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Summary

The work in this thesis focuses on potential ways to bring a macroscopic mechanical
resonator in a classical environment into the quantum regime with integrated cavity
optomechanics.

Chapter 1 introduces the long term goal, bringing a “classical” mechanical res-
onator into the quantum regime with an integrated optomechanical system. It
includes a general overview to cavity optomechanics and integrated structures. It
also shows the main challenges (or ways) to achieve the goal, namely, weaken-
ing the coupling to the environment and enhancing the interaction between optics
and the mechanical resonator. The work in this thesis is focused on tackling these
challenges.

Chapter 2 gives a general overview of the related theories. It includes theories in
optomechanics, measurements, and the calculation of the mechanical quality factor.
It gives a more detailed description of the challenges, and the ways to handle them.

Chapter 3 contains the first attempt on reducing the coupling to the environment
while keeping a large optmechanical interaction. A long string with phononic struc-
tures and a fishbone-shape geometry is designed and fabricated. Measurement-
based feedback cooling is performed to reduce phonon number to around 27 at
room temperature.

Chapter 4 describes a novel device fabrication technique that allows a large
coupling to the out-of-plane motion of a mechanical resonator. It is used to form
on-chip optomechanical system with a mechanical structure having a high-Q out-
of-plane fundamental mode. The mechanical mode is cooled to have a phonon
number of 22.

Chapter 5 proposes a coherent feedback scheme targeting at the sideband un-
resolved regime, motivated by realistic integrated devices with macroscopic me-
chanical resonators. It shows that it is possible to cool the mechanical resonator,
and to generate and verify entanglement between the mechanical resonator and
photons.

Chapter 6 concludes the thesis. It also includes outlooks, such as potential chal-
lenges and solutions, to bring the classical mechanical resonator into the quantum
regime.

vii





1
Introduction

1.1. Classical mechanical resonators approaching the
quantum regime

The theory of quantum mechanics is one of the most far-reaching developments
in physics. It has shown great power in explaining different phenomena of the
nature.[1, 2] It also leads to lots of applications, many of which are extremely
important in the society today.[3–5] However, though quantum physics is in general
a very universal theory, the scale matters in observing and making use of its unique
features.[6]

At the same time, mechanical resonators have attracted great interest. They
are in general versatile platforms that can be used in many applications, such as
acceleration sensing[7–10] which is already in part of our daily life, studying the
effect of mass and gravity[11, 12] which is important in understanding the na-
ture, and converting information carrier from one form to another[13–15] which
potentially leads to novel future applications. These mechanical resonators and the
environment they contact with are usually outside the typical regime where quan-
tum theory is necessarily involved, and thus the “classical” in the title. They are
big and heavy, and they consist of innumerable number of atoms. They also have
low frequencies, where the characteristic energy scale in quantum mechanics (ℏ𝜔)
is negligible comparing to the thermal energy scale (𝑘B𝑇) in realistic conditions.
These issues impose restrictions on their usages.

Bringing a macroscopic mechanical resonators into the quantum regime is thus
interesting. Firstly, quantum mechanics gives fundamental limits to the perfor-
mance of the mechanical resonators, such as the sensitivity[16]. Bringing them
into the quantum regime already implies improvements of the performance. Fur-
thermore, the performance limit can sometime be tweaked, such as by introducing
squeezing, entanglement or other quantum resources, in a quantum mechanical

1
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way.[17–19]1 Besides sensing, it enables the usage of these mechanical resonators
in quantum applications directly, such as in a quantum network[13, 21] and in
studying the unknowns in quantum mechanics[11]. In this thesis, much work has
been devoted into cooling a mechanical resonator at room temperature. Preparing
it very close to the motional quantum ground state where the phonon occupation
is below 1, though not achieved within this thesis, marks a first step towards many
quantum applications.

1.2. Cavity optomechanics with integrated devices
Having a bare mechanical resonator is not useful without the ability to control and
measure. Ideally, the controls and the measurements should be accurate, and
the disturbance to the mechanical resonator should be minimized. Coupling the
mechanical resonators to photons provides a way to control and measure to a
very precise level. A photon carries momentum, which can “kick” the mechanical
resonator. Furthermore, photons being used typically have a very high frequency.
A widely used frequency in the industry and the laboratory is 200 THz. They are
naturally quantum objects due to their energy scale, making them compatible to the
goal of exploring quantum mechanics with the “classical” mechanical resonators.

An interesting and widely-used scheme to realize the coupling is to build an
optical cavity (cavity optomechanics). With the optical cavity, the interaction is
enhanced, and novel phenomena can be introduced by the optical cavity.[22, 23]
Ground-breaking experiments have been preformed in such a configuration, includ-
ing the gravitational wave detection[24]. There are many ways to realize such an
optomechanical system,[22] and lots of efforts have been invested on fully inte-
grated structures. They typically allow a very large coupling between photons and
a mechanical resonator. They are also easy to operate, a key feature in many prac-
tical applications. Thanks to the development of the micro-fabrication techniques,
they are also straightforward to be fabricated even at a large scale.

1.3. Challenges
To date, most of the quantum experiments are in a regime where the mass is small,
the length scale is small, and the frequency is high. However, a classical mechanical
resonator is typically in a different regime with different scales. How to push the
macroscopic mechanical resonator towards the quantum regime?

Decoherence is the key.[25] A realistic mechanical resonator cannot be fully iso-
lated. It is an open system and it couples to the environment. However, we have
no interest on the environment, it is not possible to take the environment into ac-
count either. The crucial part is thus weakening the link between the mechanical
resonator and the uninteresting environment. It is then possible to have a ”classi-
cal” mechanical resonator that is capable to work in the quantum regime. However,

1Throughout this thesis, I will in general use ”quantum limited” to refer to the applications using only
classical methods. The correspondence in optics is, for example, a measurement using the coherent
state of light. For ”quantum enhanced”, I refer to any methods that are tweaked using quantum
resources. An example is the use of ”N00N state”. [18, 20]



1.4. Outline of this thesis

1

3

no matter how small the interaction with the environment is, decoherence due to
the environment eventually happens. We should limit the time of an experiment.
Controls and measurements should be finished well before its decoherence. Also,
we do not want excess decoherence from the controls and measurements. There-
fore, it requires that the controls and measurements to the mechanical resonator
should be efficient and precise.

At this point, it worth emphasizing the key requirements of the whole system.

• The coupling to the environment should be weak.

• Controls and measurements should be precise, efficient and fast.

Fulfilling these two requirements is challenging. It makes up a great part of the
work in the community[22, 23], including this thesis. Great progress has been
made in the recent years. Further improvements, however, are still needed and
demanding.

1.4. Outline of this thesis
In this work, I explore ways to tackle the aforementioned challenges, aiming at
bringing the “classical” mechanical resonator into the quantum regime with fully
integrated optomechanical systems. I acknowledge that it is a big and challenging
goal, and continuous efforts are required. Achieving this goal, to any extend, is not
the intention of this work. I, however, believe that it is still a step forward.

In chapter 2, I sketch the general theory involved in this work. I address how
to quantify the two aforementioned requirements. It also includes the basis of
optomechanics, some theories for measurements, and methods in evaluating the
dissipation of the mechanical resonator. In chapter 3, I introduce our first gener-
ation of devices. They significantly reduce the coupling to the environment. We
show a cooling of the mechanical resonator to 27 phonons at room temperature. In
chapter 4, I introduce a novel way to fabricate integrated optomechanical device,
which potentially allows having a cleaner system while maintaining a low coupling
to the environment. We perform cooling again, and achieve a phonon number of 22
at room temperature. This type of system has an issue that many optomechanical
protocols are not applicable. In chapter 5, I propose a new experimental scheme
which potentially allows using these originally incompatible protocols.





2
Theory and methods

In this chapter I introduce general theories andmethods involved in this work.
It includes some basis of optomechanics, the ways to evaluate and charac-
terize an optomechanical device, and the calculation of the mechanical dis-
sipation for the structures relevant to this work. The measurement rate and
thermal decoherence rate, which are important for enabling an optomechani-
cal system being in a quantum regime, are highlighted. This chapter is inten-
tionally kept concise. For a more detailed discussion, I refer readers to the
citations in this chapter. Specific theories and techniques used only in part
of the thesis are included in the appendix of the corresponding chapters.

5
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2.1. Cavity optomechanics in the sideband-unresolved
regime

In this section, I give a brief introduction to the basis of this work - cavity op-
tomechanics. Especially, I focus on the sideband-unresolved regime, where the
mechanical resonance angular frequency (ΩM) is much smaller than the energy de-
cay rate of the optical cavity (𝜅). More detailed formalism can be found in reference
[22, 23]. I follow the two references in this section in general.

Figure 2.1: A model of cavity optomechanics. It consists of a Fabry-Pérot cavity, with one of the mirror
movable. The movable mirror can be modeled as a harmonic oscillator with a resonance frequency ΩM.
Its motion modulates the cavity resonance frequency 𝜔cav.

2.1.1. Introduction to optomechanics
An optomechanical system can be modeled as an optical cavity shown 2.1. One
of the mirror is movable, with a displacement 𝑥. Here, we consider a single-mode
cavity, which is a good approximation for this work. The resonance frequency of
the optical cavity then depends on the displacement of the movable mirror, 𝜔cav(𝑥).
Let the creation and annihilation operator for the cavity photon be �̂�† and �̂�. Also,
in this work, it can be more convenient to use the two quadratures of light,

�̂� = 1
√2

(�̂� + �̂�†) , �̂� = 1
√2i

(�̂� − �̂�†) . (2.1)

The movable mirror can be treated as a harmonic oscillator in this work since
the quality factor of its motion is typically very high. We can formulate the motion
in a quantum mechanical way. Denote the mass by 𝑚, the resonance frequency by
ΩM, and the creation and annihilation operator for the excitation of the mechanical
motion (phonon) by �̂�† and �̂�. It is also possible to write the quadratures for the
mechanics

�̂� = 1
√2

(�̂� + �̂�†) , �̂� = 1
√2i

(�̂� − �̂�†) . (2.2)

They are related to the displacement (�̂�) and momentum (�̂�) through the zero point
fluctuation,

�̂� = √2𝑥zpf�̂�, �̂� = √2𝑝zpf�̂�, (2.3)

where 𝑥zpf = √
ℏ

2𝑚ΩM
and 𝑝zpf = √

ℏ𝑚ΩM
2 .
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Such an interacting system, neglecting dissipation, has a Hamiltonian

�̂� = ℏ𝜔cav(�̂�)�̂�†�̂� + ℏΩM�̂�†�̂�
≈ ℏ𝜔cav(𝑥0)�̂�†�̂� + ℏΩM�̂�†�̂� + ℏ𝐺OM�̂�†�̂��̂�,

(2.4)

where 𝐺OM =
𝜕𝜔cav
𝜕𝑥 |

𝑥0
. The last line is from the Taylor expansion of 𝜔cav around the

equilibrium position 𝑥0, with only the term linear to �̂� kept. Usually, the convention
𝑥0 = 0 is chosen. The Hamiltonian highlights the interaction between the optics
and the mechanics,

𝐻int = ℏ𝐺OM�̂��̂�†�̂� = √2ℏ𝑔0�̂��̂�†�̂�. (2.5)

Here, a new symbol 𝑔0 = 𝑥zpf𝐺OM is defined. It has a unit of frequency. For a
system where the mechanical oscillator deforms in the oscillation, there are many
ways to define the coordinate system. The displacement �̂� and the mass 𝑚 depend
on the choice of the coordinate system, and the value of 𝐺OM differs in different
coordinate systems. However, 𝑄 and 𝑔0 are invariant.

