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1  |   INTRODUCTION

Compressed	 sensing	 (CS)	 allows	 for	 a	 reduction	 in	 scan	
time	at	the	cost	of	longer	reconstruction	times,	which	are	

a	 consequence	 of	 the	 non-	linear	 formulation	 of	 the	 CS	
minimization	 problem:	 it	 uses	�1-	norm	 terms	 that	 pro-
mote	sparsity	of	the	image	in	certain	transform	domains.	
Examples	of	such	sparsifying	transformations	are	the	total	
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Purpose: To	 learn	a	preconditioner	 that	accelerates	parallel	 imaging	(PI)	and	
compressed	sensing	(CS)	reconstructions.
Methods:  A	 convolutional	 neural	 network	 (CNN)	 with	 residual	 connections	
was	used	to	train	a	preconditioning	operator.	Training	and	validation	data	were	
simulated	using	50%	brain	images	and	50%	white	Gaussian	noise	images.	Each	
multichannel	 training	example	contains	a	 simulated	sampling	mask,	 complex	
coil	sensitivity	maps,	and	two	regularization	parameter	maps.	The	trained	model	
was	integrated	in	the	preconditioned	conjugate	gradient	(PCG)	method	as	part	
of	the	split	Bregman	CS	method.	The	acceleration	performance	was	compared	
with	that	of	a	circulant	PI-	CS	preconditioner	for	varying	undersampling	factors,	
number	of	coil	elements	and	anatomies.
Results: The	learned	preconditioner	reduces	the	number	of	PCG	iterations	by	
a	 factor	of	4,	yielding	a	similar	acceleration	as	an	efficient	circulant	precondi-
tioner.	The	method	generalizes	well	to	different	sampling	schemes,	coil	configu-
rations	and	anatomies.
Conclusion: It	is	possible	to	learn	adaptable	preconditioners	for	PI	and	CS	recon-
structions	that	meet	the	performance	of	state-	of-	the-	art	preconditioners.	Further	
acceleration	could	be	achieved	by	optimizing	the	network	architecture	and	the	
training	set.	Such	a	preconditioner	could	also	be	integrated	in	fully	learned	re-
construction	methods	to	accelerate	the	training	process	of	unrolled	networks.
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variation	operator,	wavelet	transformations	or	a	combina-
tion	of	these.1–	5	Preconditioning	has	been	proposed	in	the	
past	 to	 accelerate	 CS	 reconstructions.6–	9	 This	 technique	
can	 reduce	 the	 number	 of	 iterations	 that	 are	 needed	 to	
converge	to	the	optimal	solution.10	Designing	an	efficient	
preconditioner,	however,	is	not	straightforward.	It	is	often	
difficult	 to	approximate	 the	 inverse	operation	of	 the	sig-
nal	 model	 of	 interest	 in	 a	 computationally	 inexpensive	
manner.11	For	CS	this	is	especially	the	case	when	multiple	
coil	 sensitivity	 maps	 are	 taken	 into	 account,	 which	 add	
an	 additional	 level	 of	 complexity	 to	 the	 structure	 of	 the	
system	matrix.	In	Ref.	[8],	this	problem	was	addressed	by	
approximating	the	CS	system	matrix	by	a	block	circulant	
matrix	with	circulant	blocks,	resulting	in	a	speed	up	factor	
of	5	when	using	 the	conjugate	gradient	 (CG)	method	 in	
combination	with	 the	split	Bregman	(SB)	reconstruction	
framework.	Furthermore,	Ong	et	al.	managed	to	construct	
a	 diagonal	 k-	space	 preconditioner	 for	 the	 primal	 dual	
hybrid	gradient	method	that	supports	non-	Cartesian	tra-
jectories.9	 Although	 these	 preconditioners	 have	 already	
shown	 to	 successfully	 reduce	 the	 number	 of	 iterations	
needed	for	CS	reconstructions,	the	approximations	made	
in	their	design	process	often	limit	the	acceleration	factor	
that	can	be	achieved.

