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ABSTRACT Reinforcement learning algorithms can solve dynamic decision-making and optimal control
problems. With continuous-valued state and input variables, reinforcement learning algorithms must rely
on function approximators to represent the value function and policy mappings. Commonly used numerical
approximators, such as neural networks or basis function expansions, have two main drawbacks: they are
black-box models offering little insight into the mappings learned, and they require extensive trial and error
tuning of their hyper-parameters. In this paper, we propose a new approach to constructing smooth value
functions in the form of analytic expressions by using symbolic regression. We introduce three off-line
methods for finding value functions based on a state-transition model: symbolic value iteration, symbolic
policy iteration, and a direct solution of the Bellman equation. The methods are illustrated on four nonlinear
control problems: velocity control under friction, one-link and two-link pendulum swing-up, and magnetic
manipulation. The results show that the value functions yield well-performing policies and are compact,
mathematically tractable, and easy to plug into other algorithms. This makes them potentially suitable for
further analysis of the closed-loop system. A comparison with an alternative approach using neural networks
shows that our method outperforms the neural network-based one.

INDEX TERMS Reinforcement learning, value iteration, policy iteration, symbolic regression, genetic
programming, nonlinear optimal control.

I. INTRODUCTION
Reinforcement learning (RL) in continuous-valued state and
input spaces relies on function approximators. Various types
of numerical approximators have been used to represent the
value function and policy mappings: expansions with fixed
or adaptive basis functions [1], [2], regression trees [3], local
linear regression [4], [5], and deep neural networks [6]–[10].

The choice of a suitable approximator, in terms of its
structure and hyperparameters (number, type, and distribu-
tion of the basis functions, number and size of layers in a
neural network, etc.), is an ad hoc step that requires extensive
trial and error tuning. There are no guidelines for designing
a good value-function approximator. A large amount of expert
knowledge and haphazard tuning is required when applying
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RL techniques to continuous-valued problems. In addition,
these approximators are black-box models, yielding limited
insight and possibilities for analysis. Moreover, approaches
based on deep neural networks often suffer from the lack of
reproducibility [11]. Finally, the interpolation properties of
numerical function approximators may adversely affect the
control performance and result in chattering control signals
and steady-state errors [12]. In practice, this often makes
RL inferior to alternative control design methods, despite
the theoretical potential of RL to produce optimal control
policies [13].

To overcome these limitations, we propose a novel
approach that uses symbolic regression (SR) to construct an
analytic representation of the value function automatically.
SR has been used in nonlinear data-driven modeling with
quite impressive results [14]–[17]. To our best knowledge,
there have been no reports in the literature on the use of SR
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for constructing value functions. The closest related research
employs genetic programming for fitting already available
value functions [18], [19]. The authors of [18] use GP to
find an algebraic expression that fits the sample points of a
value function previously obtained via value iteration. The
result in [19] relies on the fact that the so-called threshold
policy for the MDP is known a priori, and GP produces a
description of this threshold policy in terms of the MDP
parameters. In both cases, the task is to fit an algebraic
expression to a set of data sampled from some known value
or policy function. This approach is different from our case,
where the task is to construct the V-function in the form of
an analytic expression based on the raw data sampled by
using a state-transition model of the system to be controlled.
Recently, several other works on generating RL policies
through genetic programming have been published. In [20],
the authors propose a Cartesian Genetic Programming (CGP)
to evolve control policies for Atari games using raw pixel
input and discrete actions. To efficiently cope with the input
format, the CGP uses a function set designed specifically
for computer vision – with list processing, matrix, and vec-
tor operations. Standard tree-based GP using basic arith-
metic and logical functions and operators was proposed
in [21] and [22] to evolve policies in the form of alge-
braic equations for RL problems with continuous state and
action spaces. Experiments on three reinforcement learning
benchmarks show that the method can learn well-performing
policies that are of low complexity compared to the neural
network-based ones.

The paper is organized as follows. Section II describes the
reinforcement learning framework considered in this work.
Section III presents the proposed symbolic methods: sym-
bolic value iteration, symbolic policy iteration, and a direct
solution of the Bellman equation. Section IV presents the
experimental results obtained with the proposed methods
on four nonlinear control problems: velocity control under
nonlinear friction, one-link and two-link pendulum swing-
up, and magnetic manipulation. Performance of the methods
and other related aspects are discussed in Section V. Finally,
Section VI concludes the paper.

II. RL FRAMEWORK
The dynamic system of interest is described by the state
transition function

xk+1 = f (xk , uk ) (1)

with xk , xk+1 ∈ X ⊂ Rn and uk ∈ U ⊂ Rm, where subscript
k denotes discrete time instants. Function f is assumed to
be given, but it does not have to be stated by explicit equa-
tions; it can be, for instance, a generative model given by a
numerical simulation of complex differential equations. The
control goal is specified through a reward function which
assigns a scalar reward rk+1 ∈ R to each state transition
from xk to xk+1:

rk+1 = ρ(xk , uk , xk+1) . (2)

This function is defined by the user and typically calculates
the reward based on the distance of the current state to a
given reference (goal) state xr . The state transition model
and the associated reward function form the Markov decision
process (MDP).