Working with the Hamiltonian in equation (2.4) with dissipation is challenging,
since it involves nonlinear interaction and very different frequency scales. In the
consideration of a practical experiment, the approximations are used.

• The optical frequency is typically very high (∼ 193 THz in this work) com-
paring to other dynamics in the system. It is thus convenient to move to
a frame rotating with the laser frequency (𝜔L/(2𝜋)). Within this frame, the
cavity field oscillates at an angular frequency of Δ = 𝜔cav − 𝜔L. It is the
detuning of the cavity field with respect to the laser field. Within the rotating
frame there are counter-rotating terms resonating at ≈ 2𝜔L, arisen from the
coupling between the cavity field and the environment (including the laser
drive). These terms are neglected due to their high frequency (rotating wave
approximation).[16, 23, 26] Also, we assume that the coupling to the envi-
ronment is a constant.[16, 23]

• The optical power inside the cavity is typically strong, while the fluctuation of
the field is small. For the case in the experiments involved in this thesis, where
continuous measurement scheme is used, it is usually a good approximation.
It is then possible to separate the constant drive and the fluctuation. Also,
any static terms under the continuous optical drive can be neglected since we
are only interested in the dynamics. In terms of the interaction Hamiltonian,
it becomes

�̂�int = √2ℏ𝑔0�̂� (𝛼 + 𝛿�̂�†) (𝛼 + 𝛿�̂�)
→ √2ℏ𝑔0𝛼�̂� (𝛿�̂� + 𝛿�̂�†) = 2ℏ𝑔�̂�𝛿�̂�.

(2.6)

where 𝑔 = 𝛼𝑔0 = √𝑛cav𝑔0 is the interaction enhanced by the cavity photon
number (𝑛cav), and 𝛼 is the classical amplitude of the cavity fields. In this
equation, the phase convention is chosen such that 𝛼 is real and positive.
Also, the equilibrium position of the mechanical oscillator is set to 0. Higher
order terms of the fluctuations are truncated due to the assumption of small
fluctuation.
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From these two assumptions plus the dissipation, it is possible to get the lin-
earized Langevin equation in cavity optomechanics. The full derivation is not of the
focus in this thesis, but the result forms the basis of this work. Here I present the
final result,

𝛿 ̇�̂� = −𝜅2𝛿�̂� − Δ𝛿�̂� + √𝜅e𝛿�̂�inc + √𝜅i�̂�in2,

𝛿 ̇�̂� = Δ𝛿�̂� − 𝜅2𝛿�̂� − 2𝑔�̂� + √𝜅e𝛿�̂�inc + √𝜅i�̂�in2,
̇�̂� = ΩM�̂�,

̇�̂� = −ΓM�̂� − ΩM�̂� − 2𝑔𝛿�̂� + √2ΓM�̂�in.

(2.7)

The subscript inc is for the input coupling. In experiments, it is done by putting
a waveguide close to the optical cavity with a coupling rate 𝜅e. 𝜅i is the internal
energy dissipation rate. This can be due to the scattering or material absorption.
This loss channel couples to a vacuum field �̂�in2. They give the total cavity energy
decay rate 𝜅 = 𝜅i+𝜅e. The last two equations give the evolution of the mechanical
resonator, with ΓM defined as the mechanical energy dissipation rate. 𝑃in is the
thermal input to the mechanical resonator. The treatments for the inputs will be
described in section 2.1.3. Note that the two equations for the optical fields 𝛿�̂�,
𝛿�̂� are symmetric asides from the coupling to the mechanics. This is a direct con-
sequence of the rotating wave approximation. It is however not applicable to the
mechanical resonator in this work.

In this work, measurement with continuous wave is performed, where the sys-
tem is typically at a stationary state. It is more convenient to move to the Fourier
domain. The Langevin equations can be written as

(𝜅2 − i𝜔)𝛿�̂�(𝜔) + Δ𝛿�̂�(𝜔) = √𝜅e𝛿�̂�inc(𝜔) + √𝜅i�̂�in2(𝜔),

−Δ𝛿�̂�(𝜔) + (𝜅2 − i𝜔)𝛿�̂�(𝜔) = −2𝑔�̂�(𝜔) + √𝜅e𝛿�̂�inc + √𝜅i�̂�in2,

�̂�(𝜔) = 𝜒M(𝜔)(−2𝑔𝛿�̂�(𝜔) + √2ΓM�̂�in),

(2.8)

where
𝜒M(𝜔) = ΩM/ ((𝜔2 − Ω2M) − iΓM𝜔) (2.9)

is the mechanical susceptibility.
In the above scheme, the fluctuation of the cavity field should be much smaller

than its steady-state amplitude. However, in this work, this does not always sat-
isfy. It is due to the large thermal fluctuation of the mechanical resonator, which
introduces a large modulation to the cavity field. It is sufficient to see this in the
classical regime. Consider a cavity in the deep sideband-unresolved regime, the
cavity field follows the displacement of the mechanics,

⟨�̂�⟩ = √𝜅e⟨�̂�in⟩
𝜅/2 − i (Δ + 𝐺OM⟨�̂�⟩)

. (2.10)
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The equation is nonlinear in ⟨�̂�⟩. The steady-state amplitude

𝛼 = √𝜅e𝛼in
𝜅/2 − iΔ. (2.11)

Clearly, the small fluctuation condition |⟨𝛿�̂�⟩| = |⟨�̂�⟩ − 𝛼| ≪ 𝛼 is satisfied if and only
if

𝐺2OM𝑥2 ≪ (𝜅/2)2 + Δ2. (2.12)

In chapter 3, this condition is not strictly satisfied. Nevertheless, it enters this
regime with a proper cooling of the mechanical modes, which reduces 𝑥.

2.1.2. Input-output formalism and optical loss
Within the rotation wave approximation and assuming that the coupling strength
to the environment is a constant (see section 2.1.1), the output optical field from
the optical cavity is given by[16, 26]

�̂�out = �̂�in − √𝜅e�̂�. (2.13)

In the optical path, the optical photons suffer from losses. Any losses can be
formalized by a beam splitter, with another channel coupling to a vacuum field. For
a lossy optical channel with transmission efficiency 𝜂, input field �̂�in and output field
�̂�out[23]

�̂�out = √𝜂�̂�in +√1 − 𝜂�̂�vac, (2.14)

where �̂�vac is the vacuum input noise.

2.1.3. Optical vacuum noise and mechanical thermal noise
In this work, optical photons with a frequency of around 193 THz is used. A photon
has an energy much higher than the thermal energy. Therefore, the bath (vacuum)
is effectively at a coherent state |0⟩. Write �̂�L = (�̂� �̂�)𝑇,

[�̂�L(𝑡), �̂�𝑇L(𝑡′)] ∶= �̂�(𝑡)�̂�𝑇(𝑡′) − (�̂�(𝑡′)�̂�𝑇(𝑡))
𝑇 = iΩ𝛿(𝑡 − 𝑡′),

⟨{�̂�L(𝑡), �̂�𝑇L(𝑡′)}⟩ ∶= ⟨�̂�(𝑡)�̂�𝑇(𝑡′) + (�̂�(𝑡′)�̂�𝑇(𝑡))
𝑇⟩ = 𝐼𝛿(𝑡 − 𝑡′).

(2.15)

𝐼 is a 2 × 2 identity matrix and

Ω = ( 0 1
−1 0) . (2.16)

For the stationary state, the power spectral density for an arbitrary operator �̂�
can be written as the Fourier transform of its correlation,

𝑆�̂��̂�(𝜔) = ∫d�̃�ei𝜔�̃� ⟨�̂�†(𝑡 + �̃�)�̂�(𝑡)⟩𝑡=0 . (2.17)

For the optics, it is immediately that

𝑆�̂�in�̂�in(𝜔) = 𝑆�̂�in�̂�in(𝜔) = 1. (2.18)
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Figure 2.2: A typical spectrum for optomechanics. The measured signal is the signal of the noises and
the signal from the mechanical resonator. Ideally, the noise is the optical shot noise and it has a spectrum
𝑆𝑌(𝜔) = 1. Any classical noise would lead to a higher noise floor. The axes labels are intentionally since
it is a general sketch. The axes are in log scale.

It is more complicated for a mechanical system. As pointed out in equations 2.7,
the equations for �̂� and �̂� are not symmetric. Especially, the input noise only couples
to �̂�. This term directly relates to the force. For a thermal bath at low frequency, the
force, or the input noise 𝑃in, is not Markovian, namely, the correlation function is
not a delta function. The correlation has a decay time scale ℏ/(𝑘B𝑇).[23] However,
for a typical experimental condition, ℏ/(𝑘B𝑇) ∼ 10−14 s (at room temperature) is
much smaller than all the dynamics. It can still be treated as a memory-less system,

⟨{�̂�in(𝑡), �̂�in(𝑡′)}⟩ = (2𝑛th + 1)𝛿(𝑡 − 𝑡′). (2.19)

𝑛th ≈
𝑘B𝑇
ℏΩM

is the thermal phonon occupation of the bath. Another important thing
to note is that, in general,

[�̂�in(𝑡), �̂�in(𝑡′)] ≠ 0 (2.20)

It can be understood by considering a harmonic oscillator. After 𝑛/2 + 1/4 (𝑛 =
0, 1, 2, ...) oscillation periods, the 𝑃 quadrature becomes 𝑄 and it does not commute
with the previous Q. Hence, the correlation function of a single quadrature is not a
delta function, and the power spectrum density is not flat. A more detailed analysis
shows that[23, 27]

𝑆�̂�in�̂�in(𝜔) ≈ 𝑛th + 1 (𝜔 > 0),
𝑆�̂�in�̂�in(𝜔) ≈ 𝑛th (𝜔 < 0),

(2.21)

where 𝑛th ≈
𝑘B𝑇
ℏΩM

. In this work, only single-side spectrum of a mechanical resonator
contacting a hot thermal bath (𝑛th ≫ 1) is measured. Thus, it is in general sufficient
to consider a flat, single-side spectral,

𝑆�̂�in(𝜔) = 𝑆�̂�in�̂�in(𝜔) + 𝑆�̂�in�̂�in(−𝜔) = 2𝑛th + 1. (2.22)

Combining the vacuum noise and the mechanical displacement noise, an illus-
tration of the measured optical spectrum is shown in figure 2.2.
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2.1.4. Thermal decoherence and the quantum regime
In this part, I introduce an important parameter for the mechanical resonator at
high temperature, 𝑄M × 𝑓M, the mechanical quality factor times the frequency. It
concerns the intrinsic property of the mechanical resonator, and thus I neglect the
optical cavity in this part.

Consider that a harmonic oscillator interacts with a bath at high temperature,
namely, 𝑛th ≫ 1. It has a thermal decoherence rate

Γth ≈ 𝑛thΓM. (2.23)

It characterizes the strength that the mechanical resonator couples to the environ-
ment. It defines the time scale adding one extra phonon to the mechanical res-
onator when it is at the ground state.[23] For a typical optomechanical experiment,
the interaction time is long comparing to the oscillation period of the mechanical
resonator.1 It is then especially important for quantum optomechanics experiments
that the thermal decoherence rate should be much smaller than the oscillation fre-
quency, 𝑛thΓth ≪ 𝑓M. It then follows immediately that

𝑄M𝑓M ≫
𝑘B𝑇
ℏ (2.24)

is in general required for quantum optomechanics. It highlights the importantness
for improving the mechanical quality factor, which is described in section 2.2.