In	the	past	decade,	deep	learning	reconstruction	ap-
proaches	 have	 also	 gained	 popularity.	 Once	 the	 model	
has	been	trained,	these	approaches	are	often	inherently	
fast.12–	16	An	additional	advantage	 is	 that	 regularization	
parameters	 and	 regularization	 functions	 of	 the	 CS	 for-
mulation	 can	 be	 learned	 during	 the	 training	 process,17	
potentially	 allowing	 larger	 undersampling	 factors.	 On	
the	other	hand,	training	a	neural	network	requires	tun-
ing	 many	 other	 machine	 learning	 hyperparameters	 in-
stead.	While	deep	learning	reconstructions	have	shown	
great	reconstruction	performance	over	 the	past	years,18	
a	difficulty	of	this	class	of	approaches	is	the	risk	of	the	
trained	network	not	generalizing	well	to	unseen	cases	or	
scans	with	different	SNR	and	sampling	patterns,19,20	and	
the	 lack	of	understanding	and	detecting	corresponding	
image	artifacts.	For	this	reason,	most	recent	deep	learn-
ing	approaches	integrate	prior	(physics)	knowledge	into	
the	 training	process,	 in	 this	way	constraining	 the	 solu-
tion	 space.17,18,21,22	The	 unrolled	 type	 of	 networks	 tend	
to	be	relatively	large,	since	they	follow	the	general	struc-
ture	 of	 model-	based	 reconstruction	 algorithms,	 such	
that	each	network	block	represents	one	iteration	of	the	
CS	 problem.	 These	 type	 of	 approaches	 could	 therefore	
also	benefit	from	a	preconditioner	that	reduces	the	num-
ber	of	network	blocks	and	hence	simplifies	the	network	
structure.

In	 this	 work,	 we	 integrate	 deep	 learning	 techniques	
into	 a	 physics-	driven	 model-	based	 reconstruction	
framework.23	 We	 explore	 the	 feasibility	 of	 learning	 a	

preconditioner	 using	 a	 convolutional	 neural	 network	
(CNN)	 to	 accelerate	 classical	 CS	 reconstructions.	 Such	
a	 preconditioner	 will	 support	 reconstruction	 accelera-
tion	without	 introducing	uncertainty	 to	 the	reconstruc-
tion	quality.	We	learn	the	action	of	a	preconditioner	on	
a	vector,	such	that	the	evaluation	of	the	learned	precon-
ditioner	will	be	fast	and	requires	little	memory.	We	first	
analyze	the	training	performance	of	the	preconditioning	
model	on	simulated	test	data.	We	then	demonstrate	the	
acceleration	performance	of	 the	 learned	preconditioner	
when	integrated	in	CG	as	part	of	the	SB	reconstruction	
framework.24	 The	 final	 preconditioned	 reconstruction	
algorithm	is	tested	for	multiple	anatomies,	coil	configu-
rations	and	undersampling	factors,	and	results	are	com-
pared	to	that	obtained	with	the	circulant	preconditioner	
designed	in	Ref.	[8].

2  |   METHODS

2.1  |  Compressed sensing

The	2D	compressed	sensing	problem	can	be	written	as

In	 this	 formulation,	 x ∈ ℂ
N×1	 is	 the	 unknown	 image,	

yi ∈ ℂ
N×1	 is	 the	 acquired	 k-	space	 data	 for	 coil	 i	 with	

Si ∈ ℂ
N×N	 the	 corresponding	 coil	 sensitivity	 map,	

R ∈ ℝ
N×N	 is	 the	sampling	mask	and	F ∈ ℂ

N×N	 is	 the	uni-
form	2D	Fourier	transform.	The	finite	difference	operators,	
Dx ,Dy ∈ ℝ

N×N,	and	the	wavelet	transform,	W ∈ ℝ
N×N,	are	

used	as	sparsifying	operations	that	promote	sparsity	of	the	
unknown	 image	 solution	 in	 its	 transformed	 domain.	 The	
regularization	 parameters	�	 and	 �	 determine	 the	 balance	
between	 the	 data	 consistency	 term	 and	 the	 regularization	
terms.	Such	a	nonlinear	problem	can	be	solved	 iteratively	
using	SB.24	This	is	a	reconstruction	framework	in	which	the	
�2	norm	terms	are	decoupled	from	the	�1	norm	terms,	such	
that	each	iteration	of	SB	solves	a	linear	system	of	equations	
followed	by	Bregman	parameter	updates.	In	this	algorithm,	
the	most	time-	consuming	step	is	repeatedly	solving	the	lin-
ear	system	of	equations

in	which

(1)
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Nc∑

i=1
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and

The	 Bregman	 parameters	bk
x
,bk

y
,bk

w
	 and	 the	 auxiliary	 pa-

rameters	dk
x
,dk

y
,dk

w
	in	Bregman	iteration	k	are	introduced	by	

the	Bregman	scheme.

2.2  |  Preconditioner

Solving	the	linear	system	of	equations	in	Equation	(2)	is	
done	iteratively	and	can	be	accelerated	with	the	help	of	a	
preconditioner.	An	efficient	preconditioner	M−1	 reduces	
the	number	of	iterations	that	are	needed	to	solve	the	lin-
ear	system.	A	reduction	in	iterations	is	typically	achieved	
when	the	following	holds:

The	reduction	in	iterations	needs	to	outweigh	the	additional	
computational	 costs	 that	 are	 introduced	 by	 incorporating	
the	preconditioner	into	the	iterative	scheme.	In	this	case,	the	
total	computation	time	of	solving	the	preconditioned	system	
is	shorter	than	that	of	solving	the	original	system.	Since	the	
preconditioned	numerical	scheme	solves	the	same	model	as	
the	original	numerical	scheme,	shorter	computation	times	
are	obtained	without	affecting	the	accuracy	of	the	numerical	
solution.