The goal of RL is to find an optimal control policy
π : X → U that for each initial state x0 selects a control
action so that the cumulative discounted reward over time,
called the return, is maximized:

Rπ (x0) =
∞∑
k=0

γ kρ
(
xk , π(xk ), xk+1

)
. (3)

Here γ ∈ (0, 1) is the discount factor. The return is
approximated by the value function V π : X → R
defined as:

V π (x) =
∞∑
k=0

γ kρ
(
xk , π(xk ), xk+1

)
, x0 = x . (4)

An approximation of the optimal V-function, denoted by
V̂ ∗(x), can be computed by solving the Bellman optimality
equation

V̂ ∗(x) = max
u∈U

[
ρ
(
x, u, f (x, u)

)
+ γ V̂ ∗

(
f (x, u)

)]
. (5)

To simplify the notation, we drop the hat and the star
superscript: V (x) will therefore denote the approximately
optimal V-function. Based onV (x), the optimal control action
in any given state x is found as the one that maximizes the
right-hand side of (5):

π (x) = argmax
u∈U

[
ρ
(
x, u, f (x, u)

)
+ γV

(
f (x, u)

)]
. (6)

In this paper, we use the above RL framework based on
V-functions. However, the proposed methods can be applied
to Q-functions as well.1

III. SOLVING BELLMAN EQUATION BY
SYMBOLIC REGRESSION
We employ SR to construct an analytic approximation of
the value function. Symbolic regression is based on genetic
programming, and its purpose is to find an analytic equation
describing given data. Our specific objective is to find an
analytic equation for the value function that satisfies the
Bellman optimality equation (5). SR appears to be a suitable
technique for this task: it does not rely on any prior knowl-
edge on the form of the value function, which is generally
unknown. It also has the potential to provide more compact
representations than, for instance, deep neural networks or
basis function expansion models. In this work, we employ
two different SR methods: a variant of Single Node Genetic
Programming [23]–[26] and a variant of Multi-Gene Genetic
Programming [27]–[29]. In the sequel, we use the term ‘sym-
bolic V-function’ to denote the V-function model constructed
by SR.

1The Q-function Qπ (x, u) approximates the return obtained when first
taking action u in state x and then following policy π until the end of the
episode.
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A. SYMBOLIC REGRESSION
SR methods were reported to perform best when using a lin-
ear combination of nonlinear functions constructed by means
of genetic algorithms [30], [31]. Following this approach,
we define the class of symbolic V-functions as:

V (x) = β0 +
nf∑
i=1

βiϕi(x). (7)

The nonlinear functions ϕi(x), called features, are con-
structed through genetic programming using a predefined
set of elementary functions F specified by the user. These
functions can be nested, and the SR algorithm evolves their
combinations by using standard evolutionary operations such
as mutation. The complexity of the symbolic V-function is
constrained by two user-defined parameters: the maximum
number of features in the symbolic model and the maxi-
mum feature tree depth. Coefficients β are estimated by least
squares, with or without regularization.

B. DATA SET
To apply SR, we first generate a set of nx discrete states
sampled from X :

X = {x1, . . . , xnx } ⊂ X ,
and a set of nu discrete control inputs sampled from U :

U = {u1, . . . , unu} ⊂ U .
The generic training data set for SR is then given by:

D = {d1, . . . , dnx } (8)

where each training sample di is the tuple:

di = 〈xi, xi,1, ri,1, . . . , xi,nu , ri,nu〉

consisting of the state xi ∈ X , all the next states xi,j
obtained by applying in xi all the control inputs uj ∈ U
to the system model (1), and all the corresponding rewards
ri,j = ρ

(
xi, uj, f (xi, uj)

)
.

In the sequel, V denotes the analytic representation of the
value function generated by SR applied to the data set D and
we present three different approaches to solving the Bellman
equation.

C. DIRECT SYMBOLIC SOLUTION OF BELLMAN EQUATION
This approach (direct) evolves the symbolic value func-
tion so that it satisfies (5). The optimization criterion (fitness
function) is the mean-squared error between the left-hand
side and right-hand side of the Bellman equation, i.e., the
Bellman error (residual) over all the training samples in D:

J direct
=

1
nx

nx∑
i=1

[
max
j

(
ri,j + γ V (xi,j)︸ ︷︷ ︸

evolved

)
− V (xi)︸ ︷︷ ︸

evolved

]2
.

(9)

Unfortunately, the problem formulated in this way proved
too hard to be solved by SR, as illustrated later in Section IV.
We hypothesize that this difficulty stems from the fact that

the fitness of the value function to be evolved2 is evaluated
through the complex implicit relation in (9), which is not
a standard regression problem. In other words, no target is
given to which the value function should be fitted. By modi-
fying SR, the problemmight be rendered feasible. Still, in this
paper, we successfully adopt an iterative approach, leading
to the symbolic value iteration and symbolic policy iteration,
as described below.

D. SYMBOLIC VALUE ITERATION
In symbolic value iteration (SVI), the optimal value function
is found iteratively, just like in standard value iteration [32].
In each iteration `, the value function V`−1 from the previous
iteration is used to compute the target for improving the value
function V` in the current iteration. For each state xi ∈ X ,
the target ti,` ∈ R is calculated by evaluating the right-hand-
side of (5):

ti,` = max
u∈U

(
ρ(xi, u, f (xi, u))+ γV`−1

(
f (xi, u)

))
. (10)

Here, the maximization is carried out over the predefined
discrete control action set U . Note that virtually all control
systems use discrete control actions – either due to digital-to-
analog conversion or due to the nature of the actuator itself,
e.g., a stepping motor. As the sensitivity of the control loop to
discrete control actions is low (approximately the reciprocal
of the loop gain), most control loops tolerate even a small
number of control actions, as long as the action corresponding
to the desired goal state is included in the control action
set. In principle, it would also be possible to use numerical
or even symbolic optimization over the original continuous
set U . However, this is computationally more expensive,
as the optimization problem would have to be solved nx times
at the beginning of each iteration. For this reason, we prefer
the maximization over U , as stated in (10). In addition, as the
next states and rewards are pre-computed and provided to the
SVI algorithm in the data set D (8), we can replace (10) by
its computationally more efficient equivalent:

ti,` = max
j

(
ri,j + γV`−1(xi,j)

)
. (11)

Given the target ti,`, an improved value function V` is con-
structed by applying SR with the following fitness function:

J SVI
` =

1
nx

nx∑
i=1

[
ti,`︸︷︷︸
target

− V`(xi)︸ ︷︷ ︸
evolved

]2
. (12)

This fitness function is again the mean-squared Bellman
error. However, as opposed to (9), the above criterion (12)
defines a true regression problem: the target to be fitted is
fixed as it is based on V`−1 from the previous iteration. In the
first iteration, V0 can be initialized either by some suitable
function or as V0(x) = 0 for all x ∈ X , in the absence of a
better initial value. In the latter case, the first target becomes
the largest reward over all the next states.