2.1.5. Continuous measurement of mechanical resonator with
shot-noise limited detection

In section 2.1.3, shot-noise limited measurement is introduced. With this, it is
straight forward to understand another figure of merit in cavity optomechanics,
namely the quantum cooperativity 𝐶qu = 4

𝑔2
𝜅Γ𝑛th

. This value is widely used in this
thesis to evaluate the performance of a design. Here, I take a heuristic approach,
which is sufficient to understand the idea behind this.

Consider a measurement with zero laser detuning Δ = 0 and a total detection
efficiency 𝜂. The mechanical resonator has a high quality factor. This is a typical
situation for this work, and more general, for the optomechanical system in the
deep sideband-unresolved regime. From equation (2.7), the information of the
mechanical displacement imprints onto the Y quadrature of the light 𝛿�̂� ≈ −4𝑔𝜅 �̂�.
Typically, a homodyne measurement is used to measure the 𝑌 quadrature of the
light. The measured signal is then �̂�meas ≈ 4√𝜂

𝜅𝑔�̂�. The optical vacuum noise

is neglected temporary. Note that the ratio 𝜅e/𝜅 is the equivalent to efficiency the
light couples back to the input channel. In the scheme in this work, only this part of
light will be measured. Hence, it can be absorbed into the total efficiency 𝜂. For the
1There are proposals and experiments with ultra-short pulses and projection measurements.[28–31]
They typically only need a total interaction time around the mechanical resonance period. However,
they are not considered in this work.



2

12 2. Theory and methods

mechanical resonator at the ground state, the measured signal 𝛿𝑌2meas|zpf = 8
𝜂
𝜅𝑔

2.
Now, take the noise into account. With an ideal detection only limited by the optical
shot noise, the power spectrum of the measured 𝑌 quadrature has a noise floor
𝑆𝑌(𝜔) = 1. With an integration time of 𝜏 ∼ 𝜅

𝜂𝑔2 , a unity signal-to-noise ratio
(SNR) is achieved. It is then straightforward to define a measurement rate[32],
characterizing the rate at which the zero-point fluctuation can be resolved,

Γdet = 4𝜂
𝑔2
𝜅 . (2.25)

This can be used to compare with the thermal decoherence rate, Γth = 𝑛thΓM. The
comparison gives a ratio,

Γdet
Γth

= 4𝜂 𝑔2
𝜅ΓM𝑛th

. (2.26)

It is desirable for the ratio to be larger than 1, namely, the zero-point fluctuation
can be resolved before the thermal decoherence. By letting 𝜂 = 1 it is exactly the
quantum cooperativity 𝐶qu.

It is important to note that, although the arguments above consider only the
situation in the deep sideband-unresolved regime, 𝐶qu is important for a general
optomechanical system aiming at quantum phenomenon since it compares the
strength of the coupling to the losses in the system. For example, the measurement
rate in equation (2.25) corresponds to the entanglement generation rate and the
state swap rate for an optomechanical system with a properly detuned laser.[33]
The thermal decoherence rate is unchanged in different regimes.

2.1.6. Optical spring effect, the determination of optomechan-
ical coupling, and a first step to feedback

An immediate classical effect resulting from the dynamics of optomechanics is the
optical spring effect. When the input light is a continuous static light, the reso-
nance frequency and the damping rate is modified to be an effective frequency and
damping rate.

For a continuous drive, it is more easy to work in the Fourier domain. Con-
sider equations (2.8) and neglect the quantum fluctuation terms. Plug the second
equation to the first to get 𝛿𝑋, and then substitute it into 𝑄

𝛿𝑋 = −2𝑔Δ𝑄
(𝜅/2 − i𝜔)2 + Δ2 ,

𝑄 = 𝜒M(𝜔) (
−4𝑔2Δ𝑄

(𝜅/2 − i𝜔)2 + Δ2 + √2Γ𝑃in) .
(2.27)

It is then possible to define an effective susceptibility

𝜒eff(𝜔) = (
1

𝜒M(𝜔)
+ 4𝑔2Δ
(𝜅/2 − i𝜔)2 + Δ2)

−1

(2.28)
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to highlight that the optical input modifies the dynamics when the detuning is non-
zero,

𝑄(𝜔) = 𝜒effM (𝜔)√2Γ𝑃in(𝜔). (2.29)

The effective susceptibility modifies the resonance frequency and the damping. To
see this, compare the effective susceptibility to the susceptibility of a bare mechan-
ical system (equation (2.9)),

1
𝜒effM

= (Ω2M − 𝜔2) − iΓM𝜔
ΩM

+ 4𝑔2Δ
(𝜅/2 − i𝜔)2 + Δ2

≈ 1
ΩM

((ΩM +
2𝑔2Δ

(𝜅/2)2 + Δ2)
2

− 𝜔2 − i(ΓM −
4𝑔2ΩM𝜅Δ

((𝜅/2)2 + Δ2)2
)𝜔)

= 1
ΩM

(Ω̃2M − 𝜔2 − iΓ̃M𝜔) .

(2.30)

In the last approximation, it is assumed that 𝜅 and Δ are much larger than other
frequencies. It is a good approximation in this work, where the optomechanical
system is in the sideband-unresolved regime. It is clear that the light changes the
mechanical frequency and damping rate,

𝛿ΩM = Ω̃M − ΩM =
2𝑔2Δ

(𝜅/2)2 + Δ2 ,

𝛿ΓM = Γ̃M − ΓM =
−4𝑔2ΩM𝜅Δ

((𝜅/2)2 + Δ2)2
.

(2.31)

It is illustrative to see how large the frequency and the damping rate change. In
the experiment condition, 𝜅 and Δ is much larger than any other dynamics. To
have a biggest effect, Δ ∼ 𝜅.2 In a typical experiment condition in this work,
𝜅/(2𝜋) ∼ 10GHz, 𝑔/(2𝜋) ∼ 1MHz, Ω/(2𝜋) ∼ 1MHz. Then, 𝛿ΩM/(2𝜋) ∼ 102 Hz.
Though it is much smaller than the mechanical resonance frequency, this frequency
shift is easy to measure in an experiment, and thus it is used to determine the light-
enhanced optomechanical coupling 𝑔 for the device. By a properly calibration of
the experimental setup, through which the input power is determined, it is then
straight forward to obtain 𝑔0. The shift of the damping rate 𝛿Γ/(2𝜋) ∼ 10−2 Hz is
however small. Resolving this small value is in general challenging as it requires a
measurement of a large time scale.

This is a typical feature for a sideband-unresolved system, where the optome-
chanical cooling or heating is weak. Intuitively, the optical spring effect can be
understood in a feedback picture. The mechanical displacement 𝑄 modulates the
resonance frequency of the optical cavity. When the detuning is non-zero, it mod-
ulates the light intensity inside the optical cavity, and the modulation feeds back to
the mechanical resonator by radiation pressure. For a system in the deep sideband-
unresolved regime, the feedback acts almost instantaneously without any phase

2For |𝛿ΩM|, the maximum is at Δ = ±𝜅/2. For |𝛿ΓM|, it is ±
𝜅
2√3 .



2

14 2. Theory and methods

shift. It effectively modifies the spring constant of the mechancial system and hence
it shifts the mechanical frequency. However, the damping force is proportional to �̇�
and it should be out-of-phase to the displacement. Since the feedback provided by
the optical cavity has almost zero phase shift, the change of the damping is small.

The small extra damping rate provided by the optical cavity eliminates the pos-
sibility of cooling the mechanical resonator to a low phonon occupation state, which
is the central focus in this work. In chapter 3, a phase shift is provided by a classical
controller. In chapter 5, a phase shift is proposed to be provided by some extra
linear optical components. Both make it possible to have an efficient cooling of the
mechanical resonator.

Although it is impossible to perform significant optical cooling purely with the
optical cavity in the sideband-unresolved limit, the change of the damping is still
comparable to the intrinsic damping rate of the high-Q mechanical resonator in
this work. It is thus still possible that the change of the damping rate brings the
system into an unstable regime (ΓM + 𝛿Γ < 0). Continuous measurement with a
blue-detuned laser, where the optical spring effect heats the mechanical motion, is
in general avoided.

2.1.7. Quadrature measurement with homodyne detection
A scheme of homodyne detection is sketched in figure 2.3. The light from the laser
is split into two arms. One arm is the signal arm. The light interacts with the device
and the output light carries information from the device. Another arm is the local
oscillator (LO) arm, with a relative phase shift 𝜙 to the signal beam. Both arms
merge at the second beam splitter. The outputs from both ports of the second
beam splitter are measured. Then, the difference between the two measurement
outputs is obtained. In the measurement, the first beam splitter typically has a
splitting ratio such that the power on the LO arm is much stronger than the power
on the signal arm. The splitting ratio of the second beam splitter is 50:50 (balanced
homodyne detection).

Consider that the output from the device is �̂�sig, and the local oscillator is �̂�LO.
Without loss of generality, let the relative phase shift introduce by the second beam
splitter be 0. Any relative phase shift can be absorbed into 𝜙. Let the transmission
of the second beam splitter be 𝑇, the two outputs [34]

�̂�1 = √𝑇�̂�sig + √1 − 𝑇�̂�LO,
�̂�2 = −√1 − 𝑇𝑎sig + √𝑇�̂�LO.

(2.32)

Then, the photon current of the outputs of the second beam splitter

⟨�̂�†1 �̂�1⟩ = 𝑇⟨�̂�†sig�̂�sig⟩ + (1 − 𝑇)⟨�̂�†LO�̂�LO⟩ + √𝑇(1 − 𝑇)⟨�̂�†sig�̂�LO + �̂�†LO�̂�sig⟩,
⟨�̂�†2�̂�2⟩ = (1 − 𝑇)⟨�̂�†sig�̂�sig⟩ + 𝑇⟨�̂�†LO�̂�LO⟩ − √𝑇(1 − 𝑇)⟨�̂�†sig�̂�LO + �̂�†LO�̂�sig⟩.

(2.33)

It is clear that, for 𝑇 = 1/2, the differential photon current

𝐼− = ⟨�̂�†1 �̂�1⟩ − ⟨�̂�†2�̂�2⟩ = ⟨�̂�†sig�̂�LO + �̂�†LO�̂�sig⟩. (2.34)
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Figure 2.3: Homodyne detection scheme. The light from a single laser is split into two arms. One
passes through a device to be measured (signal arm). The other one only experiences a phase shift.
They are combined at a beam splitter and then measured by two photodetectors. The final signal is the
subtraction of the photocurrent.

For small signals, write the optical field as a constant classical amplitude (𝛼)
plus some fluctuation3,

�̂�sig = 𝛼sig + 𝛿�̂�sig,
�̂�LO = 𝛼LO + 𝛿�̂�LO.

(2.35)

Also, adapt the phase convention arg𝛼sig = 0, arg𝛼LO = 𝜙, and consider the
typical situation in a homodyne detection, |𝛼LO| ≫ |𝛼sig|. By keeping only the
linear term of the fluctuation,

𝐼− ≈ 2𝛼sig|𝛼LO| cos𝜙 + √2|𝛼LO| (𝛿𝑋sig cos𝜙 + 𝛿𝑌sig sin𝜙) . (2.36)

The differential photon current is separated into two parts, one is a constant, while
the other term contains the signal. By properly tuning the phase 𝜙, it is possible
to one of the quadratures or their combination. Also, the signal is amplified by the
square root of the power on the local oscillator arm. In experiment in this work, 𝑌
quadrature of the optical field is measured. This can be done by setting the phase
𝜙 = ±𝜋/2. Note that the constant term vanishes. The vanishing constant term can
be used to lock the phase 𝜙.

