

n for n ≥ 0.

Here, N = max
(
K (1),K (2)

)
where K (1) and K (2) are both geometrically distributed with

parameter pswap. We emphasise that contrary to Tn , the random variable Rn does not
correspond to the completion time of a protocol.

The mean of Rn is computed using the following two lemmas.
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Lemma 10. Let X (1) and X (2) be independent and identically distributed random vari-
ables with mean 1/p for some 0 < p ≤ 1. If both X (1) and X (2) follow a geometric distribu-
tion, then

E [max(X (1), X (2))] = 3−2p

p(2−p)

while if they follow an exponential distribution, then

E [max(X (1), X (2))] = 3

2p
.

Proof. We start with the case that X follows a geometric distribution. Note that
min(X (1), X (2)) is geometrically distributed with parameter 1− (1−p)2:

Pr
(
min(X (1), X (2)) > t

)= Pr
(
X (1) > t

)
Pr

(
X (2) > t

)= (1−p)t ·(1−p)t = (1−p)2t = [
1− (

1− (1−p)2)]t

for t = 0,1,2, . . . . Combined with the fact that E [max(X (1), X (2))] = E [X (1) + X (2) −
min(X (1), X (2))] = E [X (1)]+E [X (2)]−E [min(X (1), X (2))], we obtain

E [max(X (1), X (2))] = 1

p
+ 1

p
− 1

1− (1−p)2 = 3−2p

p(2−p)

The case of the exponential distribution is analogous, with min(X (1), X (2)) following the
exponential distribution with parameter 2p.

Lemma 11. The mean of Rn is

E [Rn] =
(

3−2pswap

pswap(2−pswap)

)n

·ν0 (7.28)

where ν0 is defined as follows. If T0, which describes elementary-link generation between
adjacent nodes, follows the geometric distribution with parameter pgen, then

ν0 = E [R0] = E [max(T (1)
0 ,T (2)

0 )] = 3−2pgen

pgen(2−pgen)
(7.29)

while if T0 follows the exponential distribution with parameter pgen, then

ν0 = E [R0] = E [max(T (1)
0 ,T (2)

0 )] = 3

2pgen
. (7.30)

Proof. We use induction on n. The case n = 0 is treated in Lemma 10 where we set p =
pgen. For the induction case, we note that

E [Rn+1] = E

[
N∑

j=1
R( j )

n

]
= E [N ] ·E [Rn]

by Wald’s Lemma [46]. Since N = max(K (1),K (2)) and K is geometrically distributed with
parameter pswap, we again invoke Lemma 10 to obtain

E [N ] = E [max(K (1),K (2))] = 3−2pswap

pswap(2−pswap)
.

This finishes the proof.
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7. IMPROVED ANALYTICAL BOUNDS ON DELIVERY TIMES OF LONG-DISTANCE

ENTANGLEMENT

As second step, we will show that Mn stochastically dominates Rn , for which we need
the following two auxiliary lemmas and corollary.

Lemma 12. Let P and Q be independent real-valued random variables, and P ′ and Q ′
i.i.d. copies of P and Q respectively. Then P ≥st Q implies max(P,P ′) ≥st max(Q,Q ′).

Proof. By definition of P ≥st Q, we have, for all real numbers z, that Pr(P > z) ≥ Pr(Q > z)
and therefore Pr(P ≤ z) ≤ Pr(Q ≤ z). Consequently,

Pr
(
max(P,P ′) > z

)= 1−Pr
(
max(P,P ′) ≤ z

)= 1−Pr(P ≤ z)2 ≥ 1−Pr(Q ≤ z)2 = Pr
(
max(Q,Q ′) > z

)
for all real numbers z, so max(P,P ′) ≥st max(Q,Q ′).

Lemma 13. Let P and Q be independent, real-valued random variables with identical
domain. Then max(P,Q) ≥st Q.

Proof. For any real number z, we have

Pr(max(P,Q) > z) = 1−Pr(max(P,Q) ≤ z) = 1−Pr(P ≤ z)Pr(Q ≤ z)
∗≥ 1−Pr(Q ≤ z) = Pr(Q > z)

where the inequality * holds because Pr(P < z) ≤ 1.

Corollary 1. Let A(1), A(2), A(3) and A(4) be independent and identically distributed ran-
dom variables with domain {1,2,3, . . . }. Furthermore, let X ,Y and Z be independent and
identically distributed random variables with domain [0,∞). Then

max

(
A(1)∑
a=1

X (a),
A(2)∑
b=1

Y (b)

)
≥st

max
(

A(3),A(4))∑
a=1

Z (a). (7.31)

Proof. We note that random sums occur on both sides of eq. (7.31), that is, sums whose
number of terms is a random variable. We expand both sides of the inequality from the
lemma as a weighted sum over instantiations of this random variable. For the left-hand-
side, we obtain

Pr

(
max

(
A(1)∑
a=1

X (a),
A(2)∑
b=1

Y (b)

)
> y

)
=

∞∑
i=1

∞∑
j=1

Pr
(

A(1) = i
) ·Pr

(
A(2) = j

) ·C y
i j

for y ≥ 0, where we have defined

C y
i j := Pr

(
max

(
i∑

a=1
X (a),

j∑
b=1

Y (b)

)
> y

)
and for the right-hand-side we get

Pr

max
(

A(3),A(4))∑
a=1

Z (a) > y

=
∞∑

i=1

∞∑
j=1

Pr
(

A(3) = i
) ·Pr

(
A(4) = j

) ·D y
i j

with

D y
i j := Pr

(
max(i , j )∑

a=1
Z (a) > y

)
.

Given fixed i and j , we define random variables P and Q as follows:
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• if max(i , j ) = i > j , then define P =∑ j
b=1 Y (b) and Q =∑i

a=1 X (a);

• if max(i , j ) = j , then define P =∑i
a=1 X (a) and Q =∑ j

b=1 Y (b);

In both cases, application of Lemma 13 that max(P,Q) ≥st Q yields C y
i j ≥

Pr
(∑max(i , j )

a=1 Y (a) > y
)
. Since Y and Z are i.i.d., we obtain C y

i j ≥ D y
i j for all y ≥ 0 and for all

i , j . This concludes the proof.

Now we have the tools to show that Mn stochastically dominates Rn , as described in
the following lemma.

Lemma 14. For all n ≥ 0, we have
Mn ≥st Rn

where Mn = max(T (1)
n ,T (2)

n ) as defined in eq. (7.27).

Proof. We use induction on n. The base case n = 0 is an equality by definition of R0.
Now assume the statement from the lemma holds for n = m. We will show it also holds
for n = m +1. First, we expand the definition of Tm+1:

Tm+1 =
K∑

k=1
max(T (1)

m ,T (2)
m )

Now apply the induction hypothesis:

Tm+1 ≥st

K∑
k=1

R(k)
m .

Using Lemma 12 we obtain

max(T (1)
m+1,T (2)

m+1) ≥st max

(
K (1)∑
j=1

R(i )
m ,

K (2)∑
j=1

R( j )
m

)
.

Applying Corollary 1 to the previous equation yields

max(T (1)
m+1,T (2)

m+1) ≥st

max(K (1),K (2))∑
k=1

R(k)
m .

The left-hand side of the previous equation equals Mm+1 by definition, while its right-
hand side is Rm+1, again by definition. This concludes the proof.

The third step is to derive the lower bound on the mean delivery time from Prop. 5.
This follows directly from Lemma 14, as expressed in the following corollary.

Corollary 2. (Lower bound from Prop. 5) For n > 0, it holds that

E [Tn] ≥ 1

pswap
·
(

3−2pswap

pswap(2−pswap)

)n−1

·ν0

where ν0 is given in eq. (7.29) or eq. (7.30), depending on whether elementary-link gener-
ation is modelled following a geometric or exponential distribution, respectively.
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Proof. By Wald’s Lemma [46], it follows from the definition of Tn for n > 0 that E [Tn] =
E [K ] ·E [Mn−1] = 1

pswap
·E [Mn−1]. A lower bound on E [Mn] follows from Lemma 4 and

Lemma 14, resulting into

E [Tn] = 1

pswap
·E [Mn−1] ≥ 1

pswap
·E [Rn−1].

The proof finishes by substituting E [Rn−1] by the right-hand side of eq. (7.28).

PROOF OF LOWER BOUND IN PROPOSITION 5(B)
Here, we provide the expression for mlower in Prop. 5(c), which is a lower bound to the
mean of the delivery time after both input links are ready, but before the entanglement
swap. Formally, mlower is a lower bound to the mean of Mn−1 from eq. (7.27). Such a
bound follows directly from Lemma 14 by the fact that X ≥st Y implies E [X ] ≥ E [Y ] (see
Lemma 4):

mlower = E [Rn−1]

and E [Rn−1] is given in eq. (7.28).
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NETSQUID, A NETWORK

SIMULATOR FOR QUANTUM

INFORMATION

USING DISCRETE EVENTS

ABSTRACT

In this chapter, we introduce NetSquid, a discrete-event based platform for simulating all
aspects of quantum networks and modular quantum computing systems, ranging from
the physical layer and its control plane up to the application level. Using a simulator
such as NetSquid allows us to (more easily) study more complex scenarios than with the
analytical and semi-analytical tools from the previous chapters. In particular, it allows
us to investigate more detailed hardware models, to better determine the requirements
for realizing quantum network protocols. We study two use cases to showcase NetSquid’s
power. First, a detailed physical layer simulations of repeater chains based on nitrogen
vacancy centres in diamond. Next, we investigate the control plane of a quantum switch
beyond its analytically known regime. We showcase NetSquid’s ability to investigate large
networks by simulating entanglement distribution over a chain of up to one thousand
nodes.

A modified version of this chapter has published as: T.Coopmans∗, R. Knegjens∗, A. Dahlberg, D. Maier, L.
Nijsten, J. de Oliveira Filho, M. Papendrecht, J. Rabbie, F. Rozpędek, M. Skrzypczyk, L. Wubben, W. de Jong, D.
Podareanu, Ariana Torres-Knoop, D. Elkouss†, S. Wehner†, NetSquid, a NETwork Simulator for QUantum Infor-
mation using Discrete events, Nature Communications Physics (2021), where ∗ denoted equally-contributing
authors and † denotes authors who jointly supervised the work.
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8. NETSQUID, A NETWORK SIMULATOR FOR QUANTUM INFORMATION

USING DISCRETE EVENTS

8.1. INTRODUCTION
For bringing quantum networks and distributed quantum computing systems to the real
world, many challenges must be overcome before they can fulfil their promise. The ex-
act extent of these challenges remains generally unknown, and precise requirements to
guide the construction of large-scale quantum networks are missing. At the physical
layer, many proposals exist for quantum repeaters that can carry qubits over long dis-
tances (see e.g. [1–3] for an overview). Using analytical methods [4–25] and ad-hoc sim-
ulations [26–33] rough estimates for the requirements of such hardware proposals have
been obtained. Yet, while greatly valuable to set minimal requirements, these studies
still provide limited detail. Even for a small-scale quantum network, the intricate in-
terplay between many communicating devices, and the resulting timing dependencies
makes a precise analysis challenging. To go beyond, we would like a tool that can incor-
porate not only a detailed physical modelling, but also account for the implications of
time-dependent behaviour.

Quantum networks cannot be built from quantum hardware alone; in order to scale
they need a tightly integrated classical control plane, i.e. protocols responsible for or-
chestrating quantum network devices to bring entanglement to users. Fundamental dif-
ferences between quantum and classical information demand an entirely new network
stack in order to create entanglement, and run useful applications on future quantum
networks [34–39]. The design of such a control stack is furthermore made challenging
by numerous technological limitations of quantum devices. A good example is given
by the limited lifetimes of quantum memories, due to which delays in the exchange of
classical control messages have a direct impact on the performance of the network. To
succeed, we hence need to understand how possible classical control strategies do per-
form on specific quantum hardware. Finally, to guide overall development, we need to
understand the requirements of quantum network applications themselves. Apart from
quantum key distribution (QKD) [40–44] and a few select applications [45–48], little is
known about the requirements of quantum applications [49] on imperfect hardware.

Analytical tools offer only a limited solution for our needs. Statistical tools (see
e.g. [50–53]) have been used to make predictions about certain aspects of large regu-
lar networks using simplified models, but are of limited use for more detailed studies.
Information theory [54] can be used to benchmark implementations against the ideal
performance. However, it gives no information about how well a specific proposal will
perform. As a consequence, numerical methods are of great use to go beyond what is
feasible using an analytical study. Ad-hoc simulations of quantum networks have in-
deed been used to provide further insights on specific aspects of quantum networks (see
e.g. [26–33, 55–57]). However, while greatly informative, setting up ad-hoc simulations
for each possible networking scenario to a level of detail that might allow the determina-
tion of more precise requirements is cumbersome, and does not straightforwardly lend
itself to extensive explorations of new possibilities.

We would hence like a simulation platform that satisfies at least the following three
features: First, accuracy: the tool should allow modelling the relevant physics. This in-
cludes the ability to model time-dependent noise and network behaviour. Second, mod-
ularity: it should allow stacking protocols and models together in order to construct
complicated network simulations out of simple components. This includes the abil-
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ity to investigate not only the physical layer hardware, but the entirety of the quantum
network system including how different control protocols behave on a given hardware
setup. Third, scalability: it should allow us to investigate large networks.

Evaluating the performance of large classical network systems, including their time-
dependent behaviour is the essence of classical network analysis. Yet, even for classical
networks, the predictive power of analytical methods is limited due to complex emergent
behaviour arising from the interplay between many network devices. Consequently, a
crucial tool in the design of such networks are network simulators, which form a tool
to test new ideas, and many such simulators exist for purely classical networks [58–60].
However, such simulators do not allow the simulation of quantum behaviour.

In the quantum domain, many simulators are known for the simulation of quan-
tum computers (see e.g. [61]). However, the task of simulating a quantum network dif-
fers greatly from simulating the execution of one monolithic quantum system. In the
network, many devices are communicating with each other both quantumly and classi-
cally, leading to complex stochastic behaviour, and asynchronous and time-dependent
events. From the perspective of building a simulation engine, there is also an impor-
tant difference that allows for gains in the efficiency of the simulation. A simulator for
a quantum computation is optimised to track large entangled states. In contrast, in a
quantum network the state space grows and shrinks dynamically as qubits get measured
or entangled, but for many protocols, at any moment in time the state space describing
the quantum state of the network is small. We would thus like a simulator capable of
exploiting this advantage.

In this chapter we introduce the quantum network simulator NetSquid: the NET-
work Simulator for QUantum Information using Discrete events. NetSquid is a software
tool (available as a package for Python and previously made freely available online [62])
for accurately simulating quantum networking and modular computing systems that
are subject to physical non-idealities. It achieves this by integrating several key tech-
nologies: a discrete-event simulation engine, a specialised quantum computing library,
a modular framework for modelling quantum hardware devices, and an asynchronous
programming framework for describing quantum protocols. We showcase the utility of
this tool for a range of applications by studying use cases: the analysis of a control plane
protocol beyond its analytically accessible regime, predicting the performance of pro-
tocols on realistic near-term hardware, and benchmarking different quantum devices.
These use cases, in combination with a scalability analysis, demonstrate that NetSquid
achieves all three features set forth above. Furthermore, they show its potential as a gen-
eral and versatile design tool for quantum networks, as well as for modular quantum
computing architectures.

8.2. RESULTS AND DISCUSSION

8.2.1. NETSQUID IN A NUTSHELL

Simulating a quantum network with NetSquid is generally performed in three steps.
Firstly, the network is modelled using a modular framework of components and phys-
ical models. Next, protocols are assigned to network nodes to describe the intended be-
haviour. Finally, the simulation is executed for a typically large number of independent
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runs to collect statistics with which to determine the performance of the network. To
explain these steps and the features involved further, we consider a simple use case for
illustration. For a more detailed presentation of the available functionality and design of
the NetSquid framework see section 8.3.1 of the Methods.

