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SUMMARY

More is more applies in particular to systems with interacting parts. These interactions
enable the emergence of collective behaviour. Examples can be found among the be-
haviour of animals, such as the V-shaped formation of migrating geese and the flight of
a flock of starlings. More examples are found among the electromagnetic properties of
materials. For properties that rely on quantum-mechanical correlations it quickly be-
comes infeasible for classical numerical simulations to provide accurate results. An ap-
pealing alternative is to study these properties with quantum simulators, which mimic
the material properties themselves. Besides being of scientific interest for the field of
condensed matter physics, insights obtained from quantum simulations could in the
future serve as input for the synthesis of novel materials.

Developing quantum simulators requires the engineering of quantum systems. One
such quantum system is that of electrons in gate-defined quantum dots, which are formed
by three-dimensional confinement at the nano-scale. Experiments with quantum dots
have already demonstrated measurement and coherent control of both individual charges
and spins, and their operation as quantum bits. The first quantum simulation experi-
ments with quantum dots have been performed in the last couple of years. Further de-
velopment of quantum dots as platform for quantum simulations forms the overarching
motivation for this thesis.

The first experiment in this thesis describes the automated tuning of the tunnel cou-
pling between quantum dots. This automation builds on previously developed auto-
mated tuning of double quantum dots. The automated tuning relies on image process-
ing to extract parameters from measurement results. This step is part of a feedback loop
in which the voltages on the gates are iteratively adjusted. This loop repeats until the
target tunnel coupling is achieved.

The second experiment further studies the tuning of tunnel couplings. For operation
of gate-defined quantum dots it is common practice to independently control chemical
potentials with so-called virtual gates. These virtual gates compensate for crosstalk ef-
fects due to cross-capacitances of the physical gates. The control of multiple tunnel cou-
plings similarly suffers from crosstalk, but efficient compensation techniques were lack-
ing. This chapter reports an efficient calibration scheme for such crosstalk, and demon-
strates independent control of tunnel couplings with enhanced virtual gates.

The third experiment demonstrates a method to measure charge and spin in large
quantum dot arrays. The charge configuration of a quantum dot array is typically mea-
sured with a charge sensor, which is usually another quantum dot. To measure the spin
configuration it is first mapped onto a charge configuration, which for singlet-triplet
measurements is based on the Pauli exclusion principle. The charge measurement relies
on Coulomb repulsion, which decays with distance, thus only charge and spin close to
the sensor can be reliably measured. This chapter presents how, inspired by the effect
of toppling dominoes, a cascade of hopping electrons induced by Coulomb repulsion
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x SUMMARY

can effectively convert the information about motion of a distant charge to the motion
of a charge close to the sensor. The benefit of cascade-based readout is demonstrated by
comparing singlet-triplet measurements with or without the cascade activated.

The most involved experiment described in this thesis is a proof-of-principle quan-
tum simulation of Heisenberg magnetism, which is one of the most famous models in
condensed-matter physics. Specifically, this experiment demonstrates how a linear ar-
ray of quantum dots can be operated as a Heisenberg spin chain. The first part of the ex-
periment shows the characterization of the energy spectrum, which is based on degen-
eracies between spin states with different magnetization. From the energy spectroscopy
the conditions are identified for which the exchange couplings are homogeneous. Next,
the coherence is studied by inducing global exchange oscillations, and evolution in dif-
ferent subspaces of the Heisenberg Hamiltonian is demonstrated. The final step of the
experiment consists of the adiabatic preparation of the low-energy global singlet state
for a homogeneous chain, and its characterization with pairwise singlet-triplet measure-
ments for each of the nearest-neighbours and correlations therein. These techniques
and results form the basis for the operation of quantum dots to simulate larger spin sys-
tems and different lattice structures.

The final experiment, shifts the focus from spin-spin interactions to electron-electron
interactions. For gate-defined quantum dots, the Coulomb repulsion results in both
on-site and inter-site interactions between electrons. The interaction is experimentally
characterized with a linear array of six dots in which the tunnel couplings are tuned to
be homogeneous. The decay of the interaction as a function of distance is modelled
with both the method of image charges, where the gate metal acts as screening layer,
and with a Yukawa type potential as a heuristic model. The latter provides an intuitive
interpretation for the decay of the interaction in terms of a screening length. The char-
acterization of the long-range electron-electron interaction is relevant for the operation
of quantum dot arrays as hosts of spin qubits, but also for quantum simulations in which
the charge degree of freedom and electron-electron interactions play an important role.
Some examples of many-body physics for which long-range interactions are essential,
are quantum chemistry, Wigner crystallization, and high-temperature superconductiv-
ity.

Summarizing, this thesis reports novel techniques for the control and measurement
of larger quantum dot arrays, the operation of such an array as quantum simulator of
Heisenberg magnetism with control over the spin-spin interactions, and characteriza-
tion of the electron-electron interactions. These results pave the way for future quantum
simulations with quantum dots.

Sjaak van Diepen



SAMENVATTING

Meer is meer geldt in het bijzonder voor systemen met interagerende delen. Deze in-
teracties maken het ontstaan van collectief gedrag mogelijk. Voorbeelden zijn te vin-
den onder het gedrag van dieren, zoals de V-vormige formatie van trekganzen en de
vlucht van een zwerm spreeuwen. Meer voorbeelden zijn te vinden onder de elektro-
magnetische eigenschappen van materialen. Voor eigenschappen die afhankelijk zijn
van kwantum-mechanische correlaties wordt het al snel onhaalbaar voor klassieke nu-
merieke simulaties om nauwkeurige resultaten te leveren. Een aantrekkelijk alternatief
is om deze eigenschappen te bestuderen met kwantum simulatoren, die de materiaal
eigenschappen zelf nabootsen. Behalve dat ze van wetenschappelijk belang zijn voor de
fysica van gecondenseerde materie, kunnen inzichten verkregen uit kwantum simulaties
in de toekomst als input dienen voor de synthese van nieuwe materialen.

Het ontwikkelen van kwantum simulatoren vereist het bouwen van kwantum syste-
men. Een zo’n kwantum systeem is dat van elektronen in door elektrodes gedefinieerde
"kwantumdots", die worden gevormd door drie-dimensionale opsluiting op de nano-
schaal. Experimenten met kwantumdots hebben al de uitlezing en coherente aanstu-
ring van zowel individuele ladingen als spins aangetoond, en hun gebruik als kwantum
bits. De eerste kwantum simulatie experimenten met kwantumdots zijn in de afgelopen
jaren uitgevoerd. Verdere ontwikkeling van kwantumdots als platform voor kwantum
simulaties vormt de overkoepelende motivatie voor dit proefschrift.

Het eerste experiment in dit proefschrift beschrijft de geautomatiseerde afstemming
van de tunnelkoppeling tussen kwantumdots. Deze automatisering bouwt voort op eer-
der ontwikkelde geautomatiseerde afstemming van dubbele kwantumdots. De geauto-
matiseerde afstemming is afhankelijk van beeldverwerking om parameters uit meetre-
sultaten te halen. Deze stap maakt deel uit van een terugkoppel lus waarin de span-
ningen op de elektrodes iteratief worden aangepast. Deze lus herhaalt zich totdat de
beoogde tunnelkoppeling is bereikt.

Het tweede experiment bestudeert de afstemming van tunnelkoppelingen verder.
Voor de werking van door elektrodes gedefinieerde kwantumdots is het gebruikelijk om
chemische potentialen onafhankelijk te besturen met zogenaamde virtuele elektrodes.
Deze virtuele elektrodes compenseren overspraak effecten als gevolg van kruiscapaci-
teiten van de fysieke elektrodes. De aansturing van meerdere tunnelkoppelingen heeft
eveneens last van overspraak, maar efficiënte compensatietechnieken ontbraken. Dit
hoofdstuk rapporteert een efficiënt kalibratieschema voor dergelijke overspraak en de-
monstreert onafhankelijke aansturing van tunnelkoppelingen met verbeterde virtuele
elektrodes.

Het derde experiment demonstreert een methode om lading en spin te meten in
grote kwantumdot roosters. De ladingsconfiguratie van een kwantumdot rooster wordt
gewoonlijk gemeten met een ladingssensor, die meestal een andere kwantumdot is. Om
de spin configuratie te meten, wordt deze eerst omgezet in een ladingsconfiguratie, die

xi
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voor singlet-triplet metingen is gebaseerd op het Pauli-uitsluitingsprincipe. De ladings-
meting is gebaseerd op Coulomb repulsie, die met de afstand afneemt, dus alleen lading
en spin dicht bij de sensor kunnen betrouwbaar worden gemeten. Dit hoofdstuk laat
zien hoe, geïnspireerd door het effect van omvallende dominostenen, een cascade van
verspringende elektronen, geïnduceerd door Coulomb repulsie, de informatie over be-
weging van lading ver weg effectief kan omzetten in de beweging van lading dichtbij de
sensor. Het voordeel van cascade-gebaseerde uitlezing wordt aangetoond door singlet-
triplet metingen te vergelijken met en zonder geactiveerde cascade.

Het meest ingewikkelde experiment dat in dit proefschrift wordt beschreven, is een
proof-of-principle kwantum simulatie van Heisenberg magnetisme, een van de beroemd-
ste modellen in de fysica van de gecondenseerde materie. In het bijzonder laat dit expe-
riment zien hoe een lineaire rij kwantumdots kan worden gebruikt als een Heisenberg
spin keten. Het eerste deel van het experiment demonstreert de karakterisatie van het
energiespectrum, dat gebaseerd is op ontaarding van spin toestanden met verschillende
magnetisatie. Uit de energie spectroscopie worden de condities geïdentificeerd waar-
voor de uitwissel interacties homogeen zijn. Vervolgens wordt de samenhang bestu-
deerd door globale uitwissel oscillaties te induceren, en wordt evolutie in verschillende
deelruimten van de Heisenberg Hamiltoniaan gedemonstreerd. De laatste stap van het
experiment bestaat uit de adiabatische initialisatie van de laag energetische globale sin-
glet toestand voor een homogene keten, en de karakterisatie ervan met paarsgewijze
singlet-triplet metingen voor elk van de naaste buren, en de correlaties hiertussen. Deze
technieken en resultaten vormen de basis voor het gebruik van kwantumdots om grotere
spin systemen en diverse roosters te simuleren.

Het laatste experiment verlegt de focus van spin-spin interacties naar elektron-elektron
interacties. Voor kwantumdots gedefinieerd door elektrodes resulteert de Coulomb re-
pulsie in zowel interacties tussen elektronen op dezelfde positie in het rooster als op
verschillende posities. De interactie wordt experimenteel gemeten in een rij van zes
kwantumdots waarin de tunnelkoppelingen homogeen zijn ingesteld. De afname van de
interactie als functie van afstand wordt gemodelleerd met zowel de methode van beeld-
ladingen, waarbij het elektrode metaal voor afscherming zorgt, alsook met een Yukawa-
type potentiaal als heuristisch model. De laatste geeft een intuïtieve interpretatie van het
verval van de interactie in termen van een afschermingsafstand. De karakterisatie van
de lange afstand elektron-elektron interactie is relevant voor het gebruik van kwantum-
dots als spin kwantum bits, alsook voor kwantum simulaties waarin de lading vrijheids-
graad en elektron-elektron interacties een belangrijke rol spelen. Enkele voorbeelden
van veel-deeltjes fysica waarvoor lange afstand interacties essentieel zij, zijn kwantum-
chemie, Wigner-kristallisatie en supergeleiding bij hoge temperaturen.

Samenvattend, dit proefschrift beschrijft nieuwe technieken voor de controle en me-
ting van grotere kwantumdot roosters, de aansturing van een dergelijke rooster als kwan-
tum simulator van Heisenberg magnetisme met controle over de spin-spin interacties,
en karakterisatie van de elektron-elektron interacties. Deze resultaten maken de weg vrij
voor toekomstige kwantum simulaties met kwantumdots.

Sjaak van Diepen
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2 1. INTRODUCTION

1.1. MORE IS MORE

“Less is more” is often used as a guiding principle in finding happiness and perceiving
beauty, but sometimes more really is more. Perhaps the first to make a similar state-
ment was the Greek philosopher Aristotle: "The whole is greater than the sum of its
parts". This statement applies in particular to systems of which the parts interact with
each other. The interactions enable the emergence of collective behaviour, which can be
qualitatively different from the behaviour of the separate constituents.

A zoo of examples can be found among the behaviour of animals, where behaviour
as a group offers benefits compared to that of individual animals. The group behaviour
can result in clearly ordered patterns, such as the V-shaped formation of migrating geese
depicted in Fig. 1.1(a). Also more complex yet organized behaviour can emerge, such
as the flight of a flock of starlings shown in Fig. 1.1(b). Surprisingly, the interactions
between individual starlings can accurately be described by a simple set of rules [1], but
those do not hint at the amazing patterns formed during the collective flight.

Figure 1.1: (a) Geese migrating in V-shape formation to improve energy efficiency. (b) Starlings in murmura-
tion to protect the flock from a bird of prey.

1.2. A SPIN ON MAGNETISM

More examples of emergent behaviour can be found among the electromagnetic prop-
erties of materials. Let us focus on magnetism, which is a phenomenon known from how
a bar magnet, shown in Fig. 1.2(a), attracts paper-clips or how two bar magnets orient
such that opposite poles face each other. But what actually causes magnetic behaviour?

When we zoom in on a magnet we find that its macroscopic behaviour is a result of
the underlying magnetic moments of electrons [2]. More specifically, the dominant com-
ponent of the magnetic moment is the quantum-mechanical property called spin, which
is visualized in Fig. 1.2(b). But how does the macroscopic magnetic behaviour arise from
the individual electron spins? The answer lies in the collective behaviour arising from
the interactions between the spins. What collective behaviour emerges depends on how
the electron spins interact, which in turn depends on the type of atoms in the material,
and how those atoms are configured with respect to each other. As one can imagine,
there are many possible combinations and configurations of atoms, which manifests as
a diversity of magnetic, and more generally, electromagnetic material properties.
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(a) (b)

Figure 1.2: (a) A bar magnet with its north pole oriented upwards and its south pole pointing downwards. (b)
Visualization of an electron spin and its associated magnetic moment.

1.3. QUANTUM SIMULATION
Many electromagnetic material properties are well understood, but open questions re-
main when the electrons interact and quantum effects are important, such as for high-
temperature superconductors [3]. The search for answers has led to the engineering of
artificial quantum matter [4], also referred to as a quantum simulator, which behaves
according to the same physics as the system of interest [5, 6].

Several experimental platforms are being engineered as quantum simulators [5, 7].
The leading platform is probably that of ultracold atoms in optical lattices, for which
multiple laser beams are interfered to form a pattern in which atoms are confined. Ex-
amples of other platforms are ions trapped in oscillating electrical fields, atoms and
molecules positioned on a surface with a scanning tunnelling microscope, and electrical
circuits with superconducting elements. Each of these platforms has different advan-
tages and disadvantages. For example, beautiful experiments with ultracold atoms have
demonstrated control over a large number of particles [8], but local control is limited,
and access to the regime of unconventional superconductivity has been hindered by the
relatively high temperature [9], because it washes out the quantum-mechanical correla-
tions.

1.4. ARRAYS OF QUANTUM DOTS
One of the newest members to the family of quantum simulators is that of electrons
confined in a semiconductor. For this thesis, we study electrons which effectively are
two-dimensional due to tight confinement at the interface with another semiconductor
or a dielectric. On top of these materials, a pattern of metallic structures, referred to as
gates, is written. With voltages on the gates, the potential landscape at the interface is
electrostatically shaped to induce confinement of the electrons in the other two dimen-
sions, which is schematically depicted in Fig. 1.3. At the nano-scale such confinement,
then referred to as a quantum dot, leads to a quantum-mechanical energy level struc-
ture, which resembles that of an atom.

Arrays of quantum dots are an interesting platform for quantum simulations [10, 11],
because they host interacting electrons, and can be operated at temperatures where
quantum effects can be resolved. In addition, dot arrays offer tunability of the poten-
tial landscape via the voltages on the gates, and flexibility in the lattice configuration,
based on the freedom in design of gate patterns. Furthermore, the engineered quantum
matter can be characterized by measurements of properties such as the charge and spin
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Figure 1.3: A two-dimensional potential landscape similar to an egg carton. This potential defines a 4x4 array
of quantum dots with electrons in it.

in the quantum dot array.

1.5. THESIS OUTLINE
The research for this thesis is motivated by the question: "What is the potential of quan-
tum dots as quantum simulator?" In addition, the results of this thesis are also expected
to be relevant for quantum computation based on quantum dots. These results, as pre-
sented in the subsequent chapters, are briefly outlined below.

• Chapter 2 provides an accessible overview of relevant concepts for gate-defined
quantum dots, which forms the basis for understanding the experimental results
in the subsequent chapters.

• Chapter 3 describes a gate-defined quantum dot device, a characterization of its
electrostatic disorder, the dilution refrigerator, and the electronics used for the ex-
periments in this thesis.

• Chapter 4 shows results on automation of device tuning, specifically for the tuning
of the tunnel barrier between quantum dots. We used image processing on mea-
surement data to obtain the tunnel coupling. This step is extended into an auto-
mated feedback routine, in which gate voltages are iteratively adjusted to achieve
the target tunnel coupling.

• Chapter 5 presents further work on the tuning of tunnel couplings, with the focus
on crosstalk of gate voltages in the control of tunnel couplings. We developed an
efficient calibration scheme to characterize such crosstalk, and apply this scheme
to achieve independent tunnel coupling control.

• Chapter 6 shifts gear from tuning tunnel couplings to measuring spin by using
electron-electron interactions. We demonstrate how electron-electron interaction
allows an initial charge transition to induce subsequent charge transitions, induc-
ing a cascade of electron hops, like toppling dominoes. We use such a cascade
to read out spins at a distance from the charge sensor, and show results with po-
tential for high fidelity readout. We also discuss the application of cascade-based
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spin readout to densely-packed two-dimensional quantum dot arrays with charge
sensors placed at the periphery.

• Chapter 7 builds on the tuning and spin measurements, and reports the most in-
volved experiment in this thesis, which demonstrates the operation of quantum
dots as a simulator of Heisenberg magnetism. Parts of this work are the develop-
ment of experimental methods for energy spectroscopy and coherent oscillations
of the global spin states in different Hamiltonian subspaces. We use these meth-
ods to engineer a spin chain with homogeneous exchange couplings. Then we
prepare the low-energy global singlet eigenstate for the spin-chain and character-
ize the state with two-spin singlet-triplet readout on all nearest-neighbour pairs
and correlations therein.

• Chapter 8 returns from spin-spin interactions to electron-electron interactions,
and presents a characterization of the fall-off with distance in a quantum dot de-
vice. The interactions were measured in a homogeneously tuned multi-dot array,
and the interaction strengths are extracted from charge-stability diagrams for all
dot pairs in the array. The interaction was found to be measurable for electrons up
to four sites away, and the decay is explained by screening of the Coulomb repul-
sion due to the metal of the gates on the surface of the device.

• Chapter 9 concludes this thesis by putting the results into broader perspective.



1

6 REFERENCES

REFERENCES
[1] C. W. Reynolds, Flocks, herds, and schools: A distributed behavioral model, Proceed-

ings of the 14th Annual Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH’87) 21, 25 (1987).

[2] B. Cullity and C. Graham, Introduction to magnetic materials (John Wiley and Sons,
2009).

[3] P. W. Anderson, Twenty-five years of high-temperature superconductivity - A per-
sonal review, Journal of Physics: Conference Series 449, 012001 (2013).

[4] R. P. Feynman, Simulating physics with computers, International Journal of Theo-
retical Physics 21, 467 (1982).

[5] I. Buluta and F. Nori, Quantum Simulators, Science 326, 108 (2009).

[6] J. I. Cirac and P. Zoller, Goals and opportunities in quantum simulation, Nature
Physics 8, 264 (2012).

[7] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Reviews of Modern
Physics 86, 153 (2014).

[8] C. Gross and I. Bloch, Quantum simulations with ultracold atoms in optical lattices,
Science 357, 995 (2017).

[9] A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt, F. Grusdt,
E. Demler, D. Greif, and M. Greiner, A cold-atom Fermi-Hubbard antiferromagnet,
Nature 545, 462 (2017).

[10] E. Manousakis, A quantum-dot array as model for copper-oxide superconductors: A
dedicated quantum simulator for the many-fermion problem, Journal of Low Tem-
perature Physics 126, 1501 (2002).

[11] T. Byrnes, N. Y. Kim, K. Kusudo, and Y. Yamamoto, Quantum simulation of Fermi-
Hubbard models in semiconductor quantum-dot arrays, Physical Review B 78,
075320 (2008).

http://dx.doi.org/ https://doi.org/10.1145/37401.37406
http://dx.doi.org/ https://doi.org/10.1145/37401.37406
http://dx.doi.org/ https://doi.org/10.1145/37401.37406
http://dx.doi.org/https://doi.org/10.1002/9780470386323
http://dx.doi.org/https://doi.org/10.1088/1742-6596/449/1/012001
http://dx.doi.org/ https://doi.org/10.1007/BF02650179
http://dx.doi.org/ https://doi.org/10.1007/BF02650179
http://dx.doi.org/10.1126/science.1177838
http://dx.doi.org/10.1038/nphys2275
http://dx.doi.org/10.1038/nphys2275
http://dx.doi.org/ 10.1103/RevModPhys.86.153
http://dx.doi.org/ 10.1103/RevModPhys.86.153
http://dx.doi.org/ 10.1126/science.aal3837
http://dx.doi.org/ 10.1038/nature22362
http://dx.doi.org/ 10.1023/A:1014295416763
http://dx.doi.org/ 10.1023/A:1014295416763
http://dx.doi.org/ 10.1103/PhysRevB.78.075320
http://dx.doi.org/ 10.1103/PhysRevB.78.075320


2
BACKGROUND FOR GATE-DEFINED

QUANTUM DOTS

This chapter provides an accessible overview of the relevant concepts for gate-defined quan-
tum dots, and forms the basis to understand the experimental chapters in this thesis. In
the first section, the semiconductor material and the device components are introduced.
The next sections introduce step-by-step the key concepts for gate-defined quantum dots.
Then, the mapping between lattice models from condensed matter theory and quantum
dot arrays is presented. This chapter ends with a didactic section about the technique re-
ferred to as virtual gates, which has facilitated the operation of multi-dot arrays as quan-
tum simulator for lattice model physics.

7



2

8 2. BACKGROUND FOR GATE-DEFINED QUANTUM DOTS

2.1. MATERIALIZATION

Quantum dots are created at the nano-scale and provide electron or hole confinement
in all three spatial dimensions. In this thesis, we focus on planar gate-defined quan-
tum dots, which are implemented with a combination of band engineering and voltages
on gates (for additional background see the reviews [1, 2] or the book [3]). The devices
used for the results in this thesis are based on a stack of the III-V semiconductors AlGaAs
(Alx Ga1−x As with x ≈ 0.3 the Al concentration) and GaAs, grown with molecular-beam
epitaxy, such as shown in Fig. 2.1(a). AlGaAs has a larger band gap than GaAs, which
results in a step in the conduction band minimum. By n-doping the AlGaAs with Si,
indicated by the thin red layer, the potential profile bends, and a two-dimensional elec-
tron gas (2DEG), indicated with the dashed blue line, forms at the interface between the
two semiconductors. Ohmic contacts are added to serve as source and drain for elec-
trical measurements of the device. Gates are patterned on top of the material stack, see
Fig. 2.1(b) and Fig. 2.2(a), and with voltages on the gates the nearby electrons are pushed
away, such that the 2DEG becomes locally depleted and quantum dots can be formed. To
facilitate the control and measurement of the quantum states, the quantum dot devices
are typically cooled to tens of millikelvin inside a dilution refrigerator (see Chapter 3).

GaAs

AlGaAs

PB B(a) (b)

so
ur

ce

dr
ai

n
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h

energy

GaAs

AlGaAs

EF

Figure 2.1: (a) Schematic of the material stack and corresponding energy diagram. The thin red layer indicates
silicon dopants, while the blue dashed line indicates the location of electrons. The Fermi level, up to which
states are occupied, is indicated with EF. (b) Schematic side view of a device with gates patterned on top of the
material stack. B corresponds to a barrier gate and P corresponds to a plunger gate. Source and drain contact
to the electron gas and are used for electrical measurements of the device.

The last 5-10 years stacks based on the group-IV materials silicon and germanium [4]
have quickly gained popularity. This popularity is due to the reduced presence and in-
fluence of nuclear spins, and envisioned compatibility with industrial processes tailored
for group-IV materials. Only in the last few years the growth of these materials and the
fabrication of the gate pattern, have reached the level of maturity, which allows the for-
mation of multiple coupled quantum dots and control over several spin qubits. Note
that, for silicon multi-layer gate patterns are used, because smaller pitches are required
due to the larger effective mass, 0.19me , compared to 0.067me in gallium-arsenide and
0.05me for germanium. These advances make that silicon and germanium are nowadays
favoured for spin-qubits. However, the results presented in this thesis, achieved on the
GaAs material stack, do not lose their merit when transferred to those other materials.
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Figure 2.2: (a) Schematic top view of a device with a gate pattern for a single quantum dot. Boxes with crosses
indicate the locations of ohmic contacts. (b) Schematic electrical diagram for a device with a single quantum
dot and ohmic contacts which serve as source and drain. The capacitance and the resistance between the dot
and the reservoirs are tunable with the gates, and so is the dot energy. (c) Schematic potential profile for a
the quantum dot with the chemical potentials such that transport is not possible and (d) when it is possible.
(e) Coulomb peaks appear in the signal, here measured with radio-frequency reflectometry (see Chapter 3),
as function of plunger gate voltage, which controls a shift of the dot chemical potential and the number of
charges on the dot.

2.2. SINGLE DOT: CONFINEMENT AND QUANTUM
Charges, such as electrons, can be trapped inside the confining potential of the quantum
dot. The small size of the quantum dot results in a discrete energy level structure, which
can be characterized by the energy needed to put an additional electron onto the quan-
tum dot. This quantity is called the addition energy, Eadd , (see Fig. 2.2) and consists of
two components: the charging energy and the orbital energy. The charging energy, Ec ,
is a classical effect, which arises due to the Coulomb repulsion between charges, thus it
essentially describes the energetic cost to add a charge to a quantum dot which already
has charge in it. With the simplifying assumption that the charging energy remains con-
stant under changes of gate voltages and dot occupation, commonly referred to as the
constant-interaction model, the charging energy can be expressed as Ec = e2/C , with C
the sum of all capacitances to the dot, such as shown in Fig. 2.2(b). The orbital energy is a
quantum-mechanical effect, and relates to the shape of the wave function for a confined
particle, thus here to that of the electron in the quantum dot.

For circular quantum dots, when modelled as a metallic disk with radius rdot , the
charging energy scales as ∼ r−1

dot , and with a confinement potential shaped as an har-
monic oscillator, the orbital energy scales with ∼ r−2

dot [3]. For the gate-defined quantum
dots operated in this thesis (∼100 nm diameter) the charging energy is a few times larger
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than the orbital energy. In practice, both the constant-interaction model and the energy
scalings should be considered as a mere rule-of-thumb, because for the gate-defined
quantum dots operated for this thesis these simplifying assumptions do not hold. In-
teresting to note is that quantum dots are sometimes also referred to as artificial atoms,
because of the similarities in energy level structure and shell filling to real atoms [5].

The discrete energy spectrum of a quantum dot can be characterized with Coulomb
peak measurements, such as shown in Fig. 2.2(c)-(e). For such measurements a small
source-drain bias (∼100µV) is applied, and current can only flow if a quantum dot chem-
ical potential lies within the bias window, which results in the Coulomb peaks.

The quantum states for the electrons on the dot have besides an orbital compo-
nent also a spin component (neglecting valleys, which are relevant in silicon). The spin
state can be expressed in terms of the single-electron spin states, which are naturally
expressed in bra-ket notation as spin-up, |↑〉, and spin-down, |↓〉. To form a single-spin
qubit, an external magnetic field is applied to energetically separate the spin-up and
spin-down states with the Zeeman splitting. Manipulation of the single spin, and corre-
spondingly single-qubit gates, have been achieved with microwave driving via magnetic
control (referred to as electron-spin resonance: ESR) using an on-chip stripline [6] or
electrical control (referred to as electron-dipole spin resonance: EDSR) via one of the
gates and in the presence of a magnetic field gradient or spin-orbit coupling [7].

2.3. DOUBLE DOTS: CHARGE SENSING AND TUNNELLING
When quantum dots are near each other, two additional effects enter the picture [1, 8].
The first effect is referred to as inter-site interaction, which is just as the charging energy
induced by the Coulomb repulsion, and corresponds to the energy cost to add charge to
a dot, which is near a dot with charge on it. This effect is also referred to as the mutual
capacitance [1] and is depicted in the schematic in Fig. 2.3(a).

QD

SD

PD

PS (c)(b)(a)

Figure 2.3: (a) Schematic electrical circuit diagram for a device with a quantum dot and a sensing dot, which
are capacitively coupled. (b) Charge-sensing of a quantum dot with the sensor signal as function of sensor and
dot plunger voltage, and (c) two traces for dot plunger settings just below and above a charge transition. The
data shows that the Coulomb peak for the sensing dot shifts to more positive sensor plunger voltage due to the
addition of an electron on the quantum dot. The number in round brackets indicates the number of charges
on the quantum dot. Note that the position of the sensing dot Coulomb peak also shifts as a function of dot
plunger voltage, which is a result of cross-capacitance (see Fig. 2.4 and Section 2.6).

The inter-site interaction forms the basis for the commonly used technique of charge-
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sensing. A typical implementation of charge sensing is shown in Fig. 2.3(a), which relies
on an additional quantum dot, referred to as the sensing dot, that is positioned in prox-
imity of the quantum dot that is to be sensed. The sensing dot is tuned such that its sig-
nal, which is determined by its resistance, has a strong gate voltage dependence, which
is the case on the flank of a Coulomb peak. In this way, the sensor signal depends on the
charge distribution in its environment, such as the number of charges on a quantum dot
(see Fig. 2.3). Chapter 6 demonstrates, inspired by the behaviour of toppling dominoes,
how a sensing dot can be used to sense a distant quantum dot, far beyond the range
where the inter-site interaction plays a role.

The second effect is that of electron tunnelling, which corresponds to the movement
of an electron between two quantum dots, which are then referred to as a double dot,
such as formed by D1 and D2 in Fig. 2.4(a). The effect of tunnelling is shown by the
energy diagram in Fig. 2.5(a), where the tunnelling is captured in terms of the tunnel
coupling, t . Due to tunnelling, the double dot eigenstates hybridize, which appears as
an anti-crossing of states in the energy diagram, and the eigenstates form superpositions
of the classical charge states. In bra-ket notation this can be expressed as |ψ〉 = α |10〉+
β |01〉 =α |L〉+β |R〉, where |L〉 and |R〉 indicate the state with the charge on the left and
the right dot respectively.

(b) (c)

(1,1)
(0,1)

(0,0) (1,0) (2,0)

(2,1)

(2,2)(1,2)(0,2)

D2

SD

P2

D1

P1

(a)

(1,1)(0,1)

(0,0) (1,0)

Figure 2.4: (a) Schematic electrical diagram for a double quantum dot with a sensing dot, which is capacitively
coupled to both dots. Only the two dot plungers are indicated, while all other gates have been left out to
reduce complexity. (b) Charge-stability diagrams of a double quantum dot with a schematic diagram with
transition lines showing a larger part of the charge-stability space, which is overlaid on a (c) measured diagram
that shows the sensor signal as function of dot plunger gate voltages. Numbers in round brackets indicate the
charge occupation of the two dots.

Putting the above together, a charge-sensing measurement of a double quantum dot
results in a so-called charge-stability diagram, such as shown in Fig. 2.4(b) and (c), which
is also referred to as a honeycomb diagram due to its pattern. In this diagram, faces
correspond to regions of gate voltages with the same charge occupation, indicated by
numbers in round brackets, while lines correspond to charge transitions, either between
quantum dots (inter-dot), or between a dot and a reservoir. The number of charges on
a dot can be deduced, by starting from where the dot is fully emptied and then going
upwards in voltage space while counting the number of dot-reservoir transition lines.
The locations where the transition lines meet are referred to as triple points. Here the
chemical potentials of the dots are aligned to one another and to the reservoirs. When
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the double dot would be measured in transport, then this would occur near the triple
points. The inter-site interaction between the two dots, just like that for a sensing dot
and a quantum dot, appears in the double dot diagram as a shift of dot-reservoir tran-
sition lines between the triple points. The tunnelling, as it corresponds to hybridization
of charge states, is visible in the charge-stability diagram as both a rounding of the triple
points, and a broadening of the inter-dot transition line [9], such as shown in Fig. 2.5(b).