2.1.8. Determining overcouple or undercouple
In this work, reflection signal of the optical cavity is measured. For such an optical
cavity, the dissipation can be considered to have two loss channels. One is the
extrinsic loss, containing all the signal reflected back and it is associated with 𝜅e.
The other channel is intrinsic dissipation, including all the dissipation where light is
not reflected back and it is associated with 𝜅i. Determining 𝜅e/𝜅 is important in this
work, since it relates to the total efficiency in a system. Only the reflected signal is
measured.

The reflected (classical) amplitude from such a cavity

𝑟(Δ) = 1 − 𝜅e
𝜅/2 − iΔ. (2.37)

3The fluctuation includes the signal we want to measure.
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By simplify measuring and fitting the reflectivity,

|𝑟(Δ)|2 = 1 − 𝜅e𝜅i
(𝜅/2)2 + Δ2

, (2.38)

it is possible to get 𝜅i𝜅e and 𝜅. Combining that 𝜅 = 𝜅e + 𝜅i, two different solutions
exist unless the optical cavity is critically coupled (𝜅i = 𝜅e). It is clear that inter-
changing 𝜅i and 𝜅e does not change the reflectivity. To unambiguously determine
whether the optical cavity is overcoupled (𝜅e > 𝜅i), I perform phase measurements
using the scheme in Figure 2.3. To perform the measurement, the optical path
lengths of the two arms are carefully balanced, up to a small offset. The intentional
offset will be clear by the end of this part. Similar to the homodyne measurement,
the power on the local oscillator arm is much stronger than the power on the signal
arm. The second beam splitter has a transmission of about 1/2. Unlike a balanced
homodyne measurement, this splitting ratio does not have to be precise.

Let the optical field after the first beam splitter be 𝛼0 for the LO arm and 𝜖𝛼0
for the signal arm. Since only the intensity is measured eventually, without the loss
of generality, I require that 𝛼0 and 𝜖 are both real and positive. With the power on
LO arm being much larger than the power on the signal arm, 𝜖 ≪ 1.

The optical field arriving at the second beam splitter

𝛼sig = 𝑟(Δ)𝜖𝛼0,
𝛼LO = ei(𝑘𝛿𝐿+𝜙0)𝛼0,

(2.39)

where 𝑘 = 𝜔L/𝑐 is the wavenumber of the beam, 𝛿𝐿 is the optical length difference
between the signal arm and the LO arm, and 𝜙0 is an additional phase different
between the two arms. Let the transmission of the second beam splitter be 𝑇, the
differential signal gives

𝐼− = (1 − 2𝑇) (1 − |𝑅(Δ)𝜖|2) 𝛼20 + 4𝜖√𝑇(1 − 𝑇)Re (𝑟(Δ)e−i(𝑘𝛿𝐿+𝜙0)) 𝛼20 . (2.40)

When detuning is large, Δ ≫ 𝜅, the reflection from the cavity 𝑟(Δ) ≈ 1. Also,
keep the leading order in 𝜖. The difference of the photon flux

𝐼−|Δ≫𝜅 ≈ (1 − 2𝑇)𝛼20 + 4𝜖√𝑇(1 − 𝑇) cos(𝑘𝛿𝐿 + 𝜙)𝛼20 . (2.41)

Note that 𝑘 is a function of the detuning. The reflected signal oscillates between
(1 − 2𝑇)𝛼20 ± 4𝜖√𝑇(1 − 𝑇)𝛼20, with an oscillation period (free spectral range) of
2𝜋𝑐/𝛿𝐿.

In the measurement, a requirement of the length offset is that the free spectral
range is large, 2𝜋𝑐/𝛿𝐿 ≫ 𝜅. At the vicinity of the resonance (|Δ| ≪ 2𝜋𝑐/𝛿𝐿 ≫ 𝜅),
write 𝜙LO = 𝑘𝛿𝐿 + 𝜙0 and treat it as a constant,

𝐼−||Δ|≪ 2𝜋𝑐
𝛿𝐿
≈ (1 − 2𝑇)𝛼20 + 4𝜖√𝑇(1 − 𝑇)((1 −

𝜅e𝜅/2
(𝜅/2)2 + Δ2 ) cos𝜙LO

− 𝜅eΔ
(𝜅/2)2 + Δ2 sin𝜙LO).

(2.42)
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Figure 2.4: Differential photo current in a phase measurement in theory. From left to right: 𝑘0𝛿𝐿+𝜙0 =
0, 𝜋/4, 𝜋/2. Different colors show different 𝜅e, with 𝜅/(2𝜋) = 10 GHz being fixed. The corresponding
𝜅e/𝜅 can be read from the last column with the same color. From blue to purple the cavity changes
from undercouple to overcouple. The second row is a zoom in of the first row, in the vicinity of the
resonance. It is clear that it is possible to distinguish over- or under-coupled cavities. The third row
plots the difference between the maximum and minimum 𝐼−, with the values obtained from the second
row normalized by the values from the first row. For a cavity that is not close to the critical coupling
(the typical case in this work), it is easy to distinguish whether it is over- or under-coupled by setting
a bound at 0.5. The dotted lines plot 𝛿𝐼−||Δ|<2𝜅/𝛿𝐼− = 𝜅e/𝜅 (see equation (2.44)). A small error
is due to the small offset 𝛿𝐿 ≠ 0. In the calculation, the following parameters are used: resonance
frequency 𝜆cav = 1550 nm, path length imbalance 𝛿𝐿 = 0.2 mm, the power ratio between the two arms
𝜖2 = 0.1, transmission of the second beam splitter 𝑇 = 0.6. The splitting ratio of 0.4/0.6 shows that
the scheme does not require a well tuned beam splitter. It makes it compatible with a sweeping over a
large frequency range since the splitting ratio is wavelength-dependent for a practical beam splitter.

The extremum is achieved when Δ = − 𝜅
2 sin𝜙LO

(cos𝜙LO ± 1).4 It corresponds to a
difference between the maximum and minimum

(𝐼max
− − 𝐼min

− )|Δ|≪ 2𝜋𝑐
𝛿𝐿
= 8𝜖√𝑇(1 − 𝑇)𝜅e𝜅 𝛼

2
0 . (2.43)

It clearly distinguish between 𝜅e and 𝜅i. Combining the measurement where Δ ≫ 𝜅
(equation (2.41)), it is possible to get a response

(𝐼max
− − 𝐼min

− )|Δ|≪ 2𝜋𝑐
𝛿𝐿

(𝐼max− − 𝐼min− )|Δ|≫𝜅
= 𝜅e
𝜅 . (2.44)

4When 𝜙LO = 0, there is a minimum Δ = 0. The maximum occurs at Δ → ∞.
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Figure 2.5: An example of measuring the reflection of a device. (a) An intensity measurement. The 𝑦
axis is normalized to the input power, showing the reflectivity. A fitting shows 𝜅/2𝜋 = 9.3 GHz. 𝜅e/2𝜋 is
either 2.2 or 7.1 GHz. (b) A phase measurement. The path length is tuned to have a free spectral range
of about 4 nm. The peak is due to the phase response of the cavity. It clearly shows that the device is
overcoupled. The orange dashed lines are a guide to the eye to show the background oscillations, and
the green dashed line shows the center.

Note that this expression only depends on the ratio 𝜅e/𝜅. In a measurement,
the two regimes |Δ| ≫ 𝜅 and |Δ| ≪ 2𝜋𝑐

𝛿𝐿 are measured in a same laser scan. The
scanning where |Δ| ≫ 𝜅 is used as a calibration. To get the calibration, the free
spectral range 2𝜋𝑐/𝛿𝐿 should be smaller than the laser scanning range. Also, to
reach the above formula, note that the maximum and minimum of the differential
photon flux in this interference scheme are obtained at a detuning of the order
of 𝜅, it requires 𝜅 ≪ 2𝜋𝑐

𝛿𝐿 .
5 For a typical device in this work, 𝜅/(2𝜋) ∼ 10 GHz. It

corresponds to 𝛿𝐿 ≪ 1 cm. This can be easily achieved by using a free space setup.
Some example traces obtained from equation (2.40) are plotted in figure 2.4.

It is clear that it is possible to distinguish between an overcoupled and an under-
coupled optical cavity. For a typical situation in an experiment, equation (2.44) still
gives a good approximation. With the typical regime of interest in this work where
the cavity is deeply overcoupled, setting a bound of 0.5 is sufficient to distinguish.
An example of the measurement is shown in figure 2.5. The two possible 𝜅e values
are first determined by fitting the reflectivity. Then, a phase measurement is per-
formed to pinpoint the 𝜅e. In this case, a peak due to the cavity is seen. It is then
compared to the background oscillations, and it is shown to be overcoupled.

2.2. Mechanical dissipation in high-stress Silicon Ni-
tride

Increasing the 𝑄M×𝑓M product is one of the central focus in this work, as described
in section 2.1.4. Typically, I keep the mechanical frequency to be around 1 MHz,
a sweet point that it is small enough to fit the feedback cooling experiments, and
it is not too low considering the classical noise. The goal is then to reduce the

5This is not necessary if a full model is taken into account, but meeting this criteria is not challenging in
an experiment and thus I only consider this situation here.
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Figure 2.6: An illustration of the deformation of the material. The gray color shows the undeformed
structure, while the blue shows the deformed. The small part of the material at spacial coordinate �⃗� is
displaced by �⃗�(�⃗�).

dissipation of the mechanical resonator. In this work, I focus on high-stress LPCVD
grown silicon nitride.

2.2.1. Mechanical damping due to internal damping 6

Consider a part of the structure shown in figure 2.6. At the static state, the structure
is shown in gray. Consider a specific mode. At time 𝑡, the displacement field is �⃗�(�⃗�),
where �⃗� is in the frame of undeformed structure. In the following, I will omit �⃗� and
𝑡 when it is clear from the content. The strain of the structure is[35]

𝜖𝑖𝑗 =
1
2 (𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖 + 𝜕𝑖𝑢𝑘𝜕𝑗𝑢𝑘) , (2.45)

where 𝜕𝑖 =
𝜕
𝜕𝑥𝑖
, and the indices 𝑖, 𝑗 are the components of the spacial vectors. Here,

I keep the nonlinear term 𝜕𝑖𝑢𝑘𝜕𝑗𝑢𝑘. We will see that, even for small displacement,
it cannot be neglected for the high stress material.

The deformation results in a stress in the material[35]

𝜎𝑖𝑗 = 𝜎(0)𝑖𝑗 + Δ𝜎𝑖𝑗 = 𝜎(0)𝑖𝑗 + 𝐸
1 + 𝜈 (𝜖𝑖𝑗 +

𝜈
1 − 2𝜈𝜖𝑘𝑘𝛿𝑖𝑗) , (2.46)

where 𝐸 is the Young’s modulus, 𝜈 is the Poisson’s ratio. The term 𝜎(0)𝑖𝑗 is due to
the fact that there is a static stress in the material.

The quality factor of a mode is given by the elastic energy stored in the structure,
divided by the energy dissipation per oscillation. Let the elastic energy density be
𝑈𝑆,

𝑈𝑆 =
ΩM
42𝜋 ∫

2𝜋

0
d𝑡 12𝜎𝑖𝑗(𝑡)𝜖𝑖𝑗(𝑡)

= ΩM
4𝜋

𝐸
1 + 𝜈 ∫

2𝜋

0
d𝑡 ((𝜖𝑖𝑗(𝑡)𝜖𝑖𝑗(𝑡) +

𝜈
1 − 2𝜈𝜖𝑘𝑘(𝑡)𝜖𝑙𝑙(𝑡)) + 𝜎

(0)
𝑖𝑗 𝜖𝑖𝑗(𝑡)) .

