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a b s t r a c t

Solid particles can adhere to fluid interfaces, modifying interfacial properties such as the surface
tension and the surface elasticity. We here describe a new simulation method, the Fast Interface
Particle Interaction (FIPI) method, capable of simulating on commodity hardware up to 100k par-
ticles interacting with fluid interfaces of complex morphology. The method is based on resolving
interfacial and hydrodynamic length scales larger than the particle, and model particle-level phe-
nomena with physically consistent algebraic models. For its ability to simulate large numbers of
potentially very small particles, FIPI represents a useful tool for investigating phenomena of particle
adsorption/desorption and particle-induced surface tension modification in problems of froth flotation,
drop/foam stabilisation, Bijelformation and other multiphase systems.
Program summary
Program Title: FIPI
Licensing provisions: GPLv2
Programming language: C++
Nature of problem: Simulation of particle-laden fluid interfaces (3-phase flows)
Solution method: Spectral method
Running time: Up to dozens of hours on a single processor

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Particles suspended in multiphase fluids appear in many ap-
plications, such as froth flotation [1], ‘‘Bijel’’ materials [2,3], food
processing [4], enhanced oil recovery [5] and encapsulation [6]. In
these applications, particles are trapped in the fluid interfaces un-
der the effect of capillarity, forming composite interfaces usually
called particle-laden or particle-covered fluid interfaces [7,8].

The interaction of particles with fluid interfaces occurs over
a wide range of length scales (Fig. 1), from the microscale of
the particles (∼ 10 nm–1 µm) to the mesoscale of the bubbles,
drops, or interfacial structures (∼ 100 µm–1 cm) the particles are
adsorbed to. Developing efficient numerical methods for simulat-
ing such multiscale systems would enable the rational design of
particle-level variables (particle size distribution, contact angle,
etc.), flow conditions (shear rate, large-scale mixing power, etc.),
or external field parameters (strength of magnetic, electric, or
centrifugal forces) towards obtaining desired process outcomes
or material properties.

✩ The review of this paper was arranged by David W. Walker.
∗ Corresponding author at: Department of Process and Energy, Delft

University of Technology, 2628 CB, Delft, The Netherlands.
E-mail address: l.botto@qmul.ac.uk (L. Botto).

However, simulating particle-laden fluid interfaces presents
several challenges [2]. In typical applications the interface is cov-
ered with a large number of particles, so computational efficiency
is important. A significant separation of scales occurs between the
size of particles and the characteristic radius of the curvature of
the fluid interface [9,10]. The interaction of each particle with the
interface can produce interfacial structures that are much smaller
than the particles themselves [11,12]. All these factors contribute
to extremely stringent simulation requirements. One needs to use
small grid sizes to resolve relevant physical features at particle-
level length scales, but large computational domains to simulate
relevant multi-droplet or multi-bubble systems. A computational
approach that enables simulation of realistic length and time
scales is needed.

In the following, the numerical methods currently available
for 3-phase flows with particles are briefly reviewed. Singh and
Joseph [13] carried out the first direct numerical simulation of
spherical particles floating at a fluid interface. They adopted an
approach combining a level-set method for capturing the fluid
interfaces and a distributed Lagrangian multipliers approach for
enforcing the rigid body motion inside the particles. Though
limited to at most 4 particles, their studies have provided insights
into the mechanics of cluster formation under capillary attraction.

https://doi.org/10.1016/j.cpc.2020.107447
0010-4655/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Other authors have used a lattice Boltzmann approach, where the
bounce-back model for resolving solid particles [14] is combined
with a LB model for multiphase fluids [15,16]. With this approach,
several phenomena have been studied, such as the formation of
bicontinuous gels [2], dynamics of the particles suspended in a
drying drop on a substrate [17] and the transition from bijels to
Pickering emulsions [18]. Aland et al. [19] developed a fully con-
tinuum model capable of simulating colloid stabilised fluid inter-
faces. In their method, the surface and bulk colloid concentrations
evolve according to two convection–diffusion equations while
the fluid interface is captured by a phase field method. Jaensson
et al. [20] used a Stokes–Cahn–Hilliard formulation to simulate
particles suspended in two-phase flows. They used a boundary-
fitted mesh to describe the sharp boundary between the particles
and the fluid. Millett and Wang [21] presented a mesoscale sim-
ulation approach that uses a diffuse-interface method to describe
the fluid phases and the solid particles. Their method was used
to simulate the arrest of spinodal decomposition due to colloidal
particles jamming the fluid interfaces.

Most of the simulation approaches described above allocate
a large amount of resources to resolve particle-scale features.
These simulations have enabled a detailed understanding of the
physics of the capillary interaction between solid particles and
fluid interfaces, but are either limited to a small number of
particles (when highly accurate solutions are sought) or computa-
tionally expensive (the main production run in [2] takes around
1 week on a 32-processor IBM p690+ system). If large number
of particles are simulated, the resolution is quite limited, even
using large supercomputers (properly resolving hydrodynamics
alone would require at least 8–10 nodes per particle radius [22],
while most large multi-particle simulations are constrained to
use a small number of grid nodes per particle radius [18]). This
situation raises two questions: is it possible to devise a method
that is computationally efficient while retaining essential physical
features? What are these features?

An important challenge in simulating particle-laden interfaces
is the need of resolving the capillary interactions between each
particle and the fluid interface. A particle that is either adsorbing
or desorbing from a fluid interface creates a characteristic menis-
cus that takes the form of a cylindrical liquid bridge extending
from the particle surface to the plane of the undisturbed fluid
interface [11,23]. This bridge is responsible for the capillary force
between the particle and the interface. The minimum diameter
of this bridge can become much smaller than the particle size
[12,24]. Furthermore, the fluid interface moves along the surface
of the particle as the particle adsorbs to or detaches from the fluid
interface, bringing up the theoretical and numerical challenges of
dealing with the stress singularity at the contact line [25–27]. Is
it always necessary to resolve these features? When the focus is
to accurately compute the capillary interaction between two or
few particles [28,29], or the interaction of one particle with the
fluid interface [13,30], the answer is certainly yes. But for simula-
tions that require calculating collective effects of many particles
on interfacial morphology, an approximated method could be a
better option. In such method the attachment force exerted on
the particle by the fluid interface must be approximated cor-
rectly [31–33] and the force calculated efficiently. If this force is
modelled accurately, the particle will have the correct adsorption
energy and will desorb at the correct value of the normal forces
produced by lateral particle–particle interactions [34,35]. If the
lateral interactions are modelled accurately, the effective surface
stresses (linked to surface tension and surface elasticity) will be
correct [36–38], as we will confirm in the current paper.

In this article we present a simulation method for addressing
problems involving particles suspended in binary fluids. We have
named it the Fast Interface Particle Interaction (FIPI) method.

Fig. 1. A particle-laden fluid interface displays a hierarchy of length scales, from
the size of the particles to the characteristic size of the mesoscale multiphase
structures.

Fig. 2. Structure of the FIPI program showing the input and output relationships
between each module.