2The term evolved refers to the fact that the approximator of the given
function is constructed through SR, i.e., evolved using genetic programming.
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In each iteration, the training data set for SR is composed
as follows:

D SVI
` = {d1, . . . , dnx } with di = 〈xi, ti,`〉

i.e., each sample contains the state xi, and the corresponding
target ti,` computed by (11).

FIGURE 1. Symbolic value iteration loop. In each iteration, the target data
for SR are computed using the Bellman equation right-hand side. SR then
improves the value function, and the process repeats.

The SVI procedure terminates once a predefined max-
imum number of iterations ni has been reached. Other
stopping criteria can be employed, such as terminating the
iteration when the following condition is satisfied:

max
i
|V`(xi)− V`−1(xi)| ≤ ε (13)

with ε a user-defined convergence threshold. The resulting
symbolic value iteration algorithm is given in Algorithm 1
and depicted in Figure 1. In each iteration, the SR algorithm
is run for ng generations.

Algorithm 1 Symbolic Value Iteration (SVI)

Input: training data set D, ni
`← 0, V0(x) = 0, ∀x ∈ X
while ` < ni do
`← `+ 1
∀xi ∈ X compute ti,` by using (11)
D SVI
` ← {d1, . . . , dnx } with di = 〈xi, ti,`〉

V`← SymbolicRegression(D SVI
` , J SVI

` )
end
V ← V`
Output: Symbolic value function V

E. SYMBOLIC POLICY ITERATION
The symbolic policy iteration (SPI) algorithm iteratively
improves the V-function estimate. However, rather than using
V`−1 to compute the target in each iteration, we derive from

V`−1 the currently optimal policy and plug it into the Bellman
equation, so eliminating the maximum operator.

Given the value function V`−1 from the previous iteration,
for each state xi ∈ X , the corresponding currently optimal
control action u∗i is computed by:

u∗i = argmax
u∈U

(
ρ(xi, u, f (xi, u))+ γV`−1

(
f (xi, u)

))
, (14)

∀xi ∈ X . Again, the maximization could be carried out over
the original continuous set U , rather than the discrete set U ,
which would incur higher computational costs.

Now, for each state xi and the corresponding optimal con-
trol action u∗i , the optimal next state x∗i and the respective
reward r∗i can be computed:

x∗i = f (xi, u∗i ), r∗i = ρ(xi, u
∗
i , x
∗
i ) . (15)

As the next states and rewards are provided to the SPI
algorithm in the data set D (8), we can replace (14) by its
computationally more efficient equivalent. The index j∗ of the
optimal control action selected from U is found by

j∗ = argmax
j

(
ri,j + γV`−1(xi,j)

)
, (16)

x∗i = xi,j∗ , r∗i = ri,j∗ (17)

with xi,j∗ and ri,j∗ selected from D. Given these samples,
we can now construct the training data set for SR as follows:

D SPI
` = {d1, . . . , dnx } with di = 〈xi, x

∗
i , r
∗
i 〉 .

This means that each sample di contains the state xi,
the currently optimal next state x∗i and the respective
reward r∗i . In each iteration ` of SPI, an improved approxi-
mationV` is sought bymeans of SRwith the following fitness
function:

J SPI
` =

1
nx

nx∑
i=1

(
r∗i︸︷︷︸

target

−[ V`(xi)︸ ︷︷ ︸
evolved

−γ V`(x∗i )︸ ︷︷ ︸
evolved

]
)2
. (18)

The fitness is again themean-squared Bellman error, where
only the currently optimal reward serves as the target for
the difference V`(xi) − γV`(x∗i ), with V` evolved by SR.
The resulting symbolic policy iteration algorithm is given
in Algorithm 2.

F. PERFORMANCE MEASURES FOR EVALUATING
VALUE FUNCTIONS
Note that the convergence of the iterative algorithms is
not necessarily monotonic w.r.t. the mean-squared Bell-
man error, see Figure 3b. This behavior is similar to other
approximation-basedmethods like the fitted Q-iteration algo-
rithm [3]. Therefore, it is not meaningful to retain only the last
solution. Instead, we store the intermediate solutions from all
iterations and use a posteriori analysis to select the best value
function according to the performance measures described
below.
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Algorithm 2 Symbolic Policy Iteration (SPI)

Input: training data set D, ni
`← 0, V0(x) = 0, ∀x ∈ X
while ` < ni do
`← `+ 1
∀xi ∈ X select x∗i and r∗i from D by (16) and (17)
D SPI
` ← {d1, . . . , dnx } with di = 〈xi, x

∗
i , r
∗
i 〉

V`← SymbolicRegression(D SPI
` , J SPI

` )
end
V ← V`
Output: Symbolic value function V

Root mean squared Bellman error (BE) is calcu-
lated over all nx state samples in the training data set D
according to

BE =

√√√√ 1
nx

nx∑
i=1

[
max
j

(
ri,j + γV (xi,j)

)
− V (xi)

]2
.

In the optimal case, the Bellman error is equal to zero.
The following two measures are calculated based on

closed-loop control simulations with the state transition
model (1). The simulations start from ns different initial states
in the set Xinit (ns = |Xinit|) and run for a fixed amount of
time Tsim. At each simulation time step, the optimal control
action is computed according to the argmax policy (6).

Mean discounted return (Rγ ) is calculated over the sim-
ulations from all the initial states in Xinit:

Rγ =
1
ns

ns∑
s=1

Tsim/Ts∑
k=0

γ kρ
(
x(s)k , π(x

(s)
k ), x(s)k+1

)
where (s) denotes the index of the simulation initialized at
x(s)0 ∈ Xinit and Ts is the sampling period. Larger values of Rγ
indicate better performance.

Percentage of successful simulations (S) within all ns
simulations is calculated as

S = 100
nsucc
ns

% ,

where nsucc is the number of successful simulations. A simu-
lation is considered successful if the state x reaches a pre-
defined neighborhood of the goal state and stays there for
the final Tend seconds of the simulation run. The goal state
neighborhood N (xr ) is defined using the neighborhood size
parameter ε ∈ Rn as follows:

N (xr ) =
{
x : |xr,i − xi| ≤ εi,∀i ∈ {1, 2, . . . , n}

}
.