(2.47)

For high Q oscillations, we can approximate the motion by a simple harmonic oscil-
lator. Write �⃗�(𝑡) = �⃗� sin(ΩM𝑡). Then, all the terms linear to 𝑢𝑖 integrate to 0, and
the terms quadratic to 𝑢 is kept. For small oscillations,

𝑈𝑆 =
1
4 (

𝐸
1 + 𝜈 (𝜖

lin
𝑖𝑗 𝜖lin𝑖𝑗 +

𝜈
1 − 2𝜈𝜖

lin
𝑘𝑘𝜖lin𝑙𝑙 ) + 𝜎

(0)
𝑖𝑗 𝜕𝑖𝑢𝑘𝜕𝑗𝑢𝑘) . (2.48)

6In this part, the summation convention for the repeated indices applies.
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Figure 2.7: An illustration of the motion of a segment of a mechanical beam, moving from the gray part
to the light blue part. The dashed line indicates the center of the beam (𝑦 = 0). The dotted line is
perpendicular to the center line, and the elements on the two dotted line are the same.

We see that the nonlinear term appears due to the initial stress. Actually, the
internal stress makes silicon nitride out-standing frommany other materials in terms
of mechanical quality factor at high temperature.[36]

Phenomenologically, the dissipation in the system can be modeled as a complex
Young’s modulus.[37, 38] Equivalently, it can be written as a phase lag (loss angle7,
𝜙) between the stress and the actual motion. This value has been found to be only
weakly dependent on the frequency within the frequency range we are interested
in[37], and here I approximate it as a constant.8 For small oscillation, we again
keep terms up to the quadratic for the dissipation density,

Δ𝑈 = ∫
2𝜋
Ω

0
Δ𝜎𝑖𝑗(𝑡)d𝜖𝑖𝑗(𝑡) = ∫

2𝜋
Ω

0
d𝑡Δ𝜎𝑖𝑗 sin(Ω𝑡 + 𝜙)

d
d𝑡 (𝜖𝑖𝑗 sin(Ω𝑡))

= 𝜋 sin(𝜙) 𝐸
1 + 𝜈 (𝜖

lin
𝑖𝑗 𝜖lin𝑖𝑗 +

𝜈
1 − 2𝜈𝜖

lin
𝑘𝑘𝜖lin𝑙𝑙 ) .

(2.49)

The non-linear term in the strain disappears because it only couples to 𝜎(0)𝑖𝑗 in the
small oscillation limit and it integrates to 0.

Finally, the mechanical quality factor can be obtained by integrating the energy
storage and dissipation density,

𝑄M =
∫d3𝑥Δ𝑈(�⃗�)
∫d3𝑥𝑈𝑆(�⃗�)

. (2.50)

2.2.2. Mechanical quality factor for an Euler-Bernoulli beam
In equations 2.48 and 2.49, I wrote down the formula for the mechanical dissipation
and the energy storage for a general structure. They, however, do not immediately
give an intuitive picture on how to increase the mechanical quality factor. In this
part, I consider a simplified situation. The mechanical resonator is approximated by
an Euler-Bernoulli beam, where the beam can be considered as a 1D structure and
and Poisson’s ratio vanishes. Also, I assume that the cross-section is a rectangle.
7Given by the angle of the complex Young’s modulus.
8This value has found to be different between the region close to the surface and the region deep inside
the bulk.[39] In this work, I only consider a uniform loss angle as it is sufficient to explain phenomenon
and to design structures with high quality factor.
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The stress 𝜎𝑖𝑗 is non-zero only if 𝑖 = 𝑗 = 1 be the 𝑥 component. In literature, the
formulation with this situation was derived earlier than equations 2.48 and 2.49,
and it leads to the concepts including bending loss, dissipation dilution, and soft-
clamping.[35] Here, I take a different approach, where the scheme for 1D long
string is derived from equations 2.48 and 2.49.

Consider a segment of the beam with a width 𝑤 and thickness ℎ, as sketched
in figure 2.7. The mechanical motion is in 𝑦 direction, and it is uniform across the
thickness. For this structure, it is sufficient to consider it in 2 dimensions, since
it is uniform across 𝑧. Define the coordinate such that 𝑦 = 0 is the center of the
undeformed structure. At the center plane, the displacement field is 𝑣(𝑥). Then,
consider a small element originally located at (𝑥, 𝑦). Without any deformation,
the line formed by (𝑥, 𝑦) and (𝑥, 0) is perpendicular to the center line. With the
deformation introduced by the mechanical motion, the two points moves to (�̃�, �̃�)
and (𝑥, 𝑣(𝑥)). The line formed by these two points should still be perpendicular to
the center, at 𝑥. Then,

(�̃� − 𝑣)𝑣′(𝑥) = −(�̃� − 𝑥). (2.51)

Further, the distance between these two points remains unchanged,

(�̃� − 𝑣)2 + (�̃� − 𝑥)2 = 𝑦2. (2.52)

This gives the displacement of the point originally at (𝑥, 𝑦),

𝑢(𝑥, 𝑦) = − 𝑣′(𝑥)

√1 + 𝑣′2(𝑥)
𝑦,

𝑣(𝑥, 𝑦) = ⎛

⎝

1

√1 + 𝑣′2(𝑥)
− 1⎞

⎠

𝑦 + 𝑣(𝑥).
(2.53)

The displacement 𝑣 is smooth and small. It is sufficient to keep the terms with
the lowest order to the derivative and the smallest exponents. Then, the non-zero
terms involved in equations 2.48 and 2.49 are

𝜕𝑥𝑢𝑘𝜕𝑥𝑢𝑘 = 𝑣′
2(𝑥),

𝜖lin𝑖𝑗 = 𝑣′′
2(𝑥)𝑦2.

(2.54)

The contribution to the first equation is from 𝑘 = 2 (𝑦 component), and the contri-
bution to the second equation is from 𝑖 = 𝑗 = 1 (𝑥 component). Substitute them
into equations 2.48 and 2.49, and carry out the integral over 𝑦 and 𝑧 direction, the
line density of the energy storage and dissipation is obtained,

𝑈𝑠(𝑥) =
𝜎(0)11
4 𝑣′2(𝑥)𝑤ℎ,

Δ𝑈(𝑥) = 𝜋
12 sin(𝜙)𝐸𝑣

′′2(𝑥)𝑤3ℎ.
(2.55)
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Here, I have also neglected terms that have a higher order in derivative or higher
order in its exponent. The expression for 𝑈𝑠 is only a good approximation for small
oscillations and high stress material. The result matches what has been derived in
reference [37] with a different method.

From equation (2.55), it is clear that the energy storage is from the rotation9

(𝑣′) of the structure, and the energy dissipation is from the bending (𝑣′′) of the
structure. It is interesting to note that the energy dissipation density is proportional
to 𝑤3,10 and that the energy storage is proportional to 𝑤. This observation leads
to the novel fishbone design in chapter 3.

2.2.3. Simulation
The mechanical quality factor is simulated in COMSOL Multiphysics®. Eigenvalue
simulation is used to obtain the mechanical modes, from which the quality factor
can be calculated. When working with high stress silicon nitride, extra care needs
to be taken.

Firstly, the above formalism is based on introducing the imaginary part of the
Young’s modulus, and it can be directly implemented in COMSOL. However, COMSOL
does not seem to know the “small oscillation” requirement. A typical displacement
field simulated from the eigenvalue simulation is of the order of 1 meter. Since the
problem is not linear, the above formalism needs to be implemented into COMSOL
as a post-processing step.

Next, there is an issue about the frame. In the simulation, an initial geometry
with a constant initial stress is first defined. This geometry, and its internal stress,
are not the actual geometry and stress distribution for a fully suspended structure.
These are obtained by doing a steady state simulation. For a physical device, this
step corresponds to the release of the structure. After this, the stress would be
redistributed, and the geometry would deform. The mechanical modes, and the
corresponding eigenvalue simulations, are on the deformed structure. To properly
calculate the energy dissipation and energy storage in equations (2.48) and (2.49),
the coordinate should correspond to a deformed structure. In COMSOL, it does not
know the change of the frame.

Consider a small element initially centered at 𝑥(0)𝑖 with a volume d3𝑥(0). It is
also the coordinate of all the elements in COMSOL. Then, after the “release” step,
this small element moves to a new coordinate

𝑥𝑖 = 𝑥(0)𝑖 + 𝑢(𝑟)𝑖 (�⃗�(0)). (2.56)

Note that the displacement 𝑢(𝑟) in this step is position-dependent. Without specify-
ing, I will always use the original coordinate for the argument of the displacement.
Then, for a small displacement introduced in this step, equations (2.48) and (2.49)

9More precisely, from the elongation resulting from the rotation.
10Strictly speaking, the cubic dependency only valid when the loss angle is uniform across the material.
For high stress LPCVD silicon nitride, it might deviate noticeably for structure with dimension smaller
than 100 nm.
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can be evaluated in COMSOL by the geometry transformation,

𝜕𝑥(0)𝑖
𝜕𝑥𝑗

= 𝛿𝑖𝑗 −
𝜕𝑢(𝑟)𝑖
𝜕𝑥(0)𝑗

,

𝜕𝑖𝑢𝑗 =
𝜕𝑢𝑗(�⃗�)
𝜕𝑥𝑖

=
𝜕𝑢𝑗(�⃗�(0))
𝜕𝑥(0)𝑘

𝜕𝑥(0)𝑘
𝜕𝑥𝑗

=
𝜕𝑢𝑗(�⃗�(0))
𝜕𝑥(0)𝑘

(𝛿𝑘𝑖 −
𝜕𝑢(𝑟)𝑘
𝜕𝑥(0)𝑖

) .
(2.57)

𝑢 is the displacement for the oscillations. On the last equation, I make use of the
fact that the element on �⃗�(0) and the one on �⃗� are the same element. Hence, I can
replace 𝑢𝑗(�⃗�) by 𝑢𝑗(�⃗�(0)). Substitute it into equations (2.48) and (2.49), it gives the
energy density that can be evaluated in COMSOL. Regarding to the final integral in
equation (2.50), the volume is changed by the determinant of a Jacobian matrix,
d3𝑥 = | 𝜕�⃗�

𝜕�⃗�(0) |d
3𝑥(0). The matrix elements are given by

( 𝜕�⃗�
𝜕�⃗�(0))𝑖,𝑗

= 𝜕𝑥𝑖
𝜕𝑥(0)𝑗

. (2.58)

It would result in a lengthy expression. A python script is written to generate the
expression for COMSOL.





3
Feedback cooling of a room

temperature mechanical
oscillator close to its motional

groundstate

Preparing mechanical systems in their lowest possible entropy state, the
quantum groundstate, starting from a room temperature environment is a key
challenge in quantum optomechanics. This would not only enable creating
quantum states of truly macroscopic systems, but at the same time also lay
the groundwork for a new generation of quantum limited mechanical sensors
in ambient environments. Laser cooling of optomechanical devices using the
radiation pressure force combined with cryogenic pre-cooling has been suc-
cessful at demonstrating groundstate preparation of various devices, while
a similar demonstration starting from a room temperature environment re-
mains an outstanding goal. Here we combine integrated nanophotonics with
phononic bandgap engineering to simultaneously overcome prior limitations
in the isolation from the surrounding environment, the achievable mechani-
cal frequencies, as well as limited optomechanical coupling strength, demon-
strating a single-photon cooperativity of 200. This new microchip technology
allows us to feedback cool a mechanical resonator to around 1 mK, near its
motional groundstate, from room temperature. Our experiment marks amajor
step towards accessible, widespread quantum technologies with mechanical
resonators, operating in ambient environments.