In	this	work,	we	train	a	network	that	learns	such	a	pre-
conditioner	M−1	from	a	simulated	training	set.	Specifically,	
we	 train	 a	 network	 that	 learns	 the	 inverse	 operation	 of	
Equation	(2),	M−1

≈ A−1,	 such	that	Equation	(5)	 is	satis-
fied.	Instead	of	learning	M−1	in	the	form	of	a	full	matrix,	
we	design	the	model	such	that	the	network	learns	the	ac-
tion	of	 the	preconditioner	M−1	 on	an	arbitrary	vector	b.	
This	 makes	 using	 the	 learned	 preconditioner	 computa-
tionally	 inexpensive	 (∼ 0.03	 s	 per	 evaluation).	 Moreover,	
little	memory	storage	is	required.

2.3  |  Simulation of training examples

The	training	set	was	simulated	in	MATLAB	(Mathworks	
Inc,	Natick,	MA)	and	constructed	from	an	equal	amount	
of	 white	 Gaussian	 complex	 noise	 images	 and	 complex	
brain	 images.	 For	 the	 complex	 brain	 images,	 magni-
tude	 brain	 images	 (70	 MP-	RAGE	 and	 63	 T2-	weighted	
3D	 brain	 images)	 were	 downloaded	 from	 the	 Human	
Connectome	 Project25	 (https://ida.loni.usc.edu/login.jsp)			

and	transformed	into	transverse	(MPRAGE:40,	T2-	weighted:65)		
and	 sagittal	 (MPRAGE:36,	T2-		weighted:66)	 slices.	 White	
Gaussian	noise	was	added	to	the	background	of	the	im-
ages.	 A	 Gaussian-	shaped	 phase	 was	 randomly	 added	 to	
each	image,	after	which	the	resulting	brain	image	set	was	
augmented	by	rotating	each	image	four	times	in	steps	of	
90◦,	resulting	in	53 160	images.	These	were	used	to	simu-
late	the	actual	training	examples,	for	which	a	wide	variety	
of	undersampling	factors,	sampling	masks,	coil	sensitiv-
ity	maps	and	regularization	parameters	were	taken	into	
account.	 Since	 computing	 A−1	 for	 each	Ci,R, �, �	 com-
bination	 is	 computationally	 expensive,	 we	 compute	 the	
training	examples	using	only	the	forward	operator	A,	ac-
cording	to	Ax[k] = b[k].	After	this,	we	swap	the	operator’s	
input	and	output	before	feeding	them	to	the	network:	b[k]	
is	used	as	the	network’s	input	image,	while	x[k]	is	used	as	
the	 label	 image.	In	this	way,	 the	network	will	 learn	the	
operator	A−1,	even	though	the	training	data	were	simu-
lated	 using	 the	 forward	 operator	 A.	 Note	 that	 both	x[k]	
and	b[k]	represent	image-	domain	vectors.	Each	

(
b[k], x[k]

)
	

pair	was	simulated	with	an	integer	undersampling	factor	
ranging	between	1	and	4	and	Gaussian-	shaped	complex	
coil	sensitivity	maps	for	a	number	of	coil	elements	rang-
ing	between	1	and	16.	The	parameters	�	and	�	were	ran-
domly	 selected	 from	 the	 interval	 (0,5)	 and	 transformed	
into	uniform	regularization	maps.	This	range	was	based	
on	empirical	 tuning	of	 the	regularization	parameters	 in	
SB	 reconstructions	 without	 using	 the	 learned	 network	
as	 preconditioner.	 The	 input	 images	 b[k]	 were	 normal-
ized	 to	have	a	maximum	magnitude	value	of	1	and	 the	
label	 images	 x[k]	 were	 accordingly	 scaled.	 The	 images	
(b[k], x[k])	and	the	coil	sensitivity	maps	were	split	into	real	
and	 imaginary	 components,	 and	 the	 resulting	 matrices	
were	stacked	(Figure	1A).	If	the	number	of	coil	elements	
was	smaller	than	16,	zero-	valued	maps	were	added	to	the	
set	of	coil	sensitivity	maps	until	the	number	of	coil	sen-
sitivity	maps	was	equal	to	16.	This	yielded	a	37	channel	
(b: 2,R: 1,C: 32, �: 1, � : 1)	 network	 input.	 Slices	 for	 one	
MP-	RAGE	and	one	T2-	weighted	volunteer	were	selected	
to	create	a	model	validation	set.