Larger values of S correspond to better performance.

G. EXPERIMENTAL EVALUATION
Each of the three proposed approaches (direct, SVI, and
SPI) was implemented in two variants, one using Single
Node Genetic Programming (SNGP) and the other one using

Multi-Gene Genetic Programming (MGGP). Both SR meth-
ods use a linear transformation of the original input variables.
In SNGP, the weights assigned to the variables are tuned
purely by means of mutation operators, while in MGGP,
the weights are tuned using a gradient method based on the
back-propagation algorithm. A detailed explanation of the
SR algorithms and their parameters is beyond the scope of
this paper. We refer the interested reader for more details on
the implementation of SNGP to [26] and for MGGP to [29].
A specific feature of the SNGP implementation is that it adds
to the raw fitness function (i.e., (9), (12), and (18)) a penalty
for a wrong position of the maximum of the V-function
model. In particular, the raw fitness value is multiplied by
a penalty factor (1 + d), where d grows linearly with the
distance between the actual position of the V-function’s max-
imum and the desired position of the maximum, which is at
the goal state of the given problem.

There are six algorithms in total to be tested:
direct-SNGP,direct-MGGP,SPI-SNGP,SPI-MGGP,
SVI-SNGP and SVI-MGGP. Note, however, that our goal
is not to compare the two symbolic regression algorithms.
Instead, we want to demonstrate that the proposed symbolic
RL methods are general and can be implemented by using
more than one specific SR algorithm.

Each algorithm was run nr = 30 times with the same
parameters but with a different randomization seed. Each
run delivers three winning V-functions, which are the best
ones with respect to Rγ , BE and S, respectively. Statistics
such as the median, minimum, and maximum calculated
over the set of nr respective winner V-functions are used as
performance measures of the particular method (SVI, SPI
and direct) and the SR algorithm (SNGP, MGGP). For
instance, the median of S is calculated as

med
r=1..nr

( max
i=1..ni

(Sr,i)) (19)

where Sr,i denotes the percentage of successful simulations
in iteration i of run r . For the direct method, the above
maximum is calculated over all generations of the SR run.

For comparison purposes, we have calculated a baseline
solution, which is a numerical V-function approximation cal-
culated by the fuzzyV-iteration algorithm [13] with triangular
basis functions.

IV. EXPERIMENTS
This section reports experiments for four nonlinear con-
trol problems: friction compensation, 1-DOF and 2-DOF
pendulum swing-up, and magnetic manipulation. We also
report experiments with neural network-based approximators
(NN approximators) used instead of the symbolic V-function
in the SVI method.

While the chosen test problems have low-dimensional
input and state spaces, they represent challenging control
problems as none of them can be solved by linear control
methods. Moreover, they are challenging even for neural-
network-based reinforcement learning methods, as shown in
our experiments and literature; see, for example [33].
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The parameters of the experiments are listed in Table 8.
The SR methods worked with the following setting. The
number of iterations, ni, was 50 and 30 for SVI and SPI,
respectively. It was smaller for SPI as this method converges
faster. The direct method ran for 50 000 generations (the
method does not iterate in the sense that the SPI and SVI
methods do). The choice of the elementary functions used
by SR to compose the nonlinear features of the models (7)
can significantly affect the performance of the methods.
However, optimizing the elementary function set is not the
main objective of this work. Therefore, we used a rather
small, yet sufficient set of elementary functions consisting of
three basic algebraic operations and three univariate nonlin-
ear functions, F = {∗, +, −, square, cube, bent identity3}.
This set was used by both SR methods on all test problems.
The maximum number of features was set to 10, and the max-
imum depth of feature trees to 7. The remaining parameters
of the experiment are listed in Table 8.

A. FRICTION COMPENSATION
We start by illustrating the working of the proposed methods
on a practically relevant first-order nonlinear motion-control
problem. Many applications require high-precision position
and velocity control, which is often hampered by the presence
of friction. Without proper nonlinear compensation, friction
causes significant tracking errors, stick-slip motion, and limit
cycles. To address these problems, we design a nonlinear
velocity controller for a DC motor with friction by using the
proposed symbolic methods.

The continuous-time system dynamics are given by:

I v̇(t)+ (b+
K 2

R
)v(t)+ Fc

(
v(t), u(t), c

)
=

K
R u(t) (20)

with v(t) and v̇(t) the angular velocity and acceleration,
respectively. The angular velocity varies in the interval
[−10, 10] rad·s−1. The control input u ∈ [−4, 4]V is the
voltage applied to the DC motor and the parameters of the
system are: moment of inertia I = 1.8×10−4 kg·m2, viscous
friction coefficient b = 1.9× 10−5 N·m·s·rad−1, motor con-
stant K = 0.0536N·m·A−1, armature resistance R = 9.5�,
and Coulomb friction coefficient c = 8.5× 10−3N·m.
The Coulomb friction force Fc is modeled as [34]:

Fc
(
v(t), u(t), c

)

=


c if v(t) > 0 or v(t)=0 and u(t)>c

R
K

−c if v(t) < 0 or v(t)=0 and u(t)<−c
R
K

K
R
u(t) if v(t) = 0 and

∣∣∣∣KR u(t)
∣∣∣∣≤c

The discrete-time transitions are obtained by numeri-
cally integrating the continuous-time dynamics using the
fourth-order Runge-Kutta method and a sampling period
Ts = 0.001 s. The state is the velocity, x = v, and the

3https://en.wikipedia.org/wiki/Bent_function

reward function is defined as:

rk+1 = ρ(xk , uk , xk+1) = −
√
|xr − xk | (21)

with xr = 7 rad·s−1 the desired velocity (goal state).
In each of the 30 runs, we selected the best V-function with

respect to S. Figure 2 shows the median values of S calculated
for the V-functions over all 30 runs according to (19). The
SVI method is consistently the best one, followed by SPI
and direct.