This method resolves interfacial structures and hydrodynamics
on length scales much larger than the particle size, and mod-
els particle-level physics with empirical or semi-analytical ex-
pressions. As in point-particle methods widely employed in the
simulation of dispersed flows [39], the hydrodynamic forces are
modelled. A new ingredient in FIPI is that the particle-interface
capillary forces are modelled as well. FIPI combines an Euler-
Lagrangian method for fluid–particle coupling with a diffuse-
interface method for capturing the dynamics of the fluid interface.
The diffuse-interface method has the benefit of handling the
breakup and coalescence of fluid interface easily [40]. In addition,
the phase field variable in the diffuse-interface method provides
information on the local distance of the particle to the fluid inter-
face, from which the capillary force can be calculated efficiently.
In the current implementation we propose preliminary models
for the hydrodynamic and capillary forces. More sophisticated
models, once available, could be implemented easily within the
framework of FIPI.

2. Mathematical formulation

FIPI is composed of three modules, namely FIPI-Interface,
FIPI-Track and FIPI-Fluid, related to interface capturing, particle
tracking and the solution of the fluid momentum equation, re-
spectively. The input and output of each module are illustrated in
Fig. 2: FIPI-Interface provides the location of the fluid interface,
whose information is contained in the phase field variable φ, to
the other two modules; FIPI-Track provides the forcing term fp
due to particles to FIPI-Fluid; FIPI-Fluid provides the fluid velocity
field u to FIPI-Interface and FIPI-Track. The details of each module
will be described in the follows.

FIPI-Interface. The FIPI-Interface module is based on a stan-
dard phase-field method [40,41]. In the phase-field method the
fluid interface has a finite thickness, across which a scalar phase
field variable φ changes continuously. The evolution of φ follows
the Cahn–Hilliard equation
∂φ

∂t
+ u · ∇φ = ∇ · M∇ξ, (1)
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where u is the fluid velocity, M is the mobility parameter (which
we take as a constant [42]), and ξ is the chemical potential. The
chemical potential is defined as the functional derivative of the
total free energy density:

ξ =
∂F
∂φ

. (2)

Following [43] the total free energy density is modelled in FIPI as

F (φ, ∇φ) =
λ

4ϵ2

(
φ2

− 1
)2

+
1
2
λ |∇φ|

2 , (3)

where λ and ϵ are two constant parameters. At steady state and
in the absence of convection, Eq. (1) admits the solution

φ = tanh(
x

√
2ϵ

), (4)

where here x is the coordinate along the direction perpendicular
to the fluid interface. Integrating the free energy density F across
the fluid interface, with φ given by Eq. (4), yields the surface
tension [41]

γ =

∫
+∞

−∞

F (φ, ∇φ)dx =
2
√
2

3
λ

ϵ
. (5)

This is the bare surface tension of the fluid interface. Eq. (4)
shows that the numerical thickness of the fluid interface depends
solely on ϵ. The ratio of λ and ϵ determines the surface tension of
the fluid interface in the absence of the particle (Eq. (5)). In actual
simulations ϵ and λ are chosen based on preliminary tests. The
choice for ϵ is set by two constraints. The value of this parameter
must be large enough so that φ is sufficiently well-resolved across
the fluid interface (i.e., ϵ is set by the grid mesh size). On the other
hand, ϵ must be kept as small as possible to ensure a reasonable
separation of length scales between the fluid interface thickness
and the length scale of the interfacial structure of interest (e.g. the
radius of a drop). After ϵ is chosen, the desired bare surface
tension value is obtained by adjusting λ according to Eq. (5).

In FIPI, the fluid velocity u in Eq. (1) can result from not only
the bare surface tension of fluid interfaces but also the reaction
forces from particles. Although Eq. (4) is derived under the as-
sumption of steady state and u = 0, it can be used to calculate γ
when the diffusion time scale is much smaller than the convective
time scale, R/u ≫ ϵ4/Mλ, with R being the characteristic radius
of fluid interface curvature.

FIPI-Track. Newton’s equation of motion for each particle is

mpu̇p = mpg + F + Fpp, (6)

where u̇p is the particle velocity, mp is the particle mass, F is
the force on the particle due to the surrounding fluids (including
the capillary force exerted by the fluid interface), and Fpp is the
force on the particle due to particle–particle interactions of non-
hydrodynamic origin (e.g., due to electrostatic or contact forces).
The force F can be decomposed as [13]

F =

∮
CL

γncds +

∫
Sp
(−pI + σ) · ndA + Fb, (7)

where nc is the unit vector normal to the contact line and tangent
to the fluid interface, p is the hydrodynamic pressure, σ is the
viscous stress tensor, n is the unit vector normal to the particle
surface Sp and Fb is the buoyancy force. Both nc and n point out
of the particle. The first integral on the right hand of Eq. (7) is
the total force due to the surface tension force acting along the
contact line CL. This term is non-zero only when the particle
is embedded into the fluid interface and the fluid meniscus is
curved. The second integral is the total force due to hydrodynamic
stresses. Because the interface has an infinitesimal thickness, the
decomposition of the total force into a capillary force and a force

due to contact with the fluid molecules outside the interface is
justified. At the molecular level such distinction is blurred for
locations near the fluid interface [44,45]. However, the effect of
such molecular-level physics is likely to be important only for
very small nanoparticles.

In FIPI, the force due to surrounding fluid F is modelled as

F ≈ Fpi
(
φ(xp, t)

)
+ Fh

(
xp, ẋp,u(xp, t)

)
(8)

where Fpi, Fh are algebraic models for the capillary force and the
hydrodynamic drag force. We have omitted the buoyancy force in
the current version of FIPI but the implementation of this force
should be straightforward [13]. Furthermore, particle inertia is
neglected as it is typically very small for colloidal particles in
particle-laden interfaces problems.

Different closures for Fpi and Fh are possible. A suitable model
should be simple (to avoid uncontrollable artefacts produced by
models having too many parameters) and be based on robust
physical considerations. In the following we present the models
of Fpi and Fh incorporated in the current version of FIPI. These
models are parameterised on local variables: the particle velocity
ẋp, the particle position xp and the local phase field variable
φ(xp, t). A model for Fpp will also be described.

Hydrodynamic force model. A solid particle moving in or near
a fluid interface experiences a drag force. The hydrodynamic
drag on a spherical particle translating in the vicinity of a fluid
interface has been studied by several authors [46–49]. The drag
force depends on the viscosities of the two fluids and the distance
of the particle centre from the fluid interface location. Owing to
the need to squeeze fluid out of the gap between the particle and
the fluid interface, the force increases with respect to Stokes drag
expression when the particle translates perpendicularly to the
fluid interface [50,51]. In addition to studies examining particles
moving close to a fluid interface but not touching it, several
investigations have focused on the case of particles completely
embedded in the fluid interface [52–55]. The hydrodynamic drag
force in this case depends on the ratio of the viscosities of two
fluids, and the degree of immersion (which in turn can be mapped
to the contact angle) [56]. For a single particle moving near or
in a fluid interface, the drag force is proportional to the particle
velocity. Hence, the use of a modified Stokes drag coefficient is
an appropriate, although approximate, approach.