2.4  |  Model and training

To	 train	 the	 preconditioner,	 we	 used	 a	 residual	 neu-
ral	 network	 with	 three	 residual	 blocks	 containing	 two	
layers	each,26	 schematically	shown	in	Figure	1B.	A	2D	
convolution	(3 × 3	kernels,	128	features)	was	performed	
at	 every	 layer.	 ReLu	 activation	 functions	 were	 chosen	
for	the	hidden	layers,	whereas	the	tanh	activation	func-
tion	was	chosen	for	the	output	layer	to	enable	positive	as	
well	as	negative	matrix	element	predictions:	magnitude	

(4)

b=

Nc∑

i=1
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i
FHRHyi+�
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x
(dk

x
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values	 on	 the	 interval	 (0,	 1)	 imply	 real	 and	 imaginary	
component	 values	 on	 the	 interval	 (− 1,	 1).	 We	 mini-
mized	the	mean	absolute	error	over	50	epochs	using	the	
Adam	optimizer	with	an	initial	 learning	rate	of	5 ⋅ 10−4

,	 a	 batch	 size	 of	 16	 and	 drop	 out	 with	 a	 probability	 of	
0.25.	 Training	 was	 performed	 in	 Tensorflow	 with	 a	 24	
GB	Quadro	RTX	6000	gpu,	resulting	in	a	training	time	
of	2	days	and	20	hr.

2.5  |  MR data acquisition

Experiments	were	performed	in	three	healthy	volunteers	
after	 giving	 informed	 consent.	 The	 Leiden	 University	
Medical	Center	Committee	for	Medical	Ethics	approved	
the	experiment.	Undersampled	and	fully	sampled	scans	
were	acquired	on	an	Ingenia	3T	dual	transmit	MR	sys-
tem	 (Philips,	 Best,	 The	 Netherlands),	 equipped	 with	 a	
15-	channel	 head	 coil	 and	 a	 16-	channel	 knee	 coil	 (in-
formed	 consent	 obtained).	 The	 following	 data	 were	
acquired:

brain	 T2-	weighted	 turbo	 spin-	echo	 (TSE):	 FOV	 =	
230 × 230	mm2;	in-	plane	resolution	0.90 × 0.90	mm2;	4	mm	
slice	 thickness;	1	 slice;	TE/TR/TSE	 factor	=	80	ms/3000	
ms/16;	 refocusing	 angle	 =	120◦;	 WFS	 =	 2.5	 pixels;	 scan	
time	=	00:30	min	(R = 2).

brain	 fluid-	attenuated	 inversion	 recovery	 (FLAIR):	
FOV	 =	 240 × 224	 mm2;	 in-	plane	 resolution	 1.0 × 1.0	
mm2;	4	mm	slice	 thickness;	1	slice;	TE/TR/TSE	factor	
=	120	ms/9000	ms/24;	IR	delay	=	2500	ms;	refocusing	
angle	=	110◦;	WFS	=	2.7	pixels;	scan	time	=	01:30	min	
(R = 2).

knee	gradient	echo	(FFE):	FOV	=	160 × 160	mm2;	 in-	
plane	resolution	1.25 × 1.25	mm2;	3	mm	slice	thickness;	32	
slices;	TE/TR	=	10	ms/455	ms;	FA	=	90◦;	WFS	=	1.4	pixels;	
scan	 time	=	1:01	min	(R = 1),	 retrospectively	undersam-
pled	to	R = 3.

brain	 T1-	weighted	 inversion	 recovery	 turbo	 spin-	
echo	 (IR	 TSE):	 FOV	 =	230 × 230	 mm2;	 in-	plane	 reso-
lution	0.9 × 0.9	 mm2;	 4	 mm	 slice	 thickness;	 24	 slices;	
TE/TR/TSE	factor	=	20	ms/2000	ms/8;	IR	delay	=	800	
ms;	 refocussing	 angle	 =	120◦;	 WFS	 =	 2.6	 pixels;	 scan	

F I G U R E   1   Model	input	and	output	and	network	architecture.	A,	Each	37-	channel	input	contains	a	complex	input	image	(b),	a	
real	sampling	mask	(R),	16	complex	coil	sensitivity	maps	and	real	regularization	masks	(�	and	�).	The	2-	channel	output	contains	its	
corresponding	complex	image	(x).	Note	that	all	complex	matrices	are	first	split	into	real	and	imaginary	components	before	stacking	them	
in	the	network’s	input	and	output	volumes.	B,	A	convolutional	neural	network	with	residual	connections	is	used	for	training.	Each	residual	
block	contains	two	layers.26	A	2D	convolution	(3 × 3	kernels,	128	features)	was	performed	at	every	layer	with	ReLu	(hidden	layers)	and	tanh	
(output	layer)	activation	functions
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time	=	5:50	min	(R = 1),	retrospectively	undersampled	
to	R = 4.