2t

(a) (b)

Figure 2.5: (a) Energy diagram as function of detuning, which corresponds to that the chemical potential of one
dot increases while the chemical potential of the other dot decreases proportionally. Dashed lines correspond
to the classical case, where there is no tunnel coupling, t = 0, while solid lines correspond to the tunnel coupled
case for which the charge states hybridize, and the lines form an anti-crossing. (b) The fraction of excess charge
as function of the detuning, which reveals the hybridization of the charge state via the broadening of the charge
transition [9]. The dashed line is a fit to the data. More information is given in Chapter 4, from which this figure
is adapted.

Note that the dot-reservoir transition lines are sloped, which is a result of the cross-
capacitances between gates and quantum dots as indicated by the two diagonal ca-
pacitors in Fig. 2.4, and which will be further discussed in Section 2.6. Similarly, the
signal gradient in the background of the charge-stability diagram is a result of cross-
capacitance between the dot plungers and the sensing dot, but is not indicated in Fig. 2.4(a).

2.4. SPIN-TO-CHARGE CONVERSION
Besides measurements of the charge configuration, it is also common to measure the
spin state. The spin of a single electron is very small, thus it is hard to measure directly.
However, the spin configuration can be mapped onto a charge configuration, which is
referred to as spin-to-charge conversion, and subsequently the charge configuration can
be measured with charge sensing.

A popular method for spin-to-charge conversion, which was used for the results in
Chapters 6 and 7, is called Pauli spin blockade [10–13], and is schematically depicted in
Fig. 2.6(a). This method relies on the Pauli exclusion principle, which dictates that the
total wave function of fermions should be anti-symmetric under the exchange of two
particles. As a consequence, and as shown in the energy diagram in Fig. 2.6(b), for two
electrons on a quantum dot, the spin-singlet state (|S〉 = 1p

2
(|↑↓〉− |↓↑〉)) is energetically

favoured, and the spin-triplet states (|T +〉 = |↑↑〉, |T 0〉 = 1p
2

(|↑↓〉+ |↓↑〉), |T −〉 = |↓↓〉 are

higher in energy, because one of the triplet electrons needs to occupy an excited orbital
to maintain the antisymmetry of the total wave function. Actually, the singlet-triplet
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Figure 2.6: (a) Schematic of Pauli spin blockade readout. The transition is blocked for the triplet, |T 〉, while it is
allowed for the singlet, |S〉. In this way, the spin configuration is converted into a charge configuration, which is
measured via the resistance of the charge sensor. (b) Double dot energy level diagram. Solid lines correspond
to singlet states, while dashed lines correspond to triplet states. No external magnetic field is applied, thus the
triplets are three-fold degenerate.

energy difference is smaller than the orbital energy, because the Coulomb energy is lower
with one electron in the excited orbital [5]. In the energy diagram, for simplicity the
tunnel coupling for the triplets is taken to be the same as for the singlet. In practice they
typically differ, which can be understood from a difference in wave function overlap,
because for a triplet one electron occupies an excited orbital.

In practice, to perform readout with Pauli spin blockade, two electrons, which were
initially on separate dots, are conditionally moved onto the same dot by detuning the
double dot with such an amount that the transition will only be allowed for electrons
that form a spin-singlet, while for electrons in a spin-triplet the transition is energeti-
cally inaccessible, as explained above. In this way, the two-electron spin configuration is
converted into a charge configuration, which can be measured with a sensing dot.

Note that, Pauli spin blockade can also be used for parity readout, which distin-
guishes parallel spin states (|↑↑〉 , |↓↓〉) from anti-parallel spin states (|↑↓〉 , |↓↑〉) [14, 15].
Parity readout can be achieved when the eigenstates at the readout point are not |S〉 and
|T0〉, but are |↑↓〉 and |↓↑〉. This is the case when the difference in Zeeman energy, for
example due to (artificial) spin-orbit interaction or nuclear spins, dominates over the
exchange coupling between spins (see Section 2.5 or Chapter 7).

Another popular spin-to-charge conversion method is commonly referred to as energy-
selective readout or Elzerman readout [16]. For this method, an external magnetic field
is applied to induce a Zeeman splitting between the spin-up and spin-down state. The
quantum dot chemical potential is tuned such that the spin excited state is above the
reservoir level and the spin ground state is below. Then, if the electron is in the excited
spin state it will tunnel off the dot into the reservoir, which is followed by the tunnelling
of an electron in the ground spin state into the empty dot, while if the electron was ini-
tially in the spin ground state no tunnelling occurs.

A benefit of the energy-selective method is that it allows to directly readout individ-
ual spins, while a limitation is that it requires the quantum dot to be tunnel coupled to
a reservoir. More specifically, with a tunnel rate that is significantly lower than the mea-
surement bandwidth, because otherwise tunnelling could occur without being detected
and the incorrect spin state would be assigned. This requirement makes the energy-
selective readout slow compared to Pauli spin blockade. A shorter readout time is not
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only beneficial for faster calibration of the parameters of the quantum dot system, such
as those for the spin manipulation and the exchange coupling between spins. In addi-
tion, for feedback routines, such as used for quantum error correction, it is key to achieve
low latency, which demands fast readout.

2.5. MULTI-DOT ARRAYS AND LATTICE MODELS
Extending from a single dot, via double dots, to multi-dot arrays opens up opportunities
for the exploration of quantum phases of matter. In condensed-matter physics, perhaps
the most often studied model is the Fermi-Hubbard model, which describes mobile elec-
trons on a lattice with the Hamiltonian

HF H =U
∑

i
ni↑ni↓− t

∑
〈i , j 〉

(
c†

i c j +h.c.
)

, (2.1)

where U is the Coulomb interaction, niσ the number operator for electrons with spin,
σ, t corresponds to the tunnelling, and c†

i and c j are the creation and annihilation op-
erators respectively. More intuitively, the first term describes the energy penalty for two
electrons to occupy the same site, and the second term describes the movement of elec-
trons. In the regime where interactions are strong, thus U > t , many-body effects can
give rise to intricate phases of matter [17], such as a Mott-insulator, where all sites are
occupied by one electron and movement is suppressed by the Coulomb interaction.

e e
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Figure 2.7: Schematics of quantum dot arrays (dashed circles) with visualizations of terms in (a) the Fermi-
Hubbard model and (b) the Heisenberg model. The inter-site interactions, Vi , here have a single sub-index,
which expresses the number of sites over which the electrons are separated.

Arrays of gate-defined quantum dots can be described with an extended form of the
Fermi-Hubbard model [8, 18], which is visualized in Fig. 2.7(a), and for which the Hamil-
tonian is

HF H ,qd =−∑
i
εi ni +

∑
i

Ui ni↑ni↓+
∑
i 6= j

Vi j ni n j −
∑
〈i , j 〉

ti j

(
c†

i c j +h.c.
)

, (2.2)

with εi the local energy offset, Ui the Coulomb interaction for site i , Vi j the inter-site
interaction and ti j the tunnel coupling. Note that, each term in the Hamiltonian is now
site-dependent, which expresses both the system disorder and tunability. As a rule-of-
thumb, the interaction terms, Ui and Vi j , are considered to be reasonably fixed by the
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parameter value/range (meV)
εi 0 - 15
Ui 3
∆i 1
Vi j 0 - 1
ti j 0 - 0.3
EZ 0 - 0.3
Te ≥ 0.005

Table 2.1: Typical values and ranges of the parameters for a gate-defined quantum dot array in GaAs. In ad-
dition to the Fermi-Hubbard parameters, typical values are shown for ∆i , the orbital splitting, EZ the Zeeman
splitting, and Te , the temperature of the electron reservoirs.

gate pattern, while the local energy offsets, εi , and the tunnel couplings, ti j , are tunable
with the gate voltages. Note that the model in eqn. (2.2) is single-band, thus it only in-
cludes the lowest orbital, while experiments with gate-defined quantum dots routinely
involve the occupation of an excited orbital, for example with Pauli spin blockade. Nev-
ertheless, this single-band model already covers a broad range of phenomena, and it
provides an intuitive description of a gate-defined quantum dot array.

For a quantum dot array, typical values for the Fermi-Hubbard parameters, the or-
bital and Zeeman splitting, and the temperature of the electron reservoirs, Te , are shown
in Table 2.1. The tunnel coupling values, ti j , are for nearest-neighbours. For the inter-
site interaction, Vi j , the fall-off with distance was measured in a multi-dot array, and is
presented in Chapter 8. From the parameter overview it follows that U > t > Te , which
corresponds to the regime where interactions are strong, and quantum effects dominate
over temperature. This puts gate-defined quantum dot arrays in the most interesting
regime of Fermi-Hubbard physics [17, 19–21], which is hard to study theoretically or with
other quantum simulation platforms.

In the Mott-insulator regime, where the charge degree of freedom is frozen, only the
spin degree of freedom remains. In this regime, the low-energy physics of the Fermi-
Hubbard model can effectively be described by the Heisenberg model [22], for which the
Hamiltonian is

Hhei s =
∑
〈i , j 〉

Ji j

(
~Si ·~S j − 1

4

)
, (2.3)

with Ji j the exchange coupling between spins on sites i and j , and ~Si the vector of spin
operators for site i . The factor of − 1

4 is subtracted as a convention, which sets the energy
of two-spin triplets to zero.

From the Heisenberg model it follows that the exchange coupling is equal to the en-
ergy splitting between the two-spin singlet and triplet states. At the center of the (1,1)
charge region, the so-called symmetric operating point [23, 24], the exchange coupling
can be expressed as Ji j = 4t 2

i j /U , neglecting inter-site interactions, variations between

Ui and differences between the singlet and triplet tunnel coupling and Coulomb en-
ergies [24]. In the detuned regime, thus closer to the inter-dot transition where two
electrons in a spin-singlet can move to the same dot, see also the energy diagram in
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Fig. 2.6(b), the exchange coupling can be approximated with Ji j = 1
2

(
−εi j +

√
ε2

i j +8t 2
i j

)
,

with εi j = εi −ε j , the detuning [25].
The exchange coupling is a key ingredient for quantum computation with spin-qubits,

as it enables for example two-qubit gates between single-spin qubits [26, 27]. In the con-
text of analog quantum simulation, the Heisenberg model is one of the key models to de-
scribe quantum magnetism, and covers a rich variety of magnetic phenomena [28–30].
Chapter 7 demonstrates how a quantum dot array can be used to emulate the behaviour
of the Heisenberg model by implementing a spin chain, such as depicted in Fig. 2.7(b).

2.6. VIRTUAL GATES AND INDEPENDENT CONTROL
Control of multi-dot arrays is challenging due to disorder and crosstalk. See Section 3.1.3
for a characterization of the disorder for a device with a multi-dot array. In this section,
the focus is on crosstalk and how to mitigate it. A more extensive discussion is presented
in Chapter 5.

An effect of cross-capacitance is that each gate not only influences the local energy
offset of its corresponding dot, but also those of nearby dots. This crosstalk results in
sloped dot-reservoir transition lines in the charge-stability diagram, such as in Fig. 2.4.
It is common practice to compensate for such cross-capacitances with the concept of
virtual gates [18, 31]. A change in applied voltage on a virtual gate corresponds to a linear
combination of changes in voltages on several physical gates, which can be captured in
matrix form as (

δP ′
1

δP ′
2

)
=

(
1 α12

α21 1

)(
δP1

δP2

)
,

(
δε1

δε2

)
= (

α1 α2
)(δP ′

1
δP ′

2

)
, (2.4)

with the cross-capacitance matrix elements αi j = ∂εi
∂Pi

/ ∂εi
∂P j

, and with αi the so-called

lever arm, here for the virtual gates. The lever arms offer a conversion between units
of voltage and energy, and express how strongly a change in (virtual) gate voltage affects
the quantum dot energy. The lever arms can be measured with various techniques, such
as Coulomb diamonds, bias triangles, or photon-assisted tunnelling, of which the latter
was regularly used for the results in this thesis (see for example Chapters 4 and 5). The
αi j can be obtained from the slopes of the dot-reservoir lines in a charge-stability di-
agram. By controlling the quantum dots with virtual gates, the dot-reservoir transition
lines ideally become fully horizontal and vertical, such as in the charge-stability dia-
gram in Fig. 2.8(a). Note that, without the incorporation of the lever arms into the virtual
gates, even though the control of chemical potentials is independent, they only change
proportionally and not identically if there are differences between the lever arms, which
corresponds to an inter-dot transition line that is not fully diagonal.

In addition, there are cross-capacitances between gates and tunnel couplings. An
apparent complexity is that the tunnel couplings depend exponentially on gate voltage
changes [24] as

ti j = ti j ,0 exp

{∑
kl
Γ

i j
klδB ′

kl

}
, (2.5)

with ti j ,0 the tunnel coupling before changing the gate voltages, and Γi j
kl the exponential

coefficients for each gate. For simplicity, the effect of plungers on tunnel couplings is
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Figure 2.8: (a) Charge-stability diagram for a double dot, which is measured with virtual gates. Numbers in
round brackets indicate the charge occupation. This subfigure is adapted from Chapter 4. (b) Tunnel couplings
as function of voltage changes on enhanced virtual barriers. The data was taken in two experimental runs, thus
one for which t12 was varied while t23 was kept fixed, and vice versa for the other run. This data was published
in [18], and was acquired on the same triple dot device as presented in Chapter 4.

left out, and the barrier gates are already virtual in the sense that they are defined analo-
gous to eqn. (2.4), which is explicitly described in Section 4.8.2. Despite the exponential
dependence, the tunnel coupling crosstalk can still be compensated for with a linear
transformation as(

δB †
12

δB †
23

)
=

(
1 β12

β21 1

)(
δB ′

12
δB ′

23

)
, ti j = ti j ,0 exp

{
Γ

i j
i jδB †

i j

}
, (2.6)

with for example β12 = Γ12
23/Γ12

12, and where Γi j
i j can be considered as lever arms for the

tunnel couplings. With these enhanced virtual gates, independent control over tunnel
couplings can be achieved, such as shown in Fig. 2.8(b). Chapter 5 more extensively
discusses cross-capacitances to tunnel couplings, shows the characterization of these
cross-capacitances, and demonstrates an efficient calibration method for the enhanced
virtual gates.
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3
DEVICE AND EXPERIMENTAL SETUP

The first part of this chapter describes the device, and the second part the experimental
setup. The section on the device first discusses the design and fabrication, then the testing
and handling, and ends with characterization of the electrostatic disorder in the device.
The section about the experimental setup describes the dilution refrigerator, its electrical
wiring, the printed circuit board, radio-frequency reflectometry, the electronics at room
temperature, and the software stack.
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3.1. DEVICE FOR GATE-DEFINED QUANTUM DOTS

3.1.1. DESIGN AND FABRICATION

The device in Fig. 3.1, which is fabricated on a GaAs material stack, has a gate pattern
for a linear array of eight dots. The design is strongly based on that of earlier devices,
such as that for a triple dot (see Chapter 4). The width of all gates is 30 nm, the thickness
of the gates is 25 nm, and the distance between dots is 160 nm, thus the gate pitch is
80 nm. The distance between the plungers and the top gate is 175 nm and the barriers
reach 25 nm closer to the top gate. The device is equipped with two sensing dots, which
are positioned slightly inwards to improve the sensing of the middle pair of dots, and
each is opposite to one of the eight dots to prevent symmetry effects from lowering the
sensitivity for inter-dot transitions.

160 nm

Figure 3.1: Scanning electron microscopy (SEM) image of the fine gate structure of a device for eight dots
(indicated with black dashed circles) and two sensing dots (indicated as resistance meters by boxes labelled
withΩ). Squares with crosses indicate ohmic contacts, which connect the electron gas to the outside world.

The devices were fabricated at the Van Leeuwenhoek Laboratory clean room at Delft
University of Technology1. The device fabrication consists of a series of steps of which
some important ones are described here (for more information see [1]). After several
preparation steps [cleaning the wafer, placing alignment markers, etching a mesa] comes
the placement of ohmic contacts, which are made of metal that is diffused into the mate-
rial stack by annealing the device, such that the metal reaches the GaAs/AlGaAs interface
and contacts the 2DEG. Next, are the fine gates, for which first a resist is spin-coated onto
the device, then the gate pattern is lithographically written into the resist using an elec-
tron beam, after which the gate metal (5 nm titanium and 20 nm gold) is evaporated onto
the exposed resist, and finally all unwanted metal is removed with lift-off. The last fab-
rication step follows a similar process flow as for the fine gates, and is the placement of
bond-pads and coarse gates. The latter form the connections between the fine gates and
the bond-pads, and the bond-pads [see Fig. 3.8(b)] are to connect to the outside world
such that voltages can be applied to the gates.

In the later stage of this PhD, germanium devices2 were tested. These devices had a

1The triple dot device, used for the experiment in Chapter 4, was fabricated by F. R. Braakman and the eight
dot device, used for the results in the other chapters, was fabricated by U. Mukhopadhyay.

2These devices were fabricated by Will Lawrie and Chien-An Wang.
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three-layer gate pattern, which was designed to define a ladder, formed with a four-by-
two quantum dot array, and four sensing dots, which were each positioned at the corners
of the ladder and also functioned as reservoirs. The devices had forty-eight gates and
eight ohmic contacts. Whereas the initial devices had several issues, experiments with
4x2 Ge ladder devices are now underway.

3.1.2. TESTING AND HANDLING
The success of the fabrication can be assessed with various techniques. An optical mi-
croscope is commonly used for a coarse-grained check, such as shown in Fig. 3.8(b), but
does not offer sufficient resolution to assess the most delicate structures. Scanning elec-
tron microscopy (SEM) offers high resolution, but the high-energy electrons used for the
imaging can damage the device, thus it is common to inspect only one or sometimes a
few devices of a fabrication batch, and to put aside the inspected devices. Alternatively,
an atomic force microscope can be used to inspect the gate pattern of the device [see
Fig. 3.2(a)] without damaging it. In this way, deviations such as interruptions in a gate or
residual metal can be detected.

Figure 3.2: (a) Atomic force micrograph, which shows the height profile on the surface of the device. (b) SEM
image of a device with the same gate design as in Fig. 3.1, but the metal of the fine gate structure looks as if it is
blown up due to electrostatic discharge.

An important tool for electrical testing of the device at cryogenic temperatures is the
so-called dip-stick, which is used to quickly cooldown the devices in a dewar with liquid
helium. Typical testing with the dip-stick, besides checking for shorts, consists of the
characterization of transport through the ohmic contacts, and pinch-off traces for the
gates (see Fig. 3.3 and 3.4). For devices in other materials, such as those based on silicon
and germanium, it is also common to characterize the voltage at which accumulation
occurs, screen for effects such as gate leakage through the dielectric, and characterize
potentially present drift and hysteresis. The dip-stick is also well-suited to test electrical
components for proper operation at cryogenic temperatures, such as the printed circuit
board and the home-built inductors, which are discussed in Section 3.2.3.

Electrostatic discharge (ESD) may cause serious damage to devices, such as visible in
Fig. 3.2(b). To prevent ESD, various precautions are taken for safely handling the devices
and making connections to it [admittedly, we did not systematically investigate whether
each and everyone of these precautions makes a difference]:

• The person handling the device is grounded via a (wrist) grounding strap.
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Figure 3.3: Typical measurements for electrical device testing at 4 K. (a) The current between the ohmic con-
tacts in the bottom left and right of the device as a function of bias voltage, which indicates a resistance of
4.9 kΩ. The top gate is already set to −375 mV, which induces pinch-off between the top-half and bottom-half
of the device. (b) The pinch-off trace for the top gate with the current as a function of gate voltage and with the
bias between an ohmic in the top half and one in the bottom half set to 500µV.

• The device and operator are grounded during wirebonding (see Section 3.2.3).

• An ionizer3 is used during wirebonding.

• The wirebonded device, when not mounted in a setup, is connected to a shorting
piece, which connects all lines together and to a ground plane.

• Devices are kept in ESD safe gel-packs.

• Grounding mats are on tables where devices are handled.

• ESD safe office chairs are used in the lab.

• Do not wear clothing with wool or fleece.

• Take into account that dry weather may result in an increased ESD risk.

3.1.3. CHARACTERIZATION OF ELECTROSTATIC DISORDER
The electrostatic disorder in the solid-state of quantum dot devices hinders the desired
scaling up for quantum computation and simulation. A major source of disorder in the
GaAs devices, such as those used for this thesis, are the charged impurities in the layer
of dopants. For undoped systems, other sources are dominant, such as background im-
purities in the bulk, or charges at the surface and dielectric interface [2], where the latter
two become more relevant for shallower two-dimensional electron gases [3].

For gate-defined quantum dots, the initially disordered landscape can often be suf-
ficiently reshaped by tuning of each gate voltage, such that the target configuration of
quantum dots, electrons and tunnel couplings can be achieved. Occasionally, a device,
nominally identical to that in Fig. 3.1, suffered from disorder to such an extent, that
tuning of gate voltages did not seem to suffice for the formation of a multi-dot array.
Such device would subsequently be abandoned, thus disorder also impacts the yield in
terms of successful device fabrication and growth. The required time for device tuning is

3Model 5802i from Simco-ion.
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greatly reduced by the implementation and automation (see Chapter 4) of tuning strate-
gies to achieve the target configuration [4]. However, to increase the number of qubits
and optimize connectivity, the number of gates will increase and the gate patterns will
evolve. Due to disorder, this scaling up will have to go hand-in-hand with the further de-
velopment of tuning strategies, which restricts the pace of progress. Lower disorder will
enable higher yield, and reduce the extend of required tuning, but is also considered to
be a prerequisite for device operation with shared control [5] to achieve a lower average
number of control lines per qubit.

Disorder is often expressed in terms of mobility or percolation density, which are
useful parameters to assess the material quality [6], but offer limited insight into the
disorder on the scale where quantum dots are formed. A set of data on disorder for a
device with separately formed single dots, has been reported [7]. However, for the regime
of tunnel-coupled multi-dot arrays in the single-electron regime, where spin-qubits are
operated, the characterization of disorder has been hindered by the scarcity of success
in tuning up such multi-dot arrays. Here, two sets of data are presented, of which one
was obtained before any tuning, and one after fully tuning a homogeneously coupled
multi-dot array in the single-electron regime. Both datasets were acquired at ∼40 mK,
and on the same device, which is nominally identical to that shown in Fig. 3.1.

The first set of data is obtained from the pinch-off curves for the gates of the (sens-
ing) dots, which are shown in Fig. 3.4. These pinch-off curves are analysed with a method
adopted from analysis of transistors [8]. A key characteristic for transistors is their thresh-
old voltage, which is the gate voltage for which the transistor is at the verge of switching
between being on and off. The threshold voltage is determined via extrapolation of a lin-
ear trend. This trend is taken at the point which is the local maximum in the first-order
derivative for the transistor current as function of gate voltage. Analogously, thresh-
old voltages were obtained from the pinch-off curves [see Fig. 3.5(a)]. For the pinch-off
curves, the point for the linear trend was selected as the local maximum, which occurs
at the lowest gate voltage. The pinch-off data was smoothed with a Gaussian filter to
suppress analysis errors due to noise.
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Figure 3.4: Pinch-off curves for the gates of the (sensing) dots, with in (a) the plunger gates and in (b) the
barrier gates for the dots, and in (c) all gates for the sensing dots. The top gate was at −375 mV. The device was
bias-cooled to reduce switching noise [9], with the plungers at 100 mV and all other gates at 200 mV.

The second set of data is taken from a homogeneously tuned sextuple dot in the mid-
dle of the device. The sextuple dot is tuned to have one electron on each dot, and such
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Figure 3.5: (a) Extraction of the threshold voltage from a pinch-off curve (here for gate P1). The open circle
indicates the point with the selected local maximum for the first-order derivative, the black dashed line shows
the extrapolation of the linear trend, and the vertical dashed line shows the point where this linear extrap-
olation is at the zero-current level, which corresponds to the threshold voltage. The inset shows a zoom-in
of the regime for the threshold voltage extraction. (b) Overview of gate voltages with thin, transparent bars
the threshold voltages extracted from the pinch-off curves, and thick bars the voltages from a homogeneously
tuned sextuple dot.

that all tunnel couplings are ∼20µeV. The voltages, at the center of the (111111) charge-
region, which is where for each of the dots, the distance in gate-voltage space is equal to
the previous and the next dot-reservoir transition, form the second data set.

Table 3.1 shows the means and standard deviations for the plunger and barrier gate
voltages as obtained from the threshold analysis of the pinch-off curves, the homoge-
neously tuned multi-dot, and for the differences between the gate voltages in the two
regimes. This data reveals two important insights about the extent of disorder in the
homogeneously tuned multi-dot regime. First, for the plungers, the standard devia-
tions, ≥ 50mV, are larger than a typical voltage corresponding to the charging energy
(∼ 30mV). This implies that a multi-dot array would have inhomogeneous filling, if such
disorder would not be compensated for. Second, intuition for the disorder in tunnel
couplings corresponding to the variation in barrier voltages, can be obtained from

thi g h

tlow
= exp(ΓδB) , (3.1)

which expresses the ratio between the highest and lowest tunnel coupling values as a
function of voltage variation, δB , and the tunnel coupling lever arm, Γ. If δB is set to the
standard deviation, > 80mV, and the tunnel coupling lever arm is set as Γ = 0.04mV−1,
which is the lowest value reported in Chapter 5, then the tunnel coupling ratio is > 24.
Thus the standard deviation in barrier voltages corresponds to a disorder in tunnel cou-
pling values of more than an order of magnitude.

Interestingly, the standard deviations for the differences before any tuning and after
fully tuning, as compared to either of the two tuning regimes, are similar for the plungers
and about 30% smaller for the barriers. This indicates that there are weak correlations,
slightly stronger for the barriers than the plungers, between the two regimes. This in-
terpretation is based on that the variance for the differences between two uncorrelated
variables is the sum of their variances.

In the above analysis the effect of cross-capacitances has not been taken into ac-
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Gates (regime) Mean (mV) Standard deviation (mV)
Plungers (pinch-off) -765.6 54.8

Plungers (homo. tuning) -110.4 50.0
Plungers (difference) 672.1 59.3
Barriers (pinch-off) -496.9 103.4

Barriers (homo. tuning) -231.2 84.8
Barriers (difference) 268.5 66.5

Table 3.1: Statistics for the voltages for the plungers and the barriers obtained from the pinch-off curves and
from the gate voltages for the homogeneously tuned sextuple dot as shown in Fig. 3.5. The differences corre-
spond to the differences in voltages between the two regimes, for which only the gates used for the sextuple
dot are included.

count, but it is expected to influence the results in the following ways: (1) For the data
from the multi-dot array, gates closer to the end of the array are expected to require more
negative voltages, because those gates have fewer other gates nearby, which would oth-
erwise, through their negative voltages, contribute to achieve the required local electric
fields. (2) Again for the multi-dot array, the gates for the sensors also had negative volt-
ages applied, thus the nearby gates required relatively less negative voltage. (3) The mea-
surements for both regimes were taken on a device that was bias cooled, which induces
negative charges in the doping layer, thus less negative gate voltages are required. Due
to cross-capacitance, the effect of bias cooling is expected to be weaker for gates closer
to the outside of the array, following a similar reasoning as in (1).

In conclusion, from the data and analysis presented here, when the disorder would
not be compensated for with gate voltages, then it would result in inhomogeneous filling
and tunnel coupling variations of more than an order of magnitude. These variations
are based on a single standard deviation of the voltages, but for multi-dot devices with
many gates two standard deviations would probably be a more relevant parameter for
homogeneity in gate voltages. Two standard deviations correspond to variations of more
than three times the charging energy, and a disorder in tunnel couplings of almost three
orders of magnitude. Such disorder is probably better understood as that the device
configuration would be outside of the voltage space where the multi-dot array is formed.

Unfortunately, there are only weak correlations between the threshold voltages from
the pinch-off measurements and the voltages for the homogeneously tuned multi-dot.
Strong correlations would be helpful for the device tuning, because the initial voltages
could be based on the pinch-off values such that part of the disorder would already be
compensated for. Similarly, with lower disorder, an efficient tuning strategy could con-
sist of setting initial homogeneous voltages for the plungers and similarly for the barriers,
such that a multi-dot array is formed, albeit disordered. Then, the next step could be to
fine-tune the voltages to correct for the disorder and achieve a homogeneously tuned
multi-dot array.

Characterization of the electrostatic disorder such as presented here, could provide
relevant insights and feedback to facilitate further improvements of the material growth
and device fabrication. Furthermore, the disorder in other parameters, such as the cross-
capacitance matrix elements, charging energies (see Chapter 8), and orbital energies,
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could be analysed for additional insights. For the level of disorder shown here, gate pat-
terns which enable individual control over tunnel couplings and chemical potentials are
required to mitigate the initial disorder and form a multi-dot array. Moreover, further
development of tuning strategies and automation therein will be important for scaling
up of quantum dot arrays in an environment with such electrostatic disorder.

3.2. EXPERIMENTAL SETUP

3.2.1. DILUTION REFRIGERATOR
The quantum dot devices are cooled to a few tens of millikelvin in a 3He/4He dilution
refrigerator. Most of the research for this PhD has been performed with a so-called wet
refrigerator (Oxford Kelvinox 400HA), which is shown in Fig. 3.6(a). As alternative to the
wet refrigerator, a dry refrigerator (Oxford Triton 400) with a bottom loader was used.
The dry refrigerator facilitated faster device testing, and offered more space, which made
it easier to equip it with a higher number of wires for electrical measurements of devices
with a higher number of gates and ohmics.

Figure 3.6: (a) Wet dilution refrigerator (Kelvinox 400HA), which hangs in a stabilizer frame and sticks through
a hole in the floor, through which the refrigerator dewar can be lowered. On the top of the refrigerator are
electric wires and gas pipes connected. (b) The vacuum can covered in frost, just after it has been taken out of
the bath of liquid helium in the refrigerator dewar.

The cooling process of the dilution refrigerator can be divided into multiple cooling
stages [10]. For the wet refrigerator, five main steps can be distinguished, which cor-
respond to the steel flange and copper plates from top to bottom on the insert of the
refrigerator, which is shown in Fig. 3.7(a). The first cooling step is submerging the vac-
uum can [Fig. 3.6(b)] and inserting it in a bath of liquid helium (4.2 K). The second step is
provided by the 1K pot (1.7 K), which is continuously pumped on and sucks in liquid he-
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lium from the bath. The third step cools (∼ 0.7 K) by pumping on liquid 3He in the still.
The fourth step is the cold stage (∼100 mK) where heat is exchanged between incom-
ing/warm and outgoing/cold 3He. The final step is the mixing chamber stage (∼45 mK
with cryogenic amplifier on the bottom of the steel flange energized), where cooling oc-
curs via the "evaporation" of 3He from a concentrated phase to a dilute phase, from
which 3He is extracted by the pumping on the still.

The wet refrigerator is equipped with a solenoid superconducting magnet, which is
specified for normal operation up to 12 T. The magnet is not visible in Fig. 3.6, because
it is inside the refrigerator dewar.

steel flange

1K plate

still plate

cold plate

MXC plate

superconducting
coaxes

stainless steel
coaxes

beryllium-copper
coaxes

attenuators

directional
coupler

copper-powder
filters

RC low-pass
filters

attenuators

printed circuit
board

wire loom

(b)

(a)

Figure 3.7: (a) The insert of the refrigerator, which is revealed after removing the vacuum can and a copper
radiation shield below the mixing chamber plate. MXC stands for mixing chamber. (b) Bottom part of the
insert, commonly referred to as the cold finger, which is below the mixing chamber plate, and is mounted
with, the copper powder filters, the RC low-pass filters, and the printed circuit board with the device.

3.2.2. ELECTRICAL WIRING OF THE REFRIGERATOR

The refrigerator is equipped with two wire looms to apply direct current (DC) voltages on
the gates and measure electrical transport. The material of the wires is copper or Con-
stantan, where the first is used for ohmic contacts to achieve low Johnson noise because
of its low resistance, and the latter is used for gates because of its low thermal conductiv-
ity. From below the 1K plate, one loom has wires made out of superconducting material
to further reduce thermal conductivity, and the looms are thermally anchored by tightly
wrapping them around copper posts on the plates. The wires are arranged in twisted
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pairs to suppress picking up noise, and are low-pass filtered below the mixing chamber
plate with copper-powder filters (. 1 GHz), and RC-filters (cut-off of 1.3 MHz for gates
and 20 Hz for ohmic contacts) [see Fig. 3.7(b)].

