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Abstract
Large quantities of natural and synthetic hormones contained
in livestock waste and wastewater (LWW) can cause serious
problems in our environment. Composting and anaerobic
digestion cannot remove hormones efficiently, so they should
be modified to enhance the treatment processes. In addition,
constructed wetlands show decent rates for removal of hor-
mones. Advanced technologies such as membrane biological
reactors and microalgae-based systems efficiently eliminate
hormones from LWW. However, more practical studies are
needed to investigate their actual performances. The cate-
gories, degradation mechanisms, and enzymes of hormone-
degrading microorganisms are presented, and related hor-
mone-degrading microorganism-based technologies are
introduced. Finally, composting, anaerobic digestion,
constructed wetlands, membrane biological reactors, and
microalgae-based systems are compared in terms of their
applicability in LWW treatment.
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Introduction
Natural and synthetic hormones are typical endocrine-
disrupting compounds that are responsible for the

reproductive disruption in marine organisms and
www.sciencedirect.com
aberrant development of the gonads in animals and
humans [1,2]. These chemicals are largely discharged
from livestock waste (e.g. manures and urine) and
wastewater (LWW). The total daily excretion of estro-
gens by cows has been estimated to be 145.2e179.3 mg/
d, mainly in manure (92%), and by swines 42.6e
219.3 mg/d, mainly in urine (98e99%) [3]. Conse-
quently, high levels of estrogens were detected in live-
stock wastewater and the concentrations of estrone
(E1), 17b-estradiol (E2), and 17a-ethinylestradiol
(EE2) were 17.2e4728 ng/L, 8e542 ng/L, and 182e
357 ng/L, respectively [4]. Owing to the low efficiency
for hormone removal by conventional treatment pro-
cesses, the residual hormones in LWW can subsequently
contaminate the receiving rivers and soils, thereby
posing a significant threat to the environment [5].

Therefore, alternative technologies that are suitable for
rural areas are needed to eliminate threats from hor-
mones in LWW.

Composting and anaerobic digestion (AD) are conven-
tional technologies used to treat LWW, and they exhibit
moderate success in hormone removal; thus, many ap-
proaches have been developed to improve efficiency for
removal [6]. Constructed wetlands (CWs) can r
emove many kinds of hormones effectively [7]. In the
past decade, several advanced biological technologies

such as membrane biological reactors (MBRs) [5] and
microalgae-based systems (MBSs) [8] were proven to
have better hormone removal efficiencies than
composting and AD. In addition, the technology based
on hormone-degrading microorganisms (HDMs) has
also been developed, and this may make a significant
contribution to hormone control in LWW [9].

The objective of this study is therefore to introduce the
major biological processes that eradicate hormones from
LWW. Improvements in composting and AD, the per-

formance of CWs, and the applications of several novel
technologies, including MBRs, MBSs, and HDM-based
processes, will be presented. Typically, the recently
published literature will be highlighted, especially work
published within the last two years. Finally, five bio-
processes will be compared with respect to five factors
to be considered in selecting the proper technology for
LWW treatment.
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2 Environmental technologies: Removal technologies for agricultural wastes
Conventional treatment processes
Composting
Composting is an effective way to treat livestock manure
and produce organic fertilizers [10]. The degradation of
hormones during manure composting has been amply
studied, and both estrogens and androgens can be
removed with efficiencies ranging from 40.4% to 90%
[1,11,12]. However, the fate of hormones during
composting can be affected by many factors including
composting conditions, presence of other pharmaceuti-
cals, and hormone molecular forms (free or conjugated)
[1], and the removal efficiency (RE) is always limited by
long operation times, and hormone residues are left in

composted products [12]. Therefore, advanced
composting processes are proposed to promote hormone
removal in manure. In the last two decades, biochar has
become a useful additive for manure composting by
improving composting performance, enhancing micro-
bial activities, and immobilizing hydrophobic organic
pollutants [1,13]. Several studies have reported
acceptable efficiencies (e.g. 71.0%e88.1%) for removal
of estrogens from compost [14] and soil environments
by biochar [15e17]. Furthermore, humic acid has also
been confirmed to be an efficient material for removing

hormones [1,18]. However, its practical use in
composting still needs to be verified.