The scenario we will consider is the analysis of an entanglement distribution proto-
col over a quantum repeater chain with three nodes. The goal of the analysis is to esti-
mate the average output fidelity of the distributed entangled pairs. The entanglement
distribution protocol is depicted in Figure 8.1(d-e). It works as follows. First, the inter-
mediate node generates two entangled pairs with each of its adjacent neighbours. En-
tanglement generation is modelled as a stochastic process that succeeds with a certain
probability at every attempt. When two pairs are ready at one of the links, the DEJMPS
entanglement distillation scheme [63] is run to improve the quality of the entanglement.
If it fails, the two links are discarded and the executing nodes restart entanglement gen-
eration. Once both distilled states are ready, the intermediate node swaps the entangle-
ment to achieve end-to-end entanglement. We remark that already this simple protocol
is rather involved to analyse.

We begin by modelling the network. The basic element of NetSquid’s modular frame-
work is the “component”. It is capable of describing the physical model composition,
quantum and classical communication ports, and, recursively, any subcomponents. All
hardware elements, including the network itself, are represented by components. For
this example we require three remote nodes linked by two quantum and two classical
connections, the setup of which is shown in Figure 8.1(a). In Figure 8.1(b,c) the nested
structure of these components is highlighted. A selection of physical models is used to
describe the loss and delay of the fibre optic channels, the decoherence of the quantum
memories, and the errors of quantum gates.

Quantum information in NetSquid is represented at the level of qubits, which are
treated as objects that dynamically share their quantum states. These internally shared
states will automatically merge or “split” – a term we use to mean the separation of a ten-
sor product state into two separately shared sub-states – as qubits entangle or are mea-
sured, as illustrated by the distillation protocol in Figure 8.1(e). The states are tracked
internally, i.e. hidden from users, for two reasons: to encourage a node-centric approach
to programming network protocols, and to allow a seamless switching between different
quantum state representations. The representations offered by NetSquid are ket vec-
tors, density matrices, stabiliser tableaus and graph states with local Cliffords, each with
trade-offs in modelling versatility, computation speed and network (memory) scalability
(see the subsection 8.2.4 below and Supplementary Note 8.6.1).

Discrete-event simulation, an established method for simulating classical network
systems [64], is a modelling paradigm that progresses time by stepping through a se-
quence of events – see Figure 8.2 for a visual explanation. This allows the simulation
engine to efficiently handle the control processes and feedback loops characteristic of
quantum networking systems, while tracking quantum state decoherence based on the
elapsed time between events. A novel requirement for its application to quantum net-
works is the need to accurately evolve the state of the quantum information present in a
network with time. This can be achieved by retroactively updating quantum states when
the associated qubits are accessed during an event. While it is possible to efficiently
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track a density matrix, quantum operations requiring a singular outcome for classical
decision making, for instance a quantum measurement, must be probabilistically sam-
pled. A single simulation run thus consists of a sequence of random choices that forms
one of many possible paths. In Figure 8.1 (d) we show such a run for the repeater proto-
col example, which demonstrates the power of the discrete-event approach for tracking
qubit decoherence and handling feedback loops.

start
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event

schedule
event

qubit
arrives

qubit
arrives

message
arrives
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Pong

Z

event
timeline
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Generate
entanglement
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. . . . . . . .
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quantum
memory
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X

Pong

Z

Pong

Z

Figure 8.2: Abstract example of simulating a quantum protocol with discrete events. When setting up the
simulation, protocol actions are defined to occur when a specific event occurs, as in the setup of a real system.
Instead of performing a continuous time evolution, the simulation advances to the next event, and then au-
tomatically executes the actions that should occur when the event takes place. Any action may again define
future events to be triggered after a certain (stochastic) amount of time has elapsed. For concreteness a simpli-
fied quantum teleportation example is shown where a qubit, shown as an orange circle with arrow, is teleported
between the quantum memories of Alice and Bob. Here, entanglement is produced using an abstract source
sending two qubits, shown as blue circles with arrows, to Alice and Bob. Once the qubit has traversed the fi-
bre and reaches Alice’s lab, an event is triggered that invokes the simulation of Alice’s Bell state measurement
(BSM) apparatus. The simulation engine steps from event to events defined by the next action, which generally
occur at irregular intervals. This approach allows time-dependent physical non-idealities, such as quantum
decoherence, to be accurately tracked.

The performance metrics of a simulation are determined statistically from many
runs. Due to the independence of each run, simulations can be massively parallelised
and thereby efficiently executed on computing clusters. For the example at hand we
choose as metrics the output fidelity and run duration. In Figure 8.1 (f) the sampled run
from (d), which resulted in perfect fidelity, is plotted in terms of its likelihood and dura-
tion together with several other samples, some less successful. By statistically averaging
all of the sampled runs the output fidelity and duration can be estimated.

In the following sections, we will outline two use cases of NetSquid: first, a quantum
switch, followed by simulations of quantum repeaters based on nitrogen-vacancy tech-
nology. We will also benchmark NetSquid’s scalability in both quantum state size and
number of quantum network nodes. Although the use cases each provide relevant in-
sights into the performance of the studied hardware and protocols, we emphasise that
one can use NetSquid to simulate arbitrary network topologies.
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8.2.2. SIMULATING A QUANTUM NETWORK SWITCH BEYOND ITS ANALYTI-
CALLY KNOWN REGIME

As a first use case showcasing the power of NetSquid, we study the control plane of a
recently introduced quantum switch beyond the regime for which analytical results have
been obtained, including its performance under time-dependent memory noise.

The switch is a node which is directly connected to each of k users by an optical link.
The communications task is distributing Bell pairs and n-partite Greenberger-Horne-
Zeilinger (GHZ) states [65] between n ≤ k users. The switch achieves this by connecting
Bell pairs which are generated at random intervals on each link. See Figure 8.3.

Intuitively, the switch can be regarded as a generalisation of a simple repeater per-
forming entanglement swapping with added logic to choose which parties to link. Even
with a streamlined physical model, it is already rather challenging to analytically char-
acterise the switch use case [52].

In the following, we recover via simulation a selection of the results from Vardoyan et
al. [52], who studied the switch as the central node in a star network, and extend them
in two directions. First, we increase the range of parameters for which we can estimate
entanglement rates using the same model as used in the work of Vardoyan et al. Second,
simulation enables us to investigate more sophisticated models than the exponentially
distributed erasure process from their work, in particular we analyse the behaviour of a
switch in the presence of memory dephasing noise.

The protocol for generating the target n-partite GHZ states is simple. Entanglement
generation is attempted in parallel across all k links. If successful they result in bipar-
tite Bell states that are stored in quantum memories. The switch waits until n Bell pairs
have been generated until performing an n-partite GHZ measurement, which converts
the pairs into a state locally equivalent to a GHZ state. An additional constraint is that
the switch has a finite buffer B of number of memories dedicated for each user (see Fig-
ure 8.3). If the number of pairs stored in a link is B and a new pair is generated, the old
one is dropped and the new one is stored.

The protocol can be translated to a Markov chain. The state space is represented by
a k-length vector where each entry is associated with a link and its value denotes the
number of stored links. The switch’s mean capacity, i.e. the number of states produced
per second, can be derived from the steady-state of the Markov chain [52].

Using NetSquid, it is straightforward to fully reproduce the previous model and study
the behaviour of the network without constructing the Markov Chain (details can be
found in Supplementary Note 8.6.3). In Figure 8.4(a), we use NetSquid to study the ca-
pacity of a switch network serving nine users. The figure shows the capacity (number of
produced GHZ-states per second), which we investigate for three use cases. First we con-
sider a switch network distributing bipartite entanglement. Second, we consider also a
switch-network serving bipartite entanglement but with link generation rates that do not
satisfy the stability condition for the Markov Chain if the buffer B is infinitely large, i.e. a
regime so far intractable. Third, we consider a switch-network distributing four-partite
entanglement where the link generation rates µ differ per user, a regime not studied so
far, and compute the capacity.

Beyond rate, it is important to understand the quality of the states produced. An-
swering this question with Markov chain models seems challenging. In order to analyse
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entanglement quality, we introduce a more sophisticated decoherence model where the
memories suffer from decay over time. In particular, we model decoherence as expo-
nential T2 noise, which impacts the quality of the state, as expressed in its fidelity with
the ideal state. In Figure 8.4(b), we show the effect of the time-dependent memory noise
on the average fidelity.

1

SWITCH
NODE

A

D

B

B = 2 qubits
per leaf node

C

LC

GHZ
Measurement

H

1

2

3

A

C

B B

C

A

4

3

2

LB

LA

LD

qubit

entangled pair
of qubits

Figure 8.3: A quantum switch in a star-shaped network topology as studied by Vardoyan et al.[52]. The switch
(central node) is connected to a set of users (leaf nodes) via an optical fibre link that distributes perfect Bell
pairs at random times, following an exponential distribution with mean rate µ∝ e−βL , where L denotes the
distance of the link and β the attenuation coefficient. Associated with each link there is a buffer that can
store B qubits at each side of the link. As soon as n Bell pairs with different leaves are available, the switch
performs a measurement in the n-partite Greenberger-Horne-Zeilinger (GHZ) basis, which results in an n-
partite GHZ state shared by the leaves. The GHZ-basis measurement consists of: first, controlled-X gates with
the same qubit as control; next, a Hadamard (H) gate on the control qubit; finally, measurement of all qubits
individually. The figure shows 4 leaf nodes, GHZ size n = 3 and a buffer size B = 2.

8.2.3. SENSITIVITY ANALYSIS FOR THE PHYSICAL MODELLING OF A LONG

RANGE REPEATER CHAIN
The next use case is the distribution of long-distance entanglement via a chain of quan-
tum repeater nodes [1, 4] based on nitrogen-vacancy (NV) centres in diamond [66, 67].
This example consists of a more detailed physical model and more complicated control
plane logic than the quantum switch or the distillation example presented at the start
of this section. It is also an example of how NetSquid’s modularity supports setting up
simulations involving many nodes; in this case the node model and the protocol (which
runs locally at a node) only need to be specified once, and can then be assigned to each
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Figure 8.4: Performance analysis of the quantum switch with 9 users using NetSquid. (a) Capacity as a
function of the buffer size (number of quantum memories that the switch has available per user) for either 2−
or 4−qubit Greenberger-Horne-Zeilinger (GHZ)-states. For each scenario, the generation rate µ of pairs varies
per user. For the blue scenario (2-partite entanglement, µ = [1.9,1.9,1.9,1,1,1,1,1,1] MHz), the capacity was
determined analytically by Vardoyan et al. using Markov Chain methods [52, Figure 8]. Here we extend this
to 4-partite entanglement (orange scenario, same µs), for which Vardoyan et al. have found an upper bound
(by assuming unbounded buffer and each µ = maximum of original rates = 1.9 MHz) but no exact analytical
expression. The green scenario (µ = [15,1.9,1.9,1,1,1,1,1,1] MHz) does not satisfy the stability condition for
the Markov chain for unbounded buffer size (each leaf’s rate < half of sum of all rates) so in that case steady-
state capacity is not well-defined. We note that regardless of buffer size, the switch has a single link to each
user, which is the reason why the capacity does not scale linearly with buffer size. (b) Average fidelity of the
produced entanglement on the user nodes (no analytical results known) with unbounded buffer size. The fact
that the green curve has lower fidelity than the blue one, while the former has higher rates, can be explained
from the fact that the protocol prioritises entanglement which has the longest storage time (see Supplementary
Note 8.6.3). Each data point represents the average of 40 runs (each 0.1 ms in simulation). Standard deviation
is smaller than dot size.

node in the chain. Furthermore, the use of a discrete-event engine allows the actions
of the individual protocols to be simulated asynchronously, in contrast to the typically
sequential execution of quantum computing simulators.

The NV-based quantum processor includes the following three features. First, the
nodes have a single communication qubit, i.e. a qubit acting as the optical interface that
can be entangled with a remote qubit via photon interference. This seemingly small re-
striction has important consequences for the communications protocol. In particular,
entanglement can not proceed in parallel with both adjacent nodes. As a consequence,
operations need to be scheduled in sequence and the state of the communication qubit
transferred onto a storage qubit. Second, the qubits in a node are connected with a star
topology with the communication qubit located in the centre. Two-qubit gates are only
possible between the communication qubit and a storage qubit. Third, communication
and storage qubits have unequal coherence times. Furthermore, the storage qubits suf-
fer additional decoherence when the node attempts to generate entanglement. Previous
repeater-chain analyses, e.g. [17, 18, 38], did not take all three into account simultane-
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ously.

Together with the node model, we consider two protocols: SWAP-ASAP and NESTED-
WITH-DISTILL. In SWAP-ASAP, as soon as adjacent links are generated the entanglement is
swapped. NESTED-WITH-DISTILL is a nested protocol [4] with entanglement distillation
at every nesting level. For a description of the simulation, including the node model and
protocols, see Methods, section 8.3.2.

The first question that we investigate is the distance that can be covered by a repeater
chain. For this we choose two sets of hardware parameters that we dub near-term and
10× improved (see Supplementary Note 8.6.4) and choose two configurations: one with-
out intermediate repeaters and one with three of them. We observe, see Figure 8.5(a),
that the repeater chain performs worse in fidelity than the repeaterless configuration
with near-term hardware. For improved hardware, we see two regimes, for short dis-
tances the use of repeaters increases rate but lowers fidelity while from 750 km until
1500 km the repeater chain outperforms the no-repeater setup.

The second question that we address is which protocol performs best for a given
distance. We consider seven protocols: no repeater, and repeater chains implementing
SWAP-ASAP or NESTED-WITH-DISTILL over 1, 3 or 7 repeaters. The latter is motivated by
the fact that the NESTED-WITH-DISTILL protocol is defined for 2n − 1 repeaters (n ≥ 1),
and thus 1, 3, and 7 are the first three possible configurations. In Figure 8.5(b), we sweep
over the hardware parameter space for two distances, where we improve all hardware
parameters simultaneously and the improvement is quantified by a number we refer to
as "improvement factor" (see section 8.3.2 of the Methods). For 500 km, we observe that
the no-repeater configuration achieves larger or equal fidelity for the entire range stud-
ied. However, repeater schemes boost the rate for all parameter values. If we increase
the distance to 800 km, then we see that the use of repeaters increases both rate and fi-
delity for the same range of parameters. If we focus on the repeater scheme, we observe
for both distances that for high hardware quality, the NESTED-WITH-DISTILL scheme,
which includes distillation, is optimal. In contrast, for lower hardware quality, the best-
performing scheme that achieves fidelities larger than the classical bound 0.5 is the
SWAP-ASAP protocol.

We note that beyond 700 km the entanglement rate decreases when the hardware
is improved. This is due to the presence of dark counts, i.e. false signals that a photon
has been detected. At large distances most photons dissipate in the fibre, whereby the
majority of detector clicks are dark counts. Because a dark count is mistakenly counted
as a successful entanglement generation attempt, improving (i.e. decreasing) the dark
count rate in fact results in a lower number of observed detector clicks, from which the
(perceived) entanglement rate plotted in Figure 8.5(a) is calculated.

Lastly, in Figure 8.6, we investigate the sensitivity of the entanglement fidelity for the
different hardware parameters. We take as the figure of merit the best fidelity achieved
with a SWAP-ASAP protocol. The uniform improvement factor is set to 3, while the fol-
lowing four hardware parameters are varied: a two-qubit gate noise parameter, photon
detection probability (excluding transmission), induced storage qubit noise and visibil-
ity. We observe that improving the detection probability yields the largest fidelity in-
crease from 2× to 50× improvement, while this increase is smallest for visibility. We
also see that improving two-qubit gate noise or induced storage qubit noise on top of
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an increase in detection probability yields only a small additional fidelity improvement,
which however boosts fidelity beyond the classical threshold of 0.5. These observations
indicate that detection probability is the most important parameter for realising remote-
entanglement generation with the SWAP-ASAP scheme, followed by two-qubit gate noise
and induced storage qubit noise.