TABLE 1. Performance of the symbolic methods on the friction
compensation problem. The performance of the baseline V-function is
Rγ = −42.158, BE = 1.7× 10−5, S = 100 %.

FIGURE 2. Performance on the friction compensation problem:
(a) median percentage of successful simulations S, (b) the number of
runs in which a V-function with S = 100 % was found.

The performance measures Rγ , BE and S are listed
in Table 1. For the S measure, the first two numbers in the
square brackets are the minimum and maximum value, and
the number in parentheses is the frequency of the maximum
value. Interestingly, we found that low BE does not necessar-
ily correlate with a high performance of the V-function in the
control task.

Figure 3 shows examples of well-performing symbolic
V-functions found through SR, compared to a baseline
V-function calculated using the numerical approximator [13].
A closed-loop simulation is presented in Figure 4. Both the
symbolic and baseline V-function yield optimal performance.
The proposed symbolic methods reliably find well-
performing V-functions for the friction compensation prob-
lem. Interestingly, even the direct approach can solve
this problem when using the SNGP algorithm. However,
it finds a well-performing V-function with respect to S only
in approximately one third of the runs.
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FIGURE 3. Examples of typical well-performing V-functions found for the
friction compensation problem. Left: the symbolic V-function compared
to the baseline. Right: the Bellman error.

FIGURE 4. Simulations of the friction compensation problem with the
baseline V-function (left) and the symbolic V-function (right) presented
in Figure 3b). The upper plots show the state trajectory from
x0 = −10 rad·s−1. The lower plots show the corresponding control inputs.
Only the first 0.2 s of the simulation are shown as the variables remain
constant afterward.

B. 1-DOF PENDULUM SWING-UP
The inverted pendulum (denoted as 1-DOF) consists of a
weight of mass m attached to an actuated link that rotates

TABLE 2. Performance of the symbolic methods on the 1-DOF problem.
The performance of the baseline V-function is Rγ = −9.346, BE = 0.0174,
S = 100 %.

in a vertical plane. The available torque is insufficient to
push the pendulum up in a single rotation from many initial
states. Instead, from certain states (e.g., when the pendulum
is pointing down), it needs to be swung back and forth to
gather energy prior to being pushed up and stabilized. The
continuous-time model of the pendulum dynamics is:

α̈ =
1
I
·

[
mgl sin(α)− bα̇ −

K 2

R
α̇ +

K
R
u
]

(22)

where I = 1.91 × 10−4 kg·m2, m = 0.055 kg, g =
9.81m·s−2, l = 0.042m, b = 3 × 10−6N·m·s·rad−1,
K = 0.0536N·m·A−1, R = 9.5�. The angle α varies in
the interval [0, 2π ] rad, with α = π rad pointing up, and
‘wraps around’ so that e.g., a rotation of 5π/2 rad corresponds
to α = π/2 rad. The state vector is x = [α, α̇]>. The
sampling period is Ts = 0.05 s, and the discrete-time transi-
tions are obtained by numerically integrating the continuous-
time dynamics (22) by using the fourth-order Runge-Kutta
method. The control input u is limited to [−2, 2]V, which is
insufficient to push the pendulum up in one go.

The control goal is to stabilize the pendulum in the unstable
equilibrium defined by the goal state xr = [π, 0]>, which is
expressed by the following reward function:

ρ(x, u, f (x, u)) = −|xr − x|>Q (23)

with Q = [0.5, 0]> a weighting vector to adjust the relative
importance of the angle and angular velocity.

Figure 5 and Table 2 present the statistical results obtained
from 30 independent runs. Figure 5 shows that the SVI and
SPI methods achieve comparable performance, while the
direct method fails.
Figure 6 shows an example of a well-performing sym-

bolic V-function found through SR, compared to a baseline
V-function calculated using the numerical approximator [13].
The symbolic V-function is smoother than the numerical
baseline, as seen from the level curves and the state trajectory.
The difference is particularly notable near the goal state,
which is a significant advantage of the proposed method.

Figure 7 shows a simulation with the symbolic V-function
and an experiment with the real system [5]. The trajectory
of the control signal u on the real system shows the typical
bang-bang nature of optimal control, which illustrates that SR
found a near-optimal value function.
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FIGURE 5. Performance on the 1-DOF problem: (a) median S, (b) the
number of runs in which a V-function with S = 100 % was found.

Figure 6 depicts a surface plot of the symbolic V-function
constructed by the SVI-SNGP method. This function is
described by the following analytic expression:

V (x) = 1.7× 10−5(10x2 − 12x1 + 47)(4.3× 10−2x2
−3.5x1 + 11)3 − 7.1× 10−4x2 − 4.6x1 − 8.2× 10−6

(4.3× 10−2x2 − 3.5x1 + 11)3(0.2x1 + 0.3x2 − 0.5)3

−9.8× 10−3(0.4x1 + 0.1x2 − 1.1)6 + 11(0.1x1 − 1.5)3

+11((0.6x1 + 6.3× 10−2x2 − 1.7)2 + 1)0.5 + 8.7× 10−6

((10x2−12x1 + 47)2(4.3× 10−2x2 − 3.5x1 + 11)6 + 1)0.5

+0.3((1.1x1 + 0.4x2 − 3.3)2 + 1)0.5 + (3.9× 10−3

(4.3×10−2x2−3.5x1 + 11)2(0.2x1+ 0.3x2 − 0.5)2 + 1)0.5

+6.5× 10−5((1.2x1 + 14x2 − 10)2(9.1× 10−2x2 − 2.9x1
+0.5((9.1×10−2x2−2.9x1 + 8.3)2 + 1)0.5 + 7.8)2 + 1)0.5

−5.5× 10−2(4.3× 10−2x2 − 3.5x1 + 11)(0.2x1 + 0.3x2
−0.5)−1.7((3.6x1 + 0.4x2 − 11)2 + 1)0.5 − 2((x1 − 3.1)2

+1)0.5 − 1.3× 10−4(1.2x1 + 14x2 − 10)(9.1× 10−2x2
−2.9x1 + 0.5((9.1× 10−2x2 − 2.9x1 + 8.3)2 + 1)0.5

+7.8)+ 23. (24)

This example shows that symbolic V-functions are com-
pact, analytically tractable, and easy to plug into other algo-
rithms. The number of parameters in the example is 100.