For the transmission of high-frequency signals (microwaves and voltage pulses) to
the gates, the refrigerator is mounted with eight coaxial cables4 (with component speci-
fications up to ∼20 GHz). Semi-rigid coaxial cables out of stainless steel5 are used be-
tween room temperature and the 1K plate, where for the connection to the vacuum
feedthroughs on the inside of the refrigerator, hand-formable coaxes6 are used to fa-
cilitate (dis)assembling. Between the 1K plate and the mixing chamber plate, semi-rigid
coaxes of niobium-titanium7 are used, which is superconducting during refrigerator op-
eration, and has low thermal conductivity. From the mixing chamber plate downwards,
semi-rigid coaxes made out of beryllium-copper8 or hand-formables9 are used, which
both have higher thermal conductivity, thus mediate cooling from the mixing cham-
ber. The coaxes are attenuated with 20 dB10 on the 1K plate and 6 dB11 on the mixing
chamber plate. These attenuation values are chosen as a trade-off between suppressing
thermal noise, yet allowing sufficient signal transmission, while in addition the attenua-
tors thermally anchor the coaxes to the respective stages of the refrigerator. On the other
plates, coaxes are clamped for thermal anchoring, and just below the steel flange they
are clamped in a copper block, which is connected to the flange with a copper braid.

Two additional coaxes are used for measurements based on radio-frequent (RF) re-
flectometry [11, 12] (see Section 3.2.4), for which a diagram of the circuit is shown in
Fig. 3.9(a). One coax is used to transmit the ingoing RF signal, and the other for the re-
flected signal. The coax for the ingoing signal is attenuated with 20 dB12 at both the 1K
plate and the cold plate. The coaxes are combined at the mixing chamber plate via a di-
rectional coupler13, which is mounted with the input port going to the device, such that
the ingoing and reflected signal from there on run over the same coax. The returning sig-
nal is sent through a cryogenic amplifier14 mounted on the bottom of the steel flange. On
its input port is a DC block15, which disconnects the inner conductor such that thermal
contact is reduced. The coax for the ingoing signal is made from stainless steel16 until
the cryogenic amplifier, from there to the directional coupler it is made of a supercon-
ducting material17, and below the directional coupler it is made of beryllium-copper18.

4The coaxial wiring was designed together with Olaf Benningshof, mechanical parts were made by Nico Al-
berts, and connectors were soldered onto the coaxes by Erik van der Wiel, who works for DEMO at TU Delft.

5SC-219/50-SSS-SS and SC-119/50-SSS-SS from Coax Co.
6415-0081 from Johnson - Cinch connectivity.
7SC-219/50-NbTi-NbTi from Coax Co.
8SC-119/50-B-B from Coax Co.
9415-0082 from Johnson - Cinch connectivity.
102082-6418-20-cryo from XMA corp.
112082-6418-06-cryo from XMA corp.
12See footnote 10.
13ZEDC-15-2B from Mini-Circuits.
14CITLF2 from the Caltech Microwave Research group.
15PE8210 from Pasternack.
16SC-219/50-SSS-SS from Coax Co.
17SC-219/50-NbTi-NbTi from Coax Co.
18SC-119/50-B-B from Coax Co.
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The coax with the reflected signal, for the section between the directional coupler and
the 1K plate, is of the same type as superconducting coax as for the ingoing signal, and
from there on upwards the same type of stainless steel coax is used.

3.2.3. PRINTED CIRCUIT BOARD

The DC lines and coaxes in the refrigerator are connected to a printed circuit board (PCB)
[Fig. 3.8(a)], which serves as an interconnect to the device. This PCB has ten SMP con-
nectors, of which one is designed for the RF reflectometry (see Section 3.2.4), and the
others for high-frequency voltage pulses and microwaves to the gates. The DC and high-
frequency signals are combined on the PCB via bias-tees. The bias-tees for the gates
have a 10 MΩ resistor on the DC side, and two parallel capacitors of 56 pF and 47 nF on
the high-frequency side, which corresponds to an RC-time constant of 470 ms, which is
chosen as trade-off between quick settling of the DC voltages and performing long pulse
sequences. The other bias-tees, used for the ohmic contacts connected to an inductor,
have a 5 kΩ resistor and a 100 pF capacitor, giving an RC-time constant. The PCB has 48
DC lines that are routed to two flexible-flat-cable connectors, which are wired in parallel,
such that via one side the PCB can be grounded while (dis)connecting the other side. All
the DC lines are additionally high-frequency filtered on the PCB with a 100 pF capacitor
to ground.

Figure 3.8: (a) The printed circuit board mounted and connected in the refrigerator, with in the centre the
device. The radio-frequency (RF) bias-tees enable the combination of RF reflectometry with DC transport via
the ohmic contacts, while the microwave (MW) bias-tees enable the combination of high-frequency signals
and direct current voltages to the gates. (b) Optical microscope image of a device with wirebonds (somewhat
smashed here) connected to the bond-pads for the gates and ohmics.

The device is glued onto the PCB with PMMA, and the PCB and the device are elec-
trically connected with aluminium wirebonds [see Fig. 3.8(b)], which are made with a
semi-automated Westbond bonder or fully-automated Bondtec bonder. For the RF read-
out, two home-built inductors19 of 1.3µH and 3.9µH, are glued onto the PCB, and wire-
bonded to ohmic contacts for the sensing dots.

19Spiral inductors of niobium-titanium-nitride on quartz. [13]
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3.2.4. RADIO-FREQUENT READOUT
The charge sensing relies on the dependence of the sensing dot resistance on the charge
distribution in its environment [see Section 2.3]. The resistance of the charge sensor
can be measured with DC transport, but better signal-to-noise ratios and a higher band-
width can be achieved with RF readout [11, 14, 15]. For charge-sensing based on DC
transport, the detection bandwidth is limited by the capacitance of the refrigerator wire
to the room temperature amplifier and its input resistance. With RF readout, in addition
to allowing a higher detection bandwidth, also the noise is reduced, because the noise
floor is lower for the amplifier working at the carrier frequency, as compared to that of
amplifiers working at baseband frequencies.

The reflection coefficient for an incident electromagnetic wave is

Γ= V −

V + = ZL −Z0

ZL +Z0
, (3.2)

with V + the incident signal, V − the reflected signal, ZL the impedance of the load and
Z0 the impedance of the transmission line with the incident signal. The charge sensor
is most sensitive where dR

d q is maximal. For a sensing dot this is typically the steepest
point on the flank of a Coulomb peak measured in transport as function of sensing dot
plunger voltage. Note that there can be deviations, because the resistance change due to
the plunger voltage may not reliably represent the resistance change due to a change in
charge configuration on the sensed dot(s). At the steepest point on its flank, the sensing
dot impedance is typically about 150 kΩ. However, the transmission line components all
have 50Ω impedance, thus ZL >> Z0, and almost all signal would be reflected, resulting
in a poor signal-to-noise.

Therefore RF reflectometry is implemented by transforming the load impedance of
the charge sensor with an inductor and a capacitor to form a matching circuit. At its res-
onance frequency, ω = 1p

LC
, this circuit has an equivalent impedance of Zeq = L

RC . The

capacitance is the parasitic capacitance, Cp , which is around 0.5 pF to 1 pF and consists
of the capacitances of the bondwires, device and the line on the PCB, which connect
the inductor and the device. With an inductor of around one to a few µH the equivalent
impedance is brought close or even matched to the impedance of the transmission line,
which is where the reflected signal is maximally sensitive to the resistance of the charge
sensor (maximal dV −

dR ). The maximal sensitivity with respect to the sensed dot(s), dV −
d q ,

is typically at a slightly different position on the Coulomb peak, because the matching is
not perfect as to where dR

d q is maximal. The carrier frequencies for the RF readout of the
eight dot device were 97.2MHz and 165.9MHz, which correspond to the resonance dips
in the amplitude of the reflected signal as shown in Fig. 3.9(b).

3.2.5. ROOM-TEMPERATURE ELECTRONICS
At room temperature, various home-built DC electronics are used, which come as sepa-
rate modules that are put into a battery powered rack of either IVVI-type20 or the newer
SPI-type21. These modules include digital-to-analog converters, which are operated in

20http://qtwork.tudelft.nl/~schouten/ivvi/index-ivvi.htm
21http://qtwork.tudelft.nl/~mtiggelman/spi-rack.html.

http://qtwork.tudelft.nl/~schouten/ivvi/index-ivvi.htm
http://qtwork.tudelft.nl/~mtiggelman/spi-rack.html
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Figure 3.9: (a) Diagram of the radiofrequency reflectometry circuit for one carrier frequency. The readout
circuit is frequency multiplexed for the experiments with two charge sensors. The multiplexing requires adding
a signal source, doubling the demodulation electronics, and splitting the returning signal at room temperature
and the ingoing signal on the PCB to matching circuits with different inductors. The bias-tee consists of a 5 kΩ
resistance on the DC side and a 100 pF capacitor on the RF side. (b) The amplitude of the reflected signal shows
two resonance dips, as indicated by the dashed lines, when the sensing dots are tuned up (blue), while those
resonance dips are absent when the gates for the sensing dots are not biased (red).

a range from +2 V to -2 V for applying voltages on the gates and a source-drain bias. In
addition, modules with current-to-voltage converters, which are connected to Keithley
multimeters (2000 or 2700), are used to measure transport through the device.

High-frequency electronics are used to send voltage pulses and microwaves to the
gates. The voltage pulses are generated with an arbitrary waveform generator (AWG). For
the results in Chapters 4-6 a Tektronix AWG5014 was used, while for the other chapters
the Keysight PXI system with AWG modules of type M3202A was used. The output of
the AWGs are wired with low-pass filters22 and common-mode chokes based on several
loops of the room temperature coax through a ferrite ring. Both types of AWGs can go up
to ∼1 GHz sampling rate and have rise times slightly above 1 ns. As microwave source a
Rohde Schwarz SMR40 is used, which can generate signals up to 40 GHz.

The RF signals (∼100 MHz) for the reflectometry are generated with two Rohde Schwarz
SMB100A. The outputs of the signal generators are both attenuated by 30 dB, and the
signal is sent through a DC block, both at room temperature. The reflected RF signal is
demodulated at room temperature as well, using a home-built demodulation box [13].
The input port of the demodulation box also has a DC block on it. The demodulated RF
signals are acquired with a digitizer card. For Chapters 4-6 a Spectrum M4i was used,
while for the other chapters a digitizer module M3102A in the Keysight system was used.

3.2.6. SOFTWARE
The code to perform the experiments is written in the programming language Python.
The data storage is based on the Qcodes data-acquisition framework23, just as the instru-

22SBLP-300+ from Mini-Circuits.
23https://github.com/QCoDeS/Qcodes

https://github.com/QCoDeS/Qcodes
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ment drivers for which several contributions were added to the framework. Part of the
measurement and fitting routines are from, and also contributed to, the package QTT24,
of which the development is led by Pieter Eendebak. The Keysight system was controlled
with a pulse library first developed by Stephan Philips and later expanded by Sander de
Snoo25. Numerical simulations for this PhD are in general based on the package QuTiP26

with extensions written by Steven van Gemert, while for Chapter 7 the time evolution
simulations were based on the package DM solver, written by Stephan Philips27.

24https://github.com/QuTech-Delft/qtt
25https://github.com/stephanlphilips/pulse_lib
26https://qutip.org
27https://github.com/stephanlphilips/DM_solver

https://github.com/QuTech-Delft/qtt
https://github.com/stephanlphilips/pulse_lib
https://qutip.org
https://github.com/stephanlphilips/DM_solver
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4
AUTOMATED TUNING OF

INTER-DOT TUNNEL COUPLING IN

DOUBLE QUANTUM DOTS

Semiconductor quantum dot arrays defined electrostatically in a 2D electron gas provide
a scalable platform for quantum information processing and quantum simulations. For
the operation of quantum dot arrays, appropriate voltages need to be applied to the gate
electrodes that define the quantum dot potential landscape. Tuning the gate voltages has
proven to be a time-consuming task, because of initial electrostatic disorder and capacitive
cross-talk effects. Here, we report on the automated tuning of the inter-dot tunnel coupling
in gate-defined semiconductor double quantum dots. The automation of the tuning of
the inter-dot tunnel coupling is the next step forward in scalable and efficient control of
larger quantum dot arrays. This work greatly reduces the effort of tuning semiconductor
quantum dots for quantum information processing and quantum simulation.

This chapter has been published as C. J. van Diepen, P. T. Eendebak, B. T. Buijtendorp, U. Mukhopadhyay,
T. Fujita, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, Applied Physics Letters 113, 033101 (2018).

https://doi.org/10.1063/1.5031034
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4.1. INTRODUCTION

Electrostatically defined semiconductor quantum dots are actively studied as a platform
for quantum computation [1–3] and quantum simulation [4, 5]. Control over the inter-
dot tunnel coupling is a key ingredient for both applications. Via control over the tunnel
coupling we have control over the exchange coupling, which is vital for realizing the var-
ious proposals for spin-based qubits [1, 6, 7]. Based on the natural description of semi-
conductor quantum dots in terms of the Fermi-Hubbard model, control over the tunnel
coupling allows for analog simulations to explore the physics of interacting electrons on
a lattice [8, 9].

An obstacle for the efficient use of semiconductor quantum dots are the background
charged impurities and variations in the gate patterns, which lead to a disordered po-
tential landscape. Initial disorder can be compensated for by applying individually ad-
justed gate voltages. Additionally, even though gates are designed to specifically control
a chemical potential or a tunnel coupling, in practice capacitive coupling induces cross-
talk from all gates to dot chemical potentials and tunnel couplings. The disorder and
cross-talk increase the complexity of tuning up ever larger dot arrays. The effort of tuning
can be reduced by automation based on image processing. Earlier work on automation
of tuning for semiconductor quantum dots has shown that it is possible to automatically
form double quantum dots with a sensing dot, and to find the single electron regime in
the double dot, however without control of the inter-dot tunnel coupling [10]. More re-
cently, such automated tuning routines were used to determine the initialization, read-
out and manipulation points for a singlet-triplet qubit [11]. Machine learning was used
for the automated tuning between an open channel, a single dot and a double quantum
dot regime in a nanowire [12]. Automated control over the inter-dot tunnel coupling is
an important next step forward in control for scaling up the number of spin qubits in
semiconductor quantum dots.

In this Letter, we present a computer-automated algorithm for the tuning of the
inter-dot tunnel coupling in semiconductor quantum dot arrays and demonstrate the al-
gorithm on separate double dots. The algorithm consists of two parts. Part I determines
a virtual barrier gate, which corresponds to a linear combination of voltages to apply
on multiple gates in order to adjust the tunnel barrier without influencing the chemi-
cal potentials in the dots. To determine such a virtual barrier gate we model and fit the
capacitive anti-crossings measured in charge stability diagrams. Part II tunes the tun-
nel coupling using a feed-back loop, which consists of stepping the virtual barrier gate
value and measuring the tunnel coupling, until the tunnel coupling converges to a user-
defined target value. To measure the tunnel coupling we use two methods. The first
method is based on photon-assisted tunneling (PAT) [13], while the second method is
based on the broadening of the inter-dot transition line [14]. We describe the algorithm
and demonstrate its power by automatically tuning the tunnel coupling to a target value
for two double dots. We show results for tuning both to higher and lower tunnel cou-
plings for several different initial values, both for a single electron and for two electrons
on the double dot.
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Figure 4.1: (a) A scanning electron microscopy image of a device nominally identical to the one used for the
measurements. The three smaller dashed circles indicate the positions of the dots in the array. The larger
dashed circle indicates the location of the sensing dot. Squares indicate Fermi reservoirs, which are connected
to ohmic contacts. (b) A flowchart of the automated tunnel coupling tuning algorithm. The dashed boxes
indicate the two parts of the algorithm.

4.2. DEVICE
The platform used for the demonstration of the algorithm is a linear triple quantum dot
device [15]. A scanning electron microscopy image of a device similar to the one used
in our experiment is shown in Fig. 4.1(a). By applying voltages on gate electrodes on
the surface of a GaAs/AlGaAs heterostructure, we shape the potential landscape in the
two-dimensional electron gas 85 nm below the surface. Gates LS and RS are designed
to control the tunnel couplings to the left and right reservoir, respectively. Additionally,
plunger gates, Pi , are designed to control the chemical potential of dot i , and barrier
gates, Di , are designed to control the inter-dot tunnel coupling between dot i and dot
i+1. The device allows for the formation of three quantum dots in a linear configuration,
which are indicated with three white dashed circles in the bottom part of Fig. 4.1(a). In
the present work, we focus on two of the three dots at a time. There is one additional
dot, indicated with the larger white dashed circle in the upper part, which we refer to
as the sensing dot (SD), because it is operated as a charge sensor, utilizing its capacitive
coupling to the three other quantum dots. One of the SD contacts is connected via a
bias-tee to a resonator circuit, permitting fast read-out of the charge configuration in the
bottom dots, by measuring the SD conductance with radio-frequency reflectometry. To
optimize the sensitivity of the charge sensor, we operate the SD half-way on the flank of
a Coulomb peak. Automation on the tuning of the sensing dot for read-out was already
shown in Ref. 10. One of the bottom gates, P2, is connected to a microwave source, used
for PAT measurements.

As starting point for our algorithm, we assume that the device is tuned near an inter-
dot charge transition. Such a starting point can be obtained from a computer-automated
tuning algorithm [10]. We also require a rough estimate of the electron temperature for
the modelling of charge transition line widths. For the PAT measurements, we calibrated
the microwave power such that we only observe single-photon lines [13].

4.3. FIRST PART OF THE ALGORITHM
Part I of the algorithm, see Fig. 4.1(b), determines the virtual plunger and barrier gates
by measuring the cross-capacitance matrix (see supplementary material 4.8.2), which
describes the capacitive couplings from gates to dot chemical potentials. To determine
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this matrix we measure charge stability diagrams with charge sensing and fit the avoided
crossing with a classical model (see Fig. 4.4). The fitting of the anti-crossings is based on
finding the minimum of the sum over all pixels of the difference between the processed
data and a two-dimensional classical model of the avoided crossing (see supplementary
material III). From the fit of the anti-crossing, we obtain the slopes of all five transition
lines: four addition lines, where an electron moves between a reservoir and a dot, and
the inter-dot transition line, where a charge moves from one dot to the other. We fit
the anti-crossing to charge stability diagrams measured for any combination of Pi , Pi+1

and Di over a range of 40mV around the starting point, to fill in the entries of the cross-
capacitance matrix. From the inverse of this matrix we obtain both the virtual barrier, D̃i ,
and the virtual plungers, P̃i and P̃i+1. The effectiveness of this basis transformation in
voltage-space becomes clear from the right angles between addition lines in the charge
stability diagram in the 2D-scan of P̃i and P̃i+1 in Fig. 4.2(a). The anti-crossing fit also
provides the voltages at the center position on the inter-dot transition line, indicated
with the white dot. The white dotted line indicates the detuning axis, which will be used
as a scanning axis in the second half of the algorithm.

4.4. TUNNEL COUPLING MEASUREMENTS

Before describing part II of the algorithm let us first explain the two methods we use to
measure the tunnel coupling. The first method is PAT, see Fig. 4.2(b) and (e), which is
based on the re-population of states induced by a microwave field. We can observe the
re-population using the sensing dot, when the different states correspond to different
charge configurations. While varying the frequency of the microwave source, we ob-
serve resonance peaks when the frequency is equal to the energy difference between
two states. By scanning over the detuning axis and finding the resonance peaks we
perform microwave spectroscopy to map out (part) of the energy level diagram, from
which we determine the tunnel coupling. We obtain the tunnel coupling by using a fit-
ting procedure that consists of three steps. First we process the data per microwave fre-
quency, mainly subtracting a smoothed background signal taken when the microwave
source is off. Second we find the extrema in this processed signal per microwave fre-
quency and last we fit the curve(s) that connects the extrema using a model of the energy
level diagram. For the PAT measurements with a single electron as shown in Fig. 4.2(b),
we model the system in terms of two levels with energies as shown in Fig. 4.2(c). The
resonance curve is then described by h f =

p
ε2 +4t 2, where h is Planck’s constant, f

the applied microwave frequency, t the inter-dot tunnel coupling and ε the detuning,
which is given by α(δP̃i − δP̃i+1), with α the lever arm, a conversion factor between
voltage and energy scales [13]. If two electrons occupy the two tunnel coupled dots
at zero magnetic field, there are three relevant energy levels at modest detuning, two
corresponding to hybridized singlet states and the other to threefold degenerate triplet
states, see Fig. 4.2(f) [2, 16]. This level structure results in three possible transitions,
with corresponding energy differences between singlet and triplet states described by
h f =± ε

2 + 1
2

p
ε2 +8t 2, indicated with respectively the green and blue wiggly arrows, and

the energy difference between the two singlet states given by h f =
p
ε2 +8t 2, indicated
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Figure 4.2: In all subfigures, (N1, N2) indicates charge occupation of the left and middle dot, with no dot
formed on the right. (a) A double quantum dot charge stability diagram, showing the processed sensing dot
signal as a function of virtual plunger gate voltages. The fitted anti-crossing model is indicated with dashed
lines. The detuning axis is indicated with the white dotted line and the center point on the inter-dot transition
line with a white dot. (b) Photon-assisted tunneling measurement showing the charge detector signal (back-
ground subtracted) as a function of frequency and inter-dot detuning at the (0,1) to (1,0) transition. The red

dashed line is a fit of the form h f =
√
ε2 +4t 2. The detuning lever arm is extracted from the slope of the hyper-

bola in the large detuning limit. (c) The energy level diagram for one-electron occupation. The eigenenergies

are ± 1
2

√
ε2 +4t 2. A microwave photon (red wiggly arrow) can induce a transition (and potentially tunnelling

between the dots) when the difference between the energy levels corresponds to the photon energy (PAT).
(d) Excess charge extracted from a fit to the sensing dot signal as a function of ε for different t , measured by
scanning over the detuning axis for the single-electron occupation. The model used to fit to the SD signal is

V (ε) = V0 +δV Q(ε)+
[
δV
δε

|Q=0 +
(
δV
δε

|Q=1 − δV
δε

|Q=0

)
Q(ε)

]
ε. Here V0 is the background signal, δV is a mea-

sure of the charge sensitivity, Q the excess charge as a fraction of the electron charge and δV
δε

the gate-sensor
coupling when ε is varied [9]. (e) Photon-assisted tunneling measurement similar to (b) but for the inter-dot
transition from (2,0) to (1,1). Coloured dashed lines are fits to the measured data. (f) The energy level diagram
for the two electron transition. Coloured wiggly arrows indicate microwave photon excitations. The energy

levels are given by ε
2 ± 1

2

√
ε2 +8t 2 for the singlets and are 0 for the degenerate triplets.
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with the red wiggly arrow. In the measurement shown in Fig. 4.2(e) we only observe two
out of the three transitions. This we explain by observing that the thermal occupation
of the lowest excited state is negligible. We note that some PAT transitions involve a
spin-flip, which is mediated by spin-orbit interaction and a difference in the Overhauser
fields between the two dots [17]. The variation in intensity for different horizontal lines
in Fig. 4.2(b) and (e) is caused by the frequency dependence of the transmission of the
high-frequency wiring. One could compensate for this by adjusting the output power of
the microwave source per frequency. The white tails in Fig. 4.2(e) are caused by sweep-
ing gate voltages at a rate which is of the same order of magnitude as the triplet-singlet
relaxation rate. This was confirmed by inverting the sweep direction and observing that
the white tails appear on the other side of the transition line.

The second method to measure the tunnel coupling is based on the broadening of
the inter-dot transition line [14], see Fig. 4.2(d). The broadening reflects a smoothly
varying charge distribution when scanning along the detuning axis, caused by the tun-
nel coupling via the hybridisation of the relevant states and the temperature through the
thermal occupation of excited states. For the single-electron case, the average excess
charge on the left (right) dot is given by

Q = 1

Z

∑
n

(cne−En /kB Te ), (4.1)

with Z the partition function, cn = 1
2 ∓ε/En the probability of finding the excess charge

on the left (right) dot for the eigenstate with energy En and the thermal energy kB Te ≈
10.5µeV, with Te the effective electron temperature. An analogous expression applies to
the two-electron case, with cn = 0 for the triplets and cn = 1

2 (1±ε/
p
ε2 +8t 2) for the hy-

bridized singlets. The lever arm used for measuring the tunnel coupling from the broad-
ening of the inter-dot transition line is obtained from PAT, but could also be measured
with Coulomb diamonds or bias triangles [2]. Based on Eqn. 4.1 we obtain the model
for the charge sensor response when scanning over the detuning axis, see the caption of
Fig. 4.2 [9].

Here we compare the two methods for extracting the tunnel coupling. An advan-
tage of the method based on the broadening of the inter-dot transition line is that it is
about two orders of magnitude faster than PAT (see Table reftab:timings), because it is
effectively a single scan over the detuning axis while PAT is a series of scans over the
detuning axis for different microwave frequencies. Another difference is in the range of
tunnel couplings over which the two methods work well. For PAT the upper limit de-
pends on the maximum frequency that the microwave source can produce. We expect
that the lower limit for PAT is determined by charge noise, resulting in broadening of
the PAT peaks. With PAT, we were able to automatically measure tunnel coupling val-
ues as low as 5µeV. The lower limit for the inter-dot transition broadening method is
set by the effective electron temperature, kB Te , here ≈ 10.5µeV [14]. The upper limit
for this method is that for very large tunnel couplings, the broadening of the inter-dot
transition line extends to the boundaries of the charge stability region. In the measure-
ments shown here, we did not come close to this upper limit, but tunnel couplings up
to 75GHz ≈ 300µeV have been measured with the inter-dot transition line broadening
method [9]. We observe that the two methods are in good correspondence with one an-
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other, i.e. the difference between the two is smaller than 10% of their average value (see
supplementary material 4.8.5). Measurement errors are usually smaller than the accu-
racy in target tunnel coupling we are interested in, while potential outliers will typically
be caused by unpredictable charge jumps.

4.5. SECOND PART OF THE ALGORITHM
Now, let us describe part II of the algorithm, see Fig. 4.1(b), which performs a feedback
loop. For each iteration the virtual barrier gate value, i.e. the linear combination of gate
voltages as determined in part I, is adjusted and the tunnel coupling is measured. Be-
fore the first step of the algorithm we measure the tunnel coupling with PAT. For this
initial measurement, we cannot rely on the (faster) method based on the broadening of
the inter-dot transition, since at this stage the lever arm has not yet been determined.
If we are not yet within 1µeV, of the user-defined target tunnel coupling value, we step
the virtual barrier gate value with step size equal to the maximal step size in the posi-
tive direction if the tunnel coupling is too low and vice versa. We limit the barrier gate
step size to 20mV such that the position of the anti-crossing can again be located au-
tomatically by fitting the anti-crossing model. For larger step sizes, the position of the
anti-crossing becomes harder to predict due to non-linearities. After stepping the vir-
tual barrier gate we measure the tunnel coupling again using PAT. Then we have mea-
sured the tunnel coupling for two settings and we determine the next step for the virtual
barrier, by predicting the voltage required to reach the target value from an exponential
fit [9, 18] to the measured tunnel couplings and their respective virtual barrier values (we
thereby force the exponential to go to zero for very negative barrier voltages). After the
tunnel coupling has been measured five times with PAT we also have five measured lever
arm values for different gate voltages. The small differences in lever arm we interpret as
caused by small shifts in the dot positions with the gate voltages. We predict the lever
arm for other voltages using a linear approximation (see supplementary material 4.8.5).
Using this knowledge of the lever arm, the algorithm can be sped up for the subsequent
iterations by measuring the tunnel coupling from inter-dot transition broadening.

4.6. ALGORITHM AT WORK
Following the procedure described above the algorithm automatically tunes the inter-
dot tunnel coupling to a target value, within the range of the measurable tunnel coupling
values and the achievable values with our gate design and electron occupations. Fig. 4.3
shows the results of the tuning algorithm for various initial and target tunnel coupling
values, indicated with different colours. The target tunnel coupling value are indicated
with black dashed lines. We clearly see that the algorithm finds the gate voltages that
bring the tunnel coupling to the target value, stepwise moving closer. In Fig. 4.3(a) re-
sults for the left pair of dots with a single electron are shown, while Fig. 4.3(b) shows
results for an occupation with two electrons. We have obtained similar results for the
second pair of neighbouring dots in the triple dot (see supplementary material 4.8.7).
The duration of a run of the algorithm mainly depends on the difference between the
initial and the final tunnel coupling value, because we limit the maximum step size. The
time the tuning algorithm takes to tune an inter-dot tunnel coupling is in the order of 10
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Figure 4.3: Results of the algorithm for a transition involving (a) single-electron states and (b) two-electron
states. Each panel shows results for different runs of the algorithm indicated by different colors. Triangles
indicate tunnel coupling values measured with PAT and squares indicate measurements based on inter-dot
transition line broadening. Solid lines are added as a guide to the eye. The black dashed lines indicate the high
and low target tunnel coupling values.

min (see supplementary material 4.8.6 for more details).

4.7. CONCLUSION
In conclusion, we have shown automation of the tuning of the tunnel coupling between
adjacent semiconductor quantum dots. Key for this automation were image process-
ing methods to automatically fit the shape of an anti-crossing and to find the shape of
the resonance curve in a PAT measurement. The present methods for measuring inter-
dot tunnel couplings and the feedback routine can be extended to larger quantum dot
arrays, in the future including also two-dimensional arrays. When tuning multiple tun-
nel couplings, cross-talk effects from the tuning of one tunnel coupling on the values
of nearby tunnel couplings will have to be compensated for, which so far was done by
hand [9]. This work demonstrates further automated control over semiconductor quan-
tum dots and is the next step forward in automated tuning of larger quantum dot arrays,
necessary for scaling up the number of spin-based qubits implemented with semicon-
ductor quantum dots.

See supplementary material for the explanation of the concept of virtual gates, de-
tails on the fitting routines, comparison between the two methods to measure the tunnel
coupling, data on the automated tuning of another double dot and information about
the time required for the tuning algorithm.
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4.8. SUPPLEMENTARY MATERIAL

4.8.1. SOFTWARE AND ALGORITHMS
The software was developed using Python [19], SciPy [20] and the QCoDeS [21] frame-
work. The image processing is performed in pixel coordinates. The parameters of al-
gorithms are given in physical units such as mV. The corresponding parameter in pixel
units is then determined by translating the value using the scan parameters. By specify-
ing the parameters in physical units the algorithms remain valid also if scans are made
with a different resolution. Of course making scans with a different resolution can lead
to differences in rounding of numbers leading to slightly different results.

4.8.2. VIRTUAL GATES
Due to the capacitive coupling from gates to dot chemical potentials and tunnel barriers,
changing the voltage applied on one of the gates influences not only one but all of the
chemical potentials and tunnel barriers in the potential landscape. To compensate for
the cross-talk from gates to chemical potentials we make use of a cross-capacitance ma-
trix. The entries of this matrix correspond to the coupling strengths. The columns in the
inverse of the cross-capacitance matrix contain the coefficients for the gate combina-
tions defining the virtual gates. The virtual plungers, P̃i , which are linear combinations
of plungers, Pi , control the chemical potential in one dot while leaving the other chemi-
cal potentials unaffected. The virtual barrier, D̃i , changes the inter-dot tunnel coupling
without affecting the chemical potentials, hence contains compensation for the effect
of the barrier, D1, on the dot chemical potentials. An example of a measured cross-
capacitance matrix is δP̃1

δP̃2

δD̃1

=
1.00 0.49 1.23

0.55 0.88 1.49
0.00 0.00 1.00

δP1

δP2

δD1

 . (4.2)

The upper two rows are scaled such that the top-left entry is one. The left two entries
of the bottom row describe the effect of the plunger gates on the tunnel barrier. These
entries are set to zero because the PAT and inter-dot line broadening measurements are
performed near an inter-dot transition, hence using these methods we could not inde-
pendently measure the effect of plungers on the tunnel barrier. The last entry of the row
for the couplings to the barrier is set to one as we chose the effect of the physical barrier
on the virtual barrier to be one-to-one.

4.8.3. AVOIDED CROSSING MODEL
Here, we describe the fitting routine of an avoided crossing in a charge stability diagram,
see Fig. 4.4(a). For this fitting we developed a two-dimensional, classical model of an
avoided crossing which will be explained below. First we describe the processing of the
measured data.

The first step in the processing is calculating a derivative of the image. This is done
by applying a first order Gaussian filter. From the convoluted data we subtract a back-
ground signal. This background signal is a third order polynomial fit to the data, which
was convoluted with the Gaussian filter. This background subtraction is done to remove
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Figure 4.4: (a) A charge stability diagram with an avoided crossing, showing the unprocessed sensor signal. (b)
The two-dimensional patch generated based on the classical model of the anti-crossing. (c) Processed sensor
signal recorded during the charge stability measurement, from which the model fitted on the anti-crossing is
subtracted.

the shape of the sensing dot Coulomb peak in the data. Next step is to straighten the
measured data into a square image. This straightening ensures that horizontal and ver-
tical directions are equally weighted in the fitting with the 2D model. Then we normalize
the signal with its 99th percentile.

proc. data =
(
conv. datapix. −bgfit

)
p99(conv. datapix. −bgfit)

. (4.3)

We developed a classical model of an anti-crossing as observed in charge stability di-
agrams. The model consists of a two-dimensional patch, see Fig. 4.4(b). The line shapes
in this model are based on a truncated cosine. The model has eight parameters, that
need to be fit. Two parameters describe the center of the avoided-crossing, as indi-
cated with a white dot in Fig. fig:models(a) in the main text, five parameters describe
the angles of the four addition lines and the inter-dot transition line, and one parameter
corresponds to the length of the inter-dot transition line. Additional to these eight pa-
rameters, which are to be fitted, there are two more parameters, which we fix before the
fitting. The first is the typical width of an addition line, which is based on the effective
electron temperature. The second parameter is the length of the four line pieces which
we fit on the addition lines. These are chosen such that they are significantly larger than
the effective electron temperature and smaller than the addition energy.