8.2.4. FAST AND SCALABLE QUANTUM NETWORK SIMULATION

NetSquid has been designed and optimised to meet several key performance criteria: to
be capable of accurate physical modelling, to be scalable to large networks, and to be
sufficiently fast to support multi-variate design analyses with adequate statistics. While
it is not always possible to jointly satisfy all the criteria for all use cases, NetSquid’s design
allows the user to prioritise them. We proceed to benchmark NetSquid to demonstrate
its capabilities and unique strengths for quantum network simulation.

BENCHMARKING OF QUANTUM COMPUTATION

To accurately model physical non-idealities, it is necessary to choose a representation
for quantum states that allows a characterisation of general processes such as ampli-
tude damping, general measurements, or arbitrary rotations. NetSquid provides two
representations, or “formalisms”, that are capable of universal quantum computation:
ket state vectors (KET) and density matrices (DM), both stored using dense arrays. The
resource requirements for storage in memory and the computation time associated with
applying quantum operations both scale exponentially with the number of qubits. While
the density matrix scales less favourably, 22n versus 2n for n qubits, its ability to repre-
sent mixed states makes it more versatile for specific applications. Given the exponential
scaling, these formalisms are most suitable for simulations in which a typical qubit life-
time involves only a limited number of (entangling) interactions.

When scaling to large network simulations it can happen that hundreds of qubits
share the same entangled quantum state. For such use cases, we need a quantum state
representation that scales sub-exponentially in time and space. NetSquid provides two
such representations based on the stabiliser state formalism: “stabiliser tableaus” (STAB)
and “graph states with local Cliffords” (GSLC) [68, 69] that the user can select. Stabiliser
states are a subset of quantum states that are closed under the application of Clifford
unitaries and single-qubit measurement in the computational basis. In the context of
simulations for quantum networks stabiliser states are particularly interesting because
many network protocols consist of only Clifford operations and noise can be well ap-
proximated by stochastic application of Pauli gates. For a theoretical comparison of the
STAB and GSLC formalisms see Supplementary Note 8.6.1.

The repetitive nature of simulation runs due to the collection of statistics via random
sampling allows NetSquid to take advantage of “memoization” for expensive quantum
operations, which is a form of caching that stores the outcome of expensive operations
and returns them when the same input combinations reoccur to save computation time.
Specifically, the action of a quantum operator onto a quantum state for a specific set of
qubit indices and other discrete parameters can be efficiently stored, for instance as a
sparse matrix. Future matching operator actions can then be reduced to a fast lookup
and application, avoiding several expensive computational steps – see the Methods, sec-
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Figure 8.6: Sensitivity of fidelity in various hardware parameters for nitrogen-vacancy (NV) repeater
chains. The NV hardware model consists of ~15 parameters and from those we focus on four parameters in this
figure: (A) two-qubit gate fidelity, (B) detection probability, (C) induced storage qubit noise and (D) visibility.
We start by improving all ~15 parameters, including the four designated ones, using an improvement factor of
3 (Methods, section 8.3.2). Then, for each of the four parameters only, we individually decrease their improve-
ment factor to 2, or increase it to 10 or 50. The figure shows the resulting fidelity (horizontal and vertical grid
lines; dashed line indicates maximal fidelity which can be attained classically). Note that at an improvement
factor of 3 (orange line), all ~15 parameters are improved by 3 times, resulting in a fidelity of 0.39. In addi-
tion, we vary the improvement factor for combinations of two of the four parameters (diagonal lines). The 3×
improved parameter values can be found in Supplementary Table 8.2. The other values (at 2/10/50×) are ap-
proximately: two-qubit gate fidelity FEC (0.985/0.997/0.9994), detection probability pnofibre

det (6.8%/58%/90%),
induced storage qubit noise N1/e (2800/14000/70000), visibility V (95%/99%/99.8%). The fidelities shown are
obtained by simulation of the SWAP-ASAP protocol (3 repeaters) with a total spanned distance of 500 km. Each
data point represents the average of 1000 runs (standard deviation on fidelity < 0.002).

tion 8.3.1 for more details.
In the following we benchmark the performance of the available quantum state for-

malisms. For this, we first consider the generation of an n qubit entangled GHZ state
followed by a measurement of each qubit (see section 8.3.1 of the Methods). For a base-
line comparison with classical quantum computing simulators we also include the Pro-
jectQ [70] package for Python, which uses a quantum state representation equivalent
to our ket vector. We show the average computation time for a single run versus the
number of qubits for the different quantum computation libraries in Figure 8.7(a). The
exponential scaling of the universal formalisms in contrast to the stabiliser formalisms is
clearly visible, with the density matrix formalism performing noticeably worse. For the
ket formalism we also show the effect of memoization, which gives a speed-up roughly
between two and five.

Let us next consider a more involved benchmarking use case: the quantum com-
putation involved in simulating a repeater chain i.e. only the manipulation of qubits,
postponing all other simulation aspects, such as event processing and component mod-
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(a) (b)

Figure 8.7: Runtime comparison of NetSquid’s quantum state formalisms. Runtime comparisons of the avail-
able quantum state formalisms in NetSquid as well as ProjectQ ket vector for two benchmark use cases. The
KET, DM, STAB and GSLC formalisms refer to the use of ket vectors, density matrices, stabiliser tableaus
and graph states with local Cliffords, respectively. (a) Generating a Greenberger-Horne-Zeilinger (GHZ) state.
Qubits are split off from the shared quantum state after a measurement. For the KET formalism the effect of
turning off memoization (dotted line) is also shown. (b) Quantum computation involved in a repeater chain.
Each formalism is shown with qubits split (dotted lines) versus being kept in-place (solid lines) after measure-
ment.

elling, to the next section. This benchmark involves the following steps: first the N −1
pairs of qubits along an N node repeater chain are entangled, then each qubit expe-
riences depolarising noise, and finally adjacent qubits on all but the end-nodes do an
entanglement swap via a Bell state measurement (BSM). If the measured qubits are split
from their shared quantum states after the BSM, then the size of any state is limited to
four qubits.

The average computation time for a single run versus the number of qubits in the
chain are shown for the different quantum computation libraries in Figure 8.7(b), where
we have again included ProjectQ. We observe that for the NetSquid formalisms (but not
for ProjectQ) keeping qubits “in-place” after each measurement is more performant than
“splitting” them below a certain threshold due to the extra overhead of doing the latter.
The ket vector formalism is seen to be the most efficient for this benchmarking use case
if states are split after measurement. When the measurement operations are performed
in-place the GSLC formalism performs the best beyond 15 qubits.

BENCHMARKING OF EVENT-DRIVEN SIMULATIONS

As explained in the results section, a typical NetSquid simulation involves repeatedly
sampling many independent runs. As such NetSquid is “embarrassingly parallelisable”:
the reduction in runtime scales linearly with the number of processing cores available,
assuming there is sufficient memory available. Nonetheless, given the computational re-
quirements associated with collecting sufficient statistics and analysing large parameter
spaces it remains crucial to optimise the runtime performance per core.

Depending on the size of the network, the detail of the physical modelling, and the
duration of the protocols under consideration, the number of events processed for a sin-
gle simulation run can range anywhere from a few thousand to millions. To efficiently
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process the dynamic scheduling and handling of events NetSquid uses the discrete-
event simulation engine PyDynAA [71] (see section 8.3.1 of the Methods). NetSquid aims
to schedule events as economically as possible, for instance by streamlining the flow of
signals and messages between components using inter-connecting ports.

To benchmark the performance of an event-driven simulation run in NetSquid we
consider a simple network that extends the single repeater (without distillation) shown
in Figure 8.1 into an N node chain – see Supplementary Note 8.6.2 for further details on
the simulation setup. For the quantum computation we will use the ket vector formalism
based on the benchmarking results from the previous section, and split qubits from their
quantum states after measurement to avoid an exponential scaling with the number of
nodes. In Figure 8.8 we show the average computation time for deterministically gener-
ating end-to-end entanglement versus the number of nodes in the chain. Also shown is
a relative breakdown in terms of the time spent in the NetSquid sub-packages involved,
as well as the PyDynAA and NumPy packages. We observe that the biggest contribution
to the simulation runtime is the components sub-package, which accounts for 30% of
the total at 1000 nodes. The relative time spent in each of the NetSquid sub-packages, as
well as NumPy and PyDynAA, is seen to remain constant with the number of nodes. The
total runtime of each of the NetSquid sub-packages is the sum of many small contribu-
tions, with the costliest function for the components sub-package for a 1000 node chain,
for example, contributing only 7% to the total.

Extending this benchmark simulation with more detailed physical modelling may
shift the relative runtime distribution and impact the overall performance. For exam-
ple, more time may be spent in calls to the “components” and “components.models”
sub-packages, additional complexity can increase the volume of events processed by the
“pydynaa” engine, and extra quantum characteristics can lead to larger quantum states.
In case of the latter, however, the effective splitting of quantum states can still allow such
networks to scale if independence among physical elements can be preserved.

8.2.5. COMPARISON WITH OTHER QUANTUM NETWORK SIMULATORS

Let us compare NetSquid to other existing quantum network simulators. First, Simu-
laQron [72] and QuNetSim [73] are two simulators that do not aim at realistic physical
models of channels and devices, or timing control. Instead, SimulaQron’s main purpose
is application development. It is meant to be run in a distributed fashion on physically-
distinct classical computers. QuNetSim focuses on simplifying the development and
implementation of quantum network protocols.

In contrast with SimulaQron and QuNetSim, the simulator SQUANCH [74] allows
for quantum network simulation with configurable error models at the physical layer.
However, SQUANCH, similar to SimulaQron and QuNetSim, does not use a simulation
engine that can accurately track time. Accurate tracking is crucial for e.g. studying time-
dependent noise such as memory decoherence.

Other than NetSquid, there now exist three discrete-event quantum simulators: the
QuISP [75], qkdX [76] and SeQUeNCe [77] simulators. With these simulators it is possible
to accurately characterise complex timing behaviour, however they differ in goals and
scope. Similarly to NetSquid, QuISP aims to support the investigation of large networks
that consist of too many entangled qubits for full quantum-state tracking. In contrast to
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Figure 8.8: Runtime profile of a repeater chain simulation using Netsquid. Runtime profile for a repeater
chain simulation with a varying number of nodes in the chain. The maximum quantum state size is four
qubits. The total time spent in the functions of each NetSquid subpackage and its main package dependencies
(in italics) is shown. The dark hatched bands show the largest contribution from a single function in each Net-
Squid sub-package, as well as in NumPy and uncategorised (other) functions. The sub-packages are stacked in
the same order as they are listed in the legend.

NetSquid, which achieves this by managing the size of the state space, and providing the
stabiliser representation as one of its quantum state formalisms, QuISP’s approach is to
track an error model of the qubits in a network instead of their quantum state. qkdX, on
the other hand, captures the physics more closely through models of the quantum de-
vices but is restricted to the simulation of quantum key distribution protocols. Lastly, Se-
QUeNCe, similar to NetSquid, aims at simulation at the level of hardware, control plane
or application. It has a fixed control layer consisting of reprogrammable modules. In
contrast, NetSquid’s modularity is not tied to a particular network stack design. Further-
more, it is unclear to us how performant SeQUeNCe’s quantum simulation engine is:
currently, at most a 9-node network has been simulated, whereas NetSquid’s flexibility
to choose a quantum state representation enables scalability to simulation of networks
of up to 1000 nodes.

8.2.6. CONCLUSIONS
In this chapter we have presented our design of a modular software framework for sim-
ulating scalable quantum networks and accurately modelling the non-idealities of real
world physical hardware, providing us with a design tool for future quantum networks.
We have showcased its power and also its limitations via example use cases. Let us recap
NetSquid’s main features.

First, NetSquid allows the modelling of any physical device in the network that can
be mapped to qubits. To demonstrate this we studied a quantum repeater chain based
on nitrogen-vacancy centres in diamond.

Second, NetSquid is entirely modular, allowing users to set up large scale simulations
of complicated networks and to explore variations in the network design; for example,
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by comparing how different hardware platforms perform in an otherwise identical net-
work layout. Moreover, this modularity makes it possible to explore different control
plane protocols for quantum networks in a way that is essentially identical to how such
protocols would be executed in the real world. Control programs can be run on any
simulated network node, exchanging classical and quantum communication with other
nodes as dictated by the protocol. That allows users to investigate the intricate interplay
between control plane protocols and the physical devices dictating the performance of
the combined quantum network system. As an example, we studied the control plane of
a quantum network switch. NetSquid has also already found use in exploring the inter-
play between the control plane and the physical layer in [34, 78, 79].

Finally, to allow large scale simulations, the quantum computation library used by
NetSquid has been designed to manage the dynamic lifetimes of many qubits across a
network. It offers a seamless choice of quantum state representations to support dif-
ferent modelling use cases, allowing both a fully detailed simulation in terms of wave
functions or density matrices, or simplified ones using certain stabiliser formalisms. As
an example use case, we explored the simulation run-time of a repeater chain with up to
one thousand nodes.

In light of the results we have presented, we see a clear application for NetSquid in
the broad context of communication networks. It can be used to predict performance
with accurate models, to study the stability of large networks, to validate protocol de-
signs, to guide experiment, etc. While we have only touched upon it in our discussion
of performance benchmarks, NetSquid would also lend itself well to the study of modu-
lar quantum computing architectures, where the timing of control plays a crucial role in
studying their scalability. For instance, it might be used to validate the microarchitecture
of distributed quantum computers or more generally to simulate different components
in modular architectures.

8.3. METHODS

8.3.1. DESIGN AND FUNCTIONALITY OF NETSQUID
The NetSquid simulator is available as a software package for the Python 3 programming
language. It consists of the sub-packages “qubits”, “components”, “models”, “nodes”,
“protocols” and “util”, which are shown stacked in Figure 8.9. NetSquid depends on
the PyDynAA software library to provide its discrete-event simulation engine [71]. Un-
der the hood speed critical routines and classes are written in Cython [80] to give C-like
performance, including its interfaces to both PyDynAA and the scientific computation
packages NumPy and SciPy. In the following subsections we highlight some of the main
design features and functionality of NetSquid; for a more detailed presentation see Sup-
plementary Note 8.6.1.

DISCRETE EVENT SIMULATION

The PyDynAA package provides a fast, powerful, and lightweight discrete-event simula-
tion engine. It is a C++ port of the core engine layer from the DynAA simulation frame-
work [71], with bindings added for the Python and Cython languages. DynAA defines a
concise set of classes and concepts for modelling event-driven simulations. The simu-
lation engine manages a timeline of “events”, which can only be manipulated by objects
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Figure 8.9: Overview of NetSquid’s software architecture. The sub-packages that make up the NetSquid pack-
age are shown stacked in relation to each other and the PyDynAA package dependency. The main classes in
each (sub-)package are highlighted, and their relationships in terms of inheritance, composition and aggrega-
tion are shown. Also shown are the key modules users interact with, which are described in the main text. In
this chapter NetSquid version 0.10 is described.

that are sub-classes of the “entity” base class. Simulation entities can dynamically sched-
ule events on the timeline and react to events by registering an “event handler” object to
wait for event(s) with a specified type, source entity, or identifier to be triggered.

To deal with the timing complexities encountered in NetSquid simulations, an “event
expression” class was introduced to PyDynAA to allow entities to also wait on logical
combinations of events to occur. Atomic event expressions, which describe regular wait
conditions for standard events, can be combined to form composite expressions using
logical “and” and “or” operators to any depth. This feature has been used extensively in
NetSquid to model both the internal behaviour of hardware components, as well as for
programming network protocols.