In the current version of FIPI, we adopted the following simple
model for the hydrodynamic drag force:

Fh = −6πµafd
(
ẋp − uf (xp, t)

)
, (9)

where uf (xp, t) is the fluid velocity at the particle position, and fd
is a user-specified drag coefficient. In the current implementation
we choose, for simplicity, fd = 1. However, this parameter can be
easily be made a function of the contact angle, particle-interface
distance, viscosity ratio, etc., choosing appropriate expressions
from the literature. To model close range particle–particle in-
teractions, the drag could also be made a function of the local
solid area or volume fractions, as in bulk suspensions [57,58]. The
velocity uf (xp, t) is to be interpreted as the fluid velocity that
would be present at xp if the particle was not there. For cases
in which the total non-hydrodynamic force on the particles is not
too large, we set uf (xp, t) = u(xp, t) (the issue of the self-induced
fluid velocity is discussed in Section 6). Far-field hydrodynamic
interactions between particles are accounted for at the point-
force level, in that u(xp, t) depends on the position of and forces
on all the particles (which are represented as point forces in
the momentum equation). For cases in which the relative inter-
particle velocity is small, but the particle-laden fluid interface is
sheared by a moving fluid, approximate expressions for the drag
force are available for large viscosity ratios [59].
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Fig. 3. Schematic illustrating the definition of contact angle θc , filling angle α,
distortion of the fluid interface h and distance d′ from the particle centre to the
nearest fluid interface passing through the particle.

Capillary force model. The capillary force Fpi =
∮
CL γncds ex-

erted on a spherical particle embedded in a fluid interface results
from the surface tension acting at the three-phase contact line.
When an adsorbed spherical particle is being displaced perpen-
dicularly from a flat fluid interface, this force increases as the
meniscus becomes curved. This capillary force obeys the exact
expression [25]

Fpi = 2πγ a cosα cos (α + θc) , (10)

where θc is the contact angle and α is the filling angle (Fig. 3).
The filling angle is the angle formed between the unperturbed flat
fluid interface and the line connecting the particle centre to the
contact line. This angle measures the wetting area of one fluid on
the surface of the particle and it increases with h as the particle
is being displaced from the fluid interface [11,25].

In FIPI, the boundary conditions at particle surfaces are re-
placed by a force and not enforced explicitly. Furthermore, the
fluid interface (zero level set) is resolved also inside the volume
occupied by the particle, as shown in Fig. 3. As a result, infor-
mation on the values of α and θc is not available. However, it
is possible to model Fpi by using the fact that the capillary force
is, for small displacement, a linear function of the fluid interface
distortion h [60]. In FIPI the distance d′ from the particle centre
to the nearest zero level set can be explicitly measured. Knowing
that d′

∝ α ∝ h is valid for small distortion of the fluid interface,
we can model d′ as

Fpi =

{
fπγd′, if

⏐⏐d′
⏐⏐ < a

0, if
⏐⏐d′
⏐⏐ > a,

(11)

where d′ is the vector pointing from the particle centre to the
fluid interface along the direction of minimal distance, and f is
a nondimensional parameter depending on θc . The choice of f
should satisfy the condition that the maximum energy associated
with the spring force 1

2 fπγ a2 matches the minimum energy
required to detach the particle from the fluid interface πγ a2(1−

|cos θc |)2 [61]. For
⏐⏐d′
⏐⏐ < a, the particle is considered to be

adsorbed to the fluid interface and the capillary force follows
a linear relationship with the distance d′. When

⏐⏐d′
⏐⏐ > a, the

particle is considered detached from the fluid interface and the
capillary force is set to zero.

Particle–particle interaction model. The interaction forces be-
tween colloidal particles in a suspension is often described by
the DLVO theory [62]. The DLVO force is regarded as the sum of
an attractive van der Waals force and a repulsive electric double
layer force. Other non-DLVO forces exist when two particles are
in close range such as the hydration force and the steric force [63].
Modelling these forces requires knowledge of the material prop-
erties of the particles and the surrounding liquid solutions, as well
as other physical–chemical parameters. For the current version of

FIPI, we have decided to adopt a generic linear repulsive force law
to explore the effect of interparticle repulsion on the mechanical
properties of a particle-laden interface, but more complicated
interparticle force model can be used on an ad hoc basis. The
interparticle force model is

Fpp =

{
−kc(r − rc)n if r < rc
0, if r > rc,

(12)

where kc is a stiffness parameter and rc is a cut off distance. This
force can be seen as a relaxed version of the hard sphere contact
force. The ‘‘softness’’ of the contact can be adjusted by changing
the values of kc or rc . Hard sphere contact is recovered by setting
kc to a large value and rc to a value close to 2a. As suggested
in Ref. [64,65] for discrete particle simulations, details of the
particle–particle interaction model should not significantly affect
the collective behaviour of the particles as long as the collisions
between particles are sufficiently regular. This is the case for
interfacial colloids, since in this case the dynamics is damped by
viscosity and furthermore each particle is often interacting with
several neighbouring particles.

FIPI-Fluid. In a fully-resolved simulation, the fluid pressure
and velocity field should be calculated by solving the governing
equations for the fluid subject to the no-slip boundary condition
at the particle surface, with no fluid penetration and continuity
of normal and tangential stresses at the fluid–fluid interface.
However, this particle-resolved approach is computationally very
expensive and brings about the issue of contact line motion at the
surface of the particle. Accurate particle-resolved simulations are
currently feasible only for a few particles and not without strong
assumptions regarding the physics at the contact line [13].

Since the motivation for the development of FIPI is the simu-
lation of a large number of particles, a one-fluid model is here
adopted [66] for the interface, combined with a point-particle
approach to model the effect of the particles. In essence, the
one-fluid and the point-particle approaches are based on the
same idea: it is possible to replace a condition at an internal
boundary with a forcing term in the fluid momentum equation.
Point-particle approaches have been extensively used for particle
suspended in a single phase fluid [39,67,68].

At each time step, the following momentum and continu-
ity equations are solved over the entire computational domain
(assuming Stokes flow conditions):

0 = −∇p + µ∇
2u + fc + fp (13)

and

∇ · u = 0. (14)

The particle forcing term is

fp = −

N∑
j=1

(
F(j)pi + F(j)h

)
δ(x − x(j)p ). (15)

and fc is the capillary force per unit volume exerted by the bare
fluid interface on the fluid (with a surface tension value given by
Eq. (5)). The summation term in Eq. (15), which runs over the
N particles present in the computational domain, contains three-
dimensional Dirac delta functions centred at each particle. The
forces F(j)pi and F(j)h have the form given by Eq. (11) and Eq. (9),
respectively.

The following model is adopted for the volumetric capillary
force [43]:

fc = ξ∇φ =

(
λ

ϵ2 (φ
3
− φ) − λ∇

2φ

)
∇φ. (16)

It can be shown that as ϵ → 0, the capillary force approaches the
value

fc = −nκγ δ(z), (17)
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Fig. 4. Schematic of an arbitrary surface patch δA within a fluid interface S. The
surface stress induced by the particles is obtained by averaging over δA, which
is assumed to contain many particles.

where κ is the local mean curvature of the fluid interface, n is the
unit normal vector pointing towards the convex side, and δ(z) is
the one-dimensional Dirac delta function whose argument z is
the coordinate normal to the fluid interface.