Anaerobic digestion
From a sustainability perspective, AD has already
become a promising method for LWW treatment. It was
reported that many of the hormones can be degraded
during waste or wastewater AD processes mainly by two
mechanisms, biodegradation and biosorption [19].
However, according to work published thus far, the ef-
ficiency for removal of hormones through AD largely
depends on the hormone category. Researchers evalu-

ated the elimination of various progestogens from cattle
manure and swine wastewater, and significant re-
ductions in contaminant concentrations were observed
in both AD systems [20,21]. Nevertheless, one study
showed that the performance of AD in treatments of
several hormones (i.e. estrone [E1], estradiol [E2], es-
triol [E3], and ethinylestradiol [EE2]) was limited, and
total efficiencies for removal of estrogen from animal
manure were only 14.7e21.8% [11]. In one case, the
total estrogenicity of dairy manure was even increased
by 23% after the AD process [22]. Therefore, conven-

tional AD is not always an effective method for reme-
diating hormone contamination.

Recently, several advanced anaerobic digestion processes
were developed to enhance contaminant removal from
manure [6]. Hamid and Eskicioglu [23] found that mi-
crowave pretreatment at higher temperatures (120 and
160 �C) for mesophilic AD led to total hormone reduc-
tion efficiencies that were approximately 50% higher
than that of the control. In another study, the removal
Current Opinion in Environmental Science & Health 2021, 24:100307
rates for estrogen after treatments with an up-flow
anaerobic sludge blanket combined with a step-fed
sequencing batch reactor reached almost 78% [24].
Recently, Louros et al. [25] investigated the operating
modes of up-flow anaerobic sludge blanket reactors and
their influence on contaminant removal. Their results
suggested that the intermittent operation led to im-
provements in the total removal of estrogens (>95% for

E1 and EE2) compared with continuous operation (49%
for E1 and 39% for EE2).

Constructed wetlands
CWs are environmentally friendly and natural treat-
ment technologies that are known to be efficient in
purifying domestic and livestock wastewater in rural
areas [7,26]. They exhibit various advantages including
low cost of operation and maintenance, absence of
power consumption, noise and offensive odors, and
considerable improvement in the effluent quality [27].
Many studies have reported that CW-based treatment
processes are capable of removing different types of
micropollutants [28,29], including steroidal hormones

such as estrogens, progestogens, androgens, and glu-
cocorticoids [26]. The major hormone removal mech-
anisms include biodegradation (aerobic or anaerobic),
sorption, and plant uptake [26]. For instance, biodeg-
radation mainly contributes to the removal of 17b-
estradiol (bE2) and testosterone [30], whereas E1,
levonorgestrel, and norethisterone are mostly removed
via absorption by certain plant species [31,32].
Table S1 summarizes the elimination of hormones in
rural wastewaters effected by different types of full-
scale CWs in the last decade. Recent studies found

that the REs of modified CWs (i.e. combination, arti-
ficial aeration, and using baffles) ranged between 90.2%
and 97.4% [33e35]. Many studies have been focused
on the effects of design and operation factors on the
performance of CWs [26]. Based on these findings, a
group of researchers successfully established a model
with which to predict the hormone REs of CWs and
found that area, hydraulic loading rate, organic loading
rate, and hydraulic retention time were the key factors
determining model performance [36]. Furthermore, in
several subsequent publications, they developed a