The anti-crossing is fit by minimizing the following cost function

cost = ∑
pixels

[|proc. data|−model
]

, (4.4)

which is the sum over all pixel intensities of the processed data minus the 2D patch of
the model. This fitting procedure results in a fit as shown in Fig. 4.4(c).

4.8.4. PHOTON ASSISTED TUNNELLING FITTING
Here we explain the fitting procedure for the photon assisted tunnelling measurements.
The PAT fitting procedure consists of three steps: processing the data, detecting the de-
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Figure 4.5: (a) Line cut of the sensing dot signal as a function of detuning with the microwave frequency, f ,
at 20GHz. (b) At the same microwave frequency, but here showing the processed sensing dot signal, hence
with the smoothed background subtracted and with the remaining signal normalized. (c) A PAT measurement,
showing the processed sensing dot signal, with the red dots indicating the detected peaks.

tuning values of the resonance peaks per microwave frequency, see Fig. 4.5(a), and fitting
the curve describing the energy difference to the detected peaks.

The processing of the data is done per horizontal line in a PAT measurement, i.e.
per applied microwave frequency. The first step is the subtraction of a background sig-
nal. We measure the background signal with a scan over the detuning axis while the
microwave source is off, note that this is the same scan we would do when we want to
measure the tunnel coupling based on the broadening of the inter-dot transition line.
Before subtracting the background signal we smoothen both the signal and the back-
ground signal with a Gaussian filter with σ set to five pixels. After the background sub-
traction we subtract the average of the signal and rescale it, resulting in the data as shown
in Fig. 4.5(b).

We detect the resonance peaks as extrema in the processed signal. Just as for the
processing of the data, the peak detection is done per horizontal line. First we find the
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Figure 4.6: (a) The tunnel coupling plotted against the virtual barrier gate voltage. Blue triangles indicate
measurements with PAT while filled red circles indicate measurements based on the broadening of the inter-
dot transition line. The effective electron temperature used for the inter-dot line fitting is 10.5µeV. (b) The
lever arm measured with PAT plotted against the virtual barrier gate voltage. We fitted a linear relation to the
observed trend, which indicates a slight decrease in lever arm as we increase the virtual barrier voltage.
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Measurement Time
Anti-crossing 5 s / 1 min

PAT 1 min
POL 2 s

Tuning alg. 10 min.

Table 4.1: The approximate time used per type of measurement. The fitting time is included in the shown
durations.

maximum and minimum per horizontal line. We heuristically determined a threshold
for the detected extrema based on the difference in signal for the two charge configu-
rations and the noise level. We filter the extrema by only accepting the detected peaks
which have an absolute value higher then the threshold, note here that we already nor-
malized the processed signal.

To the filtered extrema, indicated with red dots in Fig. 4.5(c), we fit the energy tran-
sition model, which is described in the main text. This fitting procedure results in fits as
shown in Fig. 4.2(b) and (e) in the main text.

4.8.5. COMPARE PAT AND INTER-DOT TRANSITION LINE BROADENING

We compare the tunnel coupling measurements based on PAT and those based on the
inter-dot transition line broadening to check that they are in agreement with one an-
other. We use both methods to measure the tunnel coupling over a range of tunnel cou-
pling values for which both methods are reliable. These measurements were done in the
single electron occupation regime. In Fig. 4.6 we show measured tunnel couplings by
both the PAT method and the method based on broadening of the inter-dot line. The
lever arm we used for the inter-dot line broadening measurement is taken from the PAT
measurement at that virtual barrier gate voltage, see Fig. 4.6(b).
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Figure 4.7: Results of the algorithm for a transition involving single-electron states (a) and (b) two-electron
states. These results are for the automated tuning of the tunnel coupling between the pair of dots on the right
side of the triple dot device. Each panel shows results for different runs of the algorithm indicated by different
colors. Triangles indicate tunnel coupling values measured with PAT. Solid lines are added as a guide to the
eye. In this case tune tuning algorithm converged to the target value before switching the inter-dot broadening
method. The black dashed lines indicate the high and low target tunnel coupling values.
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4.8.6. TIME REQUIRED TO RUN THE ALGORITHM
In Table 4.1 an overview is given with the approximate times used for the different rou-
tines of the tuning algorithm and the tuning algorithm itself. The measurement time for
the anti-crossing measurement is lower if the gates on which the voltages are swept are
connected to high-frequent lines, hence can be swept with an a.c. signal, or relatively
longer if the voltages can only be changed by stepping a d.c. voltage. For the triple dot
device used for the demonstration of the algorithm only the plunger gates were con-
nected to high-frequent lines.

4.8.7. ADDITIONAL ALGORITHM RESULTS
In this section we present additional results of the computer automated tuning algo-
rithm. Fig. 4.7 shows the results of the tuning algorithm on the tunnel coupling between
the right pair of dots. Again, different colours indicate results of the algorithm for dif-
ferent initial and target tunnel coupling values. Fig. 4.7(a) shows results for the pair of
dots with a single electron, while Fig. 4.7(b) shows results for an occupation with two
electrons.
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5
EFFICIENT ORTHOGONAL CONTROL

OF TUNNEL COUPLINGS IN A

QUANTUM DOT ARRAY

Electrostatically-defined semiconductor quantum dot arrays offer a promising platform
for quantum computation and quantum simulation. However, crosstalk of gate volt-
ages to dot potentials and inter-dot tunnel couplings complicates the tuning of the device
parameters. To date, crosstalk to the dot potentials is routinely and efficiently compen-
sated using so-called virtual gates, which are specific linear combinations of physical gate
voltages. However, due to exponential dependence of tunnel couplings on gate voltages,
crosstalk to the tunnel barriers is currently compensated through a slow iterative process.
In this work, we show that the crosstalk on tunnel barriers can be efficiently characterized
and compensated for, using the fact that the same exponential dependence applies to all
gates. We demonstrate efficient calibration of crosstalk in a quadruple quantum dot ar-
ray and define a set of virtual barrier gates, with which we show orthogonal control of all
inter-dot tunnel couplings. Our method marks a key step forward in the scalability of the
tuning process of large-scale quantum dot arrays.

This chapter has been published as T. K. Hsiao, C. J. van Diepen U. Mukhopadhyay, C. Reichl, W. Wegscheider,
and L. M. K. Vandersypen, Physical Review Applied 13, 054018 (2018).

https://doi.org/10.1063/1.5031034
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5.1. INTRODUCTION
Electrostatically-defined semiconductor quantum dot arrays have great application po-
tential in quantum computation [1–4] and quantum simulation [5]. In these arrays, the
electrochemical potentials of dots and the tunnel coupling between neighboring dots
are controlled electrostatically by applying gate voltages. By adjusting the dot potentials
and tunnel couplings, also the exchange coupling between electron spins in the quan-
tum dots can be tuned to perform spin-qubit operations [6–9]. In addition, the in-situ
control of the parameters have allowed the use of quantum dot arrays for analog quan-
tum simulation of Fermi-Hubbard physics [10, 11].

Crosstalk from capacitive coupling between gates and the quantum dot array causes
a change in any of the gate voltages to affect not just one but multiple parameters. In
the past, this crosstalk has been compensated through iterative adjustment of gate volt-
ages to reach the target values. More recently, virtual gates have been introduced as lin-
ear combinations of physical gate voltages that enable orthogonal control of dot poten-
tials [10, 12]. The virtual gates are obtained by inverting a crosstalk matrix that expresses
by how much each physical gate shifts each of the electrochemical potentials. The tech-
nique of crosstalk compensation for dot potentials has become a standard and essen-
tial technique in multi-dot experiments [13–15]. However, the inter-dot tunnel coupling
is approximately an exponential function of the gate voltages [10, 16, 17], and so far it
has remained unclear how to incorporate this nonlinear dependence into the crosstalk
matrix. Therefore, tuning of multiple tunnel couplings in a multi-dot device is mostly
done by iteratively adjusting gate voltages using manual or computer-automated proce-
dures [18, 19].

In this work, we achieve efficient orthogonal control of inter-dot tunnel couplings in
a semiconductor quantum dot array. While the dependence of tunnel coupling on gate
voltages is exponential, the exponent is still a linear combination of gate voltages. This
allows us to extend the virtual gate matrix to include crosstalk on the tunnel barriers.
Specifically, we first show how to efficiently obtain the elements of the virtual gate matrix
from the derivatives of tunnel couplings with respect to gate voltages. Next, we test the
use of the re-defined virtual barrier gates for orthogonal control of the tunnel couplings
in a quadruple dot over a wide range of tunnel coupling values.

5.2. DEVICE AND EXPERIMENTAL APPROACH

5.2.1. QUADRUPLE QUANTUM DOT DEVICE

The experiment is carried out in an electrostatically-defined quantum dot array in a GaAs
heterostructure (see Fig. 5.1(a) shows the relevant part of the device). Details of the fabri-
cation and characterization of a nominally identical device are described in [13]. Quan-
tum dots are formed by applying DC voltages to a set of plunger gates, P , and barrier
gates, B . For brevity, we will also use the labels P and B to refer to the voltages applied
to the corresponding gates. Each plunger gate, Pi , is designed to primarily control the
electrochemical potential µi of dot i and each barrier gate, Bi j , is designed to mainly
control the inter-dot tunnel couplings, ti j , between neighboring dots i and j . Each Pi is
connected to a bias-tee for additional fast control of the dot potential using an arbitrary
waveform generator. In this experiment, up to four dots (a quadruple quantum dot) are
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Figure 5.1: (a) A scanning electron microscope image of a device nominally identical to the one used here. The
dashed circles indicate the intended positions of the quadruple dot and sensing dot. (b) Schematics illustrating

the influence of changes in B ′
23 and B†

23 on the potential landscape of a quadruple quantum dot. The grey

area denotes the original landscape, and the blue (red) dashed line indicates the landscape when B ′
23 (B†

23)

is changed. B ′
23 controls the inter-dot tunnel coupling, t23, while keeping the dot potentials fixed, but also

influences t12 and t34. In contrast, B†
23 controls t23 while affecting neither other tunnel couplings nor dot

potentials.

formed, see Fig. 5.1(a). In addition, a sensing dot, S, is operated as a charge sensor. Due
to capacitive coupling, the sensing dot potential and thus the conductance through the
sensing dot depend on the number and position of the electrons in the quantum dot ar-
ray [2]. The change in conductance is measured using radio-frequency reflectometry to
achieve fast read-out of the charge configuration [20].

5.2.2. VIRTUAL BARRIER GATES

In the literature so far, the relationship between virtual plunger and barrier gates P ′ and
B ′ and the physical plunger and barrier gates P and B is expressed via a crosstalk matrix
of the form [10, 13, 14]



P ′
1

P ′
2

P ′
3

P ′
4

B ′
12

B ′
23

B ′
34


=



1 α12 α13 α14 α15 α16 α17

α21 1 α23 α24 α25 α26 α27

α31 α32 1 α34 α35 α36 α37

α41 α42 α43 1 α45 α46 α47

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





P1

P2

P3

P4

B12

B23

B34


. (5.1)

The matrix entries are measured using αi j = ∂µi
∂P j

/ ∂µi
∂Pi

and similar ratios involving the B

gates. By definition, then αi i = 1. The linear combination of P and B to orthogonally
control the dot potentials is obtained from the inverse matrix. However, P ′-B ′ do not
compensate for the crosstalk on tunnel couplings, hence applying a voltage on B ′

i j not

only changes ti j but also affects nearby tunnel couplings tkl , as illustrated in Fig. 5.1(b)
(blue dashed line).

To overcome this limitation, we note that ti j can be approximated as an exponential
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function [16, 17]

ti j = t0 exp
(
Φi j

)= t0 exp

(∑
k
Λ

i j
k P ′

k +
∑
kl
Γ

i j
kl B ′

kl

)
(5.2)

where Φi j is the integral of −√
2me (Vi j (x)−E) (me is the electron mass, Vi j (x) is the

potential of the barrier at a position x, and E is the energy of the tunneling electron).
Our crucial assumption, which we will verify below, is thatΦi j can be expressed as a lin-
ear combination of P ′ and B ′ with coefficients Λ and Γ respectively. A set of re-defined
virtual gates, P †-B †, which includes the compensation for the crosstalk on tunnel cou-
plings, is then constructed from

P †
1

P †
2

P †
3

P †
4

B †
12

B †
23

B †
34


=



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
β51 β52 β53 β54 1 β56 β57

β61 β62 β63 β64 β65 1 β67

β71 β72 β73 β74 β75 β76 1





P ′
1

P ′
2

P ′
3

P ′
4

B ′
12

B ′
23

B ′
34


(5.3)

where β51 = Λ12
1 /Γ12

12, β52 = Λ12
2 /Γ12

12, β56 = Γ12
23/Γ12

12 and so on. The virtual barrier gates

B †
i j that orthogonally control Φi j , and hence also ti j are obtained from the inverse ma-

trix as a linear combination of P ′ and B ′. Since P ′ and B ′ maintain the dot potentials
fixed, B † thus achieve orthogonal control of tunnel couplings while maintaining the dot
potentials fixed as well, as depicted in Fig. 5.1(b) (red dashed line). Note that although
ti j scales exponentially with P ′ and B ′, as long as the factors Λ and Γ remain the same,
orthogonal control with B † remains valid for any value of tunnel couplings.

5.3. RESULTS AND DISCUSSION

5.3.1. EFFICIENT CROSSTALK CHARACTERIZATION
We first form a double dot with dots 2 and 3 to illustrate how to determine Γ from the
derivatives of the tunnel couplings with respect to B ′, see Eq. (5.2). After the dots are
formed, the crosstalk matrix from Eq. (5.1) is determined. Figure 5.2(a) shows the charge
stability diagram of the double dot obtained when sweeping P ′

2 and P ′
3. The inter-dot

tunnel coupling t23 is characterized near the (0,1)-(1,0) inter-dot transition by scanning
the dot potentials along the detuning axis (the red dotted line in Fig. 5.2(a)), see Fig. 5.2(b).
The gate voltages are converted to dot detuning using lever arms measured with photon-
assisted tunneling (PAT) [21] (see Supplementary Material). The smooth variation in
charge occupation is caused by thermal excitation and charge hybridization via the inter-
dot tunnel coupling, and is fitted to a model described in [18], which is adapted from
the one in [22], to obtain the value of the tunnel coupling. Utilising this method, the
inter-dot tunnel coupling can be measured in approximately a second. Alternatively, the
tunnel coupling can also be extracted from PAT measurements [21]. The crosstalk of B ′

kl
on ti j can be characterized by varying the voltage on B ′

kl and then measuring the change
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Figure 5.2: (a) Charge stability diagram showing the sensing-dot signal as a function of voltages on P ′
2 and P ′

3.
(N2, N3) indicates charge occupation of dot 2 and 3. The red dotted line indicates the inter-dot detuning axis.
(b) Excess charge (in units of e) extracted from a fit to the sensing-dot signal as a function of detuning near
the inter-dot transition in (a). Data (colored circles) for different t23 (in µeV) is shown together with the fitted
curves (dashed lines). The model of the fit is described in [18]. t23 is obtained from the fit. (c) Measured tunnel
coupling t23 as a function of barrier voltage B ′

12 and B ′
23, with an exponential fit to the data. (d) Same as (c)

but with a smaller voltage variation in B ′
12 and B ′

23, plotted with a linear fit.

in ti j . It is important to use the virtual barrier B ′
kl instead of the physical barrier Bkl be-

cause varying B ′
kl keeps the dot potentials unchanged so that they remain close to the

inter-dot transition. Hence, inter-dot transition scans can be performed subsequently at
different B ′

kl without manually adjusting dot potentials. Note that similar methods for
extracting tunnel couplings can also be used for higher electron occupations [18].

Figure 5.2(c) shows the measured t23 as a function of the corresponding barrier B ′
23

and the neighboring barrier B ′
12. As B ′

23 becomes more positive, the potential barrier be-
tween dots 2 and 3 is lowered so t23 increases exponentially. As B ′

12 is increased, however,
crosstalk makes t23 decrease exponentially. The crosstalk from B ′

12 to t23 can be under-
stood by considering the following factors. First, increasing B ′

12 also increases B12, which
by itself increases t23. Second, in order to keep dot potentials fixed, the voltage on P2 is
decreased to compensate the crosstalk from the increased voltage on B12 to the potential
of dot 2. Decreasing P2 reduces t23. Finally, increasing B ′

12 may shift the wavefunction of
the electron in dot 2 away from the electron in dot 3, hence reducing the tunnel coupling
as well. Combining these factors leads to the negative crosstalk of B ′

12 on t23.

By fitting the data in Fig. 5.2(c) to an exponential function t23 = t0 exp
(
Γ23

kl B ′
kl

)
, we

obtain Γ23
12 = −2.31± 0.08× 10−2 mV−1, Γ23

23 = 4.26± 0.17× 10−2 mV−1 and the crosstalk
ratio r = |Γ23

12/Γ23
23| = 54±3%. In fact, the ratio between Γ23

12 and Γ23
23 can be obtained more

easily by varying B ′
12 and B ′

23 in a small range and measuring ∂t23
∂B ′

12
and ∂t23

∂B ′
23

using a linear

fit (see Fig. 5.2(d)). The fit gives ∂t23
∂B ′

12
= −0.53±0.02µeV/mV, ∂t23

∂B ′
23

= 1.03±0.18µeV/mV
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(a)

(b)

(d)

(c)

(e)

(f)

Figure 5.3: (a-c) Measured tunnel couplings as a function of B ′ for (a) t23, (b) t12, and (c) t34. Dashed lines
show linear fits to the data. (d-f) Measured tunnel couplings as a function of B† for (d) t23, (e) t12, and (f) t34.

After calibration, each ti j only depends on the corresponding B†
i j . Dashed lines show linear fits to the data.

and the crosstalk ratio r ′ = | ∂t23
∂B ′

12
/ ∂t23
∂B ′

23
| = 51±9%. From Eq. (5.2), one would expect that

Γ23
12/Γ23

23 = ∂t23
∂B ′

12
/ ∂t23
∂B ′

23
, which is confirmed by the similar ratios r and r ′ from the two differ-

ent measurements in Fig. 5.2(c) and (d). This result indicates that it is indeed sufficient to
measure the derivatives of a tunnel coupling with respect to B ′ to efficiently characterize
the ratios between Γ, which are used for defining the B †.

Note that in this work we do not characterize the factors Λ for P ′ in Eq. (5.2). To
stay near the inter-dot transition, two neighboring P ′

i and P ′
j need to be varied together,

therefore Λi j
i and Λi j

j cannot be independently measured using our method. However,

this does not affect the orthogonal control of ti j using B †
i j . In fact, the linear combina-

tion of gate voltages needed to orthogonally change B † is independent of Λ. Of course,
without knowing Λ (here set to 0), varying P † will affect tunnel couplings, which we re-
turn to later.
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(a) (b)

Figure 5.4: The experimentally measured tunnel coupling t23 as a function of∆B†
23 for different values of∆B†

12

(a) and ∆B†
34 (b) (in mV), plotted with an exponential fit to the data. ∆B†

i j is the voltage relative to B†
i j when

ti j ∼ 25µeV. The exponential fit has an offset of 13µeV. As observed in other works, the expression Eq. (5.2) is
a good approximation over a finite range of gate voltages, for instance because of the presence of other tunnel
barriers nearby.

5.3.2. ORTHOGONAL CONTROL OF TUNNEL COUPLINGS

Next, we demonstrate the crosstalk calibration and the orthogonal control of inter-dot
tunnel couplings in a quadruple quantum dot, as shown in Fig. 5.1(a). A quadruple dot
is formed and the capacitive coupling to dot potentials is characterized for an arbitrary
initial condition, where t12 = 33.4±1.0µeV, t23 = 23.2±0.4µeV and t34 = 25.6±0.4µeV.
P ′ and B ′ are defined with Eq. (5.1). The quadruple dot is then tuned to the (1,0,1,1)-
(0,1,1,1) inter-dot transition to measure t12, where (N1,N2,N3,N4) indicates the charge
occupation on dots 1 to dot 4. The dependences of t12 on B ′ are shown in Fig. 5.3(a).
As expected, t12 shows the largest dependence on the corresponding barrier gate voltage
B ′

12. From ∂t12
∂B ′

12
= 1.32±0.12µeV/mV and t12 = 33.4±1.0µeV, Γ12

12 = 3.95±0.38×10−2 mV−1.

Changing B ′
23 has a negative crosstalk effect on t12 (∼ 50% compared with the effect

from B ′
12). The crosstalk from B ′

34 is weaker (∼ 10%), which is expected, because B ′
34

is further away from B ′
12. Note that the three fitted lines roughly intersect at ∆B ′

i j = 0

as expected. The deviations are caused by the error in measuring tunnel couplings.
Similarly, the crosstalk on t23 and t34 is characterized by tuning the quadruple dot to
the (1,1,0,1)-(1,0,1,1) and (1,1,1,0)-(1,1,0,1) transitions, respectively. In Fig. 5.3(b), t23

shows the largest dependence on B ′
23 ( ∂t23

∂B ′
23

= 0.97±0.09µeV/mV) and Γ23
23 = 4.18±0.39×

10−2 mV−1. The crosstalk of B ′
12 and B ′

34 on t23 is about 30%. In Fig. 5.3(c), t34 shows the

largest dependence on B ′
34 ( ∂t34

∂B ′
34

= 1.38±0.19µeV/mV) and Γ34
34 = 5.39±0.51×10−2 mV−1.

The crosstalk of B ′
23 on t34 is about 50% and the crosstalk of B ′

12 is < 1%.

To achieve orthogonal control of the tunnel couplings, the characterized crosstalk ra-
tios are placed into a new matrix including the tunnel-coupling crosstalk, as in Eq. (5.3),
and B † are defined. If desired, the crosstalk characterization can be repeated resulting
in an updated set of B † that further reduces the residual crosstalk (see Supplementary
Material for the final full matrix we used to proceed). Fig. 5.3(d-f) show the tunnel cou-
plings as a function of B †. As intended, each ti j is only affected by the respective B †

i j

and crosstalk of other B † is significantly suppressed, to < 8% for t12 and < 3% for t23

and t34. The remaining crosstalk could be improved further by taking more data to ac-
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curately measure the crosstalk (see Supplementary Material for summarized crosstalk
values of B ′ and B †). This indicates that B † orthogonally control the tunnel couplings in
the quadruple dot. Using B †, we can quickly tune the quadruple dot to a desired config-
uration, for example, t12 = t23 = t34 = 33 µeV (see Supplementary Material).

We next verify whether B † still compensate for crosstalk when changing the barrier
gate voltages over a slightly wider range, where the exponential dependence of Eq. (5.2)
is unmistakable. Starting from t23 = 25.6±0.2µeV, the dependence of t23 on B †

23 is mea-

sured for different values of B †
12 and B †

34. Fig. 5.4(a) and (b) show that, while changing B †
23

by 25 mV exponentially increases t23 over a range of 27µeV, varying B †
12 and B †

34 by 20 mV

only has a minor effect on t23 (crosstalk < 10% except for ∆B †
23 = −7.5 and −12.5 mV,

where the small ∂t23

∂B †
23

results in a higher crosstalk ratio due to the uncertainty of the lin-

ear fit). This indicates that B † compensate for the crosstalk in the exponentΦ rather than
just compensate for the linearized dependence of tunnel couplings in a small range of
gate voltages. As long as the crosstalk coefficients Γ for B ′ do not change, orthogonal
control of tunnel couplings using B † is effective for a large range of tunnel coupling val-
ues. We note that the range of effective B † is ultimately limited by the voltage range
where the positions of the electron wavefunctions are not changed too much (hence the
capacitive couplings remain the same), and where the exponential dependence for ti j

holds [16].

Instead of calibrating crosstalk on all tunnel couplings in one go, we can also cali-
brate and compensate cross-talk one tunnel coupling at a time, as demonstrated in the
Supplementary Material. This method is especially useful when some of the initial tun-
nel couplings are small, leading to large errors in the estimated crosstalk ratio.

Furthermore, we note that the spin exchange coupling between neighbouring spins,
Ji j , is controlled by ti j and the double dot detuning εi j . Since B †

i j orthogonally controls

ti j while keeping the dot potentials fixed, B †
i j thus also orthogonally controls Ji j [23].

As mentioned earlier, we did not characterize the crosstalk factors Λ for P ′ since Λi j
i

and Λi j
j cannot be independently measured using the present method. Hence, varying

P † does affect tunnel couplings. To perform the most complete crosstalk calibration,
one may measure either ti j or Ji j as a function inter-dot detuning, hence of P ′

i and P ′
j

independently, using a spin-funnel [8] or PAT measurement [21]. Then all the elements
in the crosstalk matrix in Eq. (5.3) can be obtained, allowing fully orthogonal tuning of
dot potentials and tunnel couplings.

5.4. CONCLUSION
In conclusion, we have achieved orthogonal control of tunnel couplings in a quadruple
dot using re-defined virtual barrier gates B †. The crosstalk is calibrated efficiently with a
differential method, which requires only a few measurements over a small range of tun-
nel coupling variation. We also showed that B †, calibrated at a certain condition, remain
effective over a wide range of configurations. The demonstrated orthogonal control of
tunnel couplings is an essential technique for configuring multi-dot devices to perform
spin-qubit operations and analog quantum simulations.



5.4. CONCLUSION

5

61

Note Added: In the final stage of completing the manuscript, a report showing or-
thogonal control of Ji j appeared [23].
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5.5. SUPPLEMENTARY MATERIAL

5.5.1. DETERMINING LEVER ARMS FROM PHOTON-ASSISTED TUNNELING

The energy difference between states with different charge occupations can be charac-
terized using photon-assisted tunneling (PAT) [21], in which these states are re-populated
by a resonant microwave signal. For example, at the (1,0,1,1)-(0,1,1,1) inter-dot tran-
sition and along the detuning axis where ∆P ′

1 = −∆P ′
2, the energy difference between

(1,0,1,1) and (0,1,1,1) is described by h f =
√
ε2

12 +4t 2
12, where h is Planck’s constant, f

is the frequency of the microwave signal, t12 is the inter-dot tunnel coupling, and ε12 is
the detuning, which is given by L12(∆P ′

1−∆P ′
2). L12 is the lever arm converting gate volt-

age to potential energy. Fig. 5.5 shows the processed PAT signal at the (1,0,1,1)-(0,1,1,1)
inter-dot transition. The fit gives t12 = 31.8± 0.5µeV and L12 = 175± 2µeV/mV. L12 is
then used for measuring t12 from the inter-dot transition curve. By measuring the PAT
signals at the (1,1,0,1)-(1,0,1,1) and (1,1,1,0)-(1,1,0,1) transitions, L23 = 140± 1µeV/mV
and L34 = 151±3µeV/mV are obtained, which are used for measuring t23 and t34 respec-
tively.

5.5.2. CROSSTALK VALUES AND ERRORS

Table 5.1 summarizes the values and standard errors of crosstalk
∂ti j

∂B ′
kl

and
∂ti j

∂B †
kl

(in µeV/mV)

extracted from the slopes in Fig. 5.3.
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Figure 5.5: Photon-assisted tunneling measurement showing the sensor signal as a function of frequency
and detuning at the (1,0,1,1)-(0,1,1,1) inter-dot transition, shown after background subtraction [18]. The red

dashed line is the fit of the form h f =
√
ε2

12 +4t 2
12.
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B ′
12 B ′

23 B ′
34 B †

12 B †
23 B †

34
t12 1.32±0.12 −0.63±0.11 −0.13±0.12 1.06±0.11 0.08±0.11 0.08±0.13

t23 −0.27±0.06 0.97±0.09 −0.27±0.05 −0.02±0.08 1.11±0.22 −0.03±0.04

t34 0±0.03 −0.72±0.12 1.38±0.19 0±0.02 0.04±0.12 1.19±0.11

Table 5.1: The crosstalk
∂ti j

∂B ′
kl

and
∂ti j

∂B†
kl

(in µeV/mV) in Fig. 5.3.

5.5.3. FULL CROSSTALK MATRIX

The normalized crosstalk matrix, which defines P †-B † in the P-B basis, is

P †
1

P †
2

P †
3

P †
4

B †
12

B †
23

B †
34


=



1 0.69 0.32 0.19 1.38 0.51 0.20
0.59 1 0.46 0.30 1.01 0.94 0.39
0.23 0.52 1 0.39 0.40 1.12 0.85
0.16 0.37 0.67 1 0.22 0.58 1.22

0 0 0 0 1 −0.44 −0.03
0 0 0 0 −0.28 1 −0.28
0 0 0 0 0.06 −0.75 1





P1

P2

P3

P4

B12

B23

B34


Note that, before defining B †, a set of intermediate virtual barrier gates is constructed,
based on the measured crosstalk on tunnel couplings when using B ′. The intermediate
virtual barriers contain residual crosstalk on the tunnel couplings (< 25%) due to mea-
surement uncertainty. B † are obtained by measuring and compensating for this residual
crosstalk, and are then employed to show the orthogonal control of tunnel couplings in
Fig. 5.3(d-f).

5.5.4. TUNING TO A TARGET CONFIGURATION
Here, we demonstrate that tunnel couplings can be efficiently tuned to a target configu-
ration using B †. As shown in Fig. 5.6(a), the initial configuration of tunnel couplings in
µeV is (t12, t23, t34) = (33.4±1.0,23.2±0.4,25.6±0.4), where ∆B † (in mV) are defined as
(∆B †

12,∆B †
23,∆B †

34) = (0,0,0). We aim for a target configuration where all tunnel couplings

∼ 33µeV. According to the partial derivatives in Table 5.1, applying (∆B †
12,∆B †

23,∆B †
34) =

(0,9,6) will in principle make (t12, t23, t34) = (33.4,33.2,32.7). After applying (∆B †
12,∆B †

23,∆B †
34) =

(0,9,6), the measurement result in Fig. 5.6(b) shows (t12, t23, t34) = (32.7±0.8,31.8±0.5,32.8±
0.5), which is very close to the target. This result indicates that by using B † the tunnel
couplings of a quantum dot array can efficiently be tuned to a target configuration.

5.5.5. STEPWISE TUNE-AND-CALIBRATE PROCEDURE
We here provide further details on the stepwise tune-and-calibrate procedure, which al-
lows to systematically set the tunnel couplings in a large-scale quantum dot array from
an arbitrary initial configuration to a target configuration and achieving orthogonal con-
trol at the same time.

The procedure consists of the following steps:
1. Form the quantum dot array and define P ′-B ′ using the ‘n + 1’ method described
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Figure 5.6: Tuning tunnel couplings using B†. (a) The tunnel couplings in the initial configuration where

(∆B†
12,∆B†

23,∆B†
34) = (0,0,0), the expected (‘Target’) and the measured (‘Result’) tunnel couplings in the target

configuration where (∆B†
12,∆B†

23,∆B†
34) = (0,6,9). (b) Excess charge (in units of e) as a function of detuning at

the (1,0,1,1)-(0,1,1,1) (green), (1,1,0,1)-(1,0,1,1) (yellow) and (1,1,1,0)-(1,1,0,1) (blue) inter-dot transitions,

along with the measured tunnel couplings (in µeV), when (∆B†
12,∆B†

23,∆B†
34) = (0,6,9). Offset in y axis is added

to the data for clarity. The dashed lines show the fit to the data.

in [13].
2. Choose a ti j , which can be chosen randomly, as the first inter-dot tunnel coupling to
tune and calibrate.
3. Use the corresponding B ′

i j to tune ti j above a value (> 20µeV in our case) at which the

crosstalk on ti j can be accurately obtained with the differential method. It is preferable
to directly tune ti j to the target value, if the target value is not too small for the differen-
tial method (otherwise see step 6).
4. Characterize the crosstalk of B ′ on ti j and update the crosstalk matrix.
5. Use the updated matrix to define a new set of virtual barrier gates, B∗1, which com-
pensate for the crosstalk on ti j .
6. If ti j is not yet the target value, tune ti j to the target value using B∗1

i j .