2.1. Modulation of surface stresses in FIPI

By comparing Eqs. (15) and (17) it can be seen that the effect
of the particles and the bare fluid interface are represented as
forcing terms in the fluid momentum equation. The difference is
that the effect of the particles is replaced by Dirac delta func-
tions at discrete spatial locations, and the effect of the bare
fluid interface is modelled as a continuous volumetric surface
tension force, distributed across a finite thickness O(ϵ). In the
actual implementation, the Dirac delta forces from the particles
are smoothed out over the mesh size ∆x.

In the continuum limit, when the interparticle separation is
much smaller than the radius of fluid interface curvature, the
formulation Eqs. (13)(15)(17) produces the correct value of the
effective surface tension of the particle-laden fluid interface. To
demonstrate this, we integrate the forcing terms in Eq. (13) over
a thin pillow box region V (see Fig. 4) surrounding the fluid
interface (as done in Ref. [40]). The lateral size of this region is
assumed to be sufficiently large in comparison to the interparticle
separation.

Using the surface divergence theorem [69], the volume inte-
gral of the capillary force can be written as∫
V
fcdV = −

∫
δA

γnκdA =

∫
C
γ tds, (18)

where δA is the intersection of V with the fluid interface, C is the
boundary of δA, t is the unit vector parallel to the interface and
perpendicular to δA, and n is the unit normal vector perpendic-
ular to the interface and pointing towards the convex side of the
interface. Eq. (18) shows that the integral of the volume force fc ,
acting perpendicularly to the fluid interface, is equivalent to the
line integral of a tangential force. In the case of fc this tangential
force is the surface tension.

Let us now consider the effect of the particles, by taking the
volume integral of the particle forcing term fp. Neglecting the
particle weight for simplicity and using Eqs. (6) and (8), we can
write∫
V
fpdV =

∫
V

N∑
j=1

(
F(j)ppδ(x − x(j)p )

)
dV =

∑
α

∑
β ̸=α

F(αβ)
pp . (19)

In this expression F(αβ)
pp is the interparticle force exerted by parti-

cle β on particle α. The index α runs over the particles comprised

within δA, and the index β runs over all the particles. In analogy
with Eq. (18), the integral of the normal force fp produce by the
particles on the fluid interface corresponds to a tangential force.
This tangential force is due to the lateral interaction between the
particles in δA and all the other particles.

The comparison between Eqs. (18) and (19) suggests that it
should be possible to recast the effect of interparticle interactions
in terms of a line integral of a suitably defined surface stress. This
can be done by noting that [70]

lim
δA→0

1
δA

Np∑
α

Np∑
β ̸=α

F(αβ)
pp = −∇s · τs (20)

where

τs(xs) =
1
2

Np∑
α

Np∑
β ̸=α

F(αβ)
pp

(
yβ
s − yα

s

)
G
(
xs − yα

s

)
. (21)

is the particle-induced surface stress at xs. Here G is a 2D filter
function with support on δA. The limit in Eq. (20) requires δA
to include a sufficient amount of particles so that a continuum
representation is approximately valid. Using the divergence the-
orem [71] and decomposing τs into its isotropic component −ΠsI
and its deviatoric component τ ′, we can write∫
V
(fc + fp)dV =

∫
C
(γ − Πs)tds +

∫
C
τ ′

s · tds, (22)

From this expression, we can see that the effective isotropic
tension of the particle-laden interface is [72]

γeff = γ − Πs, (23)

This expression, which is thermodynamically correct [72], can
be expected from intuition. If Πs is positive, corresponding to a
repulsive interaction between the particles, the effective isotropic
tension is reduced. The tensor τ ′

s embeds information about
anisotropy in the surface tension. For instance, for a pendant
drop covered with particles, the surface tension in the azimuthal
direction is different from the surface tension in the meridional
direction [70]. This surface stress anisotropy is a manifestation of
the shear elasticity of the interface. Both Πs and τ ′

s contribute to
a normal force acting on the fluid interface and produce a Laplace
pressure which corresponds to the integral of the pressure term
in Eq. (13).

3. Numerical implementation

An important advantage of the one-fluid approach for the fluid
interface and the representation of the effect of each particle by
a forcing term is computational efficiency. The solid–fluid and
fluid–fluid interfaces are not treated as internal boundaries hence
fast Eulerian method for single-phase flows can be employed.

A Fourier spectral method [73] is adopted to solve
Eq. (1)(13)(14). With the readily available numerical package
FFTW [74], multi-threading parallelisation of fast Fourier trans-
form (FFT) is easily implemented. Fourier spectral method is
employed because higher order derivatives (up to 4th order in
the Cahn–Hillard equation) can be computed accurately with a
relatively small number of discretisation points. However, we
do not see conceptual issues to implementing FIPI with other
discretisation approaches (LBM, Finite Volume, finite difference,
etc.) that do not require period boundary condition, provided
sufficient resolution can be guaranteed.

With φ(x) =
∫

φ̂(k)e2π ix·kdk, Eq. (1) can be rewritten in
Fourier space as

∂φ̂

∂t
+ {u · ∇φ}k = −k2M

{
λ

ϵ2 (φ
3
− φ)

}
k
− k4Mλφ̂ (24)
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Fig. 5. In FIPI the phase field variable at the particle position φ(xp) is mapped
to the particle-interface distance d.

where k is the wave vector, φ̂ is the phase-field variable in Fourier
space, {}k is the Fourier transform of the nonlinear term inside
bracket and k = |k|.

The time derivative term ∂φ̂

∂t is discretised by a second-order
backward differencing formula (BDF). The fourth-order gradient
term is treated implicitly while the nonlinear terms are treated
explicitly by a two-step Adam–Bashforth (AB) method. The non-
linear terms are calculated first in real space. The discretised
Cahn–Hilliard equation in Fourier space is

3φ̂n+1
− 4φ̂n

+ φ̂n−1

2∆t
= − (2ên − ên−1) − k2M(2f̂ n − f̂ n−1)

− k4Mλφ̂n+1 (25)

ên =

{
un

·

(
−ikφ̂n

)
−k

}
k

(26)

f̂ n =

{
λ

ϵ2

((
φn)3

− φn
)}

k
(27)

where ()−k represents the inverse Fourier transform of the term
inside the bracket.

With the models in Eqs. (8)–(12), the instantaneous velocity
of the particle at the time instant n can be explicitly calculated
from Eq. (6) as

up(tn, xnp) = uf (tn, xnp) +
Fpp(tn, xnp) + Fpi(tn, xnp)

6πµafd
. (28)

The particle–particle interaction force Fpp is calculated in a pair-
wise fashion according to Eq. (12). The cell-list sorting method is
used to find all the pairs within the cutoff distance rc [75].