C. 2-DOF SWING-UP
The double pendulum (denoted as 2-DOF) is described by the
following continuous-time fourth-order nonlinear model:

M (α)α̈ + C(α, α̇)α + G(α) = u (25)

with α = [α1, α2]> the angular positions of the two links,
u = [u1, u2]> the control input, which are the torques of the
two motors, M (α) the mass matrix, C(α, α̇) the Coriolis and
centrifugal forces matrix and G(α) the gravitational forces
vector. The state vector contains the angles and angular veloc-
ities: x = [α1, α̇1, α2, α̇2]>. The angles α1, α2 vary in the
interval [−π, π) rad and wrap around. The angular velocities
α̇1, α̇2 are restricted to the interval [−2π, 2π ) rad·s−1 using
saturation. MatricesM (α), C(α, α̇) and G(α) are defined by:

M (α) =
[
P1 + P2 + 2P3 cos(α2) P2 + P3 cos(α2)

P2 + P3 cos(α2) P2

]
,

TABLE 3. Double pendulum parameters.

TABLE 4. Results obtained on the 2-DOF problem. The performance of
the baseline V-function is Rγ = −80.884, BE = 8× 10−6, S = 23 %.

TABLE 5. Magnetic manipulation (Magman) system parameters.

C(α, α̇) =
[
b1 − P3α̇2 sin(α2) −P3(α̇1 + α̇2) sin(α2)
P3α̇1 sin(α2) b2

]
,

G(α) =
[
−F1 sin(α1)− F2 sin(α1 + α2)

−F2 sin(α1 + α2)

]
with P1 = m1 c21+m2 l21+I1, P2 = m2 c22+I2, P3 = m2 l1 c2,
F1 = (m1 c1 + m2 l2)g and F2 = m2c2 g. The meaning
and values of the system parameters are given in Table 3.
The transition function f (x, u) is obtained by numerically
integrating (25) using the fourth-order Runge-Kutta method.
The sampling period is Ts = 0.01 s.
The control goal is to stabilize the two links in the upper

equilibrium, which is expressed by the following quadratic
reward function:

ρ(x, u, f (x, u)) = −(xr − x)>Q(xr − x) (26)

with the desired goal state xr = [0, 0, 0, 0]> and Q = diag
([1, 0, 1.2, 0]) a weighting matrix to specify the relative
importance of the angles and angular velocities.

Figure 8 and Table 4 present the statistical results obtained
from 30 independent runs.

D. MAGNETIC MANIPULATION
Magnetic manipulation has several advantages compared to
traditional robotic manipulation approaches. It is contact-
less, which opens new possibilities for actuation on a micro
scale and in environments where it is not possible to use
conventional actuators. In addition, magnetic manipulation is

139704 VOLUME 9, 2021



J. Kubalík et al.: Symbolic Regression Methods for RL

FIGURE 6. Baseline and symbolic V-function produced by the SVI-SNGP method on the 1-DOF problem. The symbolic
V-function is smoother than the numerical baseline V-function, which can be seen from the level curves and the state
trajectory, particularly near the goal state.

FIGURE 7. An example of a well-performing symbolic V-function found
with the SVI-SNGP method for the 1-DOF problem, used in a
simulation (left) and on the real system (right). The performance of the
SVI method is near-optimal both in simulations and in real experiments.

not constrained by the robot arm morphology, and it is less
constrained by obstacles.

A schematic of a magnetic manipulation setup [35] with
two coils is shown in Figure 9. A steel ball freely rolls on a
rail mounted above two electromagnets positioned at 0.025m
and 0.05m. The current through the coils is controlled to

FIGURE 8. Performance on the 2-DOF problem: a) median S, b) the
number of runs, out of 30, in which a V-function achieving S = 100 % was
found.

FIGURE 9. Magman schematic.

dynamically shape the magnetic field above the magnets and
so to accurately and quickly position the ball at a desired
setpoint.
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The horizontal acceleration of the ball is given by:

ÿ = −
b
m
ẏ+

1
m

2∑
i=1

g(y, i) ui (27)

with

g(y, i) =
−c1 (y− 0.025i)(
(y− 0.025i)2 + c2

)3 . (28)

Here, y denotes the position of the ball, ẏ its velocity and
ÿ the acceleration. With ui the current through coil i, g(y, i)
is the nonlinear magnetic force equation, m the ball mass,
and b the viscous friction of the ball on the rail. The model
parameters are listed in Table 5.

State x is given by the position and velocity of the ball.
The control goal is to stabilize the ball at the goal state
xr = [0.01, 0]. The reward function is defined by:

ρ(x, u, f (x, u)) = −(xr − x)>Q(xr − x) (29)

with the matrix Q = diag([5, 0]) specifying the relative
importance of the ball’s position and velocity.

Figure 12 and Table 6 present the statistical results obtained
from 30 independent runs. Figure 10 shows an example
of a well-performing symbolic V-function found through
SR, compared to the baseline V-function with basis func-
tions [13]. The symbolic V-function is smoother and it has
only 77 parameters compared to 729 parameters of the basis-
functions approximator.

TABLE 6. Results obtained on the Magman problem. The performance of
the baseline V-function is Rγ = −0.0097, BE = 1.87× 10−4, S = 100 %.

The state and control action trajectories simulated with
the symbolic and baseline V-functions from Figure 10 are
presented in Figure 11. The symbolic one performs well;
however, the way it approaches the goal state is suboptimal.
This result demonstrates the trade-off between the complexity
and the smoothness of the V-function.