QUBITS AND QUANTUM COMPUTATION

The qubits sub-package of NetSquid defines the “qubit” object that is used to track the
flow of quantum information. Qubits internally share quantum state (“QState”) objects,
which grow and shrink in size as qubits interact or are measured. The “QState” class is
an interface that is implemented by a range of different formalisms, as presented in sec-
tion 8.2.4 of the Results and Discussion. Via the qubit-centric API, which provides func-
tions to directly manipulate qubits without knowledge of their shared quantum states,
users can program simulations in a formalism agnostic way. Functionality is also pro-
vided to automatically convert between quantum states that use different formalisms,
and to sample from a distribution of states, which is useful for instance for pure state
formalisms.
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The ket and density matrix formalisms use dense arrays (vectors or matrices, respec-
tively) to represent quantum states. Applying a k qubit operator to an n qubit ket vector
state generally involves the computationally expensive task of performing 2n−k matrix
multiplications on 2k temporary sub-vectors and aggregating the result (only in special
cases can this be done in-place) [81, 82]. The analogous application of an operator to
a density matrix is more expensive due to the extra dimension involved. However, as
discussed in section 8.2.4 of the Results and Discussion, the repetitive nature of Net-
Squid simulations allows us to take advantage of operators frequently being applied to
the same qubit indices for states of a given size. For these operators, we compute a
2n×2n dimensional sparse matrix representation of the k qubit operator via tensor prod-
ucts with the identity and memoize this result for the specific indices and size. When
the memoization is applicable the computational cost of applying a quantum operator
can then be reduced to just sparse matrix multiplication onto a dense vector or matrix.
Memoization is similarly applicable to general Clifford operators in the stabiliser tableau
formalism. To use memoization on operators that depend on a continuous parameter,
such as arbitrary rotations, the parameter can be discretised i.e. rounded to some limited
precision.

PHYSICAL MODELLING OF NETWORK COMPONENTS

All physical devices in a quantum network are modelled by a “component” object, and
are thereby also all simulation entities, as shown in Figure 8.9. Components can be
composed of subcomponents, which makes setting up networks in NetSquid modular.
The network itself, for instance, can be modelled as a composite component containing
“node” and “connection” components; these composite components can in turn con-
tain components such as quantum memories, quantum and classical channels, quan-
tum sources, etc., as illustrated in Figure 8.1. The physical behaviour of a component is
described by composing it of “models”, which can specify physical characteristics such
as transmission delays or noise such as photon loss or decoherence. Communication
between components is facilitated by their “ports”, which can be connected together to
automatically pass on messages.

NetSquid also allows precise modelling of quantum computation capable devices.
For this it provides the “quantum processor” component, a subclass of the quantum
memory. This component is capable of executing “quantum programs” i.e. sequences
of “instructions” that describe operations such as quantum gates and measurements or
physical processes such as photon emission. Quantum programs fully support condi-
tional and iterative statements, as well as parallelisation if the modelled device supports
it. When a program is executed its instructions are mapped to the physical instructions
on the processor, which model the physical duration and errors associated to carrying
out the operation. A physical instruction can be assigned to all memory positions or only
to a specific position, as well as directionally between specific memory positions in the
case of multi-qubit instructions.

ASYNCHRONOUS FRAMEWORK FOR PROGRAMMING PROTOCOLS

NetSquid provides a “protocol” class to describe the network protocols and classical con-
trol plane logic running on a quantum network. Similarly to the component class, a
protocol is a simulation entity and can thereby directly interact with the event timeline.
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Protocols can be nested inside other protocols and may describe both local or remote
behaviour across a network. The “node protocol” subclass is specifically restricted to
only operating locally on a single node. Inter-protocol communication is possible via a
signalling mechanism and a request and response interface defined by the “service pro-
tocol” class. Protocols can be programmed using both the standard callback functional-
ity of PyDynAA and a tailored asynchronous framework that allows the suspension of a
routine conditioned on an “event expression”; for example, to wait for input to arrive on
a port, a quantum program to finish, or to pause for a fixed duration.

The “util” sub-package shown in Figure 8.9 provides a range of utilities for running,
recording and interacting with simulations. Functions to control the simulation are de-
fined in the “simtools” module, including functions for inspecting and diagnosing the
timeline. A “data collector” class supports the event-driven collection of data during a
simulation, which has priority over other event handlers to react to events. The “sim-
stats” module is responsible for collecting a range of statistics during a simulation run,
such as the number of events and callbacks processed, the maximum and average size
of manipulated quantum states, and a count of all the quantum operations performed.
Finally, the “simlog” module allows fine grained logging of the various modules for de-
bugging purposes.

BENCHMARKING

To perform the benchmarking described in section 8.2.4 of the Results and Discussion
we used computing nodes with two 2.6 GHz Intel Xeon E5-2690 v3 (Haswell) 12 core pro-
cessors and 64 GB of memory. Because each process only requires a single core, care was
taken to ensure sufficient cores and memory were available when running jobs in par-
allel. The computation time of a process is the arithmetic average of a number of suc-
cessive iterations; to avoid fluctuations due to interfering CPU processes the reported
time is a minimum of five such repeated averages. To perform the simulation profiling
the Cython extension modules of both NetSquid and PyDynAA were compiled with pro-
filing on, which adds some runtime overhead. Version 0.10.0 and 0.3.5 of NetSquid and
PyDynAA were benchmarked. We benchmarked against ProjectQ version 0.4.2 using its
“MainEngine” backend. See Supplementary Note 8.6.2 for further details.

Using the same machine, simulations for Figure 8.5(b-c) were run, which took almost
260 core hours wallclock time in total. For Figure 8.4 (≈10 hours in total), Figure 8.5(a)
(≈90 minutes) and Figure 8.6 (≈30 minutes), a single core Intel Xeon Gold 6230 processor
(3.9GHz) with 192 GB RAM was used.

8.3.2. IMPLEMENTING A PROCESSING-NODE REPEATER CHAIN IN NET-
SQUID

Here, we explain the details of the most complex of our two use cases, namely the re-
peater chain of Nitrogen-Vacancy-based processing nodes from section 8.2.3 of the Re-
sults and Discussion (see Supplementary Note 8.6.3 for details on the quantum switch
simulations). We first describe how we modelled the NV hardware, followed by the re-
peater protocols used. With regard to the physical modelling, let us emphasise that this
is well established (see e.g. [83]); the main goal here is to explain how we used this model
in a NetSquid implementation.
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In our simulations the following NetSquid components model the physical repeater
chain: “nodes”, each holding a single “quantum processor” modelling the NV centre,
and “classical channels” that connect adjacent nodes and are modelled as fibres with a
constant transmission time. We choose equal spacing between the nodes. If we were
to simulate individual attempts at entanglement generation, we would also need com-
ponents for transmitting and detecting qubits such as was used in previous NetSquid
simulations of NV centres [34]. However, in order to speed up simulations we insert the
entangled state between remote NVs using a model. We designed two types of protocols
to run on each node of this network that differ in whether they implement a scheme with
or without distillation.

In the remainder of this section, we describe the components modelling. More de-
tailed descriptions of the hardware parameters and their values used in our simulation
can be found in Supplementary Note 8.6.4.

MODELLING A NITROGEN-VACANCY CENTRE IN DIAMOND

In NetSquid, the NV centre is modelled by a quantum processor component, which
holds a single communication qubit (electronic spin-1 system) and multiple storage
qubits (13C nuclear spins). The decay of the state held by a communication qubit or
storage qubit is implemented using a noise model, which is based on the relaxation time
T1 and the dephasing time T2. If a spin is acted upon after having been idle for time ∆t ,
then to its state ρ we first apply a quantum channel

ρ 7→ E0ρE †
0 +E1ρE †

1

where
E0 = |0〉〈0|+√

1−p |1〉〈1| ,E1 =p
p |0〉〈1|

and p = 1−e−∆t/T1 . Subsequently, we apply a dephasing channel

N
deph

p : ρ 7→ (1−p)ρ+p ZρZ (8.1)

where Z = |0〉〈0|− |1〉〈1| and the dephasing probability equals

p = 1

2

(
1−e−∆t/T2 ·e∆t/(2T1)) .

The electron and nuclear spins have different T1 and T2 times.
We allow the quantum processor to perform the following operations on the electron

spin: initialisation (setting the state to |0〉), readout (measurement in the {|0〉 , |1〉} basis)
and arbitrary single-qubit rotation. In particular, the latter includes Pauli rotations

RP (θ) = cos(θ/2)12 − i sin(θ/2)P (8.2)

where θ is the rotation angle, P ∈ {X ,Y , Z } and 12 = |0〉〈0|+ |1〉〈1|, X = |0〉〈1|+ |1〉〈0|,
Y =−i |0〉〈1|+ i |1〉〈0| and Z = |0〉〈0|− |1〉〈1| are the single-qubit Pauli operators.

For the nuclear spin, we have only initialisation and rotations RZ (θ) for arbitrary ro-
tation angle θ. In addition, we allow the two-qubit controlled-RX (±θ) gate between an
electron (e) and a nuclear (n) spin:

|0〉〈0|e ⊗RX (θ)n +|1〉〈1|e ⊗RX (−θ)n .
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We model each noisy operation Onoisy as the perfect operation Operfect followed by a
noise channel N :

Onoisy =N ◦Operfect.

If O is a single-qubit rotation, then N is the depolarising channel:

N
depol

p : ρ 7→
(
1− 3p

4

)
ρ+ p

4

(
XρX +Y ρY +ZρZ

)
(8.3)

with parameter p = 4(1−F )/3 with F the fidelity of the operation.

If O is single-qubit initialisation, N =N
depol

p with parameter p = 2(1−F ). The noise
map of the controlled-RX gate is an identical single-qubit depolarising channel on both

involved qubits, i.e. N =N
depol

p ⊗N
depol

p .
Finally, we model electron spin readout by a POVM measurement with the Kraus

operators

M0 =
(√

f0 0
0

√
1− f1

)
, M1 =

(√
1− f0 0

0
√

f1

)
(8.4)

where 1− f0 (1− f1) is the probability that a measurement outcome 0 (1) is flipped to 1
(0).

SIMULATION SPEEDUP VIA STATE INSERTION

For generating entanglement between the electron spins of two remote NVs, we simu-
late a scheme based on single-photon detection, following its experimental implemen-
tation in [84]. NetSquid was used previously to simulate each generation attempt of this
scheme, which includes the emission of a single photon by each NV, the transmission of
the photons to the midpoint through a noisy and lossy channel, the application of imper-
fect measurement operators at the midpoint, and the transmission of the measurement
outcome back to the two involved nodes [34]. For larger internode distances, simulating
each attempt requires unfeasibly long simulation times due to the exponential decrease
in attempt success rate. To speed up our simulations in the examples studied here, we
generate the produced state between adjacent nodes from a model which has shown
good agreement with experimental results [84]. This procedure includes a random du-
ration and noise induced on the storage qubits, as we describe below.

Let us define

p00 = α2[2pdet(1−pdet)(1−pdc)

+2pdc(1−pdc)(1−pdet)
2

+p2
det(1−pdc) · 1

2
(1+V )]

p10 = α(1−α) · [(1−pdc) ·pdet

+2pdc(1−pdc)(1−pdet)]

p01 = p01

p11 = (1−α)2 ·pdc

where pdet is the detection probability, pdc the dark count probability, V denotes photon
indistinguishability and α is the bright-state parameter (see Supplementary Note 8.6.4
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for parameter descriptions). We follow the model of the produced entangled state from
the experimental work of [84], whose setup consists of a beam splitter with two detectors
located between the two adjacent nodes. In their model, the unnormalised state is given
by

ρ =


p00 0 0 0

0 p01 ±√
V p01p10 0

0 ±√
V p01p10 p10 0

0 0 0 p11


where ± denotes which of the two detectors detected a photon (each occurring with
probability 1

2 ). We also follow the model of [84] for double-excitation noise and optical
phase uncertainty, by applying a dephasing channel to both qubits with parameter p =
pdexc/2, followed by a dephasing channel of one of the qubits, respectively.

The success probability of a single attempt is

psucc = p00 +p01 +p10 +p11.

The time elapsed until the fresh state is put on the electron spins is (k −1) ·∆t with
∆t := (temission +L/c), where temission is the delay until the NV centre emits a photon, L
the internode distance and c the speed of light in fibre. Here, k is the number of attempts
up to and including successful entanglement generation and is computed by drawing a
random sample from the geometric distribution Pr(k) = psucc · (1− psucc)k−1. After the
successful generation, we wait for another time∆t to mimic the photon travel delay and
midpoint heralding message delay.

Every entanglement generation attempt induces dephasing noise on the storage
qubits in the same NV system. We apply the dephasing channel (eq. (8.1)) at the end
of the successful entanglement generation, where the accumulated dephasing probabil-
ity is

1− (1−2psingle)k

2
(8.5)

where psingle is the single-attempt dephasing probability (see eq. (8.13) in Supplemen-
tary Note 8.6.4).

HOW WE CHOOSE IMPROVED HARDWARE PARAMETERS

Here, we explain how we choose ‘improved’ hardware parameters. Let us emphasise that
this choice is independent of the setup of our NetSquid simulations and only serves the
purpose of showcasing that NetSquid can assess the performance of hardware with a
given quality.

By ‘near-term’ hardware, we mean values for the above defined parameters as ex-
pected to be achieved in the near future by NV hardware. If we say that an error proba-
bility is improved by an improvement factor k, we mean that its corresponding no-error
probability equals kppne, where pne is the no-error probability of the near-term hard-

ware. For example, visibility V is improved as
kp

V while the probability of dephasing p
of a gate is improved as 1− k

√
1−p. A factor k = 1 thus corresponds to ‘near-term’ hard-

ware. By ‘uniform hardware improvement by k’, we mean that all hardware parameters
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are improved by a factor k. We do not improve the duration of local operations or the fi-
bre attenuation. The near-term parameter values as well as the individual improvement
functions for each parameter can be found in Supplementary Note 8.6.4.

NV REPEATER CHAIN PROTOCOLS

For the NV repeater chain, we simulated two protocols: SWAP-ASAP and NESTED-WITH-
DISTILL. Both protocols are composed of five building blocks: ENTGEN, STORE, RETRIEVE,
DISTILL and SWAP. By ENTGEN, we denote the simulation of the entanglement genera-
tion protocol based on the description in the previous subsection: two nodes wait until
a classical message signals that their respective electron spins hold an entangled pair.
In reality, such functionality would be achieved by a link layer protocol [34]. STORE is
the mapping of the electron spin state onto a free nuclear spin, and RETRIEVE is the re-
verse operation. The DISTILL block implements entanglement distillation between two
remote NVs for probabilistically improving the quality of entanglement between two nu-
clear spins (one at each NV), at the cost of reading out entanglement between the two
electron spins. It consists of local operations followed by classical communication to
determine whether distillation succeeded. The entanglement swap (SWAP) converts two
short-distance entangled qubit pairs A − M and M −B into a single long-distance one
A −B , where A,B and M are nodes. It consists of local operations at M , including spin
readout, and communicating the measurement outcomes to A and B , followed by A and
B updating their knowledge of the precise state A −B they hold in the perfect case. We
opt for such tracking as opposed to applying a correction operator to bring A −B back
to a canonical state since the correction operator generally cannot be applied to the nu-
clear spins directly. Details of the tracking are given in Supplementary Note 8.6.6. The
circuit implementations for the building blocks, “quantum programs" in NetSquid, are
given in Supplementary Note 8.6.5.