Evaluating Fpi requires knowledge of the distance d from par-
ticle centre xnp to the nearest fluid interface, according to Eq. (11).
We have found that having the phase variable φ(tn, xnp) at our
disposal is very useful in this respect. Assuming the phase field
profile φ is close to equilibrium, we have φ ≃ φeq = tanh( x

√
2ϵ
)

in the proximity of the fluid interface. An effective fluid interface
region (Fig. 5) can be defined where |d| < 2

√
2ϵ (corresponding

Fig. 6. Schematic of the variables used to project the delta-function forces from
each particle to the surrounding Eulerian grid nodes (for the 2D case).

to |φ| < 0.964). Within this region, the phase field variable at xnp
can be mapped to d. The distance from the centre of particle j to
the local fluid interface can be calculated as

d(j) =

⏐⏐⏐⏐⏐
√
2
2

ϵ log
1 + φ(j)

1 − φ(j)

⏐⏐⏐⏐⏐ . (29)

The distance vector is calculated as d(j)
= d(j)n(j) with n(j)

=

−
φ(j)⏐⏐φ(j)
⏐⏐ ∇φ(x(j), t)⏐⏐∇φ(x(j), t)

⏐⏐ being the unit normal vector.

One requirement for the mapping to be valid is that the
particle radius a must be smaller than the half thickness of the
interfacial region, a < 2

√
2ϵ (because the distance magnitude d(j)

diverges to infinity and ∇φ becomes zeros as φ(j)
→ ±1).

Since φ and ∇φ are only available at the Eulerian grid points,
an interpolation scheme is required to calculate φ(tn, xnp) and
∇φ(tn, xnp). A trilinear interpolation scheme is
adopted following Refs. [76–78]. With reference to Fig. 6, a 2D
version of the interpolation scheme (bilinear) for calculating the
value of φ(tn, xnp) at the particle centre xnp = (xp, yp) reads

φ
(
xp, yp

)
=

(
1 −

xp
∆x

)(
1 −

yp
∆x

)
φ (x0, y0)

+
xp
∆x

(
1 −

yp
∆x

)
φ (x1, y0)

+

(
1 −

xp
∆x

) yp
∆x

φ (x0, y1)

+
xp
∆x

yp
∆x

φ (x1, y1) ,

(30)

where ∆x is the length of the cell edge. The value of ∇φ(xp, yp)
is interpolated in the same way.

To advance the displacement of the particle from the particle
velocity, Heun’s method is adopted. This method is essentially a
two-stage Runge–Kutta method for time marching. In the first
stage, an estimate of the new particle position is calculated as

x̄n+1
p = xnp + δtun

p(t
n, xnp), (31)

where δt is the time step. In the second stage, the final position
of the particle is calculated with second-order accuracy using the
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velocities at xnp and x̄n+1
p :

xn+1
p = xnp +

δt
2

(
up(tn, xnp) + up(tn+1, x̄n+1

p )
)
. (32)

The fluid momentum equation (13) contains two forcing terms:
fc can be readily calculated from φ obtained in FIPI-Interface
according to Eq. (16); The second term includes the hydrody-
namic drag Fh and the capillary force Fpi from all particles. An
extrapolation scheme is required to project the forces acting at
the particle centre to the nearby Eulerian grid points.

As suggested in Ref. [79], only when the weights used in
the projection scheme are equal to the weights used in the
interpolation scheme, the point-particle algorithm is consistent.
An extrapolation scheme, which is exactly the reverse of the
interpolation scheme of Fig. 6 and Eq. (30), is implemented. By
regularising the Dirac delta function in Eq. (13) with the volume
of a computational cell ∆V , a force F(j) from the particle j located
at xp = (xp, yp) is extrapolated onto the nearby Eulerian grid
points as

f(x0, y0) =F(j)
1

∆V
1 − xp

∆x
1 − yp

∆x

f(x1, y0) =F(j)
1

∆V
xp
∆x

1 − yp
∆x

f(x0, y1) =F(j)
1

∆V
1 − xp

∆x
yp
∆x

f(x1, y1) =F(j)
1

∆V
xp
∆x

yp
∆x

. (33)

We can denote all the forcing terms in Eq. (13) as ftotal:

∇p = µ∇
2u + ftotal (34)

This equation is solved by the Fourier spectral method used
in solving the Cahn-Hilliard equation. Applying the divergence
operator to both sides of Eq. (34) and taking account of the
incompressibility condition Eq. (14) yields the Poisson equation

∇
2p = ∇ · ftotal. (35)

Transforming p and ftotal into Fourier space, we have

−k2p̂ = ik · f̂total (36)

which leads to

p̂ = −
ik · f̂total

k2
. (37)

Multiplying both sides of Eq. (37) by ik gives

ikp̂ =

k
(
k · f̂total

)
k2

(38)

where the left hand is the gradient of the pressure in Fourier
space and the right hand is the component of f̂total parallel to
the wave vector k. Transforming Eq. (34) into Fourier space and
combining it with Eq. (38), the fluid velocity field in Fourier space
can be calculated as

û =
1

µk2

⎛⎝f̂total −
k
(
k · f̂total

)
k2

⎞⎠ . (39)

The fluid velocity in physical space can then be calculated by
performing the inverse Fourier transform of û.

When fluid Reynolds number is not small and inertia is not
negligible, instead of Eq. (13), full Navier–Stokes equation with
the forcing terms fc and fp could be adopted and solved in
FIPI-Fluid.

4. Program documentation

The program consists of the following sub-folders:

• src(folder): source code of the program;
• run(folder): intermediate executable files and files gener-

ated during code compilation;
• data(folder): simulation’s output files;
• conf.in(file): input file specifying the simulation parameters;
• makefile(file): makefile used for compiling the code into an

executable.

The output files of the program are saved in the folder ‘‘data’’.
Here the Eulerian fields (phase field and fluid velocity field) at
different time steps, and the files describing the location and size
of the particles are recorded in legacy VTK format, to be readable
with the open-source software ‘‘VTK - The Visualisation Toolkit’’.
The input parameters are set via the script file ‘‘conf .in’’. This file
allows the user to set the following parameters:

nx : number of grid points in x direction
ny : number of grid points in y direction
nz : number of grid points in z direction
delta : grid size
dt : time step
t_end : total number of time steps
gamma : bare surface tension value
S : dimensionless mobility parameter
Np : total number of particles
A : prefactor of the particle-interface capillary force Fpi

(see Eq. (11))
r_p : particle radius
r_c : cutoff distance of the particle–particle interaction
k_n : stiffness constant of the particle–particle interaction
FIPI_Interface : switch to enable the FIPI-Interface module
FIPI_Track : switch to enable the FIPI-Track module
FIPI_Fluid : switch to enable the FIPI-Fluid module

FIPI has been developed for LINUX/UNIX environments. The
program should be compiled with the Make build automation
tool. The program requires the Fast Fourier Transform library
FFTW which should be built locally, with the path of ‘‘include/’’
and ‘‘lib/’’ specified in the makefile. To compile the program,
the user should run the command ‘‘make’’ in the program’s root
folder. The program can be started by executing ‘‘./run/fipi’’.