Part of this chapter has been published in Physical Review Letters 22, 223602 (2019) [40].
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its motional groundstate

3.1. Introduction
The last decade has seen immense progress on observing quantum effects with
microfabricated mechanical oscillators [41–46]. This is not only of significant in-
terest for understanding the fundamental aspects of quantum physics in macro-
scopic objects, but also for the potential of using mechanical systems for quantum
information processing tasks and as novel quantum sensors [47]. Excess classi-
cal (i.e. thermal) noise typically obscures the quantum features of these devices,
thus limiting their usefulness and practical adoption for quantum limited sensing.
Groundstate cooling can alleviate this problem, but so far has only been possible
by pre-cooling the devices using cryogenic methods [48–52]. The main limitations
preventing to reach this regime from room temperature include insufficient isolation
from the surrounding environment and too low mechanical frequencies, which can
be formulated into the condition of the product of the mechanical frequency and its
quality factor 𝑓M ⋅𝑄M ≥ 6×1012 [53]. In addition, the optomechanical coupling rate
𝑔0 also plays a dominant role in the ability to efficiently laser cool the motion of a
resonator. There are several approaches focusing on overcoming these limitations.
In particular, experiments featuring optically levitated nanospheres have come to
within a few thermal phonons of the mechanical groundstate recently [54–57].
While the absence of any physical attachment to the environment allows trapped
nanospheres to exhibit extremely large quality factors, they require UHV systems
and complex stabilization mechanisms for their optical traps, making them imprac-
tical as sensors and for other applications. Chip-based mechanical oscillators have
recently also been shown to feature competitively large mechanical quality factors
at room temperature with 𝑄M ≳ 108, most prominently in high-stress silicon nitride
membranes [58–60]. Here, similar limitations as with levitated nanospheres, such
as mirror noise [61, 62], exist.

In this work, we develop a new type of fully integrated optomechanical struc-
ture that allows us to significantly increase the mechanical quality factor of a high-
frequency in-plane mode, while also allowing to realize a coupled opto-mechanical
cavity used for on-chip optical read-out of the motion. We measure a 𝑓M ⋅𝑄M ≈ 2.6×
1013, combined with an optomechanical coupling of 𝐺OM/2𝜋 = 21.6±0.2 GHz/nm,
enabling us to cool the mechanical mode from room temperature to 1.2 mK. This
corresponds to a thermal mode occupation of less than 27 phonons, a reduction by
more than 5 orders of magnitude in the effective temperature. Our novel design
applies previous discoveries on the dominant role of bending losses and results in
a device that resembles a fishbone-like photonic and phononic structure.

3.2. Device
Significant progress has been made over the last years in understanding and mit-
igating the losses in integrated (opto-) mechanical structures, resulting in exper-
imental demonstrations of ultra-high 𝑄M devices. In particular, bending loss has
been shown to be one of the dominant limiting mechanisms for mechanical quality
factors in 1D high-stress silicon nitride structures [37, 64]. Various approaches in
strain [58, 59] and mode shape engineering [64] have recently succeeded in achiev-
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Figure 3.1: (a) A stitched SEM image of the fabricated structure (left) and the simulation of a high quality
factor mechanical mode (right). (b) Mechanical (top) and photonic (bottom) simulation of the center
part containing the photonic crystal. A short second beam forming the other half of the photonic crystal
cavity is fixed close to the mechanical beam. The short structure does not feature any mechanical motion
around the defect-mode. The two structures form an optical cavity with the light strongly confined in
the gap between the two beams. The mechanical motion changes the gap size, shifting the optical
resonance frequency and hence giving rise to the optomechanical interaction. (c) Bending (𝜕2𝑣/𝜕𝑥2)
normalized to the displacement within the photonic fishbone structure. In the center, the magnitude of
the bending alternates between the thin (large bending, white) and thick (small bending, gray) parts of
the structure. As the mechanical losses are proportional to the cube of the width, the fishbone devices
exhibit significantly higher mechanical quality factor a uniform beam of equal width (orange), typically
used for photonic crystal zipper cavities [63]. (d) Sketch of the central photonic crystal and coupling
waveguide. Clearly visible is the short second beam in the center. A cross-section at the red dashed line
is shown in the box on the left.
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ing ultrahigh-𝑄M mechanical resonators. By using adiabatically chirped phononic
crystals for example [64], the mechanical mode is localized in the center of the
beam and the bending can significantly be reduced, leading to increases in 𝑄M.
While this concept works very well for the out-of-plane motion, it is much more
challenging for an in-plane mode[65]. This is due to the loss Δ𝑈 being proportional
to the cube of the thickness in the motional direction [64], which for the in-plane
mode is equivalent to the width 𝑤 of the structure Δ𝑈 ∝ 𝑤3(𝜕2𝑣/𝜕𝑥2), with 𝑣
being the displacement. In practice, there are several parts of an optomechani-
cal structure that require a certain minimum width, such as the phononic crystal
itself, which is partly comprised of wide blocks of material. The bending of these
very wide blocks results in large mechanical dissipations. Furthermore, in order to
form a good optical cavity, the photonic crystal at the center of the structure also
requires a minimum width, which is comparable to the optical wavelength [63].
Both factors largely reduce the attainable mechanical quality factor. With our new
fishbone design we minimize 𝑤 in the parts with maximal bending, allowing us to
significantly reduce Δ𝑈.

Our structure is fabricated from a 350 nm thick high-stress (1.3 GPa) silicon
nitride layer deposited on a silicon handle wafer. As shown in Figure 3.1(a), it is
based on the differential motion of two strings, where one of them is significantly
longer (2.6 mm) than the other (115 𝜇m). The longer string of this zipper structure
is connected to the chip through a phononic crystal, with a bandgap for the in-plane
mode between 610 kHz and 1.10 MHz (Figure 3.2(a)). This design forms a defect
in the center, introducing confined modes with frequencies within the bandgap,
significantly reducing the losses of these modes. As the amplitude of the modes of
interest is largest in the center of the structure, we reduce its bending by introducing
an adiabatic transition of the unit cells of the phononic crystals. This results in a
weaker confinement and smaller bending close to the center [64]. As mentioned
above, this does however not immediately result in a high quality factor of the in-
plane modes, as the width of the structure close to the bending areas becomes
important. We therefore design the overall device as a string with a width of only
165 nm, limited by our fabrication process. When adding the phononic crystal we
avoid wide and rigid regions in the design, segmenting the blocks closest to the
center into a fishbone-like structure.

A similar approach is also taken for the central photonic crystal used to read-out
the mechanical motion. Instead of a traditional photonic structure with holes in
a wavegeuide [63], we achieve an alternating index contrast through a fishbone
design. The wider parts are roughly 1 𝜇m in width, while the narrow ones between
the teeth have a width of only 165 nm. This geometry localizes the bending to the
narrow parts (cf. Figure 3.1c), significantly reducing the overall bending losses. For
comparison, we observe a typical enhancement of 𝑓M ⋅ 𝑄M by more than a factor
of 5 between devices with and without the photonic fishbone structure.

The optical cavity is formed between the long and short strings and the optical
field is confined within the gap formed by the fishbones and designed to operate at a
wavelength of around 𝜆 = 1550 nm. Due to the strong confinement, the resonance
frequency of the cavity is very sensitive to the gap size. In the simulation, shown
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in Figure 3.1b, we obtain an optomechanical coupling strength 𝐺OM/2𝜋 =
𝜕𝜔cav
𝜕𝑥 =

28.6 GHz/nm, with 𝜔cav the cavity frequency, for a typical 200 nm gap. Combining
𝐺OM with the localized mechanical mode of interest, which has small effective mass
𝑚eff = 7.36× 10−14 kg, we obtain a single photon coupling rate 𝑔0/2𝜋 = 313 kHz.
The resulting optimized structure features a 16.5 𝜇m long photonic crystal cavity,
while the overal structure has a length of 2.6 mm.

We design the mechanical defect mode at a frequency 𝑓M = ΩM/2𝜋 = 950 kHz.
A ringdown measurement of this mode in 5 × 10−6 mbar vacuum, shows a quality
factor of 2.73 × 107 (cf. SI), yielding 𝑓M ⋅ 𝑄M = 2.59 × 1013. The total optical
resonance’s (𝜆 = 1549.9 nm) linewidth is measured to be 𝜅/2𝜋 = 33.0 GHz, and
the coupling rate to an adjacent optical waveguide 𝜅e/2𝜋 = 31.4 GHz. The strongly
over-coupled cavity ensures that most of the light in the cavity is reflected back into
the waveguide, which is necessary to achieve high detection efficiency. To further
characterize the device, we measure the optical spring effect (see SI for details),
allowing us to experimentally determine a single photon coupling rate of 𝑔0/2𝜋 =
237 ± 2 kHz, corresponding to an optomechanical coupling of 𝐺OM/2𝜋 = 21.6 ±
0.2 GHz/nm, in good agreement with simulations. We determine the single photon
cooperativity of our device 𝐶0 =

4𝑔20
𝜅ΓM

≈ 200, which represents the relative strength
of the single photon interactions against any loss channels, a key characteristics of
the system [32, 63].
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Figure 3.2: Band diagram for the in-plane mode of the phononic (a) fishbone and (b) block structure.
We apply a periodic boundary condition in the 𝑥-direction, with 𝑘𝑥 being the wavevector. The blocks in
the long beam form a bandgap between 0.6 and 1.1 MHz for the teeth structure, and between 0.7 and
1.5 MHz for the block structure.