7. Move to a tkl which has not been included yet in the crosstalk compensation.
8. Use B∗1

kl to tune tkl to a sufficiently high value. Note that ti j will not be affected be-
cause B∗1

kl compensates for the crosstalk on ti j .
9. Characterize the crosstalk of B∗1 on tkl and update the crosstalk matrix.
10. Define B∗2, which compensate for the crosstalk on ti j and tkl .
11. If tkl is not yet the target value, tune tkl to the target value using B∗2

kl .
12. Repeat steps 7–11 for the remaining tunnel couplings.
13. After going through all of the tunnel couplings, they are tuned to the target configu-
ration, and the final virtual barrier gates, B †, orthogonally control the tunnel couplings.

We demonstrate this procedure on the quadruple dot to tune the tunnel couplings
from an arbitrary initial configuration to a target configuration where all of the tunnel
couplings ∼ 25µeV. The initial condition is (t12, t23, t34) = (6.1±0.4,25.9±0.2,8.8±0.4)
µeV. After P ′-B ′ are defined, the procedure is first carried out on t23. Fig. 5.7(a) shows
the crosstalk of B ′ on t23. Based on the characterized crosstalk, B∗1 are defined using a
crosstalk matrix where the sub-matrix for the barrier gates is
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Figure 5.7: Stepwise tuning and calibration of tunnel couplings. t23 as a function of (a) B ′ and (b) B∗1. t34 as
a function of (c) B∗1 and (d) B∗2. t12 as a function of (e) B∗2 and (f) B†.

B∗1
12

B∗1
23

B∗1
34

=
 1 0 0
−0.36 1 −0.24

0 0 1

B12

B23

B34



The physical gate voltages corresponding to B∗1 are obtained from the inverse matrix. In
Fig. 5.7(b), using B∗1, the crosstalk on t23 is reduced to below 2%, showing the compen-
sation for the crosstalk. Subsequently, t34 is tuned to 24.7± 0.2µeV using B∗1

34 (∆B∗1
34 =

105 mV). Interestingly, since B∗1
34 includes the compensation for crosstalk on t23, chang-

ing B∗1
34 by 105 mV only affects t23 by 0.7µeV (from 25.9±0.2µeV to 26.6±0.3µeV). This

shows that t34 can be tuned using B∗1
34 without disturbing t23. The crosstalk of B∗1 on

t34 is shown in Fig. 5.7(c). The crosstalk matrix is updated by multiplying the matrix de-
scribing the crosstalk of B∗1 on t34 by the current matrix used for defining B∗1, and then
normalizing each row so that the diagonal elements are 1. The updated virtual barrier
gates B∗2, which compensate for the crosstalk on t23 and t34, are defined as
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B∗2
12

B∗2
23

B∗2
34

=
 1 0 0
−0.36 1 −0.24
0.23 −0.64 1

B12

B23

B34


In Fig. 5.7(d), using B∗2, the crosstalk on t34 is suppressed to below 1%. Next, t12 is tuned
to 27.7±0.6µeV using B∗2

12 (∆B∗2
12 = 100 mV). Again, since B∗2

12 includes the compensation
for crosstalk on t23 as well, changing B∗2

12 by 100 mV only affects t23 by 2.4µeV (from 26.6±
0.3µeV to 24.2±0.2µeV). Repeating the crosstalk characterization on t12 in Fig. 5.7(e), B †,
which include compensation for the crosstalk on all the tunnel couplings, are defined asB †

12
B †

23
B †

34

=
 1 −0.84 0.20
−0.36 1 −0.24
0.23 −0.64 1

B12

B23

B34


In Fig. 5.7(f), using B †, the crosstalk on t12 are reduced to below 6%. The tunnel cou-
plings have been tuned from an initial configuration where (t12, t23, t34) = (6.1±0.4,25.9±
0.2,8.8 ± 0.4) µeV to (27.7 ± 0.6,24.2 ± 0.2,24.7 ± 0.2) µeV, which is close to the target
(25,25,25) µeV. Note that the gate voltages used in Fig. 5.7 and those in Fig. 5.3 are differ-
ent. The different potential profiles caused by the gate voltages may explain the different
crosstalk ratios in the two crosstalk matrices.

In summary, we have demonstrated the stepwise tune-and-calibrate procedure to
tune the quadruple dot to a target configuration. In addition, B † include the compensa-
tion for the crosstalk on all the tunnel couplings, so B † can be used to orthogonally tune
the tunnel couplings to other configurations provided that the crosstalk ratios remain
the same.
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6
ELECTRON CASCADE FOR DISTANT

SPIN READOUT

The spin of a single electron in a semiconductor quantum dot provides a well-controlled
and long-lived qubit implementation. The electron charge in turn allows to control the
position of individual electrons in a quantum dot array, and enables charge sensors to
probe the charge configuration. Here we show that the Coulomb repulsion allows an ini-
tial charge transition to induce subsequent charge transitions, inducing a cascade of elec-
tron hops, like toppling dominoes. A cascade can transmit information along a quantum
dot array over a distance that extends by far the effect of the direct Coulomb repulsion. We
demonstrate that a cascade of electrons can be combined with Pauli spin blockade to read
out distant spins and show results with potential for high fidelity using a remote charge
sensor in a quadruple quantum dot device. We implement and analyse several operating
modes for cascades and analyse their scaling behaviour. We also discuss the application
of cascade-based spin readout to densely-packed two-dimensional quantum dot arrays
with charge sensors placed at the periphery. The high connectivity of such arrays greatly
improves the capabilities of quantum dot systems for quantum computation and simula-
tion.

This chapter has been published as C. J. van Diepen, T.-K. Hsiao, U. Mukhopadhyay, C. Reichl, W. Wegscheider,
and L. M. K. Vandersypen, Nature Communications 12, 77 (2021).

https://doi.org/10.1038/s41467-020-20388-6
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6.1. INTRODUCTION
Fault-tolerant quantum computation benefits from high connectivity, and requires fast
and high-fidelity readout [1]. Qubit connectivity and density are severely limited when
charge sensors need to be placed near all quantum dots in the qubit array. Not only
the charge sensors themselves take space, but in addition they require a nearby electron
reservoir which takes even more space. Several proposals for quantum processors based
on gate-defined quantum dots, suggest gate-based readout of two-dimensional arrays to
overcome this limitation [2–5]. The comparatively low signal-to-noise ratio (SNR) of this
approach has hindered reaching the fidelity required for fault-tolerant quantum com-
putation [6–9]. Signal enhancement has been achieved with a latching scheme [10–12],
but does not enable the readout of dots far from the sensor. Readout based on shut-
tling [13] requires paths of empty dots to avoid that qubits are lost into the reservoirs,
and the long-distance movement of electrons breaks qubit connectivity. Alternatively,
readout via a sequence of swap operations is limited by the product of all the swap fi-
delities [14, 15].

We show that charge information can be transferred along a quantum dot array with
a cascade, in which the spin-dependent movement of one electron induces the sub-
sequent movement of other electrons. Cascades are used in various fields and tech-
nologies: stimulated emission [16] in lasers, secondary emission [17] in photomultiplier
tubes, impact ionization in avalanche photodiodes [18], and neutron induced decay in
nuclear fission [19]. A cascade has also been used to build classical logic with molecules
in scanning-tunneling microscopes [20] and with excess electrons in cellular automata
based on Al islands [21, 22].

6.2. DEVICE AND CASCADE CONCEPT
The prototype for cascade-based readout with quantum dots consists of a quadruple dot
and a sensing dot. A scanning electron micrograph image of a device similar to the one
used in the experiment is shown in Fig. 6.1a. The device is operated at 45 mK and without
an external magnetic field, unless specified otherwise. By applying voltages on the elec-
trodes on the surface we shape the potential landscape in a two-dimensional electron
gas 90 nm below, formed in a silicon-doped GaAs/AlGaAs heterostructure. The plunger
gates, labelled with Pi , control the electrochemical potentials of the dots, and the barrier
gates control the tunnel couplings between dots or between a dot and a reservoir.

Figure 6.1b schematically illustrates the cascade-based readout concept. The first
step of the protocol is to perform spin-to-charge conversion, based on Pauli spin block-
ade (PSB)[23], which induces an initial charge transition conditional on the spin state of
the two leftmost electrons. This transition induces a chain reaction of charge transitions
with a final charge transition nearby the sensor, which results in a large change in sensor
signal. Resetting the cascade can be achieved by undoing the initial charge transition.

6.3. QUANTUM DOT TUNING AND CHARGE-STABILITY DIAGRAMS
Figure 6.2a shows a charge-stability diagram with transitions for the two dots on the left.
Unless specified differently, the sensing dot is operated on the low-voltage flank of a
Coulomb peak throughout this work. For the tuning and measurements, virtual plunger
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Figure 6.1: Device and cascade concept. a Scanning electron micrograph of a device nominally identical to
the one used for the experiments. Dashed circles labelled with numbers indicate quantum dots in the array,
and the dashed circle labelled with "S" is the sensing dot. The scale bar corresponds to 160 nm. b Schematic
illustration of spin-to-charge conversion combined with a cascade for electron spin readout on dots far from
the charge sensor.

gates P̃i were used for electrochemical potentials [24–26] and virtual barrier gates for
tunnel couplings [24, 27, 28]. The charge occupation of the four dots is indicated by the
numbers in round brackets. The voltages were swept rapidly from right to left (left to
right in panel c) and slowly from bottom to top. With these sweep directions, a white
trapezoid caused by PSB is visible to the top-left of the inter-dot transition in the charge-
stability diagram, with the sensor signal in between the signal for the (1100) and (0200)
charge regions. The trapezoid is the region suited for PSB readout. The distance be-
tween the inter-dot line, which is the base of the trapezoid, and the top of the trapezoid,
corresponds to the singlet-triplet energy splitting.

Cascade Pauli spin blockade (CPSB) is seen in the charge-stability diagram of Fig. 6.2b.
The fourth dot is tuned close to a charge transition, such that the movement of an elec-
tron on the left pair induces a change in charge occupation of the fourth dot. See Sup-
plementary Material 6.6.2 for details on the tuning of the fourth dot and the sensor for
the different charge occupations. Supplementary Material 6.6.3 contains an analysis of
the anti-crossing sizes.

The charge-stability diagram in Fig. 6.2c shows both the charge states for PSB and
for CPSB readout. This diagram is obtained by varying the detuning of the left pair and
the potential of the fourth dot. In this diagram there are three different regimes in ∆P̃4.
The left and right regions, with charge transitions indicated with a dashed line, can be
used for PSB, with dot 4 unoccupied and occupied respectively. The middle region, with
a charge transition indicated with a dotted line, can be used for CPSB.

The tuning requirements of the dot potentials for CPSB readout can be further under-
stood from the ladder diagram in Fig. 6.2d. Dot 4 needs to be tuned such that µ4(1101) <
0 <µ4(0201), with the electrochemical potential defined asµi (. . . , Ni , . . .) = E(. . . , Ni , . . .)−
E(. . . , Ni −1, . . .), where E is the energy, Ni is the number of electrons on dot i , and the
Fermi level in the reservoirs is by convention set to zero. This level alignment corre-
sponds to the middle region in Fig. 6.2c, while the left (right) region corresponds to
µ4(1101) andµ4(0201) both above (below) the Fermi level. Note that ifµ2,S (0201) is above
µ1(1101), the cascade in CPSB readout involves a co-tunnel process (see Supplementary
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Figure 6.2: Quantum dot tuning for cascade-based readout. Numbers in round brackets indicate charge oc-
cupations of the dots. a Charge-stability diagram with transitions for dots 1 and 2. The white, dashed trapezoid
on the top-left side of the inter-dot is the Pauli spin blockade (PSB) readout region. The black dots indicate the
voltages for the PSB readout cycle: E(mpty), L(oad) and R(ead). b Charge-stability diagram similar to a, but
with different occupations of the rightmost dot. The white, dotted trapezoid is the cascade Pauli spin block-
ade (CPSB) readout region. White and black dots labelled with E′, L′ and R′ indicate the pulse positions for
the CPSB readout cycle. Note that the voltages at the origin are different from those in a. c Charge-stability
diagram showing both the charge states for PSB and CPSB readout. Dashed (dotted) lines correspond to the
charge transitions for the PSB (CPSB) readout regions. d Ladder diagram illustrating the alignment of the dot
electrochemical potentials for the CPSB at the readout point. For a triplet state, the system remains in (1101)
(red), whereas for as singlet state it transitions to (0201) and then (0200) (green).
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Material 6.6.6). In an alternative implementation, we also perform CPSB readout with a
charge transition between (1110) and (0201) (see data in Supplementary Material 6.6.5).

6.4. SINGLE-SHOT READOUT AND FIDELITY ANALYSIS
For single-shot PSB readout, voltage pulses are applied as indicated by the black circles
in Fig. 6.2a. The pulse sequence starts in point E, where the charge occupation is (0100).
Then the voltages are pulsed to point L, where an electron is loaded from the reservoir
onto the leftmost dot reaching the (1100) charge occupation with random spin configu-
ration. Finally, the voltages are pulsed to the readout point, R, where Pauli spin blockade
forces a triplet to remain in the (1100) charge occupation while the singlet transitions to
the (0200) charge occupation.

In Fig. 6.3a the results of 10,000 single-shot measurements are shown in a histogram.
The integration time is ti nt = 1.5µs. The peak at lower sensor signal corresponds to the
(0200) charge occupation, and is assigned as singlet, while the peak at higher sensor sig-
nal corresponds to the (1100) charge occupation, which is assigned as a triplet. Residual
overlap between the singlet and triplet distributions induces errors in the distinction of
the two charge states, resulting in errors in the spin readout. The inset shows the signal
averaged over the single-shot measurements as a function of the time stamp of the inte-
gration window. From an exponential fit, the relaxation time, T1 = 724(70)µs, is obtained
(see Supplementary Material 6.6.7).

For CPSB readout, a pulse cycle similar to that for PSB is used. The sensing dot is
operated with comparable sensitivity as for PSB readout. The pulse voltages are indi-
cated with white and black circles in Fig. 6.2b. The pulse sequence again consists of
empty, E′, load, L′, and readout, R′. For CPSB, the charge occupation in E′ is (0101), and
in L′, again an electron is loaded on the left dot forming the charge state (1101) with a
random spin configuration. At the readout point, due to Pauli spin blockade, the two
electrons on the left remain on separate dots if they are in a triplet state, which results
in the charge state (1101). When the two electrons on the left form a singlet state the re-
sulting charge state will be (0200), because the electron on the left dot moves one dot to
the right, and the electron on the fourth dot is pushed off due to the cascade effect (here
µ1(1101) >µ2,S (0201), so the two charge transitions can occur sequentially, as discussed
above).

Figure 6.3b shows a histogram of 10,000 CPSB single-shot measurements. The inte-
gration time, 1.5µs, is the same as for the PSB single-shot data. The peak at lower sensor
signal corresponds to the (1101) charge state, and is assigned as triplet, while the peak at
higher sensor signal corresponds to the (0200) charge state, which is assigned as singlet.
The residual overlap between the singlet and triplet distributions is strongly reduced for
CPSB as compared to PSB. Again, from an exponential fit to the averaged single-shot
measurements (inset Fig. 6.3b), the relaxation time, T1 = 680(3)µs, is obtained.

The cascade enhances the signal-to-noise ratio for distinguishing between the sin-
glet and triplet states by a factor of 3.5, extracted by comparing the histogram of CPSB
to that of PSB. The SNR is defined as |VT −VS |/σ̄FW H M , with VT and VS the signals for
a triplet and singlet state respectively, and σ̄FW H M the average of the full width at half
maximum of the singlet and the triplet probability distributions. Furthermore, Fig. 6.3
shows that for PSB the charge signal for the singlet is lower than that for a triplet, while



6

74 6. ELECTRON CASCADE FOR DISTANT SPIN READOUT

Figure 6.3: Single-shot readout. Histograms and fits of 10,000 single-shot measurements for a PSB readout
and b CPSB readout. The integration time is ti nt = 1.5µs. The orange lines are fits to the histograms [9, 23]
and red and green solid lines correspond to respectively the triplet and singlet probability distributions. The
left (right) inset shows the signal in arbitrary units averaged over the PSB (CPSB) single-shots as a function of
wait time in the readout point, and an exponential fit to the data. a For PSB readout the singlet corresponds to
charge occupation (0200) and the triplet to (1100). b For cascade PSB readout the singlet also corresponds to
(0200) but the triplet corresponds to (1101), thus with an electron on dot 4.

for CPSB the charge signal for a singlet is actually higher than for a triplet. We note that
changes in screening or shifts in dot positions, do not explain the sensor signals for the
different charge occupations.

The enhanced SNR for CPSB readout arises from two contributions. The first con-
tribution is directly due to the cascade, which maps a charge transition far from the
sensor to a charge transition nearby the sensor. The longer the cascade, the larger the
relative difference, because the final charge transition remains close to the sensor, while
the initial transition is further away for a longer cascade, thus inducing a weaker sensor
signal. The second contribution to the SNR enhancement is because the initial charge
transition is an inter-dot transition, while the final transition induced by the cascade is a
dot-reservoir transition, which has a stronger influence on the sensor.

As for which spin state produces the highest charge signal, for the case of PSB the
singlet signal corresponds to a charge moving closer to the charge sensor, thus the sen-
sor signal goes down. For CPSB a singlet outcome also causes a charge to move closer
to the charge sensor, but on top of that a charge is pushed out of the fourth dot, reduc-
ing the total charge on the dot array and removing a charge which was very close to the
sensor. In this case the two contributions to the signal partially cancel each other, but
the resulting effect on the charge sensor is still stronger for CPSB than for conventional
PSB. In Supplementary Material 6.6.5 CPSB is implemented such that the charge transi-
tion induced by the cascade corresponds to an electron moving closer to the sensor, by
having an electron move from dot 3 to dot 4. In this case the signal was enhanced by
a factor of 3.1 as compared to PSB. Here the effects on the charge sensor of the initial
and the final charge transitions add up, but there is no second contribution to the sig-
nal enhancement as there is not a mapping of an inter-dot transition to a dot-reservoir
transition.
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The average spin readout fidelity with CPSB is potentially above 99.9%, and is achieved
within the 1.7µs readout time. The fidelity for conventional PSB with the same integra-
tion time is 85.6%. These fidelities are obtained by analysing different error sources:
residual overlap, relaxation, and excitation, but do not include errors in the mapping
from the (1101) spin states to the measurement basis at the readout point. Here, we
provide details on the analysis for CPSB (see Supplementary Material 6.6.8 for details
on PSB). The residual overlap between the charge signals and relaxation events dur-
ing the integration time result in an error of ηhi st = 0.068% for the average readout fi-
delity [9, 23], as determined from the fit to the single-shot histogram (See Supplemen-
tary Material 6.6.4). Relaxation during the arming time, tar m = 0.2µs, contributes an
error of 0.015%. During the arming time, which is the time between the start of the
readout pulse and the start of the integration window, the signal is not analysed as it
is still rising due to the limited measurement bandwidth. Excitation during the arming
and integration time causes an error in the average readout fidelity of 0.014%, with the
excitation time, Texc = 6.0(3)ms (see Supplementary Material 6.6.7). The spin readout
fidelity will be affected by mapping errors, which can be caused by fluctuations in the
hyperfine field (see Supplementary Material 6.6.9), high-frequent charge noise, leakage
states, and relaxation and excitation during the voltage ramp. The spin readout fidelity
including mapping errors can be obtained experimentally by performing high-fidelity
deterministic state preparation. Supplementary Material 6.6.6 provides an analysis on
scaling of the cascade.

6.5. DISCUSSION
A cascade can be implemented in various quantum dot array layouts. Figure 6.4a shows a
schematic illustration of an example of cascade-based spin readout in a two-dimensional
array. The quantum dots are filled in a chequerboard manner, compatible with the pro-
posal in [4], and the sensor is placed at the periphery of the two-dimensional array, with
sufficient space for reservoirs. The cascade is implemented by forming a path of dots
which are each tuned close to a charge transition, while the dots outside the cascade
path are tuned deep in Coulomb blockade so their occupations are unchanged. By tun-
ing different cascade paths the same sensor can be used for the readout of spins at dif-
ferent locations in the quantum dot array. Cascades can also be designed in a fanout
shape, as schematically illustrated in Fig. 6.4b. The ends of multiple cascade paths, both
triggered by the same initial spin-dependent charge transition, converge at the same
sensor, thus increasing the change in charge distribution in the vicinity of the sensor,
which increases the SNR and the readout fidelity. Figure 6.4c shows another example of
fanout of cascade paths, with at the end of each path a sensor. The signal from multi-
ple sensors can be combined to achieve higher SNR and increased readout fidelity. The
cascade-based readout can also be performed at higher filling, as schematically illus-
trated in Fig. 6.4d, in which each dot is occupied with an electron. The dot emptied by
PSB enables the electrons in the cascade to move, which results in a charge moving away
from the sensor. In this implementation the voltage pulse for PSB is first performed,
and subsequently a voltage pulse is sent to tune the dot array to activate the cascade.
This two-step procedure suppresses co-tunnelling from (111. . .) to (210. . .) without oc-
cupying (201. . .), which can be further suppressed by pulses that lower the relevant tun-
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Figure 6.4: Cascade-based readout in 2D, fanout and a dense array. Schematic illustrations of cascade-based
readout a in a two-dimensional quantum dot array, b using fanout of cascade paths that converge on a single
sensor, c for fanout with multiple sensors, and d in a one-dimensional array with each dot occupied by an
electron and where the electrons move away from the sensor. Coloured regions indicate the different aspects
of the cascade-based spin readout, with the same colour coding as in Fig. 6.1b. Numbers indicate the order of
the transitions. In d first PSB is performed, then the cascade is activated.

nel couplings. Accidental dot-reservoir transitions, particularly relevant for cascades at
higher filling (see Supplementary Material 6.6.3), can be prevented by operating in an
isolated regime [29, 30].

We end with a few important considerations on the usefulness of the cascade mech-
anism for spin readout. First, each electron along a cascade path can itself still be op-
erated as a spin qubit, because phase shifts and reproducible (artificial or natural) spin-
orbit induced rotations due to the motion of the electrons can be accounted for in hard-
ware or software [31]. Second, as the length of the cascade path increases, both the spin
readout fidelity and the timing of the motion of the electrons, can be largely maintained
by allowing a cascade to propagate step-by-step using a series of voltage pulses applied
to successive dots, see Supplementary Material 6.6.6. Third, the increased SNR from
cascades, and the option of further increases through fanout, may enable high-fidelity
readout with sensing dots at elevated temperatures [30, 32], because the enhanced signal
compensates for the additional thermal noise, allowing higher cooling power and inte-
gration with cryogenic control or readout electronics [3]. Fourth, the cascade can also
be performed with other spin-to-charge conversion methods, for example with energy-
selective tunnelling [33]. Such readout with a cascade does not require a charge sensor
nearby the spin to read out, but it does require a nearby reservoir for the initial charge
transition. Last, when a quantum dot array is operated with cascade-based readout for
qubits then extra caution should be taken for handling correlated errors as these may
occur due to capacitive coupling between electrons inside and outside the cascade path.

In conclusion, we have demonstrated a cascade of electrons in a quantum dot array.
We combined the cascade with Pauli spin blockade, and achieve spin readout fidelity po-
tentially above 99.9% in 1.7µs, even though the electrons were far from the charge sen-
sor. We proposed that a cascade-based readout scheme will enable high-fidelity read-
out of spins in the interior of a two-dimensional quantum dot array, and that fanout
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of cascades can be used to enhance the signal further. Other platforms, for example
topological qubits, can also benefit from a cascade-based readout, when combined with
parity-to-charge conversion [34]. The cascade of electrons opens up a new path for high-
fidelity readout in large-scale quantum dot arrays, which is compatible with the estab-
lished, high-sensitivity, charge sensor, paving the way for further progress in quantum
computation and simulation with quantum dot arrays.
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6.6. SUPPLEMENTARY MATERIAL

6.6.1. METHODS

DEVICE AND SET-UP

The material for the sample was grown with molecular beam epitaxy and consists of a
GaAs/Al0.3Ga0.7As heterostructure with a silicon doping layer of density 7×1012 cm−2 at
50 nm depth from the surface. A two-dimensional electron gas (2DEG) was formed at
the interface, which is 90 nm below the surface. The mobility was 1.6×106 cm2/Vs at
an electron density of 1.9×1010 cm−2, measured at 4 K. A single layer of metallic gates
(Ti/Au) is defined by electron-beam lithography. The gate pattern was designed to define
eight quantum dots and two sensing dots. The device was cooled inside an Oxford Kelvi-
nox 400HA dilution refrigerator to a base temperature of 45 mK. To reduce charge noise,
the sample was cooled with bias voltages on the gates varying between 100 and 200 mV.
Gates P1,P2,P3 and P4 were connected to bias-tees (RC = 470ms), enabling application
of a d.c. voltage as well as high-frequency voltage pulses. Voltage pulses were generated
with a Tektronix AWG5014. The sensing dot resistance was probed with radio-frequency
reflectometry. The LC circuit for the reflectometry matched a carrier wave of frequency
97.2 MHz. The inductor, L = 3.9µH, was a homebuilt, micro-fabricated NbTiN super-
conducting spiral inductor, and was wire-bonded to an ohmic contact. The reflected
signal was amplified at 4 K with a Weinreb CITLF2 amplifier, and at room-temperature
I/Q demodulated to baseband and filtered with a 10 MHz low-pass filter. Data acquisi-
tion was performed with a Spectrum M4i digitizer card. After digitization, the I and Q
components of the signal were combined with inverse-variance weighting.

HIGH-FREQUENCY VOLTAGE CONTROL

The voltages for the charge-stability diagrams were simultaneously swept in 78µs for the
horizontal direction, and 6.2 ms for the vertical direction. The signal was averaged over
1,000 repetitions of such voltage scans. For the single-shot measurements the voltage
pulse durations were 100µs, 100µs, and 1 ms for respectively the empty, load and read
stage. After the read stage a compensation stage of 1 ms was performed to prevent accu-
mulation of charge on the bias-tees.

SOFTWARE

The software modules used for data acquisition and processing were the open source
python packages QCoDeS, which is available at https://github.com/QCoDeS/Qcodes,
and QTT, which is available at https://github.com/QuTech-Delft/qtt.

READOUT ERRORS

The error in the average charge readout fidelity, caused by relaxation during the arming
time is estimated to be below ηar m = 1

2

(
1−exp(−tar m/T1)

) = 0.015%. The error due to
excitation during the arming and integration time is estimated to be below ηexc = 1

2 (1−
exp(−(tar m + ti nt )/Texc ) = 0.014%. The mapping error in spin readout due to charge
non-adiabaticity (and slow subsequent charge relaxation) can be estimated with the

Landau-Zener formula to ηLZ = exp
(
− 2πα2∆t

ħ∆E

)
= 10−9%, with α = p

2tc,12, and tc,12 =
11.5µeV the tunnel coupling between dots 1 and 2, which is obtained from a spin fun-
nel (see Supplementary Material 6.6.10), ∆t = 10ns is the ramp time of the pulse to the
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readout point and ∆E ≈ 1meV is the change in double dot detuning from the load to the
readout point. Note that charge-noise can suppress the Landau-Zener transition proba-
bility, thus increasing the spin readout error due to charge non-adiabaticity.

6.6.2. SIGNAL IN CASCADE CSD
The signal for Fig. 6.2b was taken with the fourth dot and the sensor tuned such that
all charge occupations result in clearly distinguishable signals. The signal for (1101) is
higher than that for (0101), because the rightmost dot was close to the Fermi level for
(1101), and thus only partially occupied. The signal for (1200) is higher than for (0200),
because the signal for these occupations is from the high-voltage flank of a sensing dot
Coulomb peak. The other relative signals are as intuitively expected, namely adding
charges and bringing charges closer to the sensor both result in a reduced sensor sig-
nal.

6.6.3. OPERATING WINDOW FOR CASCADE READOUT
In order to get insight in the size of the operating window for PSB, CPSB and inter-dot
CPSB (iCPSB), we start from the single-band Fermi-Hubbard Hamiltonian for the quan-
tum dot array [24]:

H =−∑
i
εi ni +

∑
i

Ui

2
ni (ni −1)+ ∑

i j ,i 6= j
Vi j ni n j −

∑
〈i , j 〉

tc,i j

(
c†

i c j +h.c.
)

, (6.1)

where εi is the single-particle energy offset, ni = c†
i ci is the dot occupation, and c(†)

i is
the annihilation (creation) operator, Ui is the on-site Coulomb repulsion, and Vi j the
inter-site Coulomb repulsion. For simplicity, we assume in what follows homogeneous
Coulomb repulsion, thus Ui = U , Vi ,i+1 = V , Vi ,i+2 = V ′, and Vi ,i+3 = V ′′, and neglect
tunnel coupling. The shifts of charge transition lines due to capacitive couplings, and
the tuning of dot potentials for each of the different readout schemes, namely PSB, CPSB
and iCPSB, are obtained by solving sets of constraints. Note that, because the interaction
strength decays with distance, the size of the operating window for a charge transition
only depends on the occupation of nearby dots. This implies that the sizes of the oper-
ating windows remain constant as the length of the cascade is extended.

PAULI SPIN BLOCKADE

The on-site potential ε1 must satisfy µ1(1200) > 0 > µ1(1100), which yields 2V > ε1 > V .
The constraint for ε2 follows from E(1200) > E(1100) > E(0200), which yields U +V >
ε2 > ε1 +U −V . From these constraints it follows that the shifts of the relevant charge
transition lines due to capacitive couplings are V when projected onto ε1 or ε2. For the
two dots on the right to remain empty µ3(1010) > 0 and µ4(1001) > 0, which respectively
yield ε3 <V ′ and ε4 <V ′′.

CASCADE WITH DOT-RESERVOIR

The constraint for dot 1 is now µ1(1200) > 0 > µ1(1101), which yields 2V > ε1 > V +V ′′.
We also require E(1200) > E(1101) > E(0200), which yields ε4 +U +V −V ′ −V ′′ > ε2 >
ε1 + ε4 +U −V −V ′ −V ′′. For the rightmost dot, the cascade occurs when µ4(0201) >
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0 > µ4(1101), which yields 2V ′ > ε4 > V ′+V ′′. From these constraints it follows that the
shifts of the relevant charge transition lines are V −V ′′ when projected onto ε1 or ε2,
and V ′−V ′′ when projected onto ε4 or onto ε1 − ε2. For the third dot to remain empty
µ3(1110) > 0, which yields ε3 <V ′.

CASCADE WITH INTER-DOT

For the leftmost dot µ1(1201) > 0 >µ1(1110), which yields 2V +V ′′ > ε1 >V +V ′. Another
requirement is E(1201) > E(1110) > E(0201), which yields ε3 − ε4 +U +V ′′ > ε2 > ε1 +
ε3 − ε4 +U −2V +V ′. For the two dots on the right, the cascade effect takes place when
µ3(1110) <µ4(1101), which yields ε3−ε4 >V −V ′′, and µ3(0210) >µ4(0201), which yields
ε3 − ε4 < 2V −2V ′. In addition, for the rightmost dot, we need µ4(0201) < 0 < µ4(1111),
which yields 2V ′ < ε4 < V +V ′+V ′′. From these constraints it follows that the shifts of
the relevant charge transition lines are V −V ′ +V ′′ when projected onto ε1 or ε2, and
V −2V ′+V ′′ when projected onto ε1 −ε2 or ε3 −ε4.

AT HIGHER FILLING

For the cascade-based readout in an array with all sites initially occupied the charge oc-
cupation after the cascade is (1. . .1) or (21. . .10). The electron-electron interaction de-
cays with distance, thus may be too weak to prevent the (1. . .1) state from becoming
a (21. . .1) state, while (21. . .10) is preserved, or similarly to prevent (21. . .10) from be-
coming (21. . .1), while (1. . .1) is preserved. The unwanted loading of electrons can be
suppressed by operating the cascade with low couplings to reservoirs or in the isolated
regime [29, 30].

6.6.4. SINGLE-SHOT HISTOGRAM
The single-shot histograms are modeled with [23]

N (x) = Ntot [PS nS (x)+ (1−PS )nT (x)] wbin (6.2)

with Ntot the total number of single-shot repetitions, PS the average singlet probability
over al single-shot outcomes, wbin the bin width, and nS and nT the probability density
distribution for the singlet and triplet states respectively. The probability density distri-
butions are modeled by noise-broadened Gaussians as

nS (x) = 1p
2πσ

e−(x−µS )2/2σ2
, (6.3)

and

nT (x) = 1p
2πσ

[
e−tint/T1 e−(x−µT )2/2σ2

+ tint

T1

∫ µS

µT

1

µS −µT
e−[(x′−µT )/(µS−µT )](tint/T1)e−(x−x′)2/2σ2

d x ′
]

,

(6.4)

where the second term accounts for relaxation during the integration time, whereµS and
µT are the means andσ the standard deviation of the gaussians for the singlet and triplet
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density distributions respectively. T1 is the triplet-singlet relaxation time obtained from
an exponential fit to the averaged data as shown in the insets of Fig. 6.3, and tint is the
integration time.