novel decision tree framework to support decisions
about the design, operation, and performance of CWs
for the removal of 11 steroidal hormones [37].
Advanced treatment processes
Membrane biological reactors
Membrane bioreactors (MBRs) have been applied in
various livestock wastewater treatments designed to
remove refractory organic pollutants [5,38]. This tech-
nology has many advantages, such as a small surface area
footprint, flexibility in operation, high biomass diversity,
and high effluent quality, and it is suitable for use in
rural areas. It has been proven that MBRs can efficiently
www.sciencedirect.com
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Biological technologies for hormone removal in LWW Zhou et al. 3
remove steroids or hormones from wastewater, with the
removal rates of more than 80% [39]. The excellent
efficiencies for removal of hormones by MBRs are
mainly attributed to membrane components. MBRs can
effectively retain high concentrations of activated
sludge with enriched microbial assemblies [5], which
may contain HDMs with acceptable bioactivities, such
as ammonia-oxidizing bacteria [40] and nitrate-

dependent anaerobic methane oxidation bacteria [41].
MBRs may effectively remove hormones from waste-
water and also maintain stable performance with various
environmental factors or operation parameters. Trinh
and van den Akker [42] demonstrated that the total
efficiencies for removal of testosterone, E1, andros-
terone, and E2 in MBR (using microfiltration membrane
modules) did not present significant differences be-
tween summer and winter, although the contribution
ratio of biotransformation decreased slightly in winter.
Researchers also reported that operational parameters

such as flux rate (13e30 L/[m2$h]) and solid retention
time (21 days vs 60 days) did not affect the hormone
removal rates in MBRs with ultrafiltration and micro-
filtration membranes, respectively [43,44]. The previ-
ous studies further demonstrated that MBRs are quite
effective and stable in treating wastewater containing
harmful hormones. To further decrease the hormone
concentrations in the MBR effluents, improvement
measures have been applied. Recently, EE2 removal was
evaluated in an MBR (with a microfiltration membrane)
coupled with reverse osmosis or UV/H2O2 as advanced

oxidation process, and both hybrid processes exhibited
>99% removal rates, whereas MBRs alone showed an
82e90% removal rate [45]. In addition, it has been re-
ported that activated carbon (AC) (including powder
AC [<50 mm in size] and granular AC [100e2400 mm in
size]) coupled with MBRs achieved significantly higher
efficiencies for hormone removal than MBRs alone [46].

Microalgae-based systems
MBSs have been recognized as a novel and green tech-
nology for treating agricultural waste and wastewater;
they can realize both nutrient recycling and removal of

micropollutants [8,47]. MBSs eradicate hormones
mainly via biodegradation [8], although photo-
degradation also occurs in some cases [47,48]. Re-
searchers have already discovered various microalgae
species that degrade hormones, and the related genera
include Chlamydomonas [49], Chlorella [49,50], Desmo-
desmus [49], Haematococcus [50], Microcystis [51], Scene-
desmus [50], and Selenastrum. Some of these species have
been successfully used to eradicate estrogens in waste-
waters, such as biogas slurries [52] and synthetic
wastewater [53]. To enhance treatment performance,

immobilization of microalgae in a matrix (e.g. beads) was
developed, and the efficiency of E2 removal by this
technology reached 85e99% [54]. To date, several
laboratory- or pilot-scale MBSs have the ability to
www.sciencedirect.com
efficiently remove typical steroid estrogens from
different types of wastewater (Table S2). For instance,
an algal-bacterial bioreactor combined with hydrother-
mal processing effectively treated the liquid portion of
animal manure contaminated by three estrogens, and
the removal rates for E1, E2, and E3 were w95%, 94%,
and 89%, respectively [55]. Nevertheless, it should be
noted that too high concentrations of hormones in the

influent of MBSs may hinder efficient functioning of the
system and jeopardize the safety of the algal products
(contaminant residues). Therefore, pretreatment pro-
cesses such as AD are often used to remove some of the
organic micropollutants before introduction into the
MBSs [47,56].