3.3. Experiment and results
In this unresolved side band regime [22], an active feedback cooling scheme can
be used to reduce the thermal energy of the mechanical oscillator [52, 66]. In this
scheme, unlike in the traditional cavity cooling approach [48], the extremely large
bandwidth of the optical cavity allows to retrieve information on the motion of the
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mechanical resonator at a high rate. In our experiment, we measure the position
of the mechanics and process it in real-time, using the resulting signal to actively
control the optical input power into the optomechanical cavity. The modulation of
the intensity changes the radiation-pressure force, hence allowing to control and
actively cool the mechanics itself. Figure 3.4a shows a sketch and description of
our setup used to demonstrate such feedback cooling of our mechanical resonator.
The measured signal containing the information on the position of the mechanical
oscillator is sent to an FPGA controller (RedPitaya 125-14), with its output directly
connected to an electro-optical intensity modulator just before the device. The
FPGA control allows us to implement an almost arbitrarily complicated feedback
filter. We apply a derivative filter with a 2nd order underdamped low-pass filter to
cool the mechanical defect mode. The feedback phase at the resonance frequency
is tuned to be −𝜋/2. Due to a small delay in the system, applying this signal directly
would heat other nearby mechanical modes and make the system unstable. We
therefore cascade a series of notch filters to tune the phase response locally, which
provides a weak cooling over the surrounding modes (cf. Figure 3.3). The total
delay of the feedback loop is measured to be 0.49 μs.
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Figure 3.3: (a) Mechanical spectrum. The red dashed line marks the high-𝑄M defect mode. Gray
lines indicate additional mechanical modes that strongly couple to the optical cavity, while most other
spurious peaks arise from the mixing of these modes in the detection itself. (b) Phase response of the
feedback control. The circuit has a phase of −0.5𝜋 at the resonance of the defect mode, with the gray
area indicating the unstable region due to heating. (c) Gain of the feedback control. We implement
several filter functions with large bandwidth, allowing us to suppress and partly cool other modes that
are excited in order to stabilize the system.
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Figure 3.4b shows the calibrated displacement power spectrum (𝑆𝑦𝑦) of the me-
chanical oscillator with different levels of cooling from a bath at room temperature.
We keep the cavity photon number fixed at 𝑛cav = 120, while increasing the gain of
the feedback filter to increase the amount of feedback. The mechanical peak ampli-
tude reduces and broadens, corresponding to a cooling of the mode of interest. The
curves are then fitted and we extract the displacement spectrum 𝑆𝑥𝑥 [52, 63]. This
allows us to calculate the average phonon number �̄�, which is shown as a function
of electronic gain in Figure 3.4c. The lowest occupation we obtain is �̄� = 26.6±0.7,
reduced from 6.5 × 106 at room temperature. We note that our measurements
are not quantum-noise-limited in this experiment, resulting in a slightly increased
phonon occupancy compared to the theoretically expected value. This additional
noise floor results from the optical fiber touching the waveguide and introducing
broadband mechanical modes. These mechanical waveguide modes shift the reso-
nance frequency of the cavity weakly, resulting in an increase of the detection noise.
At high gain, this noise is fed into the mechanics and limits the cooling efficiency.
Unlike in the ideal case of a quantum-noise-limited measurement, increasing the
input optical power does not reduce the classical noise and hence it does not lead
to more efficient cooling. Using different types of coupling methods or re-designing
the waveguide will allow us to reduce the classical noise further, allowing us to in
principle cool to an occupation of �̄�min ≈ 14, with everything else left unchanged.

3.4. Conclusion and outlook
In summary, we have designed and fabricated a novel, fully intergrated optome-
chanical system, featuring a fishbone-like photonic and phononic structure, with
a 𝑄M = 2.73 × 107 of an in-plane mechanical mode combined with a large op-
tomechanical coupling rate of 𝑔0 = 237 kHz. We use this device to demonstrate
active-feedback cooling close to the quantum groundstate of motion, starting from
room temperature. By tuning the FPGA-based feedback filter, we stabilize spu-
rious modes that strongly couple to the optics, allowing us to reach an effective
mode temperature of 1.2 mK, corresponding to less than 27 phonons. Further im-
provements in the noise performance of our setup, together with enhancements
of 𝑄M and optomechanical coupling, should allow for these structures to be cooled
fully into their groundstate, which will enable mechanical quantum experiments at
ambient temperatures. In addition, the simplicity in fabrication of our devices, con-
sisting of a single SiN layer on chip only, combined with their fully integrated on-chip
character, makes them ideal candidates for quantum sensing applications [47, 63].

In order to get even closer to the groundstate in the continuous feedback cool-
ing scheme, the measurement rate (Γmeas = 𝑥2zpf/𝑆

imp
𝑥𝑥 = 4𝜂𝑛cav𝑔20/𝜅) has to be

comparable or larger than the decoherence rates in the system, i.e. the ther-
mal decoherence (Γth ≈ ΓM𝑛th) and the back-action rate (Γba = ΓM𝑛ba, where
𝑛ba = 𝑛cav𝐶0) [32]. Here, 𝜂 is the overall detection efficiency, which for our ex-
periment is 𝜂 = 0.50, while 𝑛ba = 2.4 × 104 ≪ 𝑛th, hence making the thermal
component the dominant decoherence channel. Excluding classical noise, we find
Γmeas/(Γth/8) = 0.015 ≪ 1 [32], which is orders of magnitude larger than in pre-
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Figure 3.4: (a) Sketch of the feedback cooling setup. A laser is first tuned on cavity resonance and
phase modulated to generate a calibration tone. It is then split into two arms, with both intensities
being controlled through variable optical attenuators (VOA). The bottom path is the local oscillator for
the homodyne detection scheme, where the phase can be controlled using a fiber stretcher (𝜙). The
light in the upper (signal) arm is intensity modulated in an electro-optical modulator (EOM) and sent
to the waveguide [67], where it is then evanescently coupled into the optical cavity. At the end of the
waveguide we pattern a photonic crystal mirror, which allows the light from the cavity to be reflected back
into the fiber with a collection efficiency of 91%. This light is then mixed with the local oscillator on a
beamsplitter and measured in a home-built low-noise balanced photodetector with a quantum efficiency
of 70%, in order to perform the phase-sensitive measurement. The detected signal is electronically
processed in an FPGA-based controller, which directly modulates the light in real-time through the EOM,
and hence allows to cool the mechanical resonator. (b) Cooled mechanical spectra 𝑆𝑦𝑦, with increased
feedback gain from orange to blue and constant intracavity photon number 𝑛cav. The dashed lines are
fits to the spectra, while the gray dotted line indicates the quantum limited noise floor. (c) Average
phonon number extracted from the spectra in (b), with corresponding color coding. The gray dashed
line represents the theoretically predicted quantum-noise-limited phonon number, and the dark blue
dotted line the expected phonon number when taking the noise into account.

vious similar experiments [63].
Several approaches to increasing this ratio exist. For example, by redesigning

the coupling waveguide to obtain a quantum-noise-limited measurement, the in-
tracavity photon number can be raised further, and is eventually only bound by
absorption heating. Increasing the optomechanical coupling rate can be achieved
by improving the fabrication and reducing the gap size between the strings forming
the optical cavity. A reduction of the gap to 100 nm yields 𝐺OM = 2𝜋×45 GHz/nm,
which is more than twice the current value. Another way is to further reduce the
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thermal decoherence rate, through device improvements. Our current design is not
optimized to maximize the stress [58], which would lead to more stored energy,
increasing 𝑄M. At the moment, the maximum simulated stress in the structure is
1.5 GPa, which is still far below the yield strength of SiN (∼6 GPa). Higher stress
can also be achieved through an overall longer beam, while at the same time al-
lowing for more adiabatic chirping in the geometry, which would further reduce
mechanical losses. Combining all of these approaches should allow to reach the
quantum groundstate. In partiular, moderately increasing the mechanical quality
factor to 𝑄M ≈ 1 × 108, would lead to an increase of Γmeas/(Γth/8) to 0.06 and
the phonon number could be reduced to 6. Together with a reasonable reduction
of the gap to 100 nm and a small increase of the cavity photon number to 200,
a phonon occupation around 3 will be achievable. Further improvements in 𝑄M to
≳ 7 × 108 [60, 64] will finally enable phonon numbers below unity starting from
room temperature.

3.5. Supplementary Information

3.5.1. Device design

For our design, we first set the geometry of the photonic crystal as the fishbone
structure. We then fix the width of the narrow part of the photonic crystal to
165 nm, a width that can easily be fabricated with high yield. The photonic crystal
consists of adiabatically chirped unit cells, with a defect region at the center and
mirror regions at the ends. We then perform finite element simulations (FEM) of the
optical properties of a unit cell of the mirror region and the defect, using COMSOL.
The free parameters are the period of the unit cells, as well as the width and the
length of the wide part. These parameters are tuned such that we obtain a bandgap
around 1550 nm for TE-like modes for the mirror. We design the defect such that
the lower-band crosses the center of this bandgap. With this initial design we then
run an optimization algorithm [68] maximizing 𝐺OM/𝜅, where 𝐺OM is calculated
using the moving boundary effect [69].

The mechanical simulations are also performed using COMSOL, where the width
of the initial string is again chosen to be 165 nm. We first simulate the band
structure for the unit cell closest to the clamping region and a unit cell of the
last phononic fishbone structure. In order to reduce the parameter space for the
fishbone structure, both its vertical width and the distance between individual fins
is fixed to 0.8 𝜇m. Through the simulations, we find bandgaps for the block and
fishbone structure, respectively. Finally, we run a full mechanical simulation of the
whole assembled long string. As the stress differs between the individual unit cell
and the complete simulations, we manually adjust the length of the string in order
to obtain the right mode. We then again run an optimization, this time maximizing
𝑓M ⋅ 𝑄M, where 𝑄M is evaluated as the ratio between the stored elastic energy and
the bending loss [35]. We also set a lower bound on 𝑓M in the optimization.
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Figure 3.5: (a) Ringdown measurement of the mechanics with a decay time constant of 4.58 s, corre-
sponding to a mechanical quality factor of 𝑄M = 2.73 × 107 (𝜔M/2𝜋 = 950.4 kHz). (b) Normalized
optical cavity resonance (𝜆 = 1549.9 nm). (c) Optical-spring effect measured by detuning the laser
around 𝜔M. The fits to (b) and (c) yield a total cavity linewidth 𝜅/2𝜋 = 33.0 GHz and optomechanical
coupling 𝐺OM/2𝜋 = 21.6 GHz/nm.

3.5.2. Device fabrication & characterization
Our devices are fabricated from a 350 nm thick high-stress silicon nitride film de-
posited in an LPCVD furnace on silicon. The pattern is first generated using standard
electron beam lithography and then transferred into the silicon nitride layer using
a CHF3 plasma etch. Next, we clean the chip in a piranha solution and use hy-
drofluoric acid to remove any oxidation. Finally, we undercut our structures using a
fluorine-based dry release [47]. We would like to highlight the simplicity of the fabri-
cation process, requiring a minimal amount of steps in order to make the suspended
structure, completely avoiding the need for complex multilayered processes [65].

In order to measure the mechanical and optical properties of our device, we per-
form a mechanical ringdown measurement, as well as a wavelength sweep of the
optical resonance (see Figure 3.5a,b), respectively. We determine the optomechan-
ical coupling rate by measuring the optical spring effect of the mechanical mode as
a function of laser detuning (cf. Figure 3.5c).

The mechanical spectrum close to our mode of interestis shown in Figure 3.7a,
from which we identify and verify that the mechanical mode we measure is the
correct in-plane mechanical mode we design. A zoom-in of thespectrum around
948 kHz (gray region) is plotted in Figure 3.7b. Due to the single-layer geometry,
the in-plan emode (left) has a large optomechanical coupling, while the coupling of
the out-of-plane mode (right) is weak. The out-of-plane mode has a slightly higher
frequency, which agrees with our simulations (see c and d). We further confirm
the mode by comparing it with a higher order in-plane mode (green arrow, Figure
3.7e), whose frequency is 19 kHz higher, which is also in excellent agreement with
simulations (20 kHz higher).

3.5.3. Large cavity linewidth
In this work, the optical linewidth is 33.0 GHz, with an intrinsic linewidth of 31.4
GHz. Here, I justify the large linewidth used in this work.