2.6  |  Image reconstruction

Reconstruction	 of	 the	 images	 was	 performed	 in	 Python	
(Python	 Software	 Foundation,	 Beaverton,	 OR)	 and	 run	
on	a	Linux	machine	with	Intel	Xe	6234	CPU	and	256	GB	
internal	memory.	For	each	data	set,	the	complex	coil	sen-
sitivity	 maps	 were	 estimated	 from	 the	 center	 of	 k-	space	
using	 ESPIRiT27	 and	 masked	 outside	 the	 object.	 SB	 was	
used	as	the	�1-	norm	minimization	algorithm	to	solve	the	
compressed	sensing	problem,	following	the	implementa-
tion	described	in	Ref.	[8].	The	number	of	inner	Bregman	
iterations	 was	 set	 to	 1.	 The	 tolerance	 of	 PCG	 was	 set	 to	
10−2.	 The	 regularization	 parameters	 were	 empirically	
tuned.	 Reconstructions	 were	 performed	 with	 and	 with-
out	 the	 learned	 preconditioner,	 and	 compared	 to	 the	
circulant	preconditioner	designed	 in	Ref.	 [8].	For	recon-
structions	 with	 the	 learned	 preconditioner,	 the	 trained	
TensorFlow	 model	 was	 imported	 once	 at	 the	 beginning	

of	 the	 reconstruction	 pipeline	 and	 used	 for	 inference	 in	
every	PCG	iteration	of	SB.	The	methods	were	compared	
for	three	matrix	sizes	(128 × 128,	256 × 256	and	240 × 224
),	three	different	undersampling	factors	(R = 2,	R = 3	and	
R = 4	),	 two	 different	 anatomies	 and	 coil	 configurations	
(brain	and	knee)	and	three	different	MR	contrasts	(TSE,	
FFE	and	FLAIR).

3  |   RESULTS

Figure	2A	shows	the	loss	function	during	training	for	the	
training	data	(red)	and	the	validation	data	(blue).	Figure	
2B,C	shows	that	the	performance	of	the	trained	network	
is	not	dependent	on	the	undersampling	factor	and	on	the	
number	 of	 coil	 elements	 for	 the	 validation	 data.	 Figure	
2D,	however,	 shows	 that	 the	validation	error	 is	 smallest	
for	large	regularization	parameters,	for	which	the	inverse	
linear	system	is	best	conditioned.

Figure	3	shows	the	network’s	input	(R,	�,	�,	coil	sensitiv-
ities,	and	image)	and	output	for	(A)	a	brain	and	(B)	a	noise	
example	from	the	validation	set.	The	network’s	prediction	

F I G U R E   2   Training	and	validation	performance.	A,	The	mean	absolute	error	(MAE)	loss	function	during	training	for	training	
data	(red)	and	validation	data	(blue)	over	50	epoch	plotted	on	a	log	scale.	B,	C,	The	validation	error	after	50	epoch	does	not	show	large	
dependence	on	the	undersampling	factor	and	the	number	of	coil	elements.	D,	The	validation	error	after	50	epoch	is	smallest	for	large	
regularization	factors,	for	which	the	inverse	operation	is	best	defined
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M−1b	of	 the	operation	A−1b	 is	close	to	the	ground	truth	
image	x	for	both	cases.	This	is	confirmed	by	the	low	abso-
lute	errors	(normalized	�1-	norm	<0.18)	in	the	error	map.

The	reconstruction	quality	and	the	convergence	behav-
ior	with	and	without	the	learned	preconditioner	integrated	
in	SB	is	shown	in	Figure	4	for	an	IR	TSE	brain	scan	(R = 4	,	
matrix	size	256 × 256,	15	coil	elements)	and	an	FFE	knee	
scan	 (R = 3,	matrix	 size	128 × 128,	 16	coil	 elements).	The	
learned	preconditioner	results	in	an	acceleration	factor	of	
4.0	in	CG	compared	to	the	reconstruction	without	precon-
ditioner.	This	is	in	the	same	range	as	the	acceleration	factor	
of	4.3	obtained	with	the	circulant	preconditioner.	The	re-
construction	error	plotted	as	a	function	of	time	for	the	en-
tire	SB	algorithm	shows	that	the	learned	preconditioner	is	
slightly	more	expensive	compared	to	the	circulant	precon-
ditioner	in	terms	of	computing	M−1b	in	each	CG	iteration.