From the probability density distributions we obtain the uncorrected readout fideli-
ties as

FS = 1−
∫ ∞

VT

nS (x)d x, FT = 1−
∫ VT

−∞
nT (x)d x, (6.5)

with VT the signal threshold, and Favg = 1
2 (FS +FT ). These uncorrected readout fideli-

ties include errors due to residual overlap of the histograms and relaxation during the
integration time. We afterwards correct the readout fidelity for errors due to relaxation
during the arming time, and errors due to excitation during the integration and arming
time as described in the main text.

6.6.5. INTER-DOT CASCADE PAULI SPIN BLOCKADE

An alternative implementation for cascade-based readout in a quadruple dot is shown
in Fig. 6.5. The additional electron moves from the third dot to the fourth dot, thus the
cascade involves an inter-dot transition. The signal is from the left flank of a Coulomb
peak of the sensing dot. The signal changes of the two charge transitions now add up,
thus a singlet state corresponds, as with Pauli spin blockade, to the peak at lower signal
and a triplet state corresponds to the peak at higher signal.

6.6.6. THEORY ON CASCADE SPEED AND SUCCESS PROBABILITY

In order to assess the scalability of the cascade-based readout, we analyse the speed and
adiabaticity of the movement of charges in the cascade. The speed of the cascade is im-
portant since spin measurement must be faster than spin relaxation for achieving high-
fidelity spin readout. Furthermore, spin readout must be faster than spin decoherence
(with dynamical decoupling) for achieving fault-tolerance using feedback in quantum
error correction. The adiabaticity with respect to charge is important when the Zeeman
splitting is different between quantum dots. For different Zeeman splitting, the uncer-
tainty in the electron position results in a phase error.

CO-TUNNEL CASCADE PAULI SPIN BLOCKADE

When the cascade is operated such that E(S(0201)),E(1100) > E(1101), then the cascade
occurs via a co-tunnel process, and the cascade can be operated adiabatically. For a
quantum dot array with length four and when the cascade involves a dot-reservoir tran-
sition, the relevant charge states are (1101), (0200), (1100) and (0201). The Hamiltonian
in this basis is


−ε1 −ε2 −ε4 +V +V ′+V ′′ 0 −tc,4R −t̃c,12

0 −2ε2 +U −t̃c,12 −tc,4R

−tc,4R −t̃c,12 −ε1 −ε2 +V 0
−t̃c,12 −tc,4R 0 −2ε2 −ε4 +U +2V ′

 , (6.6)
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Figure 6.5: Cascade-based readout with inter-dot transition. Numbers in round brackets indicate charge
occupations of the dots. a Charge-stability diagram as a function of the virtual plunger gates of dots 1 and
2. The trapezoid on the top-left side of the inter-dot transition is the inter-dot cascade Pauli spin blockade
(iCPSB) window. The black dots indicate the voltages for the iCPSB readout cycle: E′′(mpty), L′′(oad) and
R′′(ead). b Charge-stability diagram showing the effect of the inter-dot transition for dots 1 and 2 on the inter-
dot transition for dots 3 and 4. On the left and the right, the electron in dot 3 or 4 stays in place when an
electron moves from dot 1 to dot 2. In the center, an electron moves from dot 3 to dot 4 when the electron
on dot 1 is pushed to dot 2. This corresponds to an inter-dot cascade effect. c Ladder diagram corresponding
to the readout point R′′, illustrating the tuning of the dot potentials for the cascade Pauli spin blockade with
inter-dot transition. Note that µ2,S (0210) is drawn below µ1(1110), but for the cascade it could also be above.
d Histograms and fits of 10,000 single-shot measurements for iCPSB readout. The integration time is ti nt =
1.5µs. Red and green solid lines correspond to the respectively triplet and singlet probability distributions,
obtained from the fit to the histogram [9, 23]. For iCPSB readout the singlet corresponds to charge occupation
(0201) and the triplet to (1110). The inset shows the signal averaged over the single-shots and an exponential
fit, with T1 = 75.0(2)µs.
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with t̃c,12 = p
2tc,12, and tc,4R the tunnel coupling between the rightmost dot and the

right reservoir. Rewrite the Hamiltonian as

ε̃
2 0 −tc,4R −t̃c,12

0 − ε̃
2 −t̃c,12 −tc,4R

−tc,4R −t̃c,12
V ′−V ′′+δ̃

2 0

−t̃c,12 −tc,4R 0 V ′−V ′′−δ̃
2

 , (6.7)

with ε̃= ε−U +V +V ′+V ′′, and δ̃= δ−U +V −2V ′, where ε= ε12 +ε4, and δ= ε12 −ε4,
with ε12 = −ε1 + ε2. By diagonalising this Hamiltonian, with approximation |ε̃| ¿ |V ′−
V ′′± δ̃|, the co-tunnel coupling between the eigenstates that are predominantly (1101)

and (0200) is tco = t̃c,12tc,4R
∆+ + t̃c,12tc,4R

∆− , with ∆± = V ′−V ′′±δ̃
2 [35].

CO-TUNNEL INTER-DOT CASCADE PAULI SPIN BLOCKADE

The analysis for a cascade involving co-tunnelling and only inter-dot transitions is very
similar as for the co-tunnel cascade with a dot-reservoir transition. For cascade with an
inter-dot transition, the relevant charge states are (1110), (0201), (1101) and (0210). The
Hamiltonian in this basis is

−ε1 −ε2 −ε3 +2V +V ′ 0 −tc,34 −t̃c,12

0 −2ε2 −ε4 +U +2V ′ −t̃c,12 −tc,34

−tc,34 −t̃c,12 −ε1 −ε2 −ε4 +V +V ′+V ′′ 0

−t̃c,12 −tc,34 0 −2ε2 −ε3 +U +2V

 .

(6.8)
Rewrite the Hamiltonian as

ε̃
2 0 −tc,34 −t̃c,12

0 − ε̃
2 −t̃c,12 −tc,34

−tc,34 −t̃c,12
V −2V ′+V ′′+δ̃

2 0

−t̃c,12 −tc,34 0 V −2V ′+V ′′−δ̃
2

 . (6.9)

with ε̃= ε−U +2V −V ′ and δ̃= δ−U −V +V ′+V ′′, where ε= ε12 +ε34, and δ= ε12 −ε34

with εi j = −εi + ε j . By diagonalising this Hamiltonian, with approximation |ε̃| ¿ |V −
2V ′ +V ′′ ± δ̃|, the co-tunnel coupling between the eigenstates that are predominantly

(1110) and (0201) is tco = t̃c,12tc,34
∆+ + t̃c,12tc,34

∆− , with ∆± = V −2V ′+V ′′±δ̃
2 .

CONTROLLED PROPAGATION

The cascade can be implemented such that the propagation is controlled by a sequence
of gate voltages. As example, we consider the cascade Pauli spin blockade as described
in the main text. First, conventional PSB is performed withµ4(0201) < 0. The electron on
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the fourth dot remains there. Next, gate voltages are changed such that µ4(1101) < 0 <
µ4(0201). Then the cascade will propagate and the electron on the fourth dot will move
to the reservoir. A similar scheme can be designed for inter-dot cascade PSB. For a longer
cascade path, which involves more than two charge transitions, the propagation could
be controlled at each transition. The motivation for controlled propagation becomes
clear in the next subsection.

LONGER CASCADE

We now discuss how the total duration of the cascade scales with the length of the cas-
cade path for three different scenarios.

First we consider a cascade where all the charges are displaced in one single co-
tunnel process. This involves N simultaneous tunnel events that are each energetically
forbidden, but where the final state is lower in energy than the initial state. Then, for a
chain with length 2N (with every other site occupied, except for the first two sites where
the PSB mechanism is implemented), and homogeneous tunnel coupling, tc,i j = tc , and
when the cascade involves only inter-dot transitions between neighbouring pairs, the
co-tunnel coupling is [36]

tco = N !

p
2t N

c

2V N−1
, (6.10)

where for simplicity we only included inter-site Coulomb repulsion between nearest-
neighbour sites. Charge adiabaticity will require increasingly slower gate voltage changes,
because tc < V , thus tco decreases exponentially with increasing cascade length. When
the adiabaticity condition is not met, the cascade can get stuck along the way.

Next, for the sequential tunneling regime, thus with E(11LL . . .L) > E(02LL . . .L) >
E(02RL . . .L) > . . . > E(02RR . . .R), with L = 10 and R = 01, the expected duration, assum-
ing homogeneous tunnel rates, Γ, for the individual transitions is [37]

〈τ〉 ∼ N

Γ
. (6.11)

For the sequential regime, charge adiabaticity need not be preserved. Charge tunnelling
is here a stochastic process and the duration only scales linearly with the length. Note
that there is an intermediate regime, which does not fully rely on co-tunnelling, but is
also not completely sequential. Theory on this regime is beyond the scope of this work.

Finally, both the charge adiabaticity and speed can be largely maintained in a cas-
cade with controlled propagation. The total duration of the cascade increases linearly
with the cascade length, similar to the sequential case, but now uncertainties in the tim-
ing of the charge movement can be suppressed, which is important when the Zeeman
splittings are not homogeneous along the path.

Alternatively, co-tunnel, sequential, and cascades with controlled propagation could
be combined, such that different parts of the cascade have different character.

SCALING OF SUCCESS PROBABILITY

Here we consider the probability density function for the total cascade duration and its
scaling with cascade length in the context of charge getting stuck. The probability den-
sity function for the cascade duration with N +1 transitions, which each have decay rate
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Γ, is given by the Erlang distribution [38]

PN (t ) = Γ
N+1t N

N !
e−Γt . (6.12)

The probability for the cascade to take longer than time t is

∫ ∞

t
PN (t ′)dt′ = e−τ

N∑
n=0

τn

n!
, (6.13)

with τ= Γt . We will show that the probability for a cascade with N +1 transitions to take
longer than time τN decreases for increasing N given τN > N

N−1τN−1, with τi the time
used to obtain the probability for the cascade of length i +1. From the constraint on τN

it follows that τN ≥ Nτ1, thus we consider τN = Nτ1, because if the scaling holds for this
τN , then it will certainly hold for τN > Nτ1. The derivative of the probability with respect
to N is

d

dN

[
e−τN

N∑
n=0

τn
N

n!

]
= d

dN

[
e−Nτ1

N∑
n=0

N nτn
1

n!

]
=−τ1e−Nτ1

N NτN
1

N !
. (6.14)

Thus the probability decreases as function of cascade length, which shows that the time
for a cascade to complete with a given probability scales sublinearly with respect to the
cascade length. Alternatively formulated, the probability for a charge to get stuck and
interrupt the cascade thus scales sublinearly with the cascade length.

6.6.7. RELAXATION AND EXCITATION TIME
The relaxation and excitation time are obtained from the signal averaged over the single-
shot measurements, and as a function of time. This signal is fitted with an exponen-
tial [12]

V (t ) = A exp(−Γt )+B , (6.15)

with A a pre-factor,

Γ= T1 +Texc

T1Texc
, (6.16)

and

B = 1

Γ

(
VT

Texc
+ VS

T1

)
, (6.17)

where VT and VS are obtained from the fit to the histogram of the singlet-shot measure-
ments.

6.6.8. FIDELITY ANALYSIS FOR PSB
From the fit to the histogram in Fig. 6.3a, the error due to overlap and relaxation during
integration is ηhi st = 14.3%. The relaxation time is T1 = 724(70)µs, which results in an
error of ηar m = 0.014%. The excitation time is Texc = 2.8(11)ms, which results in an error
of ηexc = 0.030%. The error due to charge non-adiabaticity is the same as for CPSB, thus
10−9%.
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Figure 6.6: Spin funnel Higher signal corresponds to a higher triplet probability. For each data point the signal
is averaged over 1,000 single-shot measurements. The wait time at the operating point, which is in the (1100)

charge configuration for ∆P̃1 > 0, was 200 ns. The blue, solid line is a fit to 1
2

(
−ε12 +

√
8t 2

c,12 +ε2
12

)
, with ε12 =

−ε1 +ε2, the detuning, and tc,12 the tunnel coupling between dots 1 and 2.

6.6.9. EFFECT OF HYPERFINE FIELD

The measurement basis for spin readout consists of the singlet and triplet states, which
are the eigenstates of the Hamiltonian at the readout point. The voltage pulse from the
loading point to the readout point, induces a mapping of the eigenstates at the loading
point to the measurement basis. This mapping is determined by the pulse duration, the
exchange coupling, and the hyperfine field, which is caused by the hyperfine interac-
tion of the electron spins with the nuclear spins. The eigenstates at the loading point
can vary between pulse cycles, due to fluctuations of the hyperfine field, thus changing
the mapping to the measurement basis. In order to avoid unpredictable mappings, the
exchange interaction must dominate the Hamiltonian. This can be done by increasing
the exchange interaction or suppressing the hyperfine field fluctuations, either by feed-
back mechanisms based on dynamical nuclear polarization [39] or by using isotopically
purified 28Si[40].

6.6.10. SPIN FUNNEL

The strength of the tunnel coupling between dots 1 and 2, tc,12, is obtained from a so-
called spin funnel measurement, which is shown in Fig. 6.6. For the spin funnel, a pulse
cycle with three stages is executed [41]. The first stage is deep in the (0200) charge region
to initialise a singlet state. Then the voltages are pulsed towards the (1100) region, and
then into the readout region in (0200). Such a pulse cycle is repeated for varying depths
in the (1100) region and varying external magnetic fields. The magnetic field is converted
to an energy scale with the g -factor, |g | = 0.44, and the Bohr magneton. From a fit to
the funnel, the tunnel coupling tc,12 = 11.5µeV is obtained. The detuning is obtained
from the change in virtual gate voltages by multiplying with the lever arms, which were
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obtained with photon-assisted tunnelling measurements [28].
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7
QUANTUM SIMULATION OF

ANTIFERROMAGNETIC

HEISENBERG CHAIN WITH

GATE-DEFINED QUANTUM DOTS

Quantum-mechanical correlations of interacting fermions result in the emergence of ex-
otic phases. Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-
Hubbard model, where charges are localized and the spin degree of freedom remains. In
this regime the occurrence of phenomena such as resonating valence bonds, frustrated
magnetism, and spin liquids are predicted. Quantum systems with engineered Hamilto-
nians can be used as simulators of such spin physics to provide insights beyond the capa-
bilities of analytical methods and classical computers. To be useful, methods for the prepa-
ration of intricate many-body spin states and access to relevant observables are required.
Here we show the quantum simulation of magnetism in the Mott-insulator regime with
a linear quantum dot array. We characterize the energy spectrum for a Heisenberg spin
chain, from which we can identify when the conditions for homogeneous exchange cou-
plings are met. Next, we study the multi-spin coherence with global exchange-oscillations
in both the singlet and triplet subspace of the Heisenberg Hamiltonian. Last, we adiabat-
ically prepare the low-energy global singlet of the homogeneous spin chain, and probe it
with two-spin singlet-triplet measurements on each nearest-neighbour pair and the cor-
relations therein. The methods and control presented here open new opportunities for the
simulation of quantum magnetism benefiting from the flexibility in tuning and layout of
gate-defined quantum dot arrays.

This chapter has been published as C. J. van Diepen*, T.-K. Hsiao*, U. Mukhopadhyay, C. Reichl, W. Wegschei-
der, and L. M. K. Vandersypen, Physical Review X 11, 041025 (2021).

https://doi.org/10.1103/PhysRevX.11.041025
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7.1. INTRODUCTION
Analog quantum simulations of magnetism [1] have been performed with a rich vari-
ety of experimental platforms, ranging from ultra-cold atoms in optical lattices [2–7] to
trapped ions [8, 9], scanning tunnelling microscopy of atoms on metallic surfaces [10],
and superconducting circuits [11]. A recent addition is the use of gate-defined quantum
dots as platform for quantum simulation of the Fermi-Hubbard model. The abilities to
independently control the filling of the array, the local electrochemical potentials and
the hopping energy between sites, are complemented with methods to probe the charge
configuration across an array, spin states, the electrical susceptibility as well as transport
through the system [12]. These already enabled the observation of the transition from
Coulomb blockade to collective Coulomb blockade [13] and the observation of Nagaoka
ferromagnetism [14], a form of purely itinerant ferromagnetism which occurs at doping
with a single hole.

In the Mott-insulator regime, where all sites are occupied by one electron, mag-
netism is governed by the Heisenberg exchange interaction [15], which favors antifer-
romagnetic spin alignment. Earlier studies on quantum dot arrays in this regime have
demonstrated the sequential control of exchange couplings enabling coherent state trans-
fer [16], and a method to handle crosstalk in simultaneous control of exchange cou-
plings [17]. In order to study the many-body properties of this system, novel methods
are needed for state preparation in the presence of disorder and temperature, as well as
for probing spin correlations. Preparation of the Heisenberg ground state is both a use-
ful and exciting goal, because of its potential applications such as quantum information
transfer [18–22] and quantum simulation of magnetic phases [23–25].

In this work we simulate the antiferromagnetic Heisenberg spin chain in a gate-
defined quadruple quantum dot. For this purpose we develop experimental techniques
based on energy spectroscopy and coherent oscillations of the global spin state. These
include methods for many-body spin-state preparation and singlet-triplet correlation
measurements, which form a powerful probe for the characterization of a many-body
spin state [26]. We use these methods to engineer a chain with homogeneous exchange
couplings. Finally, we adiabatically prepare the low-energy singlet eigenstate of the ho-
mogeneous Heisenberg chain and characterize the state with single-shot singlet-triplet
readout on all nearest-neighbour pairs.

7.2. HEISENBERG SPIN CHAIN
The Heisenberg isotropic exchange Hamiltonian, while giving rise to rich emergent phe-
nomena, has a simple form:

Hhei s =
∑
〈i , j 〉

Ji j

(
~Si ·~S j − 1

4

)
, (7.1)

with Ji j the exchange coupling between spins on sites i and j , ~Si the vector of spin op-
erators for site i , and the summation over nearest-neighbours only. The conventional
− 1

4 offset ascertains that the two-spin triplets have zero energy contribution in the ab-
sence of an external field. For quantum dot systems the exchange coupling is typically
positive [27], thus neighbouring spins prefer to anti-align, or more precisely tend to form
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Figure 7.1: Device and spin-chain operation. (a) False-coloured scanning electron micrograph of a device
nominally identical to the one used for the experiments. The resistance meter, indicated with Ω, shows the
location of the sensing dot. Plunger gates for the dots are coloured in red and labelled with Pi, and the plunger
for the sensing dot is labelled with SDP. (b)-(f) Schematic illustration of the experimental sequence for the spin
chain, consisting of five stages: initialization of local singlets or triplets, separation of singlets, manipulation
of exchange couplings and time evolution, isolation of either the left and the right pair or the middle pair by
switching off specific exchange couplings, and pairwise singlet-triplet readout.

local singlets. In addition, a Zeeman splitting can be induced with an external magnetic
field, which energetically splits spin states according to their magnetization as

Hext = gµB Bext
∑

i
Ŝz

i , (7.2)

with g the Landé g-factor, µB the Bohr magneton, and Bext the external magnetic field.
The properties of a Heisenberg spin chain have theoretically been studied exten-

sively, with as most famous result the exact solution of the energy spectrum and eigen-
states of the homogeneous chain using the Bethe ansatz [28]. Intuitive insights can be
obtained from the symmetries of the Heisenberg Hamiltonian, due to which the Hilbert
space can be separated into subspaces, which are eigenspaces for the total spin operator,
Ŝ2, with eigenvalues S(S + 1), and the spin operator in the z-direction, Ŝz , with eigen-
values mS ∈ [−S, . . . ,S]. The dimensions for these subspaces can be obtained from the
Clebsch-Gordan decomposition. For four spins this results in two global singlet states
for which S = 0, nine global triplet states for which S = 1 and five states with S = 2, which
form a quintuplet. The triplets are separated into three three-dimensional subspaces,
and are denoted by Tα

k , with the subspace magnetization α ∈ [−,0,+] and k labelling the
energy level, where k = 0 for the state with lowest energy in the respective subspace. Sim-
ilarly, the singlets are denoted by Sk , and the quintuplets by Qβ with β ∈ [−−,−,0,+,++].

The global spin states can be characterized in terms of the probabilities to mea-
sure either two-spin singlets, |Si j 〉 = 1p

2

(|↑i↓ j 〉− |↓i↑ j 〉
)
, or triplets, |T +

i j 〉 = |↑i↑ j 〉, |T 0
i j 〉 =
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State (S,mS) Left and right pair basis Middle and outer pair basis

Q±± (2,±2) |T ±
12T ±

34〉 |T ±
23T ±

14〉

Q± (2,±1) 1p
2

(|T 0
12T ±

34〉+ |T ±
12T 0

34〉
) 1p

2

(|T 0
23T ±

14〉+ |T ±
23T 0

14〉
)

Q0 (2,0) 1p
6

(|T +
12T −

34〉+ |T −
12T +

34〉+2 |T 0
12T 0

34〉
) 1p

6

(|T +
23T −

14〉+ |T −
23T +

14〉+2 |T 0
23T 0

14〉
)

T ±
k (1,±1) |2T ±〉 = 1p

2

(|T 0
12T ±

34〉− |T ±
12T 0

34〉
) 1p

2

(|S23T ±
14〉+ |T ±

23S14〉
)

|1T ±〉 = |T ±
12S34〉 1

2

(|S23T ±
14〉− |T ±

23S14〉+ |T ±
23T 0

14〉− |T 0
23T ±

14〉
)

|0T ±〉 = |S12T ±
34〉 1

2

(|S23T ±
14〉− |T ±

23S14〉− |T ±
23T 0

14〉+ |T 0
23T ±

14〉
)

T 0
k (1,0) 1p

2

(|T +
12T −

34〉− |T −
12T +

34〉
) 1p

2

(|S23T 0
14〉+ |T 0

23S14〉
)

|T 0
12S34〉 1

2

(|S23T 0
14〉− |T 0

23S14〉− |T +
23T −

14〉+ |T −
23T +

14〉
)

|S12T 0
34〉 1

2

(|S23T 0
14〉− |T 0

23S14〉+ |T +
23T −

14〉− |T −
23T +

14〉
)

Sk (0,0) |1S〉 = 1p
3

(|T +
12T −

34〉+ |T −
12T +

34〉− |T 0
12T 0

34〉
) p

3
2 |S23S14〉+ 1

2
p

3

(|T 0
23T 0

14〉− |T +
23T −

14〉− |T −
23T +

14〉
)

|0S〉 = |S12S34〉 1
2

(|S23S14〉− |T 0
23T 0

14〉+ |T +
23T −

14〉+ |T −
23T +

14〉
)

Table 7.1: Four-spin shared eigenstates of Ŝ2 and Ŝz expressed in a basis of two-spin singlets and triplets on
either the left and right, or middle and outer pair. States in the rightmost column are the same as states on the
same row in the column to the left of it. The four-spin states shown here are in general not eigenstates of the
Heisenberg Hamiltonian, but the Hamiltonian does operate within a specific (S,mS ) subspace.

1p
2

(|↑i↓ j 〉+ |↓i↑ j 〉
)
, |T −

i j 〉 = |↓i↓ j 〉, where i and j indicate the site. The simultaneous

eigenstates of Ŝ2 and Ŝz for four-spin states can be expressed in this pairwise singlet-
triplet basis as shown in Table 7.1. Appendix 7.8.1 discusses the limitations of singlet-
triplet measurements to distinguish spin states.

Alternatively we can characterize the Heisenberg spin chain via its energy spectrum.
Based on the symmetries of the Hamiltonian, for four spins the global singlet states form
a two-dimensional subspace. For this subspace the Heisenberg Hamiltonian is

H(0,0) =

−J12 − 1
4 J23 − J34

p
3

4 J23
p

3
4 J23 − 3

4 J23

 , (7.3)

with as basis states |0S〉 and |1S〉 from Table 7.1. This subspace has been proposed as
a singlet-only exchange-only qubit implementation, which offers increased coherence
due to the reduced influence of nuclear spins [29].

For the global triplet states, the three three-dimensional subspaces are identical in
terms of energy splittings. The Heisenberg Hamiltonian for each of these triplet sub-
spaces is

H(1,1) =


−J12 − 1

4 J23 − 1
4 J23 − 1

2
p

2
J23

− 1
4 J23 − 1

4 J23 − J34 − 1
2
p

2
J23

− 1
2
p

2
J23 − 1

2
p

2
J23 − 1

2 J23

 , (7.4)
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with as basis |0T +〉, |1T +〉, |2T +〉 from Table 7.1. The quintuplet states have zero energy
contribution from the Heisenberg Hamiltonian, but can be energetically split with an
external magnetic field.

The energy differences in the subspaces reveal information about the exchange cou-
pling strengths, and characteristic features can be identified. For the singlet subspace

the energy splitting is 1
2

√
(2J12 +2J34 − J23)2 +3J 2

23. It follows that given J12 = J34, the en-

ergy splitting is minimized when J23 = J12 = J34, thus for homogeneous exchange cou-
plings. For the triplet subspace the energy difference between the two lowest-energy
states is minimized if J12 = J34. If J12 = J23 = J34 the triplet states are equally spaced in
energy (see Appendix 7.8.2 for simulated energy diagrams). These characteristic features
for the energy spectrum of the Heisenberg Hamiltonian will be experimentally identi-
fied, but first we introduce the quantum dot device and the experimental operation.

7.3. DEVICE AND EXPERIMENTAL OPERATION
The prototype for the simulation of an antiferromagnetic Heisenberg spin chain consists
of a quadruple dot and a sensing dot, which are formed in a device nominally identical
to that shown in Fig. 7.1(a) (see Appendix 7.8.3 for details). The device is based on a
GaAs/AlGaAs heterostructure, since this was the only technology in which we were able
to fabricate high-quality and well-controlled quantum dot arrays. The exchange cou-
plings are induced by electron wave function overlap, which we here control by detuning
the potentials of neighbouring dots, such that one electron shifts towards the other [30]
(we note that independent control of the exchange couplings can also be achieved by ad-
justing the tunnel couplings [13, 17, 31]). In order to control the detuning between one
pair of dots without affecting the detuning between other pairs, we define the detunings
εi j as 

ε12

ε23

ε34

=


−1 1 1 1

1 1 −1 −1

−1 −1 −1 1





ε1

ε2

ε3

ε4


, (7.5)

where εi is the negative local energy offset for site i , and εi j = 0 at the inter-dot tran-
sition between charge occupations (1111) and (0211), (1201), (1102) for ε12, ε23, ε34 re-
spectively. The εi are independently controlled using virtual plunger gates, which are
linear combinations of the voltages applied to the gates Pi [13] (In the figures below, we
express εi j in units of mV. In Appendix 7.8.3, we specify the conversion factor between
energy and the applied voltage). The dependence of exchange couplings on detunings
can be modelled as [32]

Ji j = 1

2

(
εi j +

√
8t 2

i j +ε2
i j

)
, (7.6)

with ti j the tunnel coupling between dots i and j . In this way, the exchange couplings
can be set independently with the detunings, and increasing detuning results in increas-
ing exchange strength. There is no obstacle to implementing this method in larger chains
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of quantum dots.
The experimental sequence used to operate the quantum-dot spin chain is schemat-

ically depicted in Fig. 7.1(b)-(f), and will be described step-by-step here (charge-stability
diagrams and sequence details are provided in Appendix 7.8.3). Initially, the quadruple
dot is tuned in either the (0202) or (1102) charge occupation. For the (0202) case, we
load local singlets in the second and fourth dot, by allowing tunnelling or cotunnelling
between dots and the reservoirs. For the (1102) configuration, we load a thermal mixture
of two-spin states on the left pair and post-select for triplet loading (see Appendix 7.8.3),
and load a singlet on dot four. Next, the electrons are separated to obtain (1111) charge
occupation. The global spin state remains a product of local spin pairs, because the left
and right pair exchange remain large compared to the hyperfine field from the nuclear
spins, and the middle pair exchange coupling is kept small. Then, during the manipu-
lation stage the exchange couplings are diabatically or adiabatically changed by apply-
ing gate voltage pulses with variable rise time. In this work the pulses are always dia-
batic with respect to anti-crossings between states with different magnetization. Subse-
quently, the four-spin state evolves under the newly set exchange couplings. Finally, the
spin pair(s) to be measured is(are) diabatically isolated from the other spins and mea-
sured with single-shot singlet-triplet readout based on Pauli spin blockade (PSB) [33].
Here either the left and right pair are sequentially read out, while parking the other pair
to avoid capacitive crosstalk [34], or the middle pair is read out.

In the remainder of this work, we focus on realizing homogeneous exchange cou-
plings throughout the spin chain. In principle, this could have been achieved by cal-
ibrating the exchange couplings one at a time [17] and extrapolating to the required
tuning while compensating for crosstalk. Instead, we have developed a two-step spec-
troscopy method from which we identify directly when the condition of homogeneous
exchange couplings is met.

7.4. ENERGY SPECTROSCOPY
For gate-defined quantum dots, information about the energy level spectrum can be ob-
tained from the degeneracies between spin states with different magnetization. This so-
called spin funnel method has been used extensively in quantum dots arrays of various
lengths [30, 35, 36]. Here we use the same underlying principles in a novel method for
simultaneously characterizing multiple exchange coupling strengths in the spin chain.
In addition, since the system size is small enough to allow classical numerical computa-
tion of its energy level spectrum, we can validate the quantum simulator by comparing
the measured energy spectrum to the numerically computed spectrum.

For the energy spectroscopy measurements, we prepare spin singlets on the left and
right dot pairs [see Fig. 7.1(b)] (i.e. we prepare in the low-energy global singlet |0S〉), di-
abatically pulse the exchange couplings, allow the system to evolve for 100 ns, and read
out the left and right pair. The duration of 100 ns is chosen to allow the coherent time
evolution kick-started by the pulse to have largely damped out. This measurement gives
access to correlations in the singlet-triplet occupations, PST ,PT T ,PT S ,PSS , where the left
(right) sub-index corresponds to the left (right) pair outcome. Decreased PSS indicates
mixing of the low-energy global singlet with one of the triplet or quintuplet states. Such
mixing occurs most manifestly at anti-crossings between the low-energy global singlet
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Figure 7.2: Energy spectroscopy as function of left and right pair detunings. (a) Left and right pair correlated
singlet-triplet probabilities from independent single-shot Pauli spin blockade readout. A decrease in singlet-
singlet probability and an increase in one of the other probabilities corresponds to an anti-crossing between
the low-energy global singlet state and a polarized state. (b) Numerical simulation of the outer pair detunings
for which the low-energy global singlet state is degenerate with a polarized state. The parameters for the nu-
merical simulation are obtained from separate spin funnel measurements for the left and right exchange cou-
pling (see Appendix 7.8.3) and from the Fourier transform in Fig. 7.4(d). The energy of the low-energy global
singlet state is set to zero as a reference. Points in (b) and Fig. 7.3(b) with the same detunings and magnetic
field are indicated with a "+".

state and the polarized states with mS = 1,2, induced by the gradients of the hyperfine
field and the spin-orbit interaction. Depending on which of the other probabilities in-
creases, we can infer information on the nature of the polarized state involved in that
specific anti-crossing.

We now examine and interpret the spectra in detail. For the measurement shown
in Fig. 7.2(a) the left and right pair detunings during the manipulation stage were var-
ied in the presence of a 40 mT magnetic field. The middle pair detuning is kept fixed
and such that the middle exchange coupling is small compared to the outer exchange
couplings, thus the low-energy global singlet state remains almost fully |S12S34〉, with
|Si j 〉 = 1p

2

(|↑i↓ j 〉− |↓i↑ j 〉
)
. Figure 7.2(b) shows the result of a corresponding numerical

simulation, which helps to interpret the data. The detunings for the anti-crossing be-
tween the low-energy singlet and the T +

1 , are either vertical, where T +
1 ≈ |T +

12S34〉 with
|T +

i j 〉 = |↑i↑ j 〉, or horizontal, where T +
1 ≈ |S12T +

34〉, over a large range of detunings. This

demonstrates the independent control of J12 and J34 with the detunings ε12 and ε34

respectively. For higher ε12 (ε34) the horizontal (vertical) T +
0 line bends away towards

lower ε34 (ε12), which is a manifestation of the capacitive coupling between the left and
right pair of dots: the singlet energy on one pair is lowered when the charge occupa-
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Figure 7.3: Energy spectroscopy as function of magnetic field and middle pair detuning. (a) Left and right pair
correlated singlet-triplet probabilities from independent single-shot Pauli spin blockade readout. A decrease
in singlet-singlet probability and an increase in one of the other probabilities corresponds to an anti-crossing
between the low-energy global singlet state and a polarized state. The right axis shows the calculated Zeeman
splitting taking a Landé g -factor of -0.44. (b) Numerical simulation of the middle pair detuning and Zeeman
splitting for which the low-energy global singlet state is degenerate with a polarized state. The diagram only
shows the energies for the polarized states for which the magnetic field lowers the energy. The energy of the
low-energy global singlet state is set to zero as a reference. Points in (b) and Fig. 7.2(b) with the same detunings
and magnetic field are indicated with a "+". The legend for (b) is the same as for Fig. 7.2(b).

tion for a singlet on the other pair becomes more (02)-like [34]. The capacitive coupling
is modelled by adding −D J12 J34 to the diagonal matrix element for |S12S34〉 = |0S〉 in
eqn. (7.3), with D = 0.015µeV−1 a pre-factor for the interaction strength of the singlet
dipoles [34, 37]. At the left and right detunings for which the anti-crossings with T +

0 and
T +

1 are closest together, the condition J12 = J34 = EZ is reached, with EZ the Zeeman
splitting set by the magnetic field.