Let us explain the SWAP-ASAP and NESTED-WITH-DISTILL protocols in spirit; the ex-
act protocols run asynchronously on each node and can be found in Supplementary
Note 8.6.5. In the SWAP-ASAP protocol, a repeater node performs ENTGEN with both its
neighbours, followed by SWAP as soon as it holds the two entangled pairs. Next, NESTED-
WITH-DISTILL is a nested protocol on 2n+1 nodes (integer n ≥ 0) with distillation at each
nesting level which is based on the BDCZ protocol [4]. For nesting level n = 0, there are
no repeaters and the two nodes only perform ENTGEN once. For nesting level n > 0, the
chain is divided into a left part and a right part of 2n−1 +1 nodes, and the middle node
(included in both parts) in the chain generates twice an entangled pair with the left end
node following the (n−1)-level protocol; STORE is applied in between to free the electron
spin. Subsequently, DISTILL is performed with the two pairs as input (restart if distilla-
tion fails), after which the same procedure is performed on the right. Once the right
part has finished, the middle node performs SWAP to connect the end nodes. If needed,
STORE and RETRIEVE are applied prior to DISTILL and SWAP in order achieve the desired
configuration of qubits in the quantum processor, e.g. for DISTILL to ensure that the two
involved NVs hold an electron-electron and nuclear-nuclear pair of qubits, instead of
electron-nuclear for both entangled pairs.
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8.4. DATA AVAILABILITY
The data presented in this chapter have been made available at https://doi.org/10.
34894/URV169 [85].

8.5. CODE AVAILABILITY
The NetSquid-based simulation code that was used for the simulations in this chapter
has been made available at https://doi.org/10.34894/DU3FTS [86].

8.6. APPENDIX

8.6.1. ANATOMY OF THE NETSQUID SIMULATOR

This section supplements the Methods, section 8.3.1, by going into more depth on spe-
cific details of NetSquid’s design. The version of NetSquid that we consider is 0.10. For
up-to-date documentation of the latest NetSquid version, including a detailed user tuto-
rial, code examples, and its application programming interface, please visit the NetSquid
website: https://netsquid.org [62].

QUBITS AND THEIR QUANTUM STATE FORMALISMS

The qubits sub-package of NetSquid, shown in Figure 8.9 (main text), provides a spe-
cialised quantum computation library for tracking the lifetimes of many qubits across
a quantum network. A class diagram of the main classes present in this sub-package is
shown in Supplementary Figure 8.10. Rather than assigning a single quantum state for
a predefined number of qubits, both the number of qubits and the quantum states de-
scribing them are managed dynamically during a simulation run. Every Qubit (Qubit)
object references a shared quantum state (QState) object, which varies in size according
to the number of qubits sharing it. When two or more qubits interact, for instance via a
multi-qubit operation, their respective shared quantum states are merged together. On
the other hand, when a qubit is projectively measured or discarded it can be split from
the quantum state it’s sharing and optionally be assigned a new single-qubit state.

The QState class is an interface for shared quantum states that NetSquid imple-
ments for four different quantum state formalisms – described in more detail below. To
allow simulations to seamlessly switch between formalisms NetSquid offers a formalism
agnostic API, which is defined in the qubitapi module. The functions in this API take as
their primary input parameters the qubits to manipulate and the operators (Operator)
describing a quantum operation to perform, if applicable. The merging and splitting
of shared quantum states is handled automatically under the hood, as are conversions
between states using different formalisms (where this is possible). This allows users to
program in a “qubit-centric” way, by for instance applying local operations to qubits at a
network node without knowledge of their positions within a quantum state representa-
tion or any entanglement they may have across the network.

We proceed to give a high-level description of the available quantum state for-
malisms. The first two formalisms are ket state vectors (KET) and density matrices
(DM), which both enable universal quantum computation. A ket state vector represents
a quantum pure state, while a density matrix can represent statistical ensembles of pure

https://doi.org/10.34894/URV169
https://doi.org/10.34894/URV169
https://doi.org/10.34894/DU3FTS
https://netsquid.org
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(a) Ket vector

ρ =
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(b) Density matrix

{Y ⊗X ⊗ I , Z ⊗Z ⊗ I ,−I ⊗ I ⊗X }

=
 1 1 0 1 0 0 0

0 0 0 1 1 0 0
0 0 1 0 0 0 1


(c) Stabiliser tableau

S H

Z

=

|+〉 • S

|+〉 • H

|+〉 Z

(d) Graph state with local Cliffords

Figure 8.11: Quantum state representations available in NetSquid. Four different representations of the same
quantum state |ψ〉 = 1p

2
(|00〉+ i |11〉) |−〉. Each representation type is supported by NetSquid and has different

trade-offs (see text of section 8.6.1 in Supplementary Note 8.6.1).

states. The stabiliser formalism (STAB) [68, 87] and graph states with local Cliffords for-
malisms (GSLC) [69] can only represent stabiliser states. Stabiliser states form a subset
of all quantum states that are closed under the application of:

• Clifford gates. Each Clifford gate can be written as circuit consisting of the follow-
ing three gates only: the Hadamard gate H (eq. (8.15)), the phase gate |0〉〈0|+i |1〉〈1|
and the CNOT gate |00〉〈00|+ |01〉〈01|+ |10〉〈01|+ |01〉〈10|. Not all unitaries are Clif-
ford gates;

• single-qubit measurements in the standard (|0〉 , |1〉) basis.

As such, for the STAB and GSLC formalisms quantum operations are limited to these two
procedures. The runtime complexity trade-off between GSLC and STAB is nontrivial,
since the former is faster on single-qubit unitaries, where the latter outperforms in two-
qubit gates. An overview of the four formalisms and their runtime complexities can be
found in Supplementary Table 8.1.

Now, let us describe for each of the formalisms how a quantum state is represented.
An example of the different representations of the same quantum state is given in
Fig. 8.11.

KET VECTORS (KET)

In the KET formalism, an n-qubit pure state |ψ〉 = ∑2n

k=1 ck |k〉 is stored as a vector of
length 2n containing the complex amplitudes ck . Here, |k〉 denotes the product state of
the binary representation of k, e.g. |5〉 = |1〉⊗ |0〉⊗ |1〉.
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DENSITY MATRICES (DM)

The density matrix of a pure state |ψ〉 is
∣∣ψ〉〈

ψ
∣∣= |ψ〉·(|ψ〉)†, where · denotes matrix mul-

tiplication and (.)† refers to complex transposition. An n-qubit mixed state is a statistical
ensemble of n-qubit pure states and can be represented as

m∑
k=1

pk
∣∣ψk

〉〈
ψk

∣∣
where |ψ1〉 , . . . , |ψm〉 are n-qubit pure states (with 1 ≤ m ≤ n) and the pk are probabilities
that sum to 1. In DM, the density matrix of a pure or mixed state is represented as a
matrix of dimension 2n ×2n with complex entries.

STABILISER TABLEAUS (STAB)
In the stabiliser formalism [87], one tracks the generators of the stabiliser group of a
state. We briefly explain the concept here; for a more accessible introduction to the topic,
we refer to [88]. In order to define a stabiliser group, let us give the Pauli group, which
consists of strings of Pauli operators with multiplicative phases ±1,±i :

{β ·
n⊗

k=1
Pk | Pk ∈ {12, X ,Y , Z } and β ∈ {±1,±i }}.

A stabiliser group is a subgroup of the Pauli group which is commutative (i.e. any two
elements A and B satisfy A ·B = B · A) and moreover does not contain the element −12⊗
12⊗·· ·⊗12. In case the stabiliser group contains 2n elements, there is a unique quantum
state |ψ〉 for which each element A from the stabiliser group stabilises |ψ〉, i.e. A |ψ〉 =
|ψ〉. Not all quantum states have such a corresponding stabiliser group; those that do
are called stabiliser states. The intuition behind the stabiliser state formalism is that
one tracks how the stabiliser group is altered by Clifford operations and |0〉/ |1〉-basis
measurements. Since the stabiliser state belonging to a stabiliser group is unique, one
could in principle always convert the group back to any other formalism, such as KET.
Concrete examples of stabiliser groups and their corresponding stabiliser states are:

• the stabiliser group {12, Z }, which corresponds to the state |0〉;
• the stabiliser group {12 ⊗12,12 ⊗Z , Z ⊗12, Z ⊗Z }, which corresponds to the state
|0〉⊗ |0〉;

• the stabiliser group {12 ⊗12, X ⊗X , Z ⊗Z ,−Y ⊗Y }, which corresponds to the state
(|00〉+ |11〉)/

p
2.

Rather than tracking the entire 2n-sized stabiliser group, it suffices to track a generating
set, i.e. a set of n Pauli strings whose 2n product combinations yield precisely the 2n el-
ements of the stabiliser group. The choice of generators is not unique. For the examples
given above, example sets of stabiliser generators are:

• for |0〉, the stabiliser group is generated by the single element Z , since Z 2 =12

• for |00〉, the stabiliser group is generated by {Z ⊗12,12 ⊗Z }, since squaring any of
these two yields 12 ⊗12, while multiplying them yields Z ⊗Z ;
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• for the state (|00〉+ |11〉)/
p

2, one possible set of of generators is {X ⊗X , Z ⊗Z }.

In NetSquid we store generators as a stabiliser tableau:

∣∣X Z P
∣∣=

∣∣∣∣∣∣∣
x11 . . . x1n z11 . . . z1n p1

...
. . .

...
...

. . .
...

...
xn1 . . . xnn zn1 . . . znn pn

∣∣∣∣∣∣∣ where pk , x j k , z j k ∈ {0,1},0 < j ,k ≤ n

The k-th generator corresponds to the k-th row of this tableau and is given by

(−1)pk
n⊗

j=1
X x j k Z z j k

For updating the stabiliser tableau after the application of a Clifford gate or a |0〉/ |1〉-
basis measurement, NetSquid uses the algorithms by [87] and [68]. The runtime perfor-
mance of stabiliser tableau algorithms is a direct function of the number of qubits: linear
for applying single- or two-qubit Clifford unitaries, which any Clifford can be composed
into, and cubic for single-qubit measurement [87].

GRAPH STATES WITH LOCAL CLIFFORDS (GSLC)
The last formalism is GSLC: graph states with local Cliffords [69]. Graph states are a
subset of all stabiliser states (see [89] for a review) and an n-qubit graph state |ψ〉 can be
written as

|ψ〉 = ∏
( j ,k)∈E

Z j k |+〉⊗n (8.6)

where Z j k indicates a controlled-Z gate |00〉〈00| + |01〉〈01| + |10〉〈10| − |11〉〈11| between

qubits j and k, and we have denoted |+〉 = (|0〉+ |1〉)/
p

2. As such, a graph state is com-
pletely determined by the set of qubit index pairs ( j ,k) at which a controlled-Z opera-
tion is performed. These indices can be captured in a graph with undirected edges; in
eq. (8.6), the edge set is E . Each stabiliser state can be written as a graph state, followed
by the application of single-qubit Clifford operations. Thus, a stabiliser state in the GSLC
formalism is represented by a set of edges E and a list of n single qubit Cliffords. There
exist 24 single-qubit Cliffords, so the Clifford list only requires O (n) space. For updating
the graph and the list of single-qubit Cliffords after the application of a Clifford gate or a
|0〉/ |1〉-basis measurement, NetSquid uses the algorithms by [69]. The runtime scaling of
the graph-state-based formalism depends on the edge degree d of the vertices involved
in the operation – constant-time for single-qubit Cliffords, quadratic in d for two-qubit
Cliffords and measurement – and thus scales favourably if the graph is sparse.

THE PYDYNAA SIMULATION ENGINE

The discrete-event modelling framework used by NetSquid is provided by the Python
package PyDynAA, which is based on the core engine layer of DynAA, a system analy-
sis and design tool [71]. This foundation provides a simple yet powerful language for
describing large and complex system architectures. To realise PyDynAA, the simulation
engine core was written in C++ for increased performance, and bindings to Python were
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added using Cython. NetSquid takes advantage of the Cython headers exposed by PyDy-
nAA to efficiently integrate the engine into its own compiled C extension libraries.

Several of NetSquid’s sub-packages depend and build on the classes provided by Py-
DynAA, as illustrated in Figure 8.9 (main text). In Supplementary Figure 8.12 we high-
light several of these key classes and how they interact with the simulation timeline in
more detail, namely: the simulation engine (SimulationEngine), events (Event and
EventType), simulation entities (Entity), and event handlers (EventHandler). We pro-
ceed to describe the concepts these classes represent in more detail.

Simulation entities represent anything in the simulation world capable of generating
or responding to events. They may be dynamically added or removed during a simula-
tion. The Entity superclass provides methods for scheduling events to the timeline at
specific instances and waiting for them to trigger. The intended use is that users sub-
class the Entity class to implement their own entities. The simulation engine efficiently
handles the scheduling of events at arbitrary (future) times by storing them in a self-
balancing binary search tree. Events may only be scheduled by entities, which ensures
that events always have a source entity. If an entity is removed during a simulation, then
any future events it had scheduled will no longer trigger.

An entity responds to events by registering an event handler object with a callback
function. Responses can be associated to a specific type, source, and id (including wild-
card combinations). The simulation engine runs by stepping sequentially from event to
event in a discrete fashion and checking if any event handlers in its registry match. A
hash table together with an efficient hashing algorithm ensure efficient lookups of the
event handlers in the registry.

PyDynAA implements an event expression class to allow entities to wait on logical
combinations of events. Atomic event expressions, which describe regular wait condi-
tions for standard events, can be combined to form composite expressions using logical
and and or operators to any depth. Event expressions enable NetSquid simulations to
deal with timing complexities. This feature has been used extensively in NetSquid to
model both the internal behaviour of hardware components, as well as for program-
ming network protocols. As example, consider DEJMPS entanglement distillation [63]:
two nodes participate in this protocol and a node can only decide whether the distilla-
tion succeeded or failed when both its local quantum operations have finished and it has
received the measurement outcome from the remote node. Thus, the node waits for the
logical and of the receive-event and the event that the local operations have finished.

THE MODULAR COMPONENT MODELLING FRAMEWORK

The physical modelling of network devices is provided by several NetSquid sub-
packages: components, models and nodes, which are shown stacked with relation the
NetSquid package in Figure 8.9 (main text). The pivotal base class connecting all them is
the component (Component), which is used to model all hardware devices. Specifically,
it represents all physical entities in the simulation, and as such sub-classes the entity
(Entity),which enables it to interact with the event timeline. In Supplementary Fig-
ure 8.13 we show a class diagram of the component class and its relationships to other
classes from these sub-packages.

The modularity of NetSquid’s modelling framework is achieved by the composi-
tion of components in terms of properties, models, communication ports and sub-
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components. A component’s properties are values that physically characterise it, such
as the length of a channel or the frequency of a source. A special constrained map
(ConstrainedMap) container is used to store the properties (as well as the other com-
posed objects) to give control of the expected types and immutability of properties dur-
ing a simulation. Models (Model) are used to describe the physical behaviour of a com-
ponent, such as the transmission delay of a channel, or the quantum decoherence of a
qubit in memory. Model objects are essentially elaborate functions and generally do not
store any state; when a model is called it is passed its component’s properties, in addi-
tion to any modelling specific input, such as, in the case of a quantum noise model, the
qubit to apply noise and the time the qubit has been waiting on a memory. Components
can be composed of other subcomponents, which allows networks to be pieced together
in a very modular fashion. For instance, a complete network can be represented by a
single component, which is composed of node and connection sub-components, which
in turn are composed of devices such as channels, sources, memories, etc. To streamline
and automate the communication between components, including to and from sub-
components, components can be linked using ports (Port) that can send, receive and
forward both quantum and classical messages (Message).

While the component base class defines a modular interface for modelling all kinds
of hardware, it doesn’t internally implement any event-driven behaviour itself. That be-
haviour is implemented by a library of base classes that sub-class Component. The right
half of Supplementary Figure 8.13 shows the sub-classing hierarchy of the provided com-
ponents, ranging from quantum and classical channels, quantum memory and process-
ing devices, sources, detectors, clocks, to nodes, connections, and networks.