E. VALUE ITERATION WITH NEURAL
NETWORK APPROXIMATOR
Other types of V-function representations than the symbolic
and basis-function ones can be used. Here, we show an analy-
sis of neural network-based approximators when plugged into
the V-iteration method. We used the Matlab implementation
of the feed-forward neural network, the fitnet function.

Neural networks have many (hyper)parameters that must
be tuned to solve a particular problem. To provide a reason-
ably fair analysis, we tested the neural networks with various
topologies and settings of two learning control parameters.
Four topologies with two hidden layers having 8, 12, 20, and
42 neurons in each of them were tested. These topologies
represent models of different complexity with roughly 100,
200, 500, and 2000 parameters to be tuned (we use W to
denote the complexity). The other two control parameters are
the maximum number of training epochs before the training
is stopped, E ∈ {1000, 2000, 5000, 10000}, and the maxi-
mum number of validation checks before the training stops,
F ∈ {20, 50}. In each SVI iteration, the training data set is
randomly split into training and validation sets, and the neural
network training stops when there is no improvement in the
validation performance for the last F training epochs. The
hidden layers’ neurons used the hyperbolic tangent activation
function and the output neuron the pure linear activation
function. The gradient descent with momentum and adaptive
learning rate backpropagation, the traingdx method, was
used to train the network’s weights.

For each control problem, the NN approximators were
testedwith all 32 combinations of the above hyperparameters.
The results are summarized in Table 7. Only the S perfor-
mance metric, as the most important one, is used to assess
the NN approximators’ performance. The results for the best
performing configuration [E , F] in terms of the number of
runs that produced a 100% correctly working V-function are
presented for each NN approximator’s complexityW .

V. DISCUSSION
A. PERFORMANCE OF METHODS
The SPI and SVI methods are able to produce V-functions
allowing to successfully solve the underlying control task
(indicated by the maximum value of S equal to 100%) for
all the problems tested. They also clearly outperform the
direct method. The best performance was observed on
the 1-DOF problem (SVI-SNGP and SVI-MGGP gener-
ate 28 and 29 V-functions with S = 100%, respectively)
and the Magman (both SPI-SNGP and SVI-SNGP gener-
ate 30 V-functions with S = 100%). However, we observe
MGGP isworse than SNGP, particularlywhen used inSPI on
the 1-DOF and Magman problems and in SVI on Magman.
This can be attributed to the fact thatMGGP does not penalize
for a misplacement of the maximum of the V-function model.
Note that a wrong position of the V-function’s maximum
might prevent reaching the goal state.

The performance of all methods was significantly
worse on the 2-DOF problem where the SR methods
found a V-function that works perfectly in simulations
(i.e., S = 100%) in 2 to 5 runs out of 30. The baseline
numerical V-function exhibited even worse performance as
only 3 out of all simulations started from 13 initial states
successfully ended up in the neighborhood of the goal state
(i.e., S = 23%). That is a much lower success rate than the
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FIGURE 10. Baseline and symbolic V-function produced by the SVI-SNGP method on the Magman problem. The
symbolic V-function is smoother than the numerical baseline V-function, and it performs the control task well.
However, the way of approaching the goal state by using the symbolic V-function is inferior to the trajectory generated
with the baseline V-function. This example illustrates the trade-off between the complexity of the V-function and the
ability of the algorithm to find the intricate details on the V-function surface that matter for the performance.

TABLE 7. Performance of neural network-based V-function approximators. The S performance metric is presented for the best neural network
configuration [E , F ] per approximator’s complexity W . For the sake of easy comparison, the results obtained with SNGP and MGGP are copied from
Table 2, Table 4, and Table 6.

median success rate obtained with the SR methods. This can
be attributed to the rather sparse coverage of the state space
since the approximator was constructed using a regular grid
of 11×11×11×11 triangular basis functions. Note, however,
that sampling the state space by using a coarse grid is often
necessary for higher-dimensional problems. The number of
samples grows exponentially with the state space dimension,
leading to prohibitive memory and computational demands
for fine grids. The results show that the SR methods are
able to generate reliable results even if only sparsely sampled
training data are available.

Interestingly, the direct method implemented with
SNGP was able to find several perfect V-functions with

respect to S on the Magman. On the contrary, it completely
failed to find such a V-function on the 2-DOF and even on
the 1-DOF problem. We observed that although the 1-DOF
and Magman systems both have a 2D state space, the 1-DOF
problem is harder for the symbolic methods in the sense that
the V-function has to be very precise in certain regions of the
state space to allow for successful closed-loop control. This
is not the case in the Magman problem, where V-functions
that only roughly approximate the optimal V-function can
perform well.

Overall, the two SR methods, SNGP and MGGP, per-
formed well, although SNGP was better on the 1-DOF
and Magman problem. Note, however, that a thorough
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TABLE 8. Experiment parameters.

FIGURE 11. Simulations with the baseline V-function (left) and the
symbolic V-function (right) found with the SVI-SNGP method on the
Magman problem.

comparison of SR methods was not a primary goal of the
experiments.We have also not tuned the control parameters of
the algorithms at all, and it is quite likely that if the parameters
of the algorithms were optimized, their performance would
improve.

B. COMPARISON WITH NEURAL NETWORK-BASED
APPROXIMATORS
NN approximators worked best on the 1-DOF problem,
where they achieved performance comparable to the SR
methods. Here, larger networks worked slightly better than
the smaller ones as they exhibited more stable performance
across all possible configurations tested.

FIGURE 12. Performance on the Magman problem: a) median S, b) the
number of runs, out of 30, in which a V-function achieving S = 100 % was
found.

On the 2-DOF problem, the most difficult one, the best
NN approximator was able to produce a V-function with
S = 100% in 3 runs out of 30. Again, larger networks learn-
ing for a higher number of epochs performed slightly better
than the smaller ones. However, the SR methods are signifi-
cantly better than the neural networks in the median S value,
which is 54% for SNGP and 69% for MGGP, compared
to 0% for the neural networks. This means that the SR
methods were able to deliver V-functions working correctly
for more than 50% of the ns initial states in at least 15 runs.
NN approximators are much worse in this respect as only
up to 10 runs ended up with non-zero (mostly much smaller
than 50%) S metric. Interestingly, a significantly larger net-
work topology with W = 2000 did not lead to performance
improvement.