The coupling between the singlet state and the quintuplet states is of second order
in the hyperfine gradients, hence the mixing between them is less efficient. The corre-
sponding lines, such as the blue line in Fig. 7.2(b), are most visible when the quintuplet
state energy is closest to a triplet state energy (see the white arrow), since the triplet
states mediate the second order coupling (see Appendix 7.8.4).

Figure 7.3(a) shows the measured energy level diagram for which the middle pair de-
tuning and magnetic field were varied. The left and right pair detunings were fixed, and
such that J12 = J34 = EZ , as identified in Fig. 7.2(a). Figure 7.3(b) shows the correspond-
ing numerical simulation. As ε23 is increased, the energy splitting between T +

0 and T +
1

increases due to increased middle-pair exchange. We experimentally reach the condi-
tion J12 = J23 = J34 = EZ at the middle pair detuning for which the energy level spacing
between T +

2 and T +
1 is equal to that for T +

1 and T +
0 , which is indicated by the two equal
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length double arrows in the bottom-left panel.

7.5. GLOBAL COHERENT OSCILLATIONS
Before we further characterize the homogeneously coupled spin chain, we will first demon-
strate the coherent nature of the coupled four-spin system. Figure 7.4 shows global co-
herent oscillations, during which the full four-spin system evolves, along with Fourier
transforms of those oscillations. Due to the symmetries of the Heisenberg Hamilto-
nian, time evolution occurs within the subspaces of fixed total spin and magnetization.
Since we will initialize in either only local singlets or at most one local triplet, the sub-
spaces here consist of global singlet states or triplet states respectively. The insets in each
panel show numerical simulations based on time evolution under a single-band Fermi-
Hubbard model [13] without decoherence effects (see Appendix 7.8.5). We note that the
condition of homogeneous exchange couplings can be extracted from the coherent os-
cillations as well.

To observe global coherent oscillations, the spin chain is again operated as depicted
in Fig. 7.1(b)-(f). A magnetic field of 200 mT is applied here and in the subsequent mea-
surements, to suppress leakage to states with different magnetization during the ma-
nipulation stage. For the data shown in Fig. 7.4(a)-(d) a triplet state is initialized on the
left pair and a singlet on the right pair. The detunings are rapidly pulsed such that the
exchange couplings diabatically change and the system evolves coherently under the
Heisenberg Hamiltonian during the manipulation stage. This evolution results in oscil-
lations in the singlet-triplet probabilities of the left and right pair readout.

Figure 7.4a shows a Chevron pattern from coherent oscillations between the global
triplet states for varying differences between the left and right pair detuning and fixed
middle pair detuning. The Fourier transform of these oscillations is shown in Fig. 7.4(b).
In line with the discussion in Section 7.2, for fixed J23 the energy difference between
the two lowest-energy triplet states, and thus the oscillation frequency, is minimized if
J12 = J34. We point out that all three exchanges are activated in this measurement, so all
four spins coherently evolve together.

Figure 7.4(c) shows global coherent oscillations in the triplet subspace for varying
middle pair detuning, and with the left and right pair detuning such that J12 = J34, as
obtained from Fig. 7.4(a),(b). In Fig. 7.4(d) the Fourier transform of these oscillations is
shown. The middle pair detuning for which J12 = J23 = J34, indicated by the white dotted
line, can be identified from this Fourier transform as the point where the faint vertical
line meets the other more visible line. Here the triplets with identical magnetization are
equidistant in energy (Jhom/

p
2), thus reaching the condition of a spin chain with homo-

geneous exchange couplings, as described in Section 7.2. In both the experimental and
numerical Fourier transform data shown in Fig. 7.4(b),(d), one frequency component is
typically much more visible than the others. This is caused by the fact that the initial
state overlaps mostly with just two of the three eigenstates, hence the energy difference
between these two eigenstates dominates the time evolution.

For the measurements in Fig. 7.4(e) a product of singlets is initialized and the mid-
dle pair is read out. As described in Section 7.2, the energy splitting in the singlet sub-
space, given J12 = J34, is minimized when J23 = J12 = J34. Figure 7.4(f) shows the Fourier
transform of the oscillations in the singlet subspace. The ε23 value for the frequency
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Figure 7.4: Global coherent exchange oscillations. Coherent oscillations (a), (c) within the triplet subspaces
and (e) within the singlet subspace. In (a) the difference in outer pair detunings is varied and in (c), (e) the
middle pair detuning is varied (with J12 = J34). (b) Fourier transform of the data in panel (a). The frequency
minimum corresponds to J12 = J34. (d) Fourier transform of the data in panel (c). At J12 = J23 = J34 = Jhom,
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2. (f) Fourier transform of

the data in panel (e). The frequency minimum corresponds to J12 = J23 = J34 = Jhom and is equal to
p
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Insets in all panels show numerical simulations of the experiment.
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minimum cannot be precisely identified due to the limited frequency resolution, but an
approximate identification is in agreement with the value of ε23 corresponding to homo-
geneous exchange couplings from Fig. 7.4(d). Also the ratio of the observed oscillation
frequencies in the triplet and the singlet subspace at this value of ε23 is consistent with
theory.

The observation of global coherent oscillations demonstrates the coherent nature
of the four-spin system. The coherence is limited by hyperfine and charge noise, of
which the first can be strongly reduced by working with (isotopically purified) silicon
or germanium as host materials [38]. The latter can be largely mitigated when simulat-
ing spin models at half filling (one electron per site) by operating at a so-called sweet
spot [39, 40]. Magnetic field gradients, such as due to hyperfine fields, can also induce
leakage out of the fixed total spin and magnetization subspace. For the evolution this
can result in damping of the oscillations towards an offset that corresponds to the leak-
age state(s) [41], but this effect is strongly suppressed when exchange couplings domi-
nate the hyperfine fields. The optimal visibility of the oscillations is in general lower than
one, because the eigenstates partially overlap with the readout basis. The measured vis-
ibility is further lowered by relaxation during readout (which can be accounted for, see
Appendix 7.8.3), leakage and partial adiabaticity of state preparation and transition to
the readout configuration, which will be further discussed in the next section.

7.6. PROBING THE LOW-ENERGY SINGLET
We finally turn to the preparation and characterization of the Heisenberg spin chain with
homogeneous exchange couplings. The ground state of the Heisenberg spin chain, in the
absence of an external magnetic field, is the low-energy singlet eigenstate. For homoge-
neous exchange couplings, Ji j = Jhom , the low-energy singlet eigenstate, S0, written in
the singlet-triplet basis for the left and right pair, is

|S0〉∝ (2
p

3+3) |S12S34〉+ |T 0
12T 0

34〉− |T +
12T −

34〉− |T −
12T +

34〉 , (7.7)

with normalization factor 1

2
p

3(
p

3+2)
. Upon measurement in the two-spin singlet-triplet

basis for the left and right pair, we thus have a 1
4

(
2+p

3
)≈ 0.93 singlet-singlet probability

and ≈ 0.07 triplet-triplet probability. Alternatively, the same global singlet state written
in a basis given by the middle and outer pair is

|S0〉 = 1p
2

S14S23 − 1p
6

T 0
14T 0

23 +
1p
6

T +
14T −

23 +
1p
6

T −
14T +

23, (7.8)

which indicates a fifty-fifty probability to measure a singlet or a triplet on the middle
pair. When quasi-static hyperfine and charge noise are included (see Appendix 7.8.5),
then numerical simulations result in probabilities of P M

S = 0.50, P M
T = 0.50, PSS = 0.91,

PST = 0.01, PT S = 0.01, and PT T = 0.07, which indicates that the noise in the device
does not form a direct bottleneck for the quantitative characterization of the spin chain
ground state.

Quantitative two-spin singlet-triplet characterization of the low-energy singlet eigen-
state, S0, is facilitated by state preparation that is adiabatic with respect to the exchange
couplings. Starting from singlets on the left and right pair of dots, the detunings are
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Figure 7.5: Adiabaticity of state preparation and readout. (a) Singlet probability for middle pair readout as
function of ramp-in time and evolution time. (b) Triplet-triplet probability for left and right pair readout as
function of ramp-in time and evolution time. Insets in (a) and (b) show numerical simulations of the experi-
ment. (c) Numerical simulation of the overlap, Pg nd = |〈ψ|S0〉 |2, between the state at the manipulation stage,
|ψ〉, and the low-energy singlet eigenstate, |S0〉, as function of ramp-in time. The overlap is an indication for
the success of the state preparation. (d) Middle pair singlet and triplet probabilities from experiment (solid
lines) and numerical simulations (dashed lines) as function of middle pair detuning for the isolation stage
after the manipulation. The experimentally obtained probabilities were corrected for relaxation during the
readout time (see Appendix 7.8.3).

slowly varied using voltage ramps to increase the middle pair exchange while reducing
the outer pair exchanges. Ideally, the singlet product state evolves to the instantaneous
low-energy singlet eigenstate of the Hamiltonian at the manipulation stage. Conversely,
projection in the singlet-triplet basis for readout requires a diabatic transition from the
manipulation to the readout stage.

Figure 7.5(a) shows the singlet probability for the middle pair readout and Fig. 7.5(b)
shows the triplet-triplet probability for the left and right pair readout as function of
ramp-in time and evolution time. As expected, we observe oscillations with a decreasing
visibility as the ramp-in time increases, as a result of the more adiabatic character of the
state preparation. We note that for the measurements shown in Fig. 7.5(a)-(c) during the
manipulation stage, the middle exchange, J23 ≈ 175MHz, is made larger than the outer
exchanges, J12 = J34 ≈ 85MHz, in order to increase the visibility of the oscillations, so we
can best evaluate the adiabaticity of the state preparation. For shorter ramp-in time the
oscillations bend towards longer evolution time, which is due to the evolution during
the ramp-in, thus at the start of the evolution stage the state has already evolved further
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for longer ramp-in time. Figure 7.5(c) shows the numerically simulated overlap with the
low-energy singlet eigenstate at the manipulation point as function of ramp-in time, in-
dicating > 92% overlap for 12−36 ns ramp-in time. For longer ramp-in time leakage to
quintuplet and triplet states will start to dominate.

We next study how to maximize the degree of diabaticity for the readout pulses with
respect to the exchange couplings, in order to acquire the singlet-triplet probabilities for
the state at the end of the manipulation stage. To increase the diabaticity given the finite
rise time of the arbitrary waveform generator, an isolation stage is added between the
manipulation stage and the readout stage for the case where we aim to read the middle
pair. In the isolation stage, the voltages are pulsed deep into the (1201) charge region,
such that the voltage step is steeper, which makes the pulse more diabatic.

Figure 7.5(d) shows the singlet and triplet probability for the middle pair readout as a
function of ε23,i so , the middle pair detuning (relative to the readout position) for the iso-
lation stage. The state is prepared with tr amp = 25 ns, and with homogeneous exchange
couplings at the manipulation stage. As discussed previously, for this condition the low-
energy singlet eigenstate ideally has equal two-spin singlet and triplet probability on the
middle pair. We see in Fig. 7.5(d) that the measured two-spin singlet and triplet proba-
bilities gradually approach each other as ε23,i so is made more negative, pulsing deeper
in the (1201) charge region, indicating that the isolation becomes more diabatic in ex-
change couplings. Pushing ε23,i so even further, the singlet-triplet probabilities for the
middle pair pass slightly beyond 50/50%, which we can trace back to an artefact from
the digital filter in the arbitrary waveform generator. Specifically, we measured the de-
tailed rising flank of the arbitrary waveform generator which shows an undershoot just
before the rising flank and ringing after the rising flank, and numerically simulated its
effect on the measured singlet-triplet probabilities (see Appendix 7.8.5).

Based on these findings, we set in what follows the ramp-in time to 26 ns when aim-
ing to adiabatically prepare the low-energy singlet eigenstate. Numerical simulations
similar to Fig. 7.5(c) show that an overlap of 95.5% with the low-energy singlet state is
expected for the homogeneous spin chain. For readout of the middle pair, the middle
pair isolation detuning was set to ε23,i so = 10mV.

Figure 7.6 shows the singlet-triplet probabilities for the spin chain as a function of
middle pair detuning (with fixed J12 = J34 ≈ 85MHz) during the manipulation stage.
The exchange couplings are calibrated to be homogeneous at ε23 = −1.8mV based on
measurements of coherent oscillations similar to Fig. 7.4. The exchange coupling favors
two-spin singlet formation on every pair, but due to the monogamy of entanglement,
there cannot simultaneously exist such singlets on overlapping pairs. Away from homo-
geneous exchange couplings, we see in Fig. 7.6(a) that for increasing ε23, thus increas-
ing J23, the singlet probability on the middle pair increases, as expected. Conversely,
in Fig. 7.6(b) we observe that as ε23 decreases (J23 decreases), PSS (PT T ) increases (de-
creases), because the singlets on the left and right pair become energetically increasingly
favourable compared to the middle pair singlet. For higher ε23 also PT S and PST increase,
which is caused by leakage out of the singlet subspace, due to decreasing energy splitting
between the global singlet states and other mS = 0 states.

The experimentally measured numbers are in good agreement with the predicted
probabilities based on equations (7.7) and (7.8), and numerical simulations including
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Figure 7.6: Probing the low-energy singlet eigenstate of the homogeneous spin chain. (a) Singlet and triplet
probability for middle pair readout, and (b) singlet-triplet correlated probabilities from left and right pair read-
out as function of middle pair detuning and with J12 = J34. Experimental data are shown as solid lines and the
results from numerical simulations as dashed-dotted lines. Vertical dashed lines indicate the middle pair de-
tuning for which the exchange couplings are calibrated to be homogeneous. The experimentally obtained
probabilities were corrected for relaxation during the readout time (see Appendix 7.8.3).

noise. Both the qualitative trend and quantitative comparison between experiment and
simulation indicate high-fidelity preparation of the low-energy singlet eigenstate for the
homogeneously coupled spin chain, and a high-fidelity characterization method based
on singlet-triplet readout and correlations therein.

7.7. CONCLUSION AND OUTLOOK
In summary, we have implemented a quantum simulation of a quantum coherent an-
tiferromagnetic Heisenberg spin chain. For this purpose, we have developed energy
spectroscopy methods to identify the condition of homogeneous exchange couplings.
Furthermore, we have devised methods to prepare the global ground state of the homo-
geneous Heisenberg spin chain Hamiltonian, and to probe this state via local measure-
ments in the singlet-triplet basis and correlations of such measurements. We find both
qualitative and quantitative agreement between experiment and numerical simulation.
Finally, coherent oscillations of the full four-spin system indicate the coherent nature of
the system, despite the presence of hyperfine noise in the GaAs host material.

Future quantum magnetism simulation experiments with quantum dots may lever-
age the recent developments of (isotopically purified) silicon and germanium as host
materials, due to the lower concentration of nuclear spins, which further enhances co-
herence and facilitates high-resolution spectroscopy. The demonstrated control of ex-
change couplings, as facilitated by the independent control with virtual gates, is a power-
ful technique for quantum simulations in larger systems. The techniques demonstrated
here also pave the way for quantum magnetism simulations in other lattice configura-
tions, such as square and triangular ladders for which simulations of respectively res-
onating valence bonds and frustrated magnetism are now within the capabilities of gate-
defined quantum dots.

The data reported in this paper, and scripts to generate the figures are uploaded to
Zenodo: [42].
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7.8. SUPPLEMENTARY MATERIAL

7.8.1. LIMITATION FOR DISTINGUISHING STATES WITH TWO-SPIN SINGLET-
TRIPLET MEASUREMENTS

The two-spin singlet and triplet projection operators are

PSi j =
1

4
−~Si ·~S j , (7.9)

PTi j = 1−PSi j . (7.10)

The global spin raising operator, Ŝ+ = ∑
i Ŝ+

i , with Ŝ+
i = Ŝx

i + i Ŝ y
i , commutes with the

singlet and triplet projection operators.
In addition, the spin raising operator commutes with the Heisenberg Hamiltonian

[Hhei s , Ŝ+] = 0, (7.11)

thus the spin raising and lowering operators map between states in the same eigenspace
of the Hamiltonian.

From the commutativity it follows that two-spin singlet-triplet measurements can-
not distinguish states in the same eigenspace for the Heisenberg Hamiltonian, and those
states can be mapped onto one another with spin raising or lowering operators.

7.8.2. GLOBAL TRIPLET ENERGIES
Figure 7.7 shows the triplet energies as a function of J12− J34 and as a function of J23 with
J12 = J34.
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Figure 7.7: Triplet energies. (a) Energies of global triplet states as function of J12 − J34, with J23 = 0.2µeV and
J12 + J34 = 2µeV, revealing a minimum in energy difference at J12 = J34 for T+

0 and T+
1 . (b) Triplet energies as

function of J23 with J12 = J34 = 1µeV, showing that at J12 = J23 = J34 the energy spacings are equal. The legend
for (b) is the same as for (a). An external magnetic field would result in an overall offset, thus not change the
triplet energy differences.

7.8.3. EXPERIMENTAL METHODS

DEVICE

The quadruple quantum dot and sensing dot are formed in a device designed for eight
dots and two sensors. A scanning electron micrograph image of the active region of a
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Stage Duration Description

Initialization (L) 100µs Exchange electrons with the reservoir, either in the
(0202) charge region for a singlet-singlet state or in
(1102) for a triplet-singlet state.

Readout initial (R) 20µs Readout of the left and the right pair (each 10µs)
for post-selection, and for background signal sub-
traction for the final readout to correct for low-
frequency charge-noise.

Separate (S) 2 ns Separate electrons into (1111) charge region.

Ramp detunings 0-50 ns Ramp the voltages to the operation point (O).

Evolve (O) 2-100 ns Let the spin state evolve under the exchange cou-
plings.

Isolate (I /S) 2 ns Isolate the pair(s) for readout.

Readout final (R) 20µs Readout the middle pair or the left and right pair
(each 10µs).

Compensate < 50µs Discharge the capacitors in the bias-tee’s.

Table 7.2: Details on the stages for the pulse sequence with the durations and descriptions as used for the
spin-chain operation. The total duration of the pulse sequence is below 191µs, including the compensation
stage.

device similar to the one used in the experiment is shown in Fig. 7.1(a). The device is
mounted in a dilution refrigerator, which resulted in an electron reservoir temperature
of about (100 mK) (roughly 10µeV). By applying voltages on the electrodes on the sur-
face we shape the potential landscape in a two-dimensional electron gas 90 nm below
the surface, formed in a silicon-doped GaAs/AlGaAs heterostructure. The plunger gates,
labelled Pi [red in Fig. 7.1(a)] for the spin-chain dots and SDP for the sensing dot, con-
trol the electrochemical potentials, and the barrier gates [green in Fig. 7.1(a)] control
the tunnel couplings between dots or between a dot and a reservoir. When an external
magnetic field is applied, it is oriented in the plane of the 2D electron gas.

Table 7.2 shows an overview of the pulse sequence, with the durations and descrip-
tions of the pulse stages.
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Figure 7.8: Charge-stability diagrams for nearest-neighbour pairs, with (a) left, (b) middle and (c) right. Pulse
positions are indicated with small white circles, and are labelled with a letter corresponding to the pulse stage
in Table 7.2. Primes are added to characters for which the indicated voltage position is a projection, because the
true position is in a different charge occupation, which is outside the respective two-dimensional plane in the
four-dimensional charge-stability space. Solid arrows represent the part of the pulse sequence for which only
one variant is used, though the operation voltage position, O, is varied throughout the experiments. Dashed
arrows correspond to sequences for initialization of either a singlet-singlet, LSS , or triplet-singlet, LT S . Dotted
arrows correspond to sequences for readout (and isolation) of either the middle pair, RM (IM ), or readout (and
isolation) of the left pair, RL (S′

L ), and the right pair, RR (S′
R ).

VIRTUAL GATES

For the independent control of site-specific offsets [43] the crosstalk was compensated
with the matrix transformation

ε1

ε2

ε3

ε4

=


1 0.539 0.203 0.145

0.542 1 0.538 0.223
0.181 0.5 1 0.507
0.100 0.242 0.522 1




P1

P2

P3

P4

 . (7.12)

The lever arms for the single-particle energy offsets are [76,81,87,84] µeVmV−1, which
were obtained with photon-assisted tunnelling [31, 44].

CHARGE-STABILITY DIAGRAMS WITH SEQUENCE DETAILS

Figure 7.8 shows charge-stability diagrams for the nearest-neighbour pairs in the quadru-
ple dot. Typical pulse voltage positions and the order of the pulse sequence are indi-
cated. The compensation and the parking for the readout of the left and right pair are
not displayed to preserve clarity.

POST-SELECTION FOR STATE PREPARATION

Figure 7.9 shows single-shot results of readout directly after initialization. The data for
the readout after the evolution stage is post-selected by thresholding the signal from the
readout after initialization. The signal is also used for background subtraction to sup-
press the effect of low-frequency charge noise on the signal for the final readout. Errors
in initialization for both the singlet-singlet product state and the triplet-singlet product
state can occur because of the finite dot-reservoir tunnel rate, due to which the target
charge state (0202) and (1102) respectively is not occupied at the end of the initialization
stage. These errors result in the counts in the top half regions of Fig. 7.9(a) and (b). Such
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Figure 7.9: Histograms of correlated left and right pair readout directly after initialization of (a) the singlet-
singlet product state and (b) the triplet-singlet product state. For both the left and the right pair readout the
integration time was 8µs and the bin width was [1.9,1.9] a.u.

errors can be reduced by increasing the duration of the initialization stage or increasing
the dot-reservoir tunnel rate. Additionally, errors in the triplet-singlet product initializa-
tion can be caused by thermal excitations, due to which a singlet-singlet product state in
the (1102) charge occupation can be occupied, which results in the bottom-left peak in
Fig. 7.9(b). This error can be reduced by increasing the magnetic field strength.

SEPARATE EXCHANGE COUPLING MEASUREMENTS

Fig. 7.10 shows separate exchange coupling measurements for each of the neighbour-
ing pairs. For the spin funnel measurements for the left and right pair the middle ex-
change coupling is set to be small. The spin funnels are fitted with the exchange model
in eqn. (7.6). For the middle pair the Fourier transform of coherent oscillations in the
triplet-subspace is used. The model for the Fourier transform follows from eqn. (7.4),

and is 1
2

(
J23 − Jhom +

√
J 2

23 + J 2
hom

)
, with Jhom = J12 = J34 = 125MHz, the homogeneous

exchange coupling as obtained from Fig. 7.4. From these three separate fits the tunnel
couplings are extracted as 8.5µeV, 7.5µeV, and 11.9µeV for the left, middle and right pair
respectively. These tunnel coupling values are used for the numerical simulations of the
experiment.

READOUT WITH RELAXATION AND HISTOGRAM MODELS

Single-shot readout characteristics for each of the nearest-neighbour pairs are shown in
Fig. 7.11. The data in panels (b) and (d) is from the data for Fig. 7.6(a), and the data from
panel (e) is from part of the data for Fig. 7.2(a).

The effect on the probabilities of relaxation during the readout is taken into account
by modelling the single-shot data with a histogram. For readout on a single pair the
model for the histogram has been described in [33, 45]. For the singlet-triplet correlation
measurements the two-dimensional single-shot histograms are modelled with

N (x) = Ntot
∑

i , j∈[S,T ]
Pi j ni j (x)w1w2, (7.13)

with Ntot the number of single-shot repetitions, Pi j the average probability for outcome
i j , ni j the probability density distribution, and wi the bin widths.
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Figure 7.10: Separate exchange coupling measurements. The dashed blue lines are fits to the data. (a) Spin
funnel on left pair, (b) Fourier transform of triplet-subspace coherent oscillations shown in Fig. 3(c), (c) Spin
funnel on right pair.

The readout of the left and right pair of spins is performed with the same sensing
dot, thus noise on the sensor signal can induce correlations between the two readouts.
Low-frequency noise, which causes signal differences between repetitions, is taken into
account by the subtraction of the sensor signal from the readout directly after the ini-
tialization. Correlations in the sensor signals due to higher frequency noise remain,
which results in the diagonally elongated signal peaks in the two-dimensional readout
histogram as shown in Fig. 7.11(e). The effect of the correlations is incorporated in the
model for the two-dimensional Gaussian histogram by modelling the Gaussian peaks
with rotated ellipses.

The two-dimensional Gaussian is

g2D (x,µ) = 1

2πσ1σ2
e−[a(x1−µ1)2+2b(x1−µ1)(x2−µ2)+c(x2−µ2)2], (7.14)

with µ the mean coordinates, and where the parameters for the shapes of the Gaussian
peaks are

a = cos2θ

2σ2
1

+ sin2θ

2σ2
2

,b =−sin2θ

4σ2
1

+ sin2θ

4σ2
2

,c = sin2θ

2σ2
1

+ cos2θ

2σ2
2

, (7.15)

with θ the rotation angle of the ellipsoidal shape of the Gaussian peaks, and σ1 and σ2

describe the ellipse width and length. In the experiment the first and second readout
signals are integrated for equal durations, which sets θ = π/4, which means that the
one-dimensional histograms for the left and right pair readout have the same Gaussian
widths. In the extreme when there are no noise correlations, then σ1 = σ2 and in the
other extreme where the noise would be fully correlated the histogram effectively is a
one-dimensional Gaussian.
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Figure 7.11: Readout characteristics (a), (b), (c), show relaxation curves for the Pauli spin blockade readout
of the left, middle and right pair respectively. The corresponding T1 values are 80.9µs, 25.0µs and 114.8µs.
(d) Histogram of middle pair readout with 8µs integration time, bin width 4.375 a.u., and the counts are in
thousands. (e) Histogram of correlated left and right pair readout. For both readouts the integration time was
8µs and the bin width was [2.0,2.0] a.u.

The probability distributions for the correlated singlet-triplet outcomes are

nSS (x) =g2D (x,µSS ), (7.16)

nST (x) =e−αR g2D (x,µST )+αR

∫ 1

0
d ze−zαR g2D (x, z(µST −µSS )+µSS ), (7.17)

nT S (x) =e−αL g2D (x,µT S )+αL

∫ 1

0
d ze−zαL g2D (x, z(µT S −µSS )+µSS ), (7.18)

nT T (x) =e−(αL+αR )g2D (x,µT T )+e−αRαL

∫ 1

0
d ze−zαL g2D (x, z(µT T −µST )+µST )

+e−αLαR

∫ 1

0
d ze−zαR g2D (x, z(µT T −µT S )+µT S )

+αLαR

∫ 1

0

∫ 1

0
d zd z ′

[
e−(zαL+z ′αR )g2D (x, (z(µT,L −µS,L)+µS,L , z ′(µT,R −µS,R )+µS,R ))

]
,

(7.19)

with αi = ti /T1,i , which is the ratio between the signal integration time, ti , and the re-
laxation time, T1,i , for the left pair or the right pair. In nT T the first term corresponds to
states which do not decay during both readouts, the second term to states which decay
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Figure 7.12: Automatic calibration of pulse voltage offsets. (a) Sensing dot calibration, with the red marker
corresponding to the top of the Coulomb peak, and the green marker is the half-height on the rising flank,
(b) inter-dot transition between (0202)-(1102), (c) dot-reservoir transition between (0202)-(1202), (d) inter-
dot transition between (0202)-(0211), (e) dot-reservoir transition between (0202)-(0212). The traces are not
centred at the same voltages, but voltage offsets are added for each scan based on the previous calibration.

during the left pair readout but not the right pair readout, the third term to states which
do not during the left pair readout but do decay during the right pair readout, and the
last term corresponds to states which decay during both readouts.

For the fitting procedure first the histogram of single-shot results for all pulse set-
points is fitted to obtain the Gaussian widths and peak positions, and then the histogram
for each pulse setpoint is separately fitted to obtain the probability amplitudes.

AUTOMATIC PULSE OFFSET CALIBRATION

The spin-chain operation of the device was automatically re-calibrated on a daily basis
to correct for the effect of irregular charge jumps. The results of the calibration were in-
corporated as offsets for the pulse voltages. The static voltage on the sensing dot plunger
was sometimes adjusted between measurements, but all other d.c. voltages were left un-
touched to avoid introducing instabilities of the device.

Figure 7.12 shows the result of the daily automatic re-calibration, which consists of
five traces. These traces are a sweep of the sensing dot plunger gate voltage, and four
one-dimensional cuts through the charge-stability space of the quadruple quantum dot.
The sensing dot scan is performed to calibrate the gate voltage for the position on the
flank of the sensing dot Coulomb peak. The four one-dimensional cuts are performed to
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locate the gate voltages corresponding to specific charge transitions. The gate voltages
for these transitions form a reference for the voltages used in the pulsed control of the
spin chain, such that electrostatic shifts of the device are corrected for.

The analysis procedures for the Coulomb peak and the dot-reservoir transition are
based on Ref. [46], and the inter-dot transition fitting is from Ref. [44]. The automatic
calibration routine takes in total approximately 30 seconds. Occasionally, large charge
jumps required coarse manual tuning of the device, after which the automatic calibra-
tion routine was used for refinement.

7.8.4. HYPERFINE GRADIENT COUPLINGS
The effect of the nuclear spins in the material environment on the electron spins in the
quantum dots can effectively be described by hyperfine fields [32] as

Hh f = gµB
∑

i

~hi ·~Si , (7.20)

with ~hi the local hyperfine field for dot i . The hyperfine term breaks the conservation
of total spin and spin-z of the Heisenberg Hamiltonian, and has been studied exten-
sively experimentally and theoretically for two-spin systems [32, 47]. For the energy
spectroscopy of the four-spin system as shown in Fig. 7.2 and Fig. 7.3 the couplings be-
tween the singlet-subspace and the polarized states are given by the hyperfine matrix,
which in the basis (Q++,Q+, |2T +〉 , |1T +〉 , |0T +〉 , |1S〉 , |0S〉) is

Bz,sum
2

Bx,sum−i By,sum

4
dB−,14+dB−,23

2
−dB−,12p

2

−dB−,34p
2

0 0
Bx,sum+i By,sum

4
Bz,sum

4
−dBz,12−dBz,34

2
dBz,12p

2

dBz,34p
2

0 0
dB+,14+dB+,23

2
−dBz,12−dBz,34

2
Bz,sum

4
dBz,12p

2

−dBz,12p
2

dB−,14+dB−,23p
3

0
−dB+,12p

2

dBz,12p
2

dBz,12p
2

Bz,3+Bz,4
2 0

dB−,12p
6

−dB−,34p
2−dB+,34p

2

dBz,34p
2

−dBz,34p
2

0
Bz,1+Bz,2

2
dB−,34p

2

−dB−,12p
6

0 0
dB+,14+dB+,23p

3

dBx+,12p
6

dB+,34p
2

0 0

0 0 0
−dB+,34p

2
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,

(7.21)
with dB+,i j = dBx,i j+i dBy,i j and dB−,i j = dBx,i j−i dBy,i j , where dBα,i j = (Bα,i−Bα, j )/2,
and Bα,sum =∑

i Bα,i .
From the hyperfine matrix it follows that for any state in the singlet subspace, |Sk〉,

the first-order coupling to a quintuplet is 〈Sk |Hh f |Q++〉 = 〈Sk |Hh f |Q+〉 = 0. The cou-
pling between the singlet and the quintuplet(s) as visible in the energy spectroscopy in
Fig. 7.2(a) and Fig. 7.3(a), can be explained by a second order effect where the singlet
state couples to a triplet state, which in turn couples to a quintuplet state. The second-
order coupling only becomes effective when the singlet and quintuplet state energies
are near the energy of a coupling-mediating triplet state. This is observed in the energy
spectroscopy where the coupling of the singlet to the Q++ state decreases as the singlet
energy differs more from the T +

0 and T +
1 energies.