Similar	 results	 are	 presented	 in	 Figure	 5	 for	 a	 pro-
spectively	undersampled	FLAIR	scan	(R = 2,	matrix	size	
240 × 224,	 15	 coil	 elements)	 and	 a	TSE	 scan	 (R = 2,	 ma-
trix	size	256 × 256,	13	coil	elements)	 in	 the	brain,	which	
show	the	ability	for	the	learned	preconditioner	to	slightly	
outperform	 the	 circulant	 preconditioner.	 Figure	 5B	 also	
shows	that	the	model	trained	on	both	brain	and	noise	im-
ages	results	in	a	much	better	preconditioning	performance	
than	a	model	trained	on	either	noise	or	brain	images.

4  |   DISCUSSION

The	results	in	this	paper	showed	that	it	is	possible	to	learn	
a	 preconditioner	 for	 CS	 and	 PI	 reconstructions	 using	 a	
relatively	small	CNN.	The	model	was	designed	such	that	

F I G U R E   3   The	network’s	prediction	performance	for	two	validation	examples.	The	network’s	prediction,	M−1b,	is	close	to	the	ground	
truth,	x,	which	is	confirmed	by	the	small	error	values	both	for	the	brain	case	(A)	and	for	the	noise	case	(B).	The	brain	example	was	simulated	
with	an	8-	channel	receive	coil	and	an	undersampling	factor	of	3,	whereas	the	noise	example	was	simulated	with	a	15-	channel	receive	coil	
and	an	undersampling	factor	of	4.	A	Fourier	shift	was	applied	to	the	sampling	mask	as	a	preprocessing	step	before	training.	The	brain	
images	in	(A)	were	rotated	by	the	data	augmentation	step
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F I G U R E   4   Accelerated	SB	reconstructions	of	retrospectively	undersampled	data	using	the	learned	and	the	circulant	preconditioner.	
A,	The	CS	reconstruction	of	an	IR	TSE	brain	scan	(R = 4,	15	coil	elements)	is	close	to	the	fully	sampled	image,	which	is	confirmed	by	the	
low	values	in	the	error	map	(magnified	10	times).	The	learned	preconditioner	reduces	the	number	of	PCG	iterations	by	a	factor	of	4.0	over	
20	Bregman	iterations,	which	is	in	the	same	order	as	the	acceleration	factor	of	4.3	obtained	with	the	circulant	preconditioner.	The	final	
acceleration	for	the	entire	SB	algorithm	is	slightly	larger	for	the	circulant	preconditioner	than	for	the	learned	preconditioner	because	of	the	
slightly	more	efficient	computation	of	M−1b	for	the	circulant	preconditioner	compared	to	the	learned	preconditioner.	B,	Similar	results	are	
obtained	for	an	FFE	scan	in	the	knee,	acquired	with	an	undersampling	factor	of	3	and	16	coil	elements.	The	regularization	parameters	were	
set	to	(A):	� = 4, � = 2	and	(B):	� = 4, � = 1.	The	number	of	outer/inner	Bregman	iterations	was	set	to	60/1.	The	reconstruction	time	with	the	
learned	preconditioner	was	(A):	16.9	s	and	(B):	4.7	s
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F I G U R E   5   Accelerated	SB	reconstructions	of	prospectively	undersampled	data	using	the	learned	and	the	circulant	preconditioner.	
A,	The	CS	reconstructions	of	a	FLAIR	brain	scan	(R = 2,	15	coil	elements,	matrix	size	of	240 × 224)	are	close	to	the	fully	sampled	image.	
Note	that	the	relative	difference	(magnified	1e6	times)	between	de-	reconstructed	images	obtained	with	the	learned	and	the	circulant	
preconditioner	are	neglible,	since	the	CG	tolerance	level	was	fixed	for	all	reconstructions.	The	learned	preconditioner	reduces	the	number	
of	PCG	iterations,	yielding	a	similar	performance	as	the	circulant	preconditioner.	B,	Similar	results	are	obtained	for	a	TSE	brain	scan	in	the	
brain,	acquired	with	an	undersampling	factor	of	2,	13	coil	elements	and	a	matrix	size	of	256 × 256.	These	results	show	that	the	performance	
of	the	preconditioner	is	much	more	stable	when	the	preconditioner	is	trained	on	noise	images	only	compared	to	when	the	preconditioner	
is	trained	on	brain	images	only.	This	suggests	that	the	distribution	of	the	brain	images	from	the	human	connectome	project	database	is	
different	than	that	of	the	acquired	test	images.	This	could	be	due	to	a	difference	in	SNR	level,	image	contrast	or	image	phase,	for	example.	
Training	the	preconditioner	on	both	brain	and	noise	images	in	equal	amount	results	in	the	best	preconditioning	performance.	The	
regularization	parameters	were	set	to	(A):	� = 3, � = 2	and	(B):	� = 4, � = 1.	The	number	of	outer/inner	Bregman	iterations	was	set	to	20/1.	
The	reconstruction	time	with	the	learned	preconditioner	was	(A):	5.1	s	and	(B):	5.6	s
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the	 learned	 preconditioner	 operates	 on	 a	 vector,	 which	
makes	 integrating	 the	 preconditioner	 in	 a	 numerical	
scheme	 computationally	 inexpensive	 and	 memory	 effi-
cient	compared	to	learning	a	full	preconditioning	matrix.	
The	learned	preconditioner	reduced	the	number	of	PCG	
iterations	by	a	factor	of	approximately	4,	hereby	meeting	
the	performance	of	an	efficient	circulant	preconditioner.8	
The	 training	 data	 were	 simulated	 for	 a	 wide	 range	 of	
sampling	 masks,	 coil	 sensitivity	 maps	 and	 regulariza-
tion	 parameters,	 such	 that	 the	 same	 trained	 model	 can	
be	used	to	reconstruct	images	acquired	with	different	coil	
configurations	and	of	different	anatomies.	This	provides	
us	with	a	 flexible	preconditioning	 framework,	 in	which	
the	 learned	 preconditioner	 is	 not	 restricted	 to	 a	 certain	
structure	of	the	system	matrix,	as	is	the	case	for	circulant	
preconditioners.