On the Magman problem, the overall best neural network
performance was observed for W = 100. Here, the neural
networks worked comparably with MGGP. Both methods
were much worse than SNGP in the median S value and the
number of runs producing 100% correct V-function. Interest-
ingly, larger NN topologies only worsened the performance.
Like theMGGP, theNN approximator does not penalizemod-
els for an incorrectly positioned maximum. In fact, it is not
possible to incorporate this kind of desired model’s properties
into the gradient-based learning algorithm we used.
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To conclude, this analysis shows that the SR methods,
especially SNGP, outperform the NN approximators. Even
more so because the parameters of the NN approximators
were tuned for each individual control problem, while the SR
methods were run with the same setting on all the problems.

C. NUMBER OF PARAMETERS
One of the advantages of the proposed symbolic methods
is the compactness of the value functions, which can be
demonstrated, for instance, on the 1-DOF problem. The sym-
bolic value function found by using the SVI-SNGP method
(Figure 6, right) has 100 free parameters, while the base-
line numerically approximated value function has 961 free
parameters.

D. EASE OF USE
The proposedmethods do not require a large amount of expert
knowledge in order to be applied to the particular problem at
hand. The main parameters of the GP method are the set of
elementary functions that are sufficient for creating diverse
nonlinear features and the maximum complexity of the mod-
els. It is not difficult to choose these parameters. In this work,
we used a rather small function set consisting of three simple
arithmetical operators {∗, +, −} and three univariate func-
tions {square, cube, bent identity}. Depending on the prob-
lem, the function set can be arbitrarily enriched, for example,
by adding trigonometric functions. Furthermore, it is easy to
use additional prior knowledge and constraints in SRmethods
to generate models with desired properties, see [36], [37].

The complexity of the evolved V-functions is defined in
terms of the maximum number of features and their maxi-
mum depth. We used the maximum feature depth of 7 and
the maximum number of features of 10. However, a heuristic
guideline for setting up these parameters is that if more
complex models are needed, then this could be effectively
achieved by increasing the number of features rather than
by increasing the maximum feature’s depth. There are two
reasons for that, (1) the maximum depth of 7 is sufficient
to represent complex nonlinear features, and (2) keeping
a rather small feature’s depth prevents from uncontrolled
bloat of evolved expressions that is a severe issue in genetic
programming [38].

Although the heuristics mentioned above can guide the set-
ting of the parameters to achieve better results, the methods’
performance is not particularly sensitive to the precise choice
of these parameters. Neither are the proposedmethods depen-
dent on any particular SR algorithm. This was demonstrated
while testing the methods with two different GP algorithms
that are conceptually very different and have a different set
of control parameters. Both GP algorithms were run with
rather standard parameter settings inspired by theworks using
these algorithms for other problems. No parameter tuningwas
performed in this work. In principle, hyperparameter tuning
algorithms can be applied to SR. However, these approaches
are extremely computationally expensive.

E. POST-PROCESSING AND ANALYSIS
Models in the form of analytic expressions are more expres-
sive than, for example, the weights of neural networks and are
amenable to further analysis. One can verify properties of the
model, such as monotonicity on a specific interval, positions
of extremes, symmetry w.r.t. input variables, or other domain-
specific properties. Approaches based on satisfiability mod-
ulo theory solvers have been used for this kind of formal
constraint verification in the literature [37].

Furthermore, the contribution of the individual features to
the overall performance of the analytic V-function can be
assessed and used to select the most significant features by
using, for example, backward elimination. Over-simplified
models can be further refined by adding new features to
improve the current model’s accuracy. This is hard to do with
numerical approximators such as neural networks or basis
function expansions.

Finally, given a moderate number of internal parameters,
it is possible to efficiently fine-tune them using global opti-
mization techniques such as pattern search [39] and evolution
strategies [40], [41].

F. COMPUTATIONAL COMPLEXITY
The time needed for a single run of the SVI, SPI or direct
method ranges from several minutes for the illustrative exam-
ple to around 24 hours for the 2-DOF problem on a standard
desktop PC. The running time of the algorithm increases
linearly with the size of the training data. However, the size
of the training data set may grow exponentially with the
state space dimension. In this article, we have generated the
data on a regular grid. Other data generation methods are
part of our future research. For high-dimensional problems,
SR has the potential to be computationally more efficient
than numerical approximation methods such as deep neural
networks.

VI. CONCLUSION
We have proposed three methods based on SR to construct an
analytic approximation of the V-function in a Markov deci-
sion process. The methods were experimentally evaluated on
four nonlinear control problems: one first-order system, two
second-order systems, and one fourth-order system.

The main advantage of the proposed approach is that it
produces smooth, compact V-functions, even if only sparsely
sampled training data are available. The models produced are
mathematically tractable and easy to analyze. The number
of their parameters is an order of magnitude smaller than
in a basis-function approximator. The control performance
in simulations and experiments on a real setup is excellent.
Moreover, the approximator in the form of a set of ana-
lytic expressions allows for postprocessing and fine-tuning.
It can also be easily reused within and plugged into other
algorithms. For example, smooth policy derivation meth-
ods exploit the analytic nature of the symbolic V-function
model [12].
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No parameter tuningwas used for the SRmethods.We con-
sider it as an essential advantage of SR methods that they
work well without any particular tuning. This contrasts with,
e.g., deep neural network methods that often require substan-
tial tuning before one gets them even to converge in a given
RL problem. The most significant current limitation of the
approach is its high computational complexity.

In our future work, we will evaluate the method on higher-
dimensional problems, where we expect a considerable ben-
efit over numerical approximators in terms of computational
complexity. To this end, we will investigate smart methods
for generating the training data. We will also examine the
use of input–output models instead of state-space models
and closed-loop stability analysis methods for symbolic value
functions. We will also develop techniques to incremen-
tally control the complexity of the symbolic value function
depending on its performance.
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