The quantum processor (QuantumProcessor) is a component from the base class
library used for modelling general quantum processing devices. It sub-classes the quan-
tum memory (QuantumMemory) component, from which it inherits a collection of quan-
tum memory positions (MemoryPosition) for tracking the quantum noise of stored
qubits. The processor can assign a set of physical instructions to these positions to
describe the operations possible for manipulating their stored qubits, such as quan-
tum gates and measurements, or initialisation, absorption, and emission processes.
The physical instructions map to general device-independent instructions, for which
they specify physical models such as duration and error models specific to the mod-
elled device. This mapping allows users to write quantum programs in terms of device-
independent instructions and re-use them across devices. The quantum programs can
include classical conditional logic, make use of parallel execution (if supported by the
device), and import other programs.

ASYNCHRONOUS PROGRAMMING NETWORKS USING PROTOCOLS

While components are entities in the simulation describing physical hardware, protocols
– represented by the Protocol base class as shown in Supplementary Figure 8.14 – are
entities that describe the intended virtual behaviour of a simulation. In other words,
the protocol base class is used to model the various layers of software running on top of
the components at the various nodes and connections of a network. That can include,
for instance, any automated control software at the physical or link layers of a quantum
network stack, up to higher-level programs written at the application layer.
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Protocols in NetSquid can be likened to background processes: they can be started,
stopped, as well as reset to clear any state. They can also be nested i.e. a protocol
can manage the execution of sub-protocols under its control. To communicate changes
of state, such as a successful or failed run, protocols can use a signalling mechanism
(Signal).

NetSquid defines several sub-classes of the protocol base class that add extra restric-
tions or functionality. To restrict the influence of a protocol to only a local set of nodes
the local protocol (LocalProtocol) can be used. Similarly, to restrict a protocol to exe-
cuting on only a single node, which is a typical use case, a node protocol (NodeProtocol)
is available. The service protocol (ServiceProtocol) describes a protocol interface in
terms of the types of requests and responses they support. Lastly, a data node protocol
adds functionality to process data arriving from a port linked to a connection, and the
timed node protocol supports carrying out actions at regularly timed intervals.

Programming a protocol involves waiting for and responding to events, which is
achieved in the simulation engine by defining event handlers that wrap callback func-
tions. As the complexity of a protocol grows, typically the flow and dependencies of the
callback calls do too. To make the asynchronous interaction between protocol and com-
ponent entities easier and more intuitive to program and read, the main execution func-
tion of a protocol (the run() method) can be suspended mid-function to wait for certain
combinations of events to trigger. This is implemented in Python using the yield state-
ment, which takes as its argument an event expression. Several helper methods have
been defined that generate useful event expressions a protocol can await, for instance:
await_port_input() to wait for a message to arrive on a port, or await_timer() to
have the protocol sleep for some time.

8.6.2. QUANTUM CIRCUITS AND NETWORK SETUPS FOR BENCHMARKING
In this section we extend the Methods, section 8.3.1, to provide additional details on the
benchmarking simulations presented in the Results, section 8.2.4.

BENCHMARKING OF QUANTUM COMPUTATION RUNTIME

The quantum circuit used to benchmark the runtime for generating an n qubit GHZ state
is shown in Supplementary Figure 8.15a. The n qubits are created in NetSquid with inde-
pendent quantum states and are combined into the larger state via the CNOT operation.
The measurement operations at the end of the circuit are performed sequentially and
each split the measured qubit from its shared quantum state. Unless otherwise specified
the KET and DM formalisms utilise memoization (see Methods, section 8.3.1). Mem-
oization is effective because the circuit is successively iterated 30 times. The reported
runtime is the mean runtime of the iterations. For the baseline comparison with the
ProjectQ simulator we set up the circuit in an analogous way to NetSquid, and its default
MainEngine was used with no special settings applied. Qubits are similarly added se-
quentially to the growing state via the CNOT operation, and also the measurements are
performed sequentially with the measured qubit directly deallocated afterwards.

The quantum circuit used to benchmark the runtime of only the quantum computa-
tion involved for a simple repeater chain involving n qubits is shown in Supplementary
Figure 8.15b. It is implemented for NetSquid and ProjectQ similarly to the GHZ bench-
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(a) GHZ state generation
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H • {X ,Y , Z } •
|0〉
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{X ,Y , Z } X Z

(b) Repeater chain quantum computation

Figure 8.15: Circuits used to benchmark quantum computation in the Results, section 8.2.4, for n qubits.
For panel (b) the CNOT control line crossing the ellipses represents multiple lines for n > 6 qubits, following
the pattern of q2 and q3. Similarly, the classical control lines represent an AND of the measurement results for
q3, q5, . . . , qn−1 and q2, q4, . . . , qn−2 to determine the control of the X and Z gates, respectively. The noise
gates denoted by {X,Y,Z} cycle through the Pauli gates (see main text). Note that this circuit always requires an
even number of qubits.

mark, with qubits only combining their quantum states when a multi-qubit gate is per-
formed. An option has been added to keep qubits inplace after measurements i.e. they
are not split from their shared quantum states – in ProjectQ this is achieved by keeping
a reference to prevent deallocation. Noise is applied to each qubit after entanglement
by selecting a Pauli gate to mimic depolarising noise, which is done deterministically for
convenience. For this process the runtime is also determined as the mean of 30 succes-
sive iterations.

To benchmark the runtimes of quantum computation circuits the processes were
timed in isolation from any setup code using the Python timeit package. Python garbage
collection is disabled during the timing of each process. To avoid fluctuations due to
interfering CPU processes the reported time is a minimum of five repetitions.

RUNTIME PROFILING OF A REPEATER CHAIN SIMULATION

The runtime profiling of NetSquid presented in the Results, section 8.2.4, is performed
for a simple repeater chain. The network setup of this simulation extends the single
repeater presented in Supplementary Figure 8.1 to a chain of nodes by adding the en-
tangling connection shown between each pair of neighbouring nodes. Direct classical
connections are connected between each node and one of the end-nodes, rather than
between neighbouring nodes, and are used to transmit the swapping corrections. The
chosen configuration for this network does not need to be physically realistic; it suf-
fices for it to be representative of the typical computational complexities. The nodes
are placed at 20km intervals and the channels transmit messages at the speed of light in
fibre. The entanglement sources, assumed to be perfect, are all synchronised and oper-
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ate at a frequency of 100 kHz. Physical non-idealities are represented by adding time-
dependent depolarising noise to both the quantum channels and quantum memories,
as well as dephasing noise to quantum gates. The corresponding depolarising and de-
phasing times are 0.1 s and 0.04 s, which correspond to the T1 and T2 times presented in
section 8.3.2 of the Methods.

In a simulation run entanglement is created once between the end-nodes by per-
forming entanglement swaps along the chain. Protocols are assigned to all but the end-
nodes to perform entanglement swaps after each round of entanglement generation,
and send their measurement results as corrections to the same end-node. A protocol
running on the end-node collects these corrections, and applies them if needed.

The runtime of this simulation is profiled to determine the distribution of time spent
in the functions of NetSquid’s sub-packages, as well as its dependency packages NumPy
and PyDynAA. To perform this profiling the cProfile package is used. The reported
runtime for a given number of nodes is the mean of 400 successive simulation runs.

8.6.3. QUANTUM SWITCH: PHYSICAL NETWORK AND PROTOCOL
Here, we provide the details of the quantum switch simulations, whose results are pre-
sented in section 8.2.2 of the Results.

We implement the model of Vardoyan et al. [52], for which the parameters of the
simulation are:

• the number of leaf nodes k;

• the desired size n of the shared entanglement on the leaf nodes;

• for each leaf node: the rate µ at which bipartite entanglement is generated be-
tween leaf node and switch;

• B : the buffer size, i.e. the number of dedicated qubits per leaf node at the switch.

In addition, we include T2, the memory coherence time.

PHYSICAL NETWORK

In the scenario we study, the quantum switch is the centre node of a star-topology net-
work, with k ≥ 2 leaf nodes. Each leaf node individually is connected to the switch by
a connection, which consists of a source producing perfect bipartite entangled states
(|00〉+ |11〉)/

p
2 on a randomised clock and two quantum connections, from the source

to the leaf and switch node, respectively, for transporting the two produced qubits. The
interval ∆t between clock triggers is randomly sampled from an exponential distribu-
tion with probability µ · e−µ·∆t where µ is the rate of the source. We set the delay of the
quantum channels to zero.

Each node holds a single quantum processor with enough quantum memory posi-
tions for the total duration of our runs. Each memory position has a T2 noise model:
if a qubit is acted upon after having resided in memory for time ∆t , then a dephasing
map (eq. (8.1)) is applied with dephasing probability p = 1

2

(
1−e−∆t/T2

)
. Each quantum

processor can perform any unitary operation or single-qubit measurement; these oper-
ations are noiseless and take no time.
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PROTOCOL OF THE SWITCH NODE

The switch node continuously waits for incoming qubits. Upon arrival of a qubit from
leaf node `, the switch first checks whether it shares more entangled pairs of qubits with
` than the pre-specified buffer size B ; if so, it discards the oldest of those pairs. Then,
it checks whether it holds entangled pairs with at least n different leaves. If so, then it
performs and n-qubit GHZ-basis measurement (see below) on its qubits of those pairs.
If multiple groups of n qubits from n distinct nodes are available, then it chooses the
oldest pairs.

Directly after completion of the GHZ-basis measurement, we register the measure-
ment outcomes and obtain the resulting n-partite entangled state |ψ〉 on the leaf nodes.
From these, the fidelity |〈ψ|φideal〉|2 with the ideal target GHZ state |φideal〉 is computed.

The n-qubit GHZ states are(
|0〉⊗ |b2〉⊗ |b3〉⊗ · · ·⊗ |bn〉+ (−1)b1 |1〉⊗ |b2〉⊗ |b3〉⊗ · · ·⊗ |bn〉

)/p
2 (8.7)

where b j ∈ {0,1} and we have denoted b = 1− b. The n-qubit quantum program that
the switch node applies for performing a measurement in the n-qubit GHZ basis is as
follows: first, a CNOT operation on qubits 1 and j (1 is the control qubit) is applied for
all j = 2,3, . . . ,n, followed by a Hadamard operation (eq. 8.15) on qubit 1. Then, all qubits
are measured in the |0〉/ |1〉-basis. If we denote the outcome of qubit j as b j , the GHZ-
state that is measured is precisely the one in eq. (8.7).

8.6.4. HARDWARE PARAMETERS FOR THE NV REPEATER CHAIN
Here, we provide the values for the hardware parameters of the nitrogen-vacancy setup
used in our simulations. An overview of all parameters is provided in Supplementary
Table 8.2, including two example sets of improved parameters following the approach in
section 8.3.2 of the Methods.

ELEMENTARY LINK GENERATION

For generating entanglement between the electron spins of two remote NV centres in
diamond, we simulate a scheme based on single-photon detection, following its exper-
imental implementation in [84]. The setup consists of a middle station which is posi-
tioned exactly in between two remote NV centres in diamond. The middle station is
connected to the two NVs by glass fibre and contains a 50:50 beam splitter and two non-
number resolving photon detectors. In the single-photon scheme, each NV performs the
following operations in parallel. First, the electron of each NV system is brought into the
state

p
α |0〉+p

1−α |1〉 by optical and microwave pulses, where α is referred to as the
bright-state parameter. Then, a laser pulse triggers the emission of a photon, yielding
the spin-photon state

p
α |0〉s ⊗|1〉p +p

1−α |1〉s ⊗|0〉p , where |0〉 (|1〉) denotes absence
(presence) of a photon. We setα= 0.1 since for that value, fidelity is approximately max-
imal at lab-scale distances [84]; optimising over α is out of the scope for this work. We
assume that the delay until emission of the photon is fixed at 3.8 µs [90].

From each NV centre, the emitted photons are transmitted to the middle station
through glass fibre, where a 50:50 beam splitter effectively erases the which-way in-
formation of an incoming photon. An attempt at generating entanglement using this
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single-click scheme is declared successful if precisely one of the detectors clicks, which
happens if either (a) a single photon arrives at the detector and the other does not or (b)
both photons arrive (in case (b), only a single detector clicks due to the Hong-Ou-Mandel
effect). Case (a) yields the generation of the spin-spin state |φ±〉 = (|01〉±|10〉)/

p
2, where

± indicates which of the two detectors clicked, while case (b) results in |00〉〈00|. Given
that a single photon arrives, the probabilities that the other photon has or has not
arrived are respectively 1 −α and α (in the absence of loss). Therefore, a successful
attempt results in the generation of the spin-spin state (1−α)

∣∣φ±
〉〈
φ±

∣∣+α |00〉〈00|. We
refer to [84] for a more in-depth description of the scheme. We assume that the speed
of the photons and of all classical communication equals c/nr i , where c is the speed of
light in vacuum and nr i = 1.44 is the refractive index of glass [91].

In reality, however, several sources of noise affect the produced state, which we treat
below.

IMPERFECT DETECTION

The total probability pdet that a photon, emitted by the NV, will be detected in the mid-
point is given by the product of four probabilities [83]

• the probability pzero_phonon that the photon frequency is in the zero-phonon line
[92];

• the probability pcollection that the photon is collected into the glass fibre;

• the probability ptransmission that the photon does not dissipate in the fibre during
transmission;

• the probability pdetection that the photon is detected, conditioned on the fact that
it reaches the detector.

Thus we can write
pdet = pnofibre

det ·ptransmission (8.8)

where
pnofibre

det = pzero_phonon ·pcollection ·pdetection. (8.9)

The transmission probability is given by

ptransmission = 10−(L/2)·γ/10

where L is the internode distance (i.e. L/2 is the length of the fibre from NV to mid-
dle station) and γ is the loss parameter which depends on the photon frequency. In
our simulations, we assume that the photon frequency is converted to the telecom fre-
quency, corresponding to γ= 0.2 dB/km. Also, we assume that the emission in the zero-
phonon line is enhanced by an optical cavity from pzero_phonon = 3% (without cavity) to
pzero_phonon = 46% (with cavity) [92]. We set the detection efficiency pdetection to 0.8 [93].

What remains is the collection efficiency pcollection, which we compute from ex-
perimental values (no cavity, no conversion to the telecom frequency) using eq. (8.8)
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with L = 2m, pdet = 0.001 [90] and γ = 5 dB/km [34] (for the zero-photon line fre-
quency), yielding pcollection = 0.042. Since frequency conversion to the telecom fre-
quency is a probabilistic process and only succeeds with probability 30% [94], we set
pcollection = 0.3 ·0.042.

OTHER SOURCES OF NOISE

Other sources of noise on the freshly generated electron-electron entanglement are

• Dark counts: a photon detector falsely registering. The dark count probability fol-
lows a Poisson distribution pdc = 1−e−tw·λdark where tw = 25 ns [84] is the duration
of the time window at the midpoint. We set λdark = 1 Hz as the dark count rate.

• Imperfect photon indistinguishability. The generation of entanglement at the
middle station is based upon the erasure of the which-way information with re-
spect to the path of the photons. Only in case the photons are fully indistinguish-
able, the which-way information is erased perfectly. The overlap of the photon
states is given by the visibility V , which we set to 0.9 [84].

• Double excitation of the electron spin. When triggered to emit a photon by a reso-
nant laser pulse, an NV centre could be excited twice, which results into the emis-
sion of two photons. We set its occurrence probability to pdexc = 0.06 [90].