For	 this	 proof-	of-	principle	 study,	 a	 relatively	 small	
CNN	 was	 chosen	 as	 network	 architecture,	 on	 the	 one	
hand	 to	 support	 accelerated	 reconstructions	 of	 varying	
matrix	size	and	resolution	and	on	the	other	hand	to	limit	
the	 inference	 time.	With	 this	 simple	 network	 architec-
ture,	 the	 learned	 preconditioner	 was	 able	 to	 meet	 and	
sometimes	slightly	improve	upon	the	performance	of	the	
efficient	 circulant	 preconditioner.	 Network,	 model	 and	
training	set	optimization	is	expected	to	increase	the	ac-
celeration	factor	 further,	although	these	design	choices	
are	not	trivial.	Supporting	Information	Figure	S1	shows,	
for	 example,	 that	 using	 a	 deeper	 network	 does	 not	 di-
rectly	 lead	 to	 a	 better	 preconditioning	 performance.	
Furthermore,	by	learning	the	preconditioner’s	action	on	
a	vector	 instead	of	 learning	the	preconditioning	matrix	
itself,	the	preconditioning	performance	becomes	depen-
dent	 on	 the	 input	 vector.	 To	 minimize	 this	 effect,	 the	
input	 vectors	 should	 be	 as	 general	 as	 possible,	 with	 as	
little	 coherent	 structures	between	 training	examples	as	
possible.	Therefore,	 combining	 noise	 and	 brain	 images	
in	the	training	set	results	in	a	better	preconditioning	per-
formance	than	using	only	noise	or	brain	images.	Further	
research	is	needed	to	investigate	which	image	types	com-
plement	the	current	brain	and	noise	images	best	for	op-
timal	generalizability	of	the	preconditioner.	Finally,	the	
Adam	optimizer	has	 shown	good	performance	 in	com-
bination	 with	 the	 current	 network	 architecture,26	 but	
it	 is	 worth	 investigating	 whether	 other	 optimizers	 can	
achieve	 a	 higher	 preconditioning	 performance	 for	 the	
test	data	in	this	application.

The	 current	 method	 has	 demonstrated	 the	 feasi-
bility	 of	 learning	 a	 preconditioner	 for	 2D	 CS	 recon-
structions.	To	provide	the	deep	learning	model	with	as	
much	information	about	the	underlying	MR	physics	as	
possible,	coil	sensitivity	maps	and	the	sampling	mask	
were	 fed	 to	 the	 network	 along	 with	 the	 input	 image	
and	 regularization	 parameters,	 yielding	 a	 37-	channel	

network	input	for	each	training	example.	Following	the			
same	 procedure	 for	 3D	 reconstructions	 would	 in-
crease	the	dimensionality	of	the	network	input	further			
due	 to	 the	 volumetric	 nature	 of	 the	 coil	 sensitivity	
maps.	Such	a	large	network	input	may	hinder	efficient	
learning	 of	 the	 inverse	 operation	 of	 the	 SB	 system	
matrix.	 Coil	 compression	 and	 grouped	 convolutions	
could	be	used	to	overcome	this	limitation	and	coil	sen-
sitivity	 map-	independent	 preconditioners	 should	 be	
investigated.