The initial conditions for the phase field φ and the parti-
cle configuration can be specified in the constructors of ‘‘Field’’
class (located in ‘‘src/field.cpp’’) and ‘‘Group’’ class (located in
‘‘src/group.cpp’’). For numerical stability, it is recommended to
choose a time step ∆t < ϵ3/(3Mγ ).

4.1. Program demonstration

For an immiscible binary fluid that is initially homogeneously
mixed, the mixture will spontaneously undergo phase separa-
tion [80]. The presence of solid particles adsorbed on the fluid
interface can effectively slow down or even stop the phase sep-
aration process [2,18]. Several simulations are shown here to
demonstrate that FIPI can capture this physical phenomenon.

The simulation is set up as follows: within a cubic compu-
tational domain of length L = 2π , the phase field variable φ

is initialised with a uniform probability distribution of values
between −0.1 and 0.1 (this distribution models a homogeneously
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Fig. 7. Iso-surfaces of φ = 0 at (a) t = 0 for all cases, and at the end of the
simulation for (b) case 1, (c) case 2 and (d) case 3 (with particles shown).

Table 1
Modules enabled in the simulations of the phase separation process.
Case Modules enabled

1 FIPI-Interface
2 FIPI-Interface + FIPI-Fluid
3 Full FIPI

mixed binary fluid). The Cahn number Cn = ϵ/L is set to 0.017.
The total simulation time is non-dimensionalised by the char-
acteristic time tc = Lµ/γ , where µ is the viscosity. Periodic
boundary condition is enforced in all directions.

Three cases listed in Table 1 using different FIPI components
have been simulated. The isocontours of φ = 0 at the beginning
of the simulations are shown in Fig. 7(a). Once the simulation
starts, the mixture undergoes phase separation and the structure
of the fluid interface becomes evident. The steady states of the
three simulated cases are shown in Fig. 7(b)–(d). For case 1,
a highly interconnected fluid interface structure is created at
the end of the simulation. For case 2, the two fluid phases are
completely separated and two planar fluid interfaces are formed.
For case 3, 7000 particles with radius a = 0.016L are uniformly
distributed into the computational domain at the beginning of
the simulation, corresponding to a particle volume fraction of
12.2%. The simulation in case 3 is done using all the FIPI modules,
resulting in a stable interconnected fluid structure similar to case
1.

The dynamics of the phase separation process can be quanti-
fied by monitoring the time evolution of the total free energy of
the phase field [42]:

Ftot =

∫
Ω

F , (40)

where the free energy density F is defined in Eq. (3). The time
history of Ftot for the three cases simulated is shown in Fig. 8, to-
gether with the total energy associated with the surface pressure
ΠsA produced by the particles.

Fig. 8. Normalised total free energy versus normalised time during phase
coarsening of a binary mixture laden with particles. The total free energy Ftot
is normalised as F ′

tot = Ftot/(γ L2). The time is normalised by the capillary time
scale tc =

Lµ
γ

as t ′ = t/tc . (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

For all three cases, Ftot starts to decrease after a short time
from the beginning. In case 1 Ftot decreases much more slowly
than in cases 2 and 3, because the dynamics in case 1 is only
driven by the diffusion term in the Cahn-Hilliard equation. By the
end of the simulation (Fig. 7(b)) Ftot did not reach a steady state
value. As the time scale of the simulations with only the diffusion
is large [80], the simulation in case 1 was made not to proceed
further.

In case 2 and 3, the module FIPI-Interface is enabled, there-
fore the phase separation process is further enhanced by the
convective flow produced by the surface tension force. The flow
due to surface tension is essentially a mean curvature flow that
minimises the interfacial area, contributing to the reduction of
the total free energy. This is evidenced by faster decline rates of
Ftot for t ′ > 10 in cases 2 and 3 than in case 1.

The simulations of cases 2 and 3 reach a steady state, with
Ftot reaching a plateau at a higher value in case 3. It is worth to
note that F ′

tot ≈ 2 at the end of the simulation in case 2, exactly
corresponding to the surface free energy of the two planar fluid
interfaces shown in Fig. 7(c). In case 3, the particle monolayer
formed at the fluid interface starts to jam the fluid interface
after the interface area decreases below a critical value. The jam-
ming effect induced by the particles effectively freezes the phase
separation process. On the other hand, as the particles on the
fluid interface become more compressed due to the decreasing
interface area, the surface pressure Πs induced by the monolayer
increases until ΠsA ≈ Ftot (the purple line in Fig. 8), indicating
that the surface tension of the bare fluid interface is balanced
by the surface pressure induced by the particle monolayer. As
a result the capillary force driving the fluid–fluid demixing is
reduced to negligible values.

To test the efficiency of the FIPI, the simulation of the phase
separation of a binary fluid was repeated particles of radius
a = 0.004L. The simulations were performed on a laptop with
i5-6200U processor for 1000 time steps and the number of parti-
cles N ranging from 103 to 106. The scaling of computational time
tsim with N is reported in Fig. 9.

For simulations with N < 105, the order of magnitude of tsim is
approximately constant. This indicates that when the number of
particles is relatively small, the bulk of the computational cost
is due to the solution of the equations in FIPI-Fluid and FIPI-
Interface. When N > 105, the magnitude of tsim increase dramati-
cally. The slope of the log tsim versus logN remains approximately
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Fig. 9. Simulation time versus number of particles in the compu-
tational domain.

Fig. 10. Schematic of meniscus deformation upon application of an external
force F on a particle initially residing on a flat fluid interface.

constant at 1.38. In the current version of FIPI, the scaling of
computational cost with number of particles is thus only slightly
super-linear. As far as the particle-tracking code is concerned,
this good performance is mostly due to the implementation of
a cell-list sorting algorithm.

5. Validation

Due to the complexity of the multiphase problem considered
in the current paper, few validation cases involving many par-
ticles and fluid interfaces can be found in literature. We have
carried out three validation studies. In the first study, we have
simulated the shape of an initially flat fluid interface perturbed
by pulling a single adsorbed particle with a constant force acting
perpendicularly to the fluid interface. The simulation is expected
to produce the analytical solution for this problem. In the second
study, the Laplace pressure of a static spherical drop covered with
repulsive particles is measured in our simulations. We expect
that a repulsive particle–particle interaction produces a surface
pressure that modify the hydrostatic pressure inside the drop.
In the last study, we have reproduced in simulation a pendent
drop experiment, to demonstrate that FIPI can capture the correct
deformation of a drop covered by a repulsive particle monolayer.

5.1. Distortion of a flat fluid interface by a single particle

A particle sitting on an initially flat fluid interface will deform
the interface if the weight of the particle is not negligible. The
profile h(r) of the fluid interface deformed by an attached spheri-
cal particle can be obtained analytically by solving the non-linear
Young–Laplace equation using a perturbation technique [25]:

h(r) = hi + ho − hio, (41)

where

hi(r) = − a cosα cos(α + θc)×

[
ln(

B
4
) + ln

(
r
a

+

√
(
r
a
)2 − cos2 α cos2(α + θc)

)
+ γc

]
,

(42)

ho(r) = − a cosα cos(α + θc)K0(
r
lc
), (43)

hio(r) =a cosα cos(α + θc)
(
ln 2 − ln(

r
lc
) − γc

)
. (44)

Here a is the particle radius, lc =
√

γ /∆ρg is the capillary length,
γc is the Euler constant, B = a/

√
γ /∆ρg is the Bond number and

K0 is the modified Bessel function of zero order.
Here we simulate the deformation of a flat, horizontal fluid

interface when a solid particle embedded in the interface is pulled
away by an external force that is perpendicular to the interface.
A schematic of the problem is shown in Fig. 10. The profile of the
perturbed fluid interface is measured at steady state as a function
of r .