Hormone-degrading microorganisms and
enzymes
As mentioned previously, several biological processes
play important roles in removing hormones from LWW;
thus, it is important to evaluate the properties of mi-
croorganisms and their hormone-degradation capabil-

ities. Recent reviews have comprehensively summarized
the categories of HDMs, their pathways for degradation
of certain hormones and enzymes, and related genes
involved [57e59]. To date, the widely accepted hor-
mone biodegradation mechanisms are (i) metabolism in
which hormones serve as carbon sources for HDMs and
(ii) cometabolism in which enzymes produced by
HDMs degrade hormones by using other energy sources.
For instance, Novosphingobium sp. E2S efficiently de-
grades E2 and uses it to support growth [60]. It is
believed that nitrifying bacteria are capable of comet-

abolizing steroids with the help of the ammonium
monooxygenase enzyme [9]. Furthermore, many en-
zymes with various functions supporting hormone
degradation have been discovered, such as dehydroge-
nase, hydroxylase, cytochrome P450, dioxygenase, and
laccase [9].

Based on currently isolated HDMs and hormone-
degrading enzymes, several hormone removal tech-
nologies using immobilized microbial systems have
been developed [59]. Liu immobilized Novos-
phingobium sp. ARI-1 [61] and Rhodococcus sp. JX-2 [62]

in calcium alginate, and the immobilized microorgan-
isms both presented excellent efficiencies for removal
of estrogen from cow dung. In a recent study, two
HDMs (Rhodococcus zopfii and Pseudomonas putida F1)
were encapsulated in small bioreactor platform cap-
sules, and this approach might lead to practical use in
wastewater treatment [63]. In addition to microbes,
the use of immobilized enzymes (e.g. laccases) con-
stitutes another effective and cost-effective technol-
ogy for realizing practical decontamination of estrogen
with improved catalytic stability, reusability, reduction

of product inhibition, and ease of product separa-
tion [3].
Current Opinion in Environmental Science & Health 2021, 24:100307

www.sciencedirect.com/science/journal/24685844


Table 1

Comparison of five biological technologies in terms of LWW treatment with hormones.

Biological
technologies

Hormone RE Energy consumption Risk of secondary
contamination

Nutrient recycling Suitability for use in rural areas Improvement
approaches for

hormone removal

Composting 40.4%–90%a ~16 kWh/tf [64] Low Producing fertilizer Suitable Applying additives (BC, HDMs, and HA)
AD 14.7–21.8%b 30–50 kWh/t [65] Moderate Producing biogas and

fertilizer (digestate)
Suitable Pretreatment (pasteurization and microwave),

post-treatment (soil infiltration and SFSBR), and
mode switching

CWs 9.0%–100%c Nearly zero Moderate No Suitable /
MBRs 80%–99%d 0.6–2.3 kWh/m3g [66] Unclear No Undetermined /
MBSs 40%–100%e Cultivation: 0.004–1.321

kWh/m3;
Harvesting:
0.0003–2.15
kWh/m3 [67]

Unclear Generating products
with high values

Moderately suitable Pretreatment (AD)

AD, anaerobic digestion; BC, biochar; CW, constructed wetland; HA, humic acid; HDM, hormone-degrading microorganism; LWW, livestock waste and wastewater; MBR, Membrane biological reactor; MBS,
microalgae-based system; RE, removal efficiency; SFSBR, step-fed sequencing batch reactor.
Notes:
a The REs belong to conventional composting without any improvement approaches as shown in Section Composting.
b The REs belong to conventional AD without any improvement approaches as shown in Section Anaerobic digestion.
c The REs are concluded from the references shown in Table S1.
d The REs are concluded from the references shown in Section Membrane biological reactors.
e The REs are concluded from the references shown in Table S2.
f The unit of ‘kWh/t’ is used to quantify the energy consumption to treat livestock waste (solid form).
g The unit of ‘kWh/m3

’ is used to quantify the energy consumption to treat livestock wastewater (liquid form).
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Biological technologies for hormone removal in LWW Zhou et al. 5
Comparison of five bioprocesses
LWW is characterized by high concentrations of organic

pollutants, heavy metals, and various micropollutants.
Therefore, both decontamination and resource recycling
should be taken into account to evaluate the applicability
of technologies for LWW treatment and especially for
hormone control. Specifically, five aspects (see Table 1)
should be considered which are presented as follows:

(1) Hormone RE: The performances of composting
and AD for hormone removal are unstable or even
unsatisfactory in most cases, especially for AD
(only 14.7%e21.8%). To increase hormone REs,

many modified processes such as enhanced
composting and advanced anaerobic digestion were
developed, as described in Sections 2.1 and 2.2.
These improved technologies compensate for the
drawbacks and maintain composting and AD as the
most reliable technologies for LWW treatment.
Unlike the conventional composting and AD, CWs,
MBRs, and MBSs can effectively remove hormones
from LWW.

(2) Energy consumption: The energy consumed in
composting was around 16 kWh/t (including

compost operation, leachate, and odor gas treat-
ment) [64], which is lower than the energy con-
sumption of the AD process (30e50 kWh/t) [65].
CWs are vegetation-based technologies which
consume limited energy during their operation
compared with other technologies. MBRs have high
energy consumption (0.6e2.3 kWh/m3) owing to
the membrane component used in this technology
[66]. MBSs are also energy-consuming technologies,
and the energy consumption of algae cultivation and
harvesting is 0.004e1.321 kWh/m3 and 0.0003e
2.15 kWh/m3, respectively [67].

(3) Risk of secondary contamination: The estrogenicity
of LWW may be enhanced by conventional AD
treatment owing to the transformation of aE2 (with
lower estrogenicity) into E1 (with higher estro-
genicity) under anaerobic conditions [22]. There-
fore, LWW treated by AD may contain hormone
residues that can pose adverse risks to the envi-
ronment. Conversely, the composting process is
operated under oxic conditions, so that the possi-
bility of transformation of E2 into E1 can be spec-

ulated to be limited [9]. CWs can efficiently remove
estrogens, whereas, secondary pollution of ground-
water may occur through the leaching of CWs [5]. In
addition, the risks of secondary contamination in
LWW treated by MBRs and MBSs are still not clear
and need to be studied in the future.

(4) Nutrient recycling: The products of composting and
AD can serve as fertilizers and biogas, which would
realize nutrient and energy recovery from LWW.
Besides, MBSs can generate products with high
values (e.g. biofuel).
www.sciencedirect.com
(5) Suitability for use in rural areas: Composting and AD
have long been applied for livestock waste treatment,
so they are quite suitable in rural areas. CWs are
widely used to treat livestock wastewater in rural
areas because they are inexpensive and simpler to
operate than other technologies. Although they have
a large surface area footprint, this is not a problem in
rural areas. Owing to the high cost in construction
and operation, MBRs may not be economically viable
in undeveloped areas. Nevertheless, the compact
plant structure may provide an advantage for small

livestock farms. Therefore, the applicability of MBRs
in rural areas has not been determined, and this
needs to be studied in the future. The main draw-
back of MBSs is their low tolerance for the organic
load of LWW. As a result, pretreatment (e.g. AD) is
needed to lower the concentrations of organic pol-
lutants in the influent, when MBSs are intended to
be used in rural areas.
Conclusions
Biological processes are major technologies for removal of
hormones from LWW. Composting and AD only partially
remove hormones but can be modified to enhance the
treatment performance. CWs have been successfully
applied for removing hormones with decent REs.
Advancedbiological technologies such asMBRsandMBSs
have been shown to have effective removal capabilities

toward hormones. However, these technologies are not
sufficiently mature to allow widespread application in
livestock farms. Therefore, more pilot-scale and full-scale
experiments are needed in the future. Furthermore,
knowledge of HDMs, including their categories, degra-
dationmechanisms, and active enzymes, has been actively
pursued, and relatedHDM-based technologies have been
introduced. Finally, a comparison of five biological tech-
nologies was presented herein to facilitate evaluation of
their utility for treatment of LWW.
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