This	work	focussed	on	preconditioning	as	a	means	to	
speed	 up	 classical	 model-	based	 reconstructions,	 while	
fully	 learned	 reconstructions	 are	 often	 inherently	 fast.	
The	advantage	of	accelerating	reconstructions	via	precon-
ditioning	compared	to	using	fully	learned	reconstructions	
is	 that	 preconditioners	 do	 not	 affect	 the	 reconstruction	
quality,	whereas	the	stability	of	fully	learned	reconstruc-
tions	still	needs	refining.20	An	ill-	designed	preconditioner	
could,	 in	a	worst-	case	 scenario,	 either	 result	 in	a	 slower	
convergence	 behavior	 than	 reconstruction	 without	 the	
preconditioner.	We	cannot	guarantee	that	the	learned	net-
work	leads	to	(fast)	convergence	of	CG	in	all	cases,	but	a	
nonconverging	reconstruction	is	easily	and	automatically	
detected	by	monitoring	the	CG	residual.	In	our	work	we	
observed	fast	convergence	behavior	 for	all	studied	cases.	
However,	besides	having	 short	 reconstruction	 times,	 the	
large	 degree	 of	 freedom	 in	 fully	 learned	 reconstructions	
can	also	help	to	better	exploit	image	features	such	as	spar-
sity,17	possibly	allowing	reconstructions	 from	higher	un-
dersampling	 factors.	 Systems	 of	 similar	 structure	 as	 the	
one	described	in	Equations	(2)–	(4)	are	often	encountered	
in	such	variational	networks,	which	could	therefore	also	
benefit	 from	the	preconditioning	 technique	described	 in	
this	work.	A	preconditioner	could	potentially	be	learned	
simultaneously	 with	 the	 reconstruction	 model,	 similar	
to	 how	 ADMM-	Net	 learns	 the	 inverse	 operation	 corre-
sponding	 to	 the	 system	 matrix.28	 Integration	 of	 learned	
preconditioners	in	variational	networks	might	reduce	the	
number	 of	 network	 blocks	 (representing	 CS	 iterations)	
needed	for	convergence	and	hence	accelerate	the	learned	
reconstruction	process	further.	This	could	be	particularly	
relevant	for	applications	where	real-	time	reconstructions	
are	needed.

In	conclusion,	 it	 is	possible	 to	 learn	a	preconditioner	
for	 CS	 and	 PI	 reconstructions	 using	 a	 relatively	 small	
CNN.	 Such	 an	 approach	 can	 potentially	 help	 to	 further	
accelerate	 CS	 reconstructions	 compared	 to	 existing	 pre-
conditioners.	 Future	 research	 is	 needed	 to	 optimize	 the	
efficiency	of	the	learned	preconditioner.
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SUPPORTING INFORMATION
Additional	 supporting	 information	 may	 be	 found	 in	 the	
online	version	of	the	article	at	the	publisher’s	website.
FIGURE  S1	 Comparison	 of	 the	 preconditioning	 perfor-
mance	 for	 different	 number	 of	 network	 layers	 and	 net-
work	blocks.	During	 training	of	 the	network,	 the	model	
was	stored	for	each	of	the	50	epoch.	Afterwards,	the	brain	
TSE	 image	 (see	 Fig.	 5B)	 was	 reconstructed	 50	 times	 (x-	
axis),	 each	 time	using	 the	 stored	model	 from	a	different	
training	 epoch	 as	 preconditioner.	 The	 y-	axis	 represents	
the	outer	Bregman	iteration	number.	The	colors	represent	
the	number	of	CG	iterations	needed	to	reach	the	desired	
tolerance	 level	 in	each	outer	Bregman	iteration.	(A)	The	
network	used	in	this	work	contains	3	blocks	with	2	layers	
each.	The	total	number	of	CG	iterations	decreases	as	the	
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epoch	number	increases.	The	convergence	behavior	does	
not	vary	much	after	40	epoch.	(B)	Using	a	larger	number	
of	 network	 blocks	 (5	 blocks,	 2	 layers	 each)	 results	 in	 a	
similar	convergence	behavior	for	some	of	the	epoch,	but	
shows	unstable	behavior	 for	 larger	epoch	numbers.	This	
is	an	indication	that	the	network	starts	to	overfit	after	ap-
proximately	40	epoch.	(C)	When	a	larger	number	of	net-
work	layers	is	used	in	each	block	(3	blocks,	4	layers	each)	
this	 unstable	 behavior	 is	 not	 observed,	 but	 the	 required	
number	of	CG	iterations	is	still	 larger	than	for	the	small	

network	used	in	(A).	Note	that	the	maximum	number	of	
CG	iterations	was	set	to	20	to	detect	nonconvergent	behav-
ior	for	the	early	epoch
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