The computational domain is a cubic box of side L = 2π . A
horizontal flat fluid interface is positioned at the centre of the
domain. Periodic boundary condition are enforced along three
orthogonal directions. A neutrally buoyant spherical particle of
radius a = π/32 is placed on the fluid interface at the centre
of the domain. The densities of the fluid above and below the
interface are ρ1 and ρ2 respectively. A constant external force F
is exerted on the particle, pulling it vertically downward. After
the start of the simulation, the particle begins to translate away
from its equilibrium position and deforms the fluid interface. The
time history of the maximum displacement of the fluid interface
is shown in Fig. 11.

For the interfacial region far from the particle r/lc ≫ 1, the
gradient of deformation caused by the particle can be assumed
to be relatively small |∇h|2 ≪ 1, and the linearised form of the
Laplace equation can be obtained [81]:

γ∇
2h = −∆ρgh − Fδ(r). (45)

The axisymmetric solution of this equation is

h(r) = −
F

2πγ
K0

(
r
lc

)
, (46)

This solution is exactly the outer solution given by Eq. (43)
considering the expression of F given by Eq. (10). Since in FIPI
particles are represented by singular forces, the simulated de-
formed fluid interface profile is expected to match Eq. (46) at
large distance from the particle.

At steady state, the profile of the fluid interface was examined
as a function of two dimensionless numbers: the mobility param-
eter S =

√
Mµ/ϵ, which defines the strength of the diffusion in

Cahn-Hilliard equation Eq. (1) and the Cahn number Cn = ϵ/L,
which measures the relative thickness of the fluid interface.

In Fig. 12, the interface profiles produced by the simulations
are plotted against the solution given by Eq. (46). We have kept
Cn = 0.022 constant and varied S by changing the mobility
parameter M . The theoretical solution given by Eq. (46) suggests
that h → ∞ as r → 0. For all values of S, the simulation
results match Eq. (46) very well except near the location of the
particle. This is expected as the singular force from the particle is
regularised by the finite grid size ∆x in FIPI. The solution given by
Eq. (46) is asymptotically approached by decreasing the value of
S. It is evident that a smaller S makes the fluid interface become
more ‘‘flexible’’, while a larger S can smear out the deformation of
the fluid interface. It is not advised to reduce S excessively [40],
as a finite value of S is necessary to ensure that the profile of φ

across the fluid interface does not become too stretched under
shearing flows and remains as close to Eq. (4) as possible.
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Fig. 11. (a) Time evolution of the maximum downward displacement of the
fluid interface caused by exerting a downward force of magnitude F on a single
particle. The displacement of the fluid interface is normalised by h⋆

=
F

2πγ

and the time by t⋆ =
µ

∆ρgh⋆ . The shape of the particle laden interface at three
different time instants is shown in (b)–(d), corresponding to the time instants
A, B, C in (a).

Fig. 12. Fluid interface profiles for different values of the numerical param-
eter S characterising the importance of the diffusion term appearing in the
Cahn-Hilliard equation.

On the other hand, to make the fluid interface profile produced
by simulations approach Eq. (46), Cn must be reduced towards
zero. A small Cn imposes a challenging requirement on spatial
resolution. Because the fluid interface region has to be resolved
with a minimal of 3 ∼ 4 grid points with a phase field method,
the grid spacing has to be reduced together with Cn. In Fig. 13,
we have shown the fluid interface profile from simulations with

Fig. 13. Fluid interface profiles for different values of the Cahn number Cn.

Fig. 14. Simulation set-up for measuring the Laplace pressure ∆p = Pin − Pout
as a function of the surface pressure Πs induced by a homogeneous particle
monolayer.

different values of Cn while keeping S = 0.1. The perturbed fluid
interface is clearly sharper for smaller values of Cn.

5.2. Laplace pressure of a particle-covered drop

Consider a spherical drop of radius R in the absence of inter-
facial particles (Fig. 14). The Laplace pressure, i.e. the pressure
difference between the inside and outside of the drop, is given
by

∆p =
2γ
R

. (47)

Introducing particles on the drop surface will change the sur-
face tension of the drop because the repulsion between the par-
ticles induces a surface pressure Πs > 0 opposing the bare
surface tension. Considering Eq. (23), the modified Young–Laplace
equation is

∆p =
2 (γ − Πs)

R
. (48)

We induce a surface pressure of magnitude ranging from 0
to γ by adjusting the value of kc (in the current study, we set
rc = 5a and kc varies from 0 to 0.5γ ). The corresponding pressure
difference ∆p across the surface of the drop – the pressure dif-
ference is approximately uniform because of the uniform particle
distribution – is measured in the simulations. The results are
reported in Fig. 15. The measured pressure drop is in excellent
agreement with Eq. (48).

It is known that spurious velocities near the fluid interface
are produced due an imbalance of the discretised surface tension
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Fig. 15. Laplace pressure of a spherical drop covered by a homogeneous particle
monolayer vs. particle-induced surface pressure. The solid line is Eq. (48).

force and the inevitable numerical error due to the approximation
of the curvature of the fluid interface. We report here a grid con-
vergence study in which we measured the maximum magnitude
of the spurious fluid velocity near a static drop without particles
as a function of the number of discretisation points. A spherical
drop with radius R = 0.39L is placed at the centre of a cubic
domain of side length L. For this test we set Cn = 0.0156. The
magnitude of the fluid velocity on a plane cutting through the
drop is shown as a colour plot in Fig. 16 for different values
of the number of discretisation points n (here n refers to the
number of nodes along each orthogonal direction). When n = 16
the drop interface is not accurately resolved and the spurious
fluid velocity is significant. The magnitude of the spurious fluid
velocity becomes a negligible fraction of the capillary velocity
uc = γ /µ for n = 64. The ratio umax

s /uc of maximum velocity
magnitude and capillary velocity is plotted against n in Fig. 17.
The fastest convergence is achieved for n < 200 approximately,
while a smaller convergence rate is obtained for larger values of
n. For a reasonably accurate simulation it is necessary to limit
the magnitude of spurious velocity to avoid the particles being
convected out of the fluid interface.