• Photon phase uncertainty. The photons which interfere at the midpoint acquired a
phase during transmission and a difference of these phases influences the precise
entangled state that is produced [95]. Given a standard deviation σphase = 0.35 rad
[90] of the acquired phase, we compute the dephasing probability as [84]

pphase =
1

2

(
1−e

−σ2
phase/2

)
. (8.10)

NUCLEAR SPIN DEPHASING DURING ENTANGLEMENT GENERATION

The initialisation of the electron spin state induces dephasing of the carbon spin states
through their hyperfine coupling. Following [96], we model this uncertainty by a de-
phasing channel for each attempt with dephasing probability

psingle =
1

2
(1−α) · (1−e−C 2

nucl/2). (8.11)

The parameter Cnucl is the product of the coupling strength between the electron spin
and the carbon nuclear spin, and an empirically determined decay constant. Rather
than expressing the dephasing probability as function of Cnucl, we express the magnitude
of nuclear dephasing as N1/e , the number of electron spin pumping cycles after which
the Bloch vector length of a nuclear spin in the state (|0〉+|1〉)/

p
2 in the X−Y plane of the

Bloch sphere has shrunk to 1/e, when the electron spin state has bright-state parameter
α= 0.5 (i.e the electron spin is in the state (|0〉+ |1〉)/

p
2).

Let us compute how psingle depends on N1/e instead of on Cnucl. First, we find by
direct computation that the equatorial Bloch vector length of a state is shrunk by a factor
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1− 2p after a single application of the single-qubit dephasing channel (eq. (8.1)) with
probability p (p ≤ 1

2 ).
Equating (1−2p)N1/e = 1/e yields

p = 1

2

(
1−e−1/N1/e

)
. (8.12)

Equating psingle from eq. (8.11) withα= 0.5 and p from eq. (8.12), followed by solving for
Cnucl yields

1−e−C 2
nucl/2 = 2

(
1−e−1/N1/e

)
.

Substituting back into eq. (8.11) yields an expression for general α:

psingle = (1−α)
(
1−e−1/N1/e

)
. (8.13)

We set N1/e = 1400 [97].

LOCAL PROCESSING PARAMETERS

For the dynamics of the electron spin, we use T1 = 1 hour and T ∗
2 = 1.46s [98]. For

the carbon nuclear spin, we take T1 = 10 hours and T2 = 1 s (experimentally realised:
T1 = 6m and T2 ≈ 0.26− 25s [99]). For the noise of the controlled-RX gate (Methods,
section 8.3.2), we set the depolarising probability p = 0.02 (denoted as pEC in Supple-
mentary Table 8.2), since by simulation of the circuit [95, Fig. 2a], we find that this value
agrees with the experimentally found effective circuit fidelity of 0.95. The correspond-
ing fidelity of the gate is FEC = (1− 3pEC /4)2 = 0.97. The initialisation fidelities of the
electron and carbon spins are set at 0.99 [100] and 0.997 [99]. We use 0.999 for the car-
bon Z -rotation gate fidelity (experimentally achieved: 1 [101]). The durations of local
operations are identical to our earlier simulations (see Appendix D, Table 6 in [34] and
references therein). We summarise all hardware values in Supplementary Table 8.2.

8.6.5. PROTOCOLS AND QUANTUM PROGRAMS FOR THE NV REPEATER

CHAIN
Here, we first elaborate on the sequence of quantum operations and classical commu-
nication that the NV protocol building blocks consist of (Methods, section 8.3.2). Then,
we describe in detail the two repeater chain protocols we simulated.

OPERATIONS FOR THE BUILDING BLOCKS: STORE, RETRIEVE, DISTILL AND SWAP

STORE is the mapping of the electron spin state onto a free nuclear spin. The opera-
tion requires the nuclear spin state to be |0〉 and the circuit, given in Supplementary
Figure 8.16(a), performs the following mapping:

|φ〉e ⊗|0〉n 7→ |0〉e ⊗
(
H |φ〉n

)
(8.14)

where |φ〉 is an arbitrary single-qubit state and

H := 1p
2

(|0〉〈0|+ |0〉〈1|+ |1〉〈0|− |1〉〈1|) (8.15)
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is the Hadamard gate. By RETRIEVE (Supplementary Figure 8.16(b)), we denote the re-
verse operation,

|0〉e ⊗|φ〉n 7→ (
H |φ〉e

)⊗|0〉n .

We simulate the specific entanglement distillation protocol (DISTILL) from Kalb et
al. [95], which acts upon an electron-electron state and a nuclear-nuclear state to prob-
abilistically increase the quality of the nuclear-nuclear state, at the cost of having to read
out the electron-electron state. In the protocol, the two involved nodes each perform a
sequence of local operations including a measurement (Supplementary Figure 8.16(c)),
followed by communicating the measurement outcome from the circuit to each other.
In this work, we only use distillation in one of the two repeater schemes we consider
(NESTED-WITH-DISTILL) and in that case, the success condition is as follows: if the nodes
are adjacent, then the measurement outcomes should both equal 0 (i.e. the bright state
of the electron), while otherwise the measurement outcomes only need to be equal (i.e.
both 0 or both 1). In the case of failure, the nuclear-nuclear state is considered lost.

The entanglement swap (SWAP) converts two short-distance entangled qubit pairs
A − M and M −B into a single long-distance one A −B , where A,B and M are nodes.
It is equivalent to performing quantum teleportation [102] to a qubit which is part of a
larger remote-entangled state. Our entanglement swapping protocol at node M starts
by assuming that one of M ’s qubits which is involved in the entanglement swap is the
electron spin. Then, a series of local operations including measurements (Supplemen-
tary Figure 8.16(d)) is performed; the measurement outcomes are transferred to both A
and B . In the original teleportation proposal, B performs a local operation to correct the
state A−B to the expected one. However, due to the fact that such correction operation
is generally not directly possible to perform on the nuclear spin state (see the allowed
operations in section 8.3.2 of the Methods), we opt for the approach where the correc-
tion operation is tracked in a classical database. Details of this tracking, including how
it affects the entanglement distillation and entanglement swap protocols, are given in
Supplementary Note 8.6.6.

REPEATER CHAIN PROTOCOLS SWAP-ASAP AND NESTED-WITH-DISTILL

We describe two protocols for the NV repeater chain: SWAP-ASAP, a protocol where a
node performs an entanglement swap as soon as it holds two entangled pairs, one in
each direction of the chain, and NESTED-WITH-DISTILL, a nested protocol with distilla-
tion at each nesting level which is based on the BDCZ protocol [4]. Both protocols run
asynchronously on each node.

In both protocols, a node remains idle until it is triggered to check whether it should
perform an action. It is triggered at the following three moments: (a) at the start of the
simulation, (b) when the node receives a classical message (if a node is busy upon re-
ception, the message is stored and responded to later) , (c) when its previous action is
finished. A simulation run finishes as soon as the two end nodes share a single entangled
pair of qubits.

For the SWAP-ASAP protocol, the sequence of operations that a node performs de-
pends on its index in the chain (start counting from left to right, nodes have indices
1,2,3, . . . ). If the index of the node is even, the node sends a request for ENTGEN to its
left neighbour, and starts the operation as soon as it has received confirmation. After
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performing STORE to free the electron spin, it repeats it for its right neighbour. Odd-
indexed nodes remain idle until reception of an ENTGEN request, after which they per-
form STORE if necessary to free the electron, send a confirmation, sleep for the dura-
tion of the message transmission, followed by performing ENTGEN. Once a node has
entanglement with both directions, it performs a SWAP and sends the outcome to the
end nodes.

The two end nodes are exceptions to the above. The left end node (i.e. with index
1) behaves like an odd-indexed node, but without performing SWAP. The same holds
for the rightmost node (i.e. the node with the largest index), unless its index is even, in
which case it initiates and performs entanglement generation with the adjacent node on
the left.

The NESTED-WITH-DISTILL protocol is a variant of the BDCZ protocol [4], adapted to
the fact that an NV cannot perform multiple ENTGEN , DISTILL or SWAP operations in par-
allel due to its restricted topology (Methods, section 8.3.2). In the adapted version, nodes
take the role of initiator of one of the three main actions (ENTGEN, DISTILL, SWAP) if the
action occurs at the highest nesting level that this node belongs to. To be precise, we do
the following. In a repeater chain with 2n +1 nodes, denote by {0,1,2, . . . ,2n} the indices
of the nodes from left to right. A node (not an end node) with index k ∈ {1,2,3, . . . ,2n −1}
initiates an action only if the entanglement that is involved in the task spans precisely
fn(k) segments, where

f1(k) = 1 for all k

fn(k) =


fn−1(k) if k < 2n−1,

fn−1(2n −k) if k > 2n−1,

2n−1 if k = 2n−1.

End nodes are never initiators.
When a node (index k) is triggered, it performs the following checks in order and

performs the first action for which the check holds true:

1. If it shares entangled pairs with nodes k− fn(k) and k+ fn(k), and both are the im-
mediate result of successful distillation: perform SWAP and send the measurement
outcomes to the involved nodes

2. If it holds two entangled pairs with node k− fn(k) and neither pair is the result from
successful entanglement distillation: send a request to distill to the node, wait for
confirmation, followed by performing DISTILL

3. Same as 2, but now for DISTILL on the right, i.e. remote node has index k + fn(k)

4. If there are any request-messages that have not been responded to yet: pick the
oldest one and act as follows. Respond to the message with a confirmation mes-
sage, followed by sleeping for the time that the confirmation takes to arrive at the
remote node. Then perform the requested action (ENTGEN or DISTILL).

5. If fn(k) = 1 and the node does not hold entanglement with its immediate left
neighbour that is the result of successful entanglement distillation: send a request
for ENTGEN to the node, wait for confirmation, followed by performing ENTGEN.
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6. Same as 5 for right adjacent node.

If no action follows from the checks above, then the node remains idle until the next
time at which it is triggered. In the operations above, if necessary ENTGEN is preceded by
STORE to free the electron by storing its state into a free carbon spin. DISTILL is preceded
by a combination of STORE and RETRIEVE to ensure the correct state lives on the electron
spin, and so is SWAP in case neither of the two to-be-swapped qubits live on the electron.
Since end nodes are never initiators, they only check 4.

8.6.6. TRACKING OF CORRECTION OPERATIONS IN THE NV REPEATER

CHAIN
Here, we explain how nodes of the NV repeater chain track the precise entangled state
they hold. This is done by associating unitary operations to each qubit, which map the
state of two remotely entangled qubits back to (|01〉+ |10〉)/

p
2 in the ideal case. Track-

ing these unitaries (gates) in a classical database, instead of performing them on the
(imperfect) quantum hardware, has the advantage of avoiding gate noise. This argu-
ment is even stronger for NV centres in case the remote-entangled state is held by a car-
bon nuclear spin, because direct application of a correction operator to a carbon spin
is generally not possible due to the restricted topology of the NV quantum processor
(Methods, section 8.3.2). Thus, performing the correction operator to the nuclear spin
requires even more gates, namely the ones to map the nuclear spin to the electron spin
(the RETRIEVE operation, see section 8.3.2 of the Methods), where the correction opera-
tor could be applied.

In what follows, we first explain how we track the correction operations. Then, we
describe how the tracking changes the protocol building blocks from section 8.3.2 of the
Methods and subsequently prove the correctness of the tracking in the ideal case.

Let us denote the four Bell states as

|φ[±1,1]〉 = (|00〉± |11〉)/
p

2,

|φ[±1,−1]〉 = (|01〉± |10〉)/
p

2.

To each of the qubits it holds, a node associates a single-qubit Pauli operator 1, X ,Y
or Z , which are defined as

1= |0〉〈0|+ |1〉〈1| , Z = |0〉〈0|− |1〉〈1| , X = |0〉〈1|+ |1〉〈0| ,Y =−i |0〉〈1|+ i |1〉〈0| .

The goal of the tracking is, at any time during the simulation, for any two nodes A and B
sharing electron-electron entanglement, that the target electron-electron state equals

|ψ〉 ≡ (P A ⊗PB ) |φ[1,−1]〉 . (8.16)

Here, P A and PB denote the Pauli correction operations of node A or B , respectively, and
≡ denotes equality modulo a complex number of norm 1.

In what follows, it will be more convenient to use the following equivalent statement
to eq. (8.16):

(P A ⊗PB ) |ψ〉 ≡ |φ[1,−1]〉 . (8.17)
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TRACKING CORRECTION OPERATORS DURING THE NV REPEATER CHAIN PROTOCOL

Here, we explain how each of the four protocol building blocks from section 8.3.2 of
the Methods are adjusted to ensure that eq. (8.17) holds after the operations ENTGEN,
DISTILL and SWAP.

Entanglement generation. Suppose that nodes A and B perform the ENTGEN pro-
tocol. In the absence of noise, this protocol (approximately) produces the state
|φ[±1,−1]〉, where ± denotes which detector clicked (Methods, section 8.3.2). If the
+-detector clicked, then the state that A and B hold is the desired state |φ[1,−1]〉, so we
set P A = PB = 1. If the other detector clicked, then the produced state is |φ[−1,−1]〉.
Therefore, one of the nodes (for example, the one with the higher position index
in the chain) sets the correction operator to Z , whereas the other sets it to 1, since
(1⊗Z ) |φ[−1,−1]〉 = |φ[1,−1]〉.

Storing and retrieving qubits. Locally mapping the state of a qubit onto a different
memory position by the STORE or RETRIEVE circuits does not alter the correction Pauli
corresponding to that qubit.

Entanglement distillation. Suppose that nodes A and B wish to perform the DIS-
TILL protocol, which starts by A and B sharing an electron-electron pair (correction
Paulis P e

A and P e
B at node A and B , respectively) and a nuclear-nuclear pair (P n

A and
P n

B ). In the protocol, first both nodes apply P n ·P e to their electron spin qubit. Then,
both nodes locally perform the distillation circuit from Supplementary Figure 8.16(c),
followed by sending both the measurement outcome and P n to the other node. The
nodes determine whether the distillation succeeded using the condition explained in
section 8.6.5. In case of failure, the nuclear-nuclear state is discarded. In case of success,
one of the nodes in the chain (for example, the one with the lower position index in the
chain) sets P n =1, while the other sets

P n =


Y if P n

A ∈ {X ,Y } and P n
B ∈ {1, Z }

Y if P n
A ∈ {1, Z } and P n

B ∈ {X ,Y }

1 otherwise.

(8.18)

Below, in section 8.6.6 of this Supplementary Note, we show that after this procedure,
eq. (8.17) still holds.

Entanglement swapping. Suppose that node M wants to execute the SWAP protocol
on shared pairs A −M and M −B , with nodes A and B respectively. We denote M ’s cor-
rection Paulis as P A

M and P B
M . First, M performs the Bell-state measurement circuit from

Supplementary Figure 8.16(d). Let us denote the individual measurement outcomes of
the circuit as mearlier and mlater (both take values from {1,−1}), which correspond to the
measured Bell state |φ[a,b]〉 with a = −1 ·mearlier ·mlater and b = mlater. Then, M sends
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the Pauli 1 to A, while to B it sends P A
M ·P B

M ·Q, where Q is given by

(a,b) Q

(1,1) X
(1,−1) 1

(−1,1) Y
(−1,−1) Z

(8.19)

Both nodes A and B multiply their local Pauli with the Pauli they received from M . The
proof that after the swap, eq. (8.17) still holds can be found below in section 8.6.6 of this
Supplementary Note.

CORRECTNESS PROOF OF THE CORRECTION OPERATOR UPDATE FOR DISTILL

Here, we prove that eq. (8.17) holds for the states that are outputted by the protocols for
entanglement distillation and swapping explained above.

Let us start with entanglement distillation. For this, we denote by ‘physical nuclear-
nuclear state’ the joint state of the nuclear spins of node A and B . By direct computation,
one can show the following.