Note that the spin-orbit interaction can induce couplings between states with differ-
ent charge occupation [48, 49], which can contribute to the signal for the anti-crossings
in the energy spectroscopy.
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7.8.5. NUMERICAL SIMULATION
The time evolution simulations are based on the single-band Fermi-Hubbard model

HF H =−∑
i
εi ni +

∑
i

Ui

2
ni (ni −1)+ ∑

i j ,i 6= j
Vi j ni n j −

∑
〈i , j 〉

ti j

(
c†

i c j +h.c.
)

, (7.22)

where εi is the negative single-particle energy offset, ni = c†
i ci is the dot occupation,

and c(†)
i is the annihilation (creation) operator, Ui is the on-site Coulomb repulsion,

Vi j the inter-site Coulomb repulsion and ti j the inter-dot tunnel coupling. The pa-
rameter values for the simulations were Ui = 3meV, Vi ,i+1 = 0.5meV, Vi ,i+2 = 0.1meV,
Vi ,i+3 = 20µeV, and [t12, t23, t34] = [8.5,7.5,11.9] µeV. The tunnel coupling values were
experimentally obtained from fits to spin funnels for the left and right pair and from a
fit of the Fourier transform in Fig. 7.4(d) (see Appendix 7.8.3). Differences between the
experimental and simulation values for the interaction parameters are accounted for in
the simulations with offsets in the single-particle energies. The Hamiltonian matrix for
the simulation is generated with QuTip [50]. The charge configurations used for the sim-
ulations are (1111), (0211), (1201), (1102) and (0202). The spin subspace which is used for
the simulation of Fig. 7.4(a)-(d) is the four-spin T + subspace, while for Fig. 7.4(e),(f) the
global singlet subspace is used. For the numerical simulations in Fig. 7.5 and 7.6 the set
of states for the simulation consists of the global singlet subspace, and all other mS = 0
states, thus the four-spin T 0 subspace and Q0.

For the simulation the same sequence was followed as the experimental sequence
for the spin chain, which is shown in Fig. 7.1(b)-(f) and detailed in Table 7.2. Time evo-
lution of the states is computed using an in-house density matrix solver package [51].
The simulated probabilities shown in the figures in the main text are the probabilities at
the isolation stage after the evolution. In order to simulate the adiabaticity of the experi-
mental sequence, the voltage pulse shape for the simulation is based on the experimen-
tal voltage pulse shape from the arbitrary waveform generator (AWG). The simulated
shape is obtained from the Fourier transform of the ideal pulse shapes and the subse-
quent inverse Fourier transform with the experimentally measured frequency response
of the AWG. The Fourier component amplitudes are corrected for the finite sampling
rate, fs = 1GHz, of the AWG by dividing with sinc

(
f / fs

)
, where f is the frequency of the

Fourier component.
The effects of charge noise and quasi-static hyperfine noise were included for the

simulations in the main text, except for Fig. 7.4. The quasi-static hyperfine noise is con-
sidered by repeating the simulation, and for each repetition taking a sample from a Gaus-
sian distribution with a root mean square of 3.2 mT, which was experimentally obtained
from the amplitude decay of the global exchange oscillations. The power spectral density
of the charge noise is modelled with A/ f α, with A=0.26µeV2/Hz and α= 0.79, which are
obtained from a charge noise measurement. The charge noise was measured from 1 Hz
to 5 kHz. For the simulations a charge-noise frequency range from 0.1 Hz to 100 GHz was
used, where noise on a timescale longer than a single-shot of the experimental sequence
is integrated and added as quasi-static noise.
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8
LONG-RANGE

ELECTRON-ELECTRON

INTERACTION IN GATE-DEFINED

QUANTUM DOTS

Long-range interactions play an important role in a variety of physical phenomena. Such
phenomena could be studied with quantum simulators to gain insights where classical
numerical simulations fail. Gate-defined quantum dots have been established as a plat-
form for quantum simulations of Fermi-Hubbard physics. However, long-range electron-
electron interactions have not been used as ingredient for those simulations so far. Here
we show the experimental characterization of the electron-electron interaction in an ar-
ray of gate-defined quantum dots. The interaction is found to be measurable between
electrons that are up to four sites away, thus considered to be long-range. The interac-
tion is modelled with both the Yukawa potential and a potential based on the method of
image charges with the gate metal acting as screening layer. These results pave the way
for quantum dots as quantum simulators of phenomena involving long-range electron-
electron interactions. Furthermore, they have implications for the operation of quantum
dot arrays with spin qubits, for example when using shared control.

The results in this chapter are being prepared for publication.
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8.1. INTRODUCTION
Electron-electron interactions are a key ingredient to describe quantum chemistry [1],
Wigner crystallization [2], exciton formation [3], and even high-temperature supercon-
ductivity [4]. Quantum simulators could provide insights where classical numerical sim-
ulations become intractable [5, 6], but interactions in simulators are often only short-
ranged. Semiconductor quantum dots are a promising platform for analog quantum
simulation of Fermi-Hubbard physics [6–8]. Simulations have addressed the transition
from Coulomb blockade to collective Coulomb blockade [9], itinerant ferromagnetism
when doping with a single hole [10], and Heisenberg magnetism arising in the Mott-
insulator regime [11]. Long-range electron-electron interactions have not yet been used
as ingredient for simulations with gate-defined quantum dots, and their effect was pre-
viously either tuned away or remained as an unwanted disturbance.

Transport measurements on double quantum dots more than two decades ago [12]
already revealed interactions between electrons on nearest-neighbour sites. In more re-
cent work, these interactions have been used to induce entanglement between qubits
on separate double dots [13]. The charge sensor performance has been assessed based
on the coupling to the sensed dot [14]. For readout of spins distant from the charge sen-
sor, a cascade of electrons was induced, which made use of the interactions between
electrons on either one or two sites away [15]. However, a detailed study of the electron-
electron interaction as a function of distance has not yet been performed. Such charac-
terization is challenging because it demands control over the potential landscape over
sufficient distance, such as for the formation and homogeneous tuning of a multi-dot ar-
ray. More specifically, the electron-electron interaction can be accurately characterized
with a multi-dot array that is sufficiently large to offer adequate coverage over the range
of interactions. The recent development of a tuning strategy for a multi-dot array [16],
and the efficient compensation for tunnel coupling tuning crosstalk [17] facilitate the
formation of a large and homogeneously tunnel coupled multi-dot array.

In this work, we report the characterization of the electron-electron interaction in a
semiconductor quantum dot array. For this purpose, we tuned a homogeneously tun-
nel coupled linear array of six quantum dots with two charge sensors. A large set of
charge-stability diagrams is taken, which contains a diagram for each pair in the dot
array, thus including non-nearest neighbours. From these pairwise diagrams the long-
range interaction elements were extracted. The electron-electron interaction is found
to be measurable between electrons that are up to four sites away, thus considered to
be long-range. The decay of the interaction strength is heuristically modelled with a
Yukawa potential [18], and with a model based on the method of image-charges with the
gate metal acting as screening layer.

8.2. DEVICE AND CONCEPT
The quantum dot array for our characterization consists of six quantum dots and two
sensing dots, which are formed in a GaAs/AlGaAs heterostructure. Figure 8.1(a) shows
a scanning electron micrograph image of the active region of a device similar to the one
used in this experiment, and which has previously been operated as a Heisenberg spin
chain [11]. At the GaAs/AlGaAs interface, 90 nm below the surface, which is 40 nm be-
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low a silicon doping layer, a two-dimensional electron gas (2DEG) forms. The potential
landscape for the 2DEG is shaped by applying voltages on the gates at the surface. The
plunger gates, labelled in Fig. 8.1(a) as Pi for the dots in the main channel and SPi for the
sensing dots, control the electrochemical potentials, and barrier gates, Bij, BL, and BR,
control the tunnel couplings between dots and to the reservoirs. The device is cooled
in a dilution refrigerator, which results in an electron reservoir temperature of about
100 mK (roughly 10µeV).

160 nm

(a)

(b)

e e

V23

V26

V36

t45
U1

e

Figure 8.1: (a) Scanning electron micrograph of a nominally identical device. Dot locations are indicated with
dashed circles, and the charge sensors are indicated by resistance meters labelled with Ω. (b) Schematic to
illustrate the on-site interaction, Ui , inter-site interaction, Vi j , and tunnelling, ti j , in a quantum dot array.

The long-range interaction between electrons on a quantum dot array is schemat-
ically depicted in Figure 8.1(b). These electron-electron interactions are captured with
an extended form of the single-band Fermi-Hubbard model [9, 19, 20]

HF H ,ext =−∑
i
εi ni +

∑
i

Ui ni↑ni↓+
∑
i 6= j

Vi j ni n j −
∑

〈i , j 〉,σ
ti j

(
c†

iσc jσ+h.c.
)

, (8.1)

with ni = ni↑+ni↓ the dot occupation for site i where niσ = c†
iσciσ with c(†)

iσ the annihi-
lation (creation) operator for an electron with spin σ, and with εi the local energy offset,
Ui the on-site interaction, Vi j the inter-site interaction, and ti j the tunnel coupling.

8.3. CHARGE-STABILITY DIAGRAMS
The quantum dot array is characterized based on charge-stability diagrams for each pair
of dots. For six quantum dots the full set contains fifteen diagrams, such as shown in
Fig. 8.2. Interestingly, such a full set of diagrams also reveals occasionally overlooked
crosstalk for chemical potentials of non-nearest neighbours, but which is relevant for the
operation with virtual gates [9, 16, 21, 22]. This crosstalk has already been corrected for
here, thus no longer present in the set of diagrams. Before the diagrams are measured,
the voltages are tuned to the center of the charge region with one electron per dot. From
that configuration, for each diagram only the voltages on the two virtual plungers for
that pair are temporarily changed. Each diagram is measured with an additional voltage
offset on that pair of virtual plungers to center at the anti-crossing.
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Figure 8.2: Charge-stability diagrams for each pair of dots along a linear array of six quantum dots. For each
of the diagrams the charge occupation in the bottom-left corner is (111111), and the diagrams are centred at
the (12)-(21) anti-crossing for the measured pair of dots. Latching hindered efficient acquisition and analysis
for the case when all dots were empty in the bottom left corner of the diagram, i.e. for diagrams centred at
the (10)-(01) anti-crossing. For pairs which are further apart, a smaller voltage range is used to obtain higher
resolution at the anti-crossing without increasing the measurement time. The signals from both sensors are
combined to obtain sufficient signal-to-noise for each dot.

8.4. MICROSCOPIC MODEL
The interaction elements and tunnel couplings can be expressed based on a microscopic
model as

Vi j =
∫ ∫

d2r d2r′ni (r)V (r,r′)n j (r′), Ui =Vi i , (8.2)
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and

ti j =
∫

d2rψ∗
i (r)

[
− ħ2∇2

2meff
+V ext(r)

]
ψ j (r), (8.3)

with meff = 0.067me the effective electron mass for GaAs, V ext(r) the confinement poten-
tial, ni (r) = ψ∗

i (r)ψi (r) the probability density with ψi the electron wavefunction, and
V (r,r′) the interaction. For a quantum dot with an isotropic and parabolic confinement
potential, thus a two-dimensional harmonic oscillator, the ground state wavefunction is

ψi (r) = 1p
π∆

exp

{
− (r− ri )2

2∆2

}
, (8.4)

with ri the coordinates for the center of the dot, and ∆ the spread of the wavefunction.
The multi-dot confinement potential can be modelled with a combination of harmonic
oscillator potentials as [20]

V ext(r) = meff

2
Min

[∑
i
ω2

i |r− ri |2
]

, (8.5)

with ωi the harmonic oscillator frequency for dot i . This potential landscape will par-
tially differ from the actual landscape, because it has kinks in the profile of the inter-dot
barriers while the actual barriers are expected to be smooth. Nevertheless, this simple
model is expected to be adequate for the description of the electron-electron interac-
tions. Note that the harmonic oscillator eigenfunctions are in general not eigenfunctions
of the multi-dot potential, thus can have overlap, which becomes in particular relevant at
short distances. Here only pairwise anti-parallel spin configurations are included, which
is consistent with the single-band approximation, and results in that wavefunctions are
orthogonal due to their different spin component.

The Coulomb interaction modified by a homogeneous screening layer can be mod-
elled based on the method of image-charges [23, 24], and can be expressed as

Vim(r,r′) = A
fim(|r− r′|)
|r− r′| , fim(r ) = 1− rp

r 2 +4d 2
, (8.6)

with A = e2/(4πεε0), where ε0 is the dielectric constant, ε ≈ 13 the relative dielectric
constant for (Al)GaAs, and d = 90nm the distance to the screening layer.

Alternatively, the screened interaction can be heuristically modelled with the Yukawa
potential [18]

Vyuk(r,r′) = A
e−|r−r′|/γ

|r− r′| (8.7)

with γ the screening length. An advantage of the Yukawa potential is that the screening
length offers a more intuitive interpretation for the decay of the interaction.

8.5. THE LONG-RANGE INTERACTION
The inter-site interaction elements, Vi j , are extracted by modelling the anti-crossings in
the charge-stability diagrams with [9]

δεi +δε j =±
(
Vi j +

√
(δεi −δε j )2 +4t 2

i j

)
. (8.8)
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The anti-crossing model is converted into a two-dimensional patch, which is fitted onto
the charge-stability diagrams using an edge detection algorithm.

Figure 8.3 shows charge-stability diagrams, which each involve the leftmost dot. The
on-site interaction is obtained from the spacing between the first and second dot-reservoir
transition line, such as shown in Fig. 8.3(a). The inter-site interactions are obtained from
the anti-crossing fits to the diagrams in Fig. 8.3(b)-(f), which represent the same data as
the leftmost column of diagrams in Fig. 8.2. All the interaction elements for the array
of six dots dots are plotted as a function of distance in Fig. 8.3(g). The interaction data
shows a clear decay with distance, but is measurable up to four sites away, which con-
firms that electrons in the quantum dot array are subjected to long-range interactions.
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Figure 8.3: Charge-stability diagrams for the dots highlighted by the white dashed circles. (a) For the leftmost
dot as measured relative to the plunger gate for the rightmost sensor. This gate here acts as a dummy, because
it has negligible effect on both the leftmost dot and the signal from the left sensor. The broad vertical band is a
Coulomb peak for the left sensor, which appears due to crosstalk from ε1. For the leftmost dot in combination
with a dot (b) one, (c) two, (d) three, (e) four, and (f) five sites away. Black dashed lines are fits to the anti-
crossings, and are used to extract the interaction elements. For this the voltages are converted to energies with
the lever arms [105,94,104,86,104,95] µeVmV−1, which were obtained with photon-assisted tunnelling [25].
(g) Interaction versus distance with blue dots the experimentally obtained interaction elements and the solid
lines fits based on the Yukawa potential, the method of image-charges and the normal Coulomb potential. The
inset shows the interaction and fits on a logarithmic scale.

In Fig. 8.3(g) the interaction potentials are shown for a fitted dot size, where for the
Yukawa potential the screening length is used as an additional fitting parameter, and the
Coulomb potential is not fitted but based on the dot size from the other fits. The fitted
dot size is ∆ = 45nm for both models. The fitted screening length is γ = 250nm, thus
larger than the spacing between dots. The fitting was facilitated by analytical simplifica-
tion of the interaction integrals (see Supplementary material).

Both the Yukawa potential and that obtained from the method of image charges are
in reasonable agreement with the data. The models both capture the fact that the in-
teraction strength decays more rapidly than for normal Coulomb repulsion, which is
explained by screening. As a self-consistency check, the experimentally set values of
ti j ≈ 20µeV are compared with the numerically calculated values of 12µeV based on
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equation (8.3) and the dot sizes from the fits to the interaction data. The discrepancy
between these two values can be explained by that the profile of the multi-dot poten-
tial landscape in eqn. (8.5) can especially differ from the barriers in the actual potential
landscape. The barrier shape has a strong influence on the tunnel couplings, thus the
experiment and the numerical simulation are still considered to be in reasonable agree-
ment.

8.6. DISCUSSION AND CONCLUSION
The dominant source for screening of the interaction in our device is the metal of the
fine gates in the surface area above the quantum dots. For depletion mode devices such
as that used here, only side gates suffice to form a quantum dot array, thus the surface
area directly above the quantum dot is not covered with metal. Therefore, the method
of image charges overestimates the screening, which is expected to be the strongest for
the on-site interaction, thus the actual dot sizes are expected to be larger than those ob-
tained from the fit. For accumulation mode devices, such as those based on silicon and
germanium, there usually is metal on the surface directly above the quantum dot in or-
der to pull charges into it, which will result in stronger screening. In addition, due to the
higher effective mass in silicon, the formation of a multi-dot array requires a multi-layer
gate stack, thus more coverage with metal, which enhances the screening. Furthermore,
in SiMOS devices the distance to the screening layer is much smaller, because gates are
separated from the dots by only a few nanometres of dielectric, which will also result
in stronger screening. Besides the gate metal there are several other sources which can
contribute to screening, such as the surrounding 2DEG, dopants, and impurities, but
these are expected to have much smaller contributions.

In conclusion, we have characterized the electron-electron interactions in a gate-
defined quantum dot array. The interactions were found to be measurable between
electrons up to four sites away, thus are considered to be long-range. The interaction
as a function of distance is described with a microscopic model of the quantum dot ar-
ray combined with either the Yukawa potential, or a potential based on the method of
image charges where the gate metal is acting as screening layer. The character of the
long-range electron-electron interaction is relevant for the operation of quantum dot
arrays with spin qubits, for example when implementing shared control [26]. In addi-
tion, our study of the long-range character for the electron-electron interactions opens
the way for future quantum simulations with quantum dot arrays, because it is a key
ingredient for quantum chemistry [1], Wigner crystallization [27], exciton formation [3],
and high-temperature superconductivity [4, 7].
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8.7. SUPPLEMENTARY MATERIAL

8.7.1. SIMPLIFICATION OF INTERACTION INTEGRAL
To simplify the integral expressions in eqn. (8.2) and reduce the numerical calculation
time, it is useful to observe that the interaction, V (r,r′), only depends on the distance,
thus can be replaced with V (|r− r′|). This brings eqn. (8.2) in a form to which the con-
volution theorem can be applied. which relates the Fourier transform of a convolution
of two functions to the product of their Fourier transforms. For the interaction elements
this results in

Vkl =
∫ ∫

d2r d2r′nk (r)V (|r− r′|)nl (r′) (8.9)

=
∫

d2r nk (r) (V ∗nl ) (r) (8.10)

=
∫

d2r nk (r)F−1 [F (V ) ·F (nl )] (r), (8.11)

with F the Fourier transform operator. With Plancherel’s theorem the spatial integrals
can be converted into momentum integrals as

Vkl =
∫

d2q ñk (q)V (|q|)ñl (−q), (8.12)

with f̃ = F ( f ), and V (|q|) the Fourier transform of the interaction. For harmonic oscilla-
tor eigenfunctions the interaction elements are

Vkl =
1

4π2

∫
d2qe−i |k−l |aq1 e−|q|

2∆2/2V (|q|), (8.13)

with a = 160nm the lattice constant for the quantum dot array. Transformation to polar
coordinates in momentum space results in

Vkl =
1

4π2

∫ ∫
dqdθq cos

[|k − l |aq cosθ
]
e−q2∆2/2V (q). (8.14)

The Fourier transforms for the potentials of the normal Coulomb repulsion, the image-
charge based method, and the Yukawa model are

Vcoul(q) = 2πA

q
, Vim(q) = 2πA

q

(
1−e−2d q

)
, Vyuk(q) = 2πA√

q2 + (1/γ)2
. (8.15)
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9
CONCLUSION

This chapter puts the results of the previous chapters into perspective. After that, a more
general conclusion for this thesis is drawn, accompanied with comments about the status
and prospects for the research field of gate-defined quantum dots.
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9.1. PER CHAPTER
This thesis reports developments for gate-defined quantum dots as platform for quan-
tum simulation. The developments consist of various results, which are summarized per
chapter in this section, and put into broader perspective with additional comments.

AUTOMATED TUNING

In Chapter 4 automated tuning of the inter-dot tunnel coupling was demonstrated. This
result builds on the previously demonstrated automated tuning of double quantum dots [1].
These automated tuning routines make use of a computer to extract relevant parameters
from experimental data, for example with image processing techniques and/or by fitting
the data with a model.

• Acquisition of statistics on devices will benefit from automated tuning, and in par-
ticular for measurements on (1) multiple devices cooled down simultaneously and
controlled via a multiplexer [2], (2) a full wafer of devices directly cooled down and
measured with a cryoprober, and (3) devices with many single dots or small clus-
ters of dots.

• For multi-dot and multi-qubit devices, automated tuning schemes can be used for
the initial tune-up, but in the coming years will be most helpful for re-calibration
after device jumps such as caused by charge rearrangements.

• Manual tuning strategies are typically based on human observations, which are
useful for qualitative judgements and efficient coarse tuning of the device. How-
ever, computers are much more skilled at quantitative judgements, thus computer-
assisted tuning can result in a higher level of device control, such as improved
precision for Hamiltonian engineering and higher fidelities for qubit initialization,
manipulation and readout.

• Reduced disorder and improved stability shift the focus from automated to effi-
cient tuning strategies. Currently, it seems unlikely that in the foreseeable future
quantum dot devices will arise which have negligible disorder and instability, such
that they could be operated with pre-calculated settings and without additional
re-tuning.

EFFICIENT CONTROL

The tuning of tunnel couplings was further discussed in Chapter 5. It is common practice
in research with gate-defined quantum dots to independently control chemical poten-
tials with virtual gates, which incorporate compensation for crosstalk effects. However,
the control of multiple tunnel couplings has remained largely uncharted territory, be-
cause disorder and crosstalk have hindered the operation of multi-dot devices. Chapter 5
reports an efficient calibration scheme for enhanced virtual gates with which indepen-
dent control of tunnel couplings is achieved.

• Independent control of tunnel couplings facilitates Hamiltonian engineering for
quantum simulation.
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• The implementation of gate operations in quantum dot devices with multiple qubits
is expected to benefit from independent tunnel coupling control. For example, to
perform two-qubit gates in parallel, to suppress residual exchange with spins that
should not be influenced by the gate operation, and to prevent leakage out of the
computational subspace due to unwanted changes in tunnel couplings to other
dots or reservoirs.

SCALABLE READOUT

After tuning the tunnel couplings, the next step was measurement of the electron spin.
While discussing in the lab about the measurement of spins at a distance from the charge
sensor, a new readout scheme was invented, which was demonstrated in Chapter 6. As
the sensing is based on Coulomb repulsion, which decays with distance (see also Chap-
ter 8), only readout of the spin of an electron close to the sensor has sufficient signal-
to-noise ratio to result in a reliable outcome. However, inspired by the effect of top-
pling dominoes, a cascade of hopping electrons, induced by Coulomb repulsion, can
effectively convert the information about motion of a distant charge to the motion of a
charge close to the sensor. The benefit of cascade-based readout was demonstrated by
comparing the readout fidelities with or without the cascade activated for singlet-triplet
measurements based on Pauli spin blockade [3, 4].

• With cascade-based readout a single sensor can be used to readout many different
electron spins.

• Cascade-based schemes are a promising approach for readout in densely-packed
quantum-dot arrays. For example, the readout of spins in the interior of a two-
dimensional dot array while sensors are only placed at the periphery, thus main-
taining the level of qubit-connectivity.

• Cascades can enable the tune-up of dots without a nearby sensor.

• Caution should be taken for unwanted rotations of the spins for both electrons
moving between dots, and for electrons in Coulomb blockade, due to changes in
their electrostatic environment.

• Fanout of cascades can enable further enhancement of the readout signal.

QUANTUM MAGNETISM SIMULATION

With the measurement of spin, all the basic building blocks were examined for the most
involved experiment of this thesis, which was presented in Chapter 7. This experiment
was a proof-of-principle quantum simulation of Heisenberg magnetism. Note that quan-
tum simulation in this regime requires access to states with energy splitting much smaller
than that for previous quantum simulations with quantum dots. Previously, the energy
splitting was dominated by either the on-site interaction [5] or the tunnel coupling [6],
while for Heisenberg quantum magnetism it is the exchange coupling which sets the
energy scale.

In this experiment, a linear array of four quantum dots was tuned as a spin chain
with control over each of the exchange couplings. For this purpose, spin readout for
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each of the nearest-neighbour pairs was configured, of which the outcomes and corre-
lations therein are used as a probe of the spin states. With these spin measurements,
energy spectroscopy was performed for the spin chain, based on which the exchange
couplings were tuned. In particular, the voltage settings could be identified for homo-
geneous exchange couplings. In addition, the coherence was demonstrated via global
coherent oscillations of the coupled spin system. Specifically, global coherent oscilla-
tions were observed in different subspaces for the Heisenberg Hamiltonian.

To characterize the ground state of the Heisenberg model, and to go beyond quali-
tative features, careful analysis and optimization of the adiabaticity for the state prepa-
ration and readout were performed, which were supported by numerical simulations of
the time evolution. Finally, the low-energy singlet state of the homogeneous Heisenberg
chain was adiabatically prepared and probed with diabatic singlet-triplet measurements
on all nearest-neighbour pairs. This completed the proof-of-principle experiment with
operation of a multi-dot array as quantum simulator of Heisenberg magnetism.

• Adiabatic state preparation and diabatic readout of many-body states becomes
challenging when anti-crossings between states are not Landau-Zener like, or when
multiple anti-crossings are involved.

• Coherent control in Hamiltonian subspaces of multi-spin systems is largely unex-
plored, while it can offer beneficial properties, such as protection against deco-
herence, full-electrical control, and multi-level systems to encode qudits (such as
a qutrit with a triplet subspace).

• For quantum simulation of low-energy properties it is important to study the ef-
fective temperature and coherence of many-body states in a multi-dot array. In
turn, obtained insights can serve as input for improvements to the experimental
set-up for the quantum simulator.

LONG-RANGE ELECTRON-ELECTRON INTERACTION

After the quantum magnetism simulation, which revolved around the spin-spin interac-
tion, the focus shifted to the electron-electron interaction at a distance. For gate-defined
quantum dots, the Coulomb repulsion, in addition to on-site interaction, typically also
results in the long-range interaction between electrons on different sites [7]. In Chap-
ter 8 the characterization of the electron-electron interaction as function of distance was
presented. The decay of the interaction was captured by either a Yukawa type poten-
tial or a model based on the method of image charges, with the gate metal as source of
screening. The characterization of the long-range electron-electron interaction is not
only relevant for the operation of multi-dot arrays with spin qubits, but it also forms the
basis for further quantum simulations, which range from bonding energies in quantum
chemistry [8], to phenomena such as exciton formation [9], and charge-ordering [10].

• Proximity and coverage of metal from the gates result in screening, thus the gate
pattern could be optimized to reduce or enhance the long-range electron-electron
interaction.
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• Long-range interaction can complicate the operation of multi-dot arrays with shared
control [11], as it induces a difference in chemical potentials for dots with a differ-
ent charge distribution in their environment. For example, such differences are
relevant for the edges when homogeneously filling a two-dimensional array, or
when charge is moved in an array.

9.2. IN GENERAL
Gate-defined quantum dots have momentum as a platform for quantum simulation and
computation. In the coming decade or so, spin qubits in quantum dots could catch up,
in terms of qubit numbers and gate performance, with the currently most advanced plat-
forms, such as that based on superconducting qubits [12]. For quantum simulation, the
development in terms of numbers is currently almost hand-in-hand with that for spin
qubits. However, scaling to larger quantum dot arrays while sacrificing the requirement
of high-fidelity qubit control will benefit the momentum for quantum simulations. Fur-
ther comments are presented point-by-point below.

• The community has successfully shifted to silicon and germanium as host mate-
rials [13] which offer a magnetically quiet environment that enables longer coher-
ence times [14, 15].

• Charge-noise mitigation [16, 17] is of increasing importance for high-fidelity gates
and scaling up.

• Spin qubits are at the verge of a new period in development, enabled by the demon-
strations of high-fidelities and short durations for single-qubit [18] and two-qubit
gates [19–22], initialization and readout [23, 24].

• Scaling in 1D and quasi-2D to tens of dots is within reach and scaling to few hun-
dreds of dots is feasible with the currently demonstrated techniques.

• Scaling up quantum dots into densely-packed 2D arrays is an open and exciting
challenge, in particular for quantum simulation. For quantum computation, al-
ternatives, such as sparse arrays [25, 26], could be more favourable as they replace
some of the stringent requirements in crosstalk mitigation for spin-qubits, with
potentially more lenient requirements for long-range couplers and footprint.

• Substantial reduction or mitigation of electrostatic disorder is key for further scal-
ing of quantum dots arrays.

• Gate-defined quantum dots offer versatility in layout for dot arrays based on re-
visions of the gate pattern, but in practice it can be time consuming to develop a
suitable gate pattern and tuning strategy.

• Further development of quantum dots as a platform for quantum simulations will
benefit from active involvement of condensed-matter theorists to guide experi-
mentalists towards the parameter regime of interest, and where numerical meth-
ods fail.
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In conclusion, this thesis reports on the development of quantum dot arrays as plat-
form for quantum simulation. The main result establishes quantum dot arrays as quan-
tum simulator of Heisenberg magnetism, thus manifests access to the regime where only
the spin degree of freedom remains. In addition, the long-range nature of the electron-
electron interaction was characterized in a multi-dot array, which opens up further di-
rections for quantum simulation. Other parts of this thesis demonstrate automated tun-
ing, independent control and scalable readout techniques, which facilitate scaling up
to arrays of tens or even hundreds of quantum dots. The development is hindered by
electrostatic disorder, even though it can be mitigated with tuning, and could form a
bottleneck for scaling to even larger arrays. On a positive note, development is stimu-
lated by the involvement of (semi-)industrial parties (such as Intel, IBM, Imec, CEA-Leti,
TNO), as they introduce new insights and means to the research field, which may result
in progress that seems improbable at the time of writing.
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A
VIDEOMODE CHARGE-STABILITY

DIAGRAMS

The tuning of a multi-dot device typically requires many measurements of charge-stability
diagrams. From these diagrams, the settings for the gate voltages are identified with
which the target tuning is achieved. Radio-frequency reflectometry has enabled an in-
crease of the measurement bandwidth to few or even tens of MHz, which enabled high-
fidelity single-shot readout in the order of microseconds or even below (see Chapter 6).

The increased measurement bandwidth also enabled the development of the video-
mode, which is depicted in Fig. A.1. For the videomode, voltage sweeps are created with
an arbitrary waveform generator to perform charge-stability measurements, which are
acquired and visualized in real-time. The videomode is commonly operated at refresh
rates of a few to few tens of hertz for two-dimensional charge-stability diagrams. This
corresponds to about two orders of magnitude faster acquisition as compared to the
previous measurements which involved stepping DC voltages. For the videomode dia-
grams, the voltage sweep durations were typically below ten milliseconds for the slow
axis, and about ten microseconds for the fast axis. The full voltage sweep would be re-
peated, and the data averaged for a few to few tens of repetitions to achieve the desired
signal-to-noise ratio (SNR).

The videomode shown in Fig. A.1 is based on the initial implementation in Delft from
2017, which was developed together with Pieter Eendebak. That implementation uses
the AWG5014 from Tektronix to perform the gate voltage sweeps and a FPGA to record
the data, which was later replaced by a digitizer. The fast visualization is based on the
software package pyqtgraph. The videomode was first demonstrated with a Josephson
parametric amplifier connected to a superconducting cavity, which was in turn con-
nected to the source contact of a semiconductor nanowire hosting a double quantum
dot [1].

A great benefit of the videomode is that the effect of a change in DC voltage can be
observed in real-time. To give an example, double dot charge-stability diagrams can be
acquired with the videomode while observing the effect of changes to the DC gate volt-
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Figure A.1: (a) Schematic of voltage sweeps for two plunger gates, P1 and P2, generated by the Tektronix ar-
bitrary waveform generator. (b) Visualization of how the combined voltage sweeps realize a two-dimensional
scan. Along the solid lines the data is acquired for the measurement. For common operation, typically about a
hundred horizontal sweeps are performed during one vertical sweep. (c) Snip-it of the videomode graphical-
user interface, which shows a charge-stability diagram for a triple quantum dot, with buttons to start and stop
the videomode, save the data for a single frame, and the change the number of averages.

ages of the inter-dot tunnel barrier, changing the DC voltages for the plungers to explore
other electron occupations, or while tuning up an additional dot. Below are further com-
ments, which can be helpful for working with the videomode.

• Tuning for Pauli spin blockade can be easier with the videomode, because block-
ade triangles appear when relaxation times are longer than measurement times.

• Latching effects depend on the sweep direction, hence can be identified by invert-
ing the sweep direction or by switching the fast and slow sweep direction.

• The range for the voltage sweeps influences the observed latching effects, because
a change in range indirectly also changes the sweep rate, and possibly also which
states are accessed.

• To improve the SNR, either the number of averages or the integration time per
pixel can be increased. Which of the two is preferred is typically decided taking
into account that changing the integration time per pixel changes the sweep rate,
which in turn influences latching effects and can induce charging effects of the
bias-tee.
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