5.3. Effective surface tension of a pendant drop

Pendant-drop tensiometry is a standard method for measu-
ring the surface tension of surfactant-laden or particle-
laden drops [82,83]. In this study, a pendant-drop tensiometry
experiment is reproduced in simulation, using a drop covered
with a monolayer of repulsive particles. The simulation is set
up in a rectangular box of size [2π, 2π, 3π ], discretised into
64 × 64 × 96 nodes. Periodic boundary conditions are enforced
along the three orthogonal directions. At the beginning of the
simulations, a spherical drop of radius R = 0.8π is positioned
at the centre of domain. The drop is held at the top by a ring
of stationary solid particles. The Bond number for the drop Bo =

∆ρgR2/γ , calculated by using the surface tension of the bare fluid
interface, is set to 0.1. At the beginning of the simulations, 5000
solid particles with radius a = 0.02R are uniformly distributed
across the surface of the drop. The surface pressure is modulated
by adjusting kc while keeping rc = 5a in the particle–particle
interaction model, Eq. (12).

Once the simulation starts, the spherical drop starts to deform
under the effect of gravity, before reaching a steady state in which
gravity and the effective surface tension balance each other. At
steady state, we have calculated the effective surface tension of
the drop by two methods:

Fig. 16. Colour map of the ratio us/uc of spurious velocity magnitude us
(evaluated at the fluid interface) and capillary velocity uc = γ /µ on a plane
passing through the drop centre for (a) n = 16, (b) n = 32, (c) n = 64 and (d)
n = 128. Here the drop is free of particles. . (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 17. Convergence of the maximum spurious fluid velocity magnitude on n,
corresponding to the data of Fig. 16. The log functions are base 10.

• The shape fitting technique of Fordham [84,85].
• A direct calculation using Eq. (23) [70].

We performed 1 simulation of a clean pendant drop and 4 simula-
tions of a particle-covered pendant drop with different strengths
of interparticle repulsion.

To illustrate the effect of the particle monolayer, the shape
of the pendant drop at steady state in case 1 and 5 is shown in
Fig. 18. It is evident that the drop is more stretched in case 5, due
to the reduction of surface tension caused by the repulsive par-
ticles covering the drop. The effective surface tension measured
by Fordham’s and the direct calculation methods are reported in
Table 2.

In the case 1, the drop surface is free of particles therefore we
expect Πs = 0 and γeff = γ . The simulation error is negligibly
small, confirming that the combination of FIPI-Fluid and FIPI-
Interface is capable of producing the drop shape consistent with
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Fig. 18. Steady state shape of a pendant drop for (a) Case 1 (b) Case 5.

Table 2
Comparison of surface tension values from by Fordham’s shape-fitting method
and the direct calculation approach.
The effective surface tension

Case Strength of
particle
repulsion

The Shape
fitting
technique

The direct
calculation by
Eq. (23)

Relative error

1 No particles 0.0696 0.07 0.6%
2 kc = 0.1γ 0.0543 0.056 3%
3 kc = 0.2γ 0.0424 0.0419 1.2%
4 kc = 0.3γ 0.0277 0.028 1.0%
5 kc = 0.4γ 0.0175 0.0164 6.7%

the prescribed surface tension value. For case 2 to 5, repulsive
particles fully covering the drop are considered in the simulation.
The relative error between Fordham method and the direct calcu-
lation is well within 5%, except in case 5 when the drop is near the
pinch-off limit. The good comparison between Fordham’s method
and the direct calculation of surface pressure indicates that FIPI
captures the correct deformation of a particle-laden drop with the
modified surface tension of the fluid interface. Note that the time-
dependent deformation of a pendant drop simulated with FIPI has
been analysed in one of our previous publications [70].

6. Unperturbed fluid velocity in the calculation of the hydro-
dynamic drag force

As for other point-particle models, a significant challenge in
FIPI is the prescription of fluid velocity uf (xp, t) appearing in
Eq. (9). This quantity should be interpreted as the fluid velocity
at the location of the particle if the particle was not present.
However, due to two-way coupling between fluid and particles,
the fluid velocity available at the location of the particle during
a FIPI simulation includes the flow disturbance caused by the
particle itself. With the current FIPI implementation, the inclu-
sion of the self-induced fluid velocity induces an error of order
O( F

µ∆x ), where F is the magnitude of the total force on the
particle minus hydrodynamics and capillary forces. Hence taking
uf (xp, t) = u(xp, t) is a reasonably good approximation provided
inter-particle and external forces on the particles are relatively
small. Increasing the length scale over which the delta forcing is
discretised (∆x in the current implementation) can alleviate this
problem but not completely overcome it.

For particles causing strong disturbances to the fluid, a correc-
tion would be needed to subtract the self-induced velocity [86].
In an unbounded single-phase domain, one can obtain the cor-
rect undisturbed fluid velocity by subtracting the contribution
from the local Stokeslet [87]. However, in our case, one should
remove the velocity field induced by a single particle residing
on or near fluid interface when simulated on a grid of size ∆x.

An approximation of such velocity could be obtained by solving
analytically the Stokes problem for a regularised Stokeslet centred
near or in the fluid interface, with ∆x as regularisation parameter
(for the unregularised problem, see Ref. [53]). In the current
implementation of FIPI, we assume uf (xp, t) = 0 for quasi-
hydrostatic simulations and uf (xp, t) ≈ u(xp, t) when the sum
of the external and interparticle forces acting on each particle is
much smaller than the capillary force γ a.

7. Conclusion

We have developed the FIPI method for simulating problems
involving particles suspended in two-phase liquid–liquid systems
and interacting with fluid interfaces of complex morphology. The
method is extremely fast: insightful simulations can be run on a
common desktop or laptop computer in a matter of a few hours.

The simulations with the FIPI method are validated against
three cases. In the first case, the meniscus deformation due to
a single particle embedded in an otherwise flat fluid interface
and acted upon by an external force is simulated and the re-
sults validated against an analytical solution. The meniscus shape
is accurately captured at a sufficient distance from the parti-
cle centre. In the second test, the pressure difference across a
spherical drop covered with repulsive particles is computed. The
results compare well with an expression that includes the surface
pressure induced by the particles. In the last test, we simulate
a pendant drop tensiometry configuration. The effective surface
tension given by FIPI is compared against tabulated values due
to Fordham [85] obtained by fitting the shape of a drop having
uniform surface tension to a numerical solution of the non-linear
Young–Laplace equation. The comparison is satisfactory, suggest-
ing that the shape of the drop simulated by FIPI is quantitatively
correct.

A limitation that we discuss is the conceptual challenge of
prescribing the unperturbed fluid velocity at the particle position
when calculating the drag force. While this limitation is not a
characteristic of FIPI (all point particle models share this issue),
we believe that future improvements of FIPI should address this
aspect.

The FIPI method is highly extensible, and provides an efficient
platform for the study of Pickering emulsions, froth flotation
problems, liquid marbles, etc. While in the current paper we
have focused on monodispersed particle systems, a distribution of
particle sizes can be easily accounted for. Polydispersity in contact
angles can also be accounted for in FIPI, by associating in Eq. (11)
a different parameter f to each particle. Gas–liquid systems could
also be simulated by adopting a phase-field method that can
handle large density ratios [88]. For a gas–liquid system, the
drag force on each particle should be reduced by an amount that
depends on the filling angle [13]. As a practical approximation,
the filling angle could be well approximated by the assigned
contact angle θc , a quantity that depends only on the surface
energies of the liquid–solid, liquid–gas and gas–solid interfaces.
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