Proposition 8. Suppose that nodes A and B share the state |φ[a,b]〉 on the electrons and
the physical nuclear-nuclear state |φ[c,d ]〉, where a,b,c,d ∈ {1,−1}. When both nodes
execute the distillation circuit from Supplementary Figure 8.16(c), the resulting state on
the carbon nuclear spins is

|φ[c,−a · c ·d ]〉
and the measurement outcome m1 ∈ {1,−1} on one side is uniformly random, while the
outcome of the other node equals m2 = m1 ·b · c.

We emphasise that using the correction-operator tracking for the STORE and
RETRIEVE operations as described in section 8.6.6 of this Supplementary Note, the phys-
ical nuclear-nuclear state between any two nodes does not satisfy eq. (8.17). The reason
for this is that the STORE operation maps the electron spin state to the nuclear spin in
a rotated basis, where the rotation operator is a Hadamard gate H (eq. 8.14). However,
the correction operators are not updated when the STORE is applied (see ‘Storing and
retrieving qubits’ in section 8.6.6). Consequently, if nodes A and B share the physical
nuclear-nuclear state |ψ〉, then mapping |ψ〉 to the reference Bell state |φ[1,−1]〉 requires
first the application of H ⊗H , followed by applying P A ⊗PB . By ‘virtual nuclear-nuclear
state’, we mean the state |ψ′〉 = (H ⊗ H) |ψ〉, i.e. the state that satisfies eq. (8.17). Let us
first convert Prop. 8 to a statement with the virtual-virtual nuclear state.

Proposition 9. Suppose nodes A and B share the electron-electron state |φ[a,b]〉 and the
virtual nuclear-nuclear state |φ[c,d ]〉. Then after the distillation circuit from Supplemen-
tary Figure 8.16(c), the virtual state on the nuclear spins after performing the distillation
equals

|φ[−a · c ·d ,d ]〉
and the measurement outcomes are m1 ∈ {1,−1} (uniformly random) and m2 = m1 ·b ·d.
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Proof. The virtual nuclear-nuclear state and the physical one are related by H ⊗ H . It
is not hard to see that H ⊗ H |φ[x, y]〉 = |φ[y, x]〉 for any x, y ∈ {1,−1}. Applying this to
Prop. 8 results in the measurement outcomes m1 (uniformly random) and m2 = m1 ·b ·d
and resulting physical nuclear-nuclear state |φ[d ,−acd ]〉. Obtaining the virtual state is
done by applying H ⊗H again, which yields |φ[−acd ,d ]〉.

Using Prop. 9, it is straightforward to check that the output state of the distillation
protocol from section 8.6.6 satisfies eq. (8.17).

Suppose A and B share the electron-electron state |φ[a,b]〉 and the virtual nuclear-
nuclear state |φ[c,d ]〉 for some a,b,c,d ∈ {1,−1}, with correction Paulis P e

A (P e
B ) and P n

A
(P n

B ) for A (B). In the first step of the protocol, A and B apply P n ·P e to the electron-
electron state, resulting in the electron-electron state

(P n
AP e

A⊗P n
B P e

B ) |φ[a,b]〉 = (P n
AP e

A⊗P n
B P e

B )(P e
A⊗P e

B ) |φ[1,−1]〉 = (P n
A⊗P n

B ) |φ[1,−1]〉 = |φ[c,d ]〉
where we made use of the fact that each Pauli squares to 1. In case of successful
distillation, the virtual nuclear-nuclear state can be found using Prop. 9 and equals
|φ[−ccd ,d ]〉 = |φ[−d ,d ]〉. What remains is to determine the correction operators con-
ditioned on the value of d . If d = 1, then the correction operators are 1 for one node and
Y for the other (since 1⊗Y |φ[−1,−1]〉 equals the target Bell state |φ[1,−1]〉), while for
d = −1 the resulting state is already the target Bell state and both correction operators
should be 1. Determining the value of d can be done by using the fact that eq. (8.17) was
satisfied by the pre-distillation virtual nuclear-nuclear state,

(P n
A ⊗P n

B ) |φ[c,d ]〉 = |φ[1,−1]〉
and thus |φ[c,d ]〉 = P n

A ⊗P n
B |φ[1,−1]〉. From checking all possible cases of P n

A and P n
B we

find that d = 1 precisely if one of P n
A ,P n

B equals X or Y , while the other equals 1 or Z .

CORRECTNESS PROOF OF THE CORRECTION OPERATOR UPDATE FOR SWAP

Here we show that eq. (8.17) holds for the state between nodes A and B after node M has
performed an entanglement swap on Bell states A−M and M −B . Let us denote A’s (B ’s)
correction operator as P A (PB ) and M ’s correction operator as P A

M (P B
M ) for the state it

shares with node A (B). That is, in the ideal case, the nodes hold the state

(P A ⊗P A
M ⊗P B

M ⊗PB )(|φ[1,−1]〉AM ⊗|φ[1,−1]〉MB ). (8.20)

We will make use of the fact that

(P ⊗Q) |φ[a,b]〉 ≡ (1⊗PQ) |φ[a,b]〉 (8.21)

for single-qubit Paulis P,Q and a,b ∈ {1,−1}, where ≡ as before indicates that the two
states differ only by a complex factor of norm 1 (in fact, for eq.(8.21) we can restrict this
to a multiplicative factor ±1). Using eq. (8.21), we rewrite eq. (8.20) to

(P A
M P A ⊗1⊗1⊗P B

M PB )(|φ[1,−1]〉AM ⊗|φ[1,−1]〉MB ). (8.22)

Eq. (8.22) implies that we may assume that M ’s two correction operators are both 1.
Thus M only needs to communicate the correction operator that corresponds to having
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measured one qubit of each pair of the pair |φ[1,−1]〉⊗ |φ[1,−1]〉. The resulting correc-
tion operator Q can be straightforwardly worked out in a similar way as in [102] and the
result is given in 8.19.

The state after the entanglement swap is thus

(P A
M P A ⊗P B

M PB Q) |φ[1,−1]〉AB

which we rewrite using eq. (8.21) to

(P A ⊗P A
M P B

M PB Q) |φ[1,−1]〉AB .

Indeed, P A and P A
M P B

M PB Q are (modulo possible factor −1) the correction operators
of node A and B , respectively, after finishing the entanglement swapping protocol de-
scribed above in section 8.6.6 of this Supplementary Note.

What remains is to convert the measurement outcomes from the circuit from Sup-
plementary Figure 8.16(d) to the measured Bell state. For this, a direct computa-
tion shows that applying the circuit to the electron-nuclear state (1e ⊗Hn) |φ[a,b]〉 (the
Hadamard gate H is needed since the nuclear qubit lives in a rotated basis, see sec-
tion 8.6.5) yields the measurement outcomes mearlier = −ab and mlater = b. Rewriting
gives a =−mearliermlater and b = mlater.
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9
CONCLUSION

9.1. SUMMARY OF RESULTS
In this thesis, we focused on (tools for) the analysis and optimisation of quantum re-
peater protocols. In the first part of the thesis, we considered an abstract hardware
model and did the following:

• we developed efficient algorithms for characterising the completion time of
tree-shaped-type quantum repeater schemes, and the fidelity of the entangled
state that it produces. The runtimes of these algorithms is polynomial in the
number of repeater nodes, which is an exponential improvement on existing al-
gorithms;

• we used one of the two algorithms to predict the performance increase
when adding cut-offs, e.g. the maximum storage time for entanglement, to
tree-shaped-type repeater schemes, and showed that in some hardware param-
eter regimes, the use of cut-off is necessary for secret-key generation between re-
mote parties. We also showed that our algorithm is fast enough to optimise the
cut-off for maximal secret key rate;

• using a novel connection to reliability theory, we established analytical bounds on
the completion time of tree-shaped-type quantum repeater schemes in case the
success probability of all repeater building blocks is lower bounded by a constant.
These bounds improve significantly on existing analytical work in some cases. In
particular, for a famous nested repeater scheme [1, 2], we showed that the fre-
quently used 3-over-2 approximation [3, 4] to the scheme’s mean completion time
is, in essence, an upper bound.

In the second part, we introduced the NetSquid simulator for quantum networks and
used it to
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• assess the performance of quantum repeater schemes on nitrogen-vacancy cen-
tres in diamond, a promising hardware platform for quantum networks. We con-
sidered both state-of-the-art as well as improved hardware parameters. We also
found by how much the various noisy parts of the hardware (such as detection
probability or induced storage qubit noise) should be improved to reach a fidelity
beyond the classical bound;

• simulate a quantum switch to find its performance if the quantum memories are
noisy and also limited in number.

9.2. FUTURE WORK
We discuss a few avenues for future research to extend the results from Chapters 5-8:

• Analytical bounds on the fidelity of entanglement from quantum repeater
chains.
In Chapters 5 and 6, we provided a deterministic algorithm for computing the
probability distribution of the completion time (waiting time) of tree-shaped-
type quantum repeater protocols and the average fidelity of the entanglement they
produce. The algorithm’s runtime is a function of the maximum waiting time that
we are interested in (to be precise: the time at which we truncate the probability
distribution; ideally, we have captured a close-to-100% of the probability mass at
the truncation time). Consequently, the algorithm is fast for assessing high-quality
hardware (specifically, for high success probabilities of the components such as
entanglement swapping), in which case the truncation time can be chosen rela-
tively small, but its runtime diverges in the limit of small success probabilities.

In contrast, in Chapter 7, we provided analytical bounds on the completion time
which become exact in the same limit. For this reason, converting the analyti-
cal completion time bounds to bounds on fidelity will yield asymptotically exact
bounds on fidelity. Another argument in favour of studying the low-probability-
range is that state-of-the-art hardware operates in this regime.

• Extension of the analytical and semi-analytical tools to multiple entangled
pairs.
Chapters 5-7 focused on the delivery time of the first end-to-end entangled pair
of qubits, delivered by a tree-shaped-type quantum repeater chain. Our analysis
relies on the fact that the tree-shaped-type protocols are nested; at each nesting
level the nodes deliver a single pair of qubits, after which they remain idle until the
higher level requests another pair. This setup is convenient since we could analyse
it using a divide-and-conquer algorithm as we have seen in chapters 5-6.

In order to increase the entanglement delivery rate, we would like the nodes not to
remain idle in between requests. To achieve this, we consider a modification of the
protocol in which each subprotocol does not wait for requests from higher levels,
but keeps producing entanglement continuously. This is advantageous for two
reasons. First, in case the higher-level-entanglement is lost, e.g. due to a failing
entanglement swap, the higher level will ask the lower levels for delivering entan-
glement, who will have a head start in doing so. Next, because of this head start,
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the production of the second, third, fourth, etc. pair will take less additional time
than the first.

The modified protocol is more complex to analyse, since now the time between
a higher-level request for an entangled pair and its delivery is dependent on the
time at which the request is issued. Hence, analysis of the modified protocol is not
possible directly with the numerical tools similar to the ones from Chapters 5 and
6.

The analytical approach from Chapter 7, however, might be more easily extend-
able. Our results in this chapter are based on the fact that the random variable
which describes the delivery time of the first entangled pair, possesses the new-
better-than-used property. We might be able to use existing results that the same
property holds for so-called ‘order statistics’, i.e. the distributions of the second
smallest, third smallest, etc. of a set of samples drawn from the same distribu-
tion [5].

An alternative approach would be to use queuing theory to find the average rate
of quantum repeater chain protocols which continuously produce entanglement,
following the quantum-switch analysis by Vardoyan et al. [6].

• Integrate the tools as part of a routing algorithm to decide the cost of a path,
both off-line and on-line.
In this thesis, we only applied our tools to quantum repeaters which are positioned
on a line. Real networks are, however, two- or three-dimensional. Consequently,
there are multiple paths through the network over which a chain of quantum re-
peaters could deliver entanglement. Determining the optimal paths over which
quantum information operations are performed (‘optimal’ in terms of fidelity or
rate of the delivered entanglement) is the topic of routing, which is a particularly
nontrivial question if multiple (not-necessarily disjoint) subsets of all nodes re-
quest to share entanglement at the same time. In existing work on quantum net-
work routing [7–9], the schemes used for generating remote entanglement often
have very stringent timing requirements imposed to prevent the entanglement
from decohering in memory (e.g. an entanglement swap may only be performed
if the two links are delivered within the same time slot). This potentially limits the
achievable entanglement distribution rates.

The tools presented in this thesis capture more refined memory noise models, en-
abling us to assess the performance of routing protocols with less stringent timing
restrictions (or even none). Such schemes potentially have a higher entanglement
distribution rate at the cost of only a limited decrease in entanglement quality due
to the longer storage times in imperfect memory.

In addition, we note that since the repeater schemes we investigate are proba-
bilistic, it might be that a pre-determined path is, once some time has passed,
no longer the optimum. Hence, we might want to reschedule the path. It would
be interesting to investigate the performance of a routing algorithm where a cen-
tral classical processor computes the optimal path (or paths, in case of multiple
pairs of users requesting bipartite entanglement), re-evaluates this path at every
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timestep and reschedules the path if another becomes the new optimal path. We
thus arrive at a global, on-line, dynamic routing algorithm. Since the routing hap-
pens on-line, the runtime of the algorithm is even more important than in the off-
line case, because of the decrease in state quality due to finite memory coherence
times while the new optimal path is being computed.

• Satellite-based repeaters for very long distances.
In Chapter 8, we investigated which parameters have the largest effect on boost-
ing the fidelity of the entanglement which is produced by an NV repeater chain.
We observed that the most relevant hardware parameter is the photon detection
probability, i.e. the success probability of emitting a photon locally by a commu-
nication qubit and having it detected at the midpoint. (The second most relevant
parameter is the storage qubit noise which is induced during every elementary-
link generation attempt and thus is automatically improved by an increased pho-
ton detection probability.) Improving the detection probability also evidently in-
creases the entanglement delivery rate.

If our goal is to obtain a high detection efficiency, glass fibre is not an ideal medium
because of its relatively high attenuation (the probability of photon loss dou-
bles every 22 kilometres). A better alternative could be free space, where photon
loss increases only quadratically with distance instead of exponentially. It would
therefore be interesting to use NetSquid for studying communication through free
space and satellites instead of ground stations with glass fibre. Such a setup might
be viable for very long distances, despite the increased cost and other technologi-
cal challenges that need to be overcome.

• Repeater protocol design, for example including cut-offs, in detailed models of
quantum repeaters (NV).
In Chapter 6, we have optimised quantum repeater protocols including a cut-off.
This optimisation was done using an abstract hardware model, in which there
are no restrictions on the number of quantum memories available at a node, nor
on the number of local operations that can be performed in parallel. Using this
model, we quantified the benefits of the use of a cut-off.

We cannot directly infer that the same benefits holds for the scenario where nodes
hold a restricted quantum processor, such as a single NV centre. The reason for
this is that a cut-off mitigates memory noise, which depends on the time that
qubits are stored in memory. There are two differences with the abstract model,
which influence this time: first, the NV can perform deterministic two-qubit oper-
ations, lowering the waiting time, while on the other hand, more time will possibly
be spent on performing local gates due to the restricted gate topology of the NV
centre (see sec. 8.3.2). Hence, we cannot directly use our results from Chapter 6
to quantitatively infer the performance increase from adding cut-offs to of an NV
repeater chain. Qualitatively, however, we know that a cut-off can be beneficial,
since the cut-off has already been used in state-of-the-art NV experiments of at
most three nodes [10, 11].

It would be interesting to extend the results of Chapter 6 to NV repeater chains.
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In particular, to investigate the performance increase of chains of NV quantum
repeaters using a cutoff beyond the three-node regime and the resulting lowered
hardware requirements for realising a chain of NV quantum repeaters. For this
analysis, we could attempt to extend the fast abstract-model algorithm from Chap-
ter 6 to a more detailed NV-centre model. Unfortunately, in its current form, this
will only allow us to treat tree-shaped-type protocols. Alternatively, we use our
existing NV modelling in NetSquid, with the benefit that we can then also include
both tree-shaped and non-tree-shaped-type protocols.
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