Consider the fundamental mode. The long string has a fundamental mode at 76
kHz and with an effective mass of𝑚 = 10−12 kg. At room temperature, the thermal
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Figure 3.6: (Left) Microscope image of the complete device design. The tethers of the structure shown
here are shortened by about a factor of 10 compared to the device used in the main text in order to fit into
one picture. The long beam consists of the fishbone nanocavity structure in the center, symmetrically
connected on both sides by 3 fishbone phononic shield blocks, followed by 5 rectangular phononic shield
blocks and then clamped to the chip. The inset shows a zoom-in of the fishbone nanocavity. (Right)
Shown is an image of the device with the actual dimensions used in our experiments, with only the first
fishbone phononic shield blocks visible. Both images show the waveguide used to couple light from the
tapered optical fiber into the photonic crystal cavity.
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Figure 3.7: (a) Mechanical spectrum close to the high-Q mode. A zoom-in of the highlighted gray area
is shown in (b). (c-e) Simulated mode shapes of the corresponding modes labeled in (a) and (b). The
mode in (c) is the in-plane mode of interest, (e) a higher order mode, while (d) is an out-of-plane mode.

fluctuation would be 𝑥rms = 0.16 nm. The fundamental mode has a similar optome-
chanical coupling 𝐺OM as the mode of interest since they have a similar deformation
at the photonic crystal region. The thermal fluctuation then corresponding a fluctu-
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EOM

Controller

Figure 3.8: A general measurement-based feedback cooling scheme. Optical paths are indicated in
red and the flow of electrical signals is indicated in blue. The light from the laser is modulated by an
intensity EOM, and then the light travels to the optomechanical cavity. The reflected light is collected
and measured. The signal is then fed to a classical controller, which controls the intensity EOM.

ation of the cavity resonance frequency of 𝛿𝜔cav/(2𝜋) = 3.4 GHz. The system has
many more modes. The fluctuation for the third order in-plane mode is 1.1 GHz,
and for the mode of interest is 0.9 GHz. To keep the system in a linear regime,
the cavity linewidth should be much larger than the cavity resonance frequency
fluctuation. Therefore, a cavity of a large linewidth is used in this work. Still, in
figure 3.3, it is possible to see lots of mixing of the modes. In the cooling spectrum
in figure 3.4, there are spikes near the mode of interests. They are also from the
mixing of different modes in the readout. When the feedback strength is increased,
these spikes diminish.

3.5.4. Measurement-based feedback cooling theory
Here, I sketch the theory in the measurement-based feedback cooling, following
the treatment in [70].

A scheme of the feedback cooling is sketched in figure 3.8. Light from a con-
tinuous wave laser with Δ = 0 is intensity-modulated by an intensity EOM, and
then it is sent into the optomechanical cavity. For a modulation depth 𝜖(𝑡), 𝛼2in =
(1+ 𝜖(𝑡))𝛼20. Here, I choose the phase convention that 𝛼0 is real and positive, and
it is compatible with the phase convention for the optomechanical system since the
detuning is 0. For small modulation,

𝛿�̂�inc =
𝜖
2�̄�in + 𝛿�̂�

vac
inc . (3.1)

The first term is due to the modulation of the intensity, and �̄�in is the static input
field. �̂�vacinc is the vacuum fluctuation. In this continuous measurement scheme with
small fluctuation, the linearized Langevin equation in the Fourier domain is more
convenient to work with. Also, in this work, the cavity decay rate 𝜅 is the much
larger than the frequency of any dynamics considered in this work (𝜅 ≫ 𝜔). With
Δ = 0, equation 2.8 is simplified as

�̂�𝑌(𝜔) = 4𝑔
𝜅 𝑄(𝜔) +

2
𝜅 (√𝜅e𝛿𝑌

vac
inc + √𝜅i𝛿𝑌vacin2) ,

𝑄(𝜔) = 𝜒M(𝜔) (2𝑔√
𝜅e
𝜅 𝜖(𝜔)�̄�in +

4𝑔
√𝜅
�̂�vacin +√2ΓM𝑃in) .

(3.2)
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The new input vacuum field is defined as �̂�vacin = (√𝜅e𝛿𝑎vacinc + √𝜅i�̂�in2) /√𝜅. Also,
note that the 𝑌 quadrature of the light is not modulated in the scheme, the input
of the Y quadrature is only the vacuum noise.

In the detection, 𝑌 quadrature of the output light is measured. Let the detection
efficiency be 𝜂,

𝑌det = √𝜂 (𝛿𝑌inc − √𝜅e𝛿𝑌) + √1 − 𝜂�̂�vacdet

= −4√𝜂𝑔√
𝜅e
𝜅 𝑄 + √𝜂 (1 −

𝜅e
𝜅/2)𝑌

vac
inc +

√𝜂𝜅e𝜅i
𝜅/2 𝛿𝑌vacin2 +√1 − 𝜂𝑌vacdet .

(3.3)

The measurement result is then fed to a controller. In this work, a linear filter
is implemented. Let the transfer function of the filter be ℎfb(𝜔). The classical
modulation then becomes

𝜖(𝜔) = −ℎfb(𝜔)𝑌det(𝜔). (3.4)

The scheme forms a control problem and it is possible to solve for 𝑄(𝜔). The phonon
occupancy can be find by integrating the spectrum of the mechanical resonator

�̄�coolingth = 1
2 (∫

∞

−∞

d𝜔
2𝜋 (1 +

𝜔2
Ω2 ) 𝑆𝑄𝑄(𝜔)) −

1
2 . (3.5)

The above equations assume shot-noise limited detection. However, in this
work, a large classical noise presents. A classical noise term 𝑌Noise,cldet can be inco-
herently added to the detection signal in equation 3.3,

𝑌det = √𝜂 (𝛿𝑌inc − √𝜅e𝛿𝑌) + √1 − 𝜂�̂�vacdet + 𝑌Noise,cldet . (3.6)

The classical noise raises the noise floor in the detection, and hence feedback con-
troller add more noise to the mechanical resonator. It increases the final phonon
occupancy.

In this scheme, the ability to resolve the mechanical motion is of great impor-
tance. In the measurement, the signal from the mechanical resonator mixes with
measurement noise. In an ideal experiment without all the classical noise, there
is still vacuum fluctuation. It is illustrative to define a measurement rate Γmeas
(see section 2.1.5). Heuristically, It can be understood as the time scale to resolve
the zero-point fluctuation of the mechanical resonator. The final phonon occupancy
can then be roughly estimated by comparing it to the thermal decoherence rate ΓM,
which is the heating rate when phonon occupancy is 0. A ground state is achieved
only if the thermal decoherence rate is comparable or lower than the time it takes
to resolve a single phonon.

3.5.5. Stable feedback cooling
In the presence of multiple modes with relatively high quality factor and a significant
delay, a feedback controller should be carefully designed. The delay introduces a
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phase lag for the control, which can turn cooling into heating for some of the
mechanical modes. Combining equations 3.2, 3.3 and 3.4 yields the form

𝑄(𝜔) = 𝜒M(𝜔) (−𝛽ℎfb(𝜔)𝑄(𝜔) + 𝑁in(𝜔)) , (3.7)

where 𝑁in(𝜔) denotes all the input (noise) terms, and 𝛽 = −8√𝜂𝑔2
𝜅e
𝜅2 �̄�in. Then,

𝑄(𝜔) = 𝜒effM (𝜔)𝑁in(𝜔). (3.8)

Here, the effective susceptibility is defined,

𝜒effM (𝜔) = 𝜒M(𝜔)/ (1 − 𝛽ℎfb(𝜔)𝜒M(𝜔))
= ΩM/ (Ω2M − 𝜔2 − iΓM𝜔 − Ω𝛽ℎfb(𝜔))

= ΩM/ (Ω2M − 𝜔2 + Ω𝛽Reℎfb(𝜔) − i(ΓM −
ΩM𝛽
𝜔 Imℎfb(𝜔))𝜔) .

(3.9)

A stable feedback requires that all the poles of 𝜒effM (𝜔) have negative imaginary
parts. When designing the feedback filter, taking care of all the imaginay parts the
poles for all the mechanical modes is challenging and it is not necessary. In the
last line of equation 3.9, note that the imaginary part of the feedback introduces an
effective damping rate ΓeffM (𝜔) = ΓM +

ΩM𝛽
𝜔 Imℎfb(𝜔). For a mechanical mode with

high quality factor, only the frequency range close to the mechanical frequency has
a large contribution. For small feedback strength, the feedback term only perturbs
the dynamics. Thus, it is good enough to only look at the effective damping at the
mechanical frequency, ΓeffM,𝑗(𝜔 = ΩM,𝑗) for the 𝑗-th mode. For ΓeffM,𝑗 < 0, the damping
becomes heating for the mode and the feedback drives the system to an unstable
state. Requiring Im ℎfb(𝜔) < 0, or equivalently arg ℎfb(𝜔) ∈ (−𝜋, 0), ensures that
the feedback is cooling, under the approximation. In practice, a small margin to
the phase arg ℎfb(𝜔) is sometimes needed.

3.5.6. Feedback filter design and implementation1
In this work, the feedback controller is implemented on Red Pitaya (STEMlab 125-
14), a board with analog-to-digital converter (ADC, 125 MSa/s, 14 bit), digital-
to-analog converter (DAC, 125 MSa/s, 14 bit) and a field-programmable gate array
(FPGA, Xilinx Zynq 7010). The analog signal from the photodetector is first digitized
by the ADC, and then it is processed by the FPGA. The signal is then converted back
to analog signal by the DAC. The DAC, ADC and the FPGA run at a clock rate of
125 MHz, but the computation for the filter is reduced to 62.5 MHz in order to have
sufficient time to perform operations for the filters. Both the sampling rate and the
computation speed of the FPGA is still much higher than the frequency range of
interest. It is therefore sufficient to approximate the input and the output to be
continuous, and a discrete-time analysis is not necessary.
1When designing filters for linear continuous-time signal processing, analysis are in general performed
in Laplace space. However, it is sufficient to stay in Fourier domain in this part, and therefore I only
analyze the transfer function in Fourier domain. The Laplace space is related to the Fourier domain,
under the convention in this work, by 𝑠 = 𝜎 − i𝜔, where 𝜎 is a real number.
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Figure 3.9: Transfer function of (a) a notch filter and (b, c) its variants. The upper panels are for the
magnitude respond and the lower are the phase response. The frequency is in arbitrary unit. For a notch
filter, the center frequency √𝑏0/(2𝜋) = 1, and the bandwidth √𝑏1/(2𝜋) = 0.001. 𝑎2, representing the
gain, is set to 1. It brings a phase shift of ±0.5 𝜋. By changing 𝑎2 and 𝑏2, it is possible to tune the
phase response. It is useful to address the mode at a frequency where the response of the feedback
controller is close to 0.5𝜋. (b) √𝑎0/(2𝜋) = 1.0005 and √𝑏0/(2𝜋) = 1. The phase response is shifted
to the positive side. (c) √𝑏0/(2𝜋) = 1.0005 and √𝑎0/(2𝜋) = 1. The phase response is shifted to the
negative side.

Before introducing the design strategy and implementation details, it is note-
worthy to mention the general form of a (maximum) second order filter, with a
transfer function

𝑎2𝜔2 + 𝑎1𝜔 + 𝑎0
𝜔2 + 𝑏1𝜔 + 𝑏0

. (3.10)

The filter design is built on top of it. Note that it also directly gives the biquad filter
in a discrete time realization.

The goal is to cool the main mechanical mode to a low thermal occupation state.
To do the feedback cooling, a band-pass filter of the form

𝜔
Ω20 − 𝜔2 − iΓ0𝜔

(3.11)

is firstly assigned, where Ω0 and Γ0 are the parameters of the filter. It is the main
filter that handles the main mode. It provides a high response around its resonance
frequency, and the response is low for other frequencies. Two additional elliptic low
pass filters provide extra damping to the feedback response at high frequencies.
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For other mechanical modes, the response of the feedback filter would thus be low
for the experiment condition. It is, however, not low enough to avoid heating of
these modes.

To keep the system stable, efforts should be taken to avoid heating of other
modes. As motivated in 3.5.5, the feedback should has a phase response between
−𝜋 and 0 at the resonance frequency of these modes. To to this, starting from
the first mode, I cascade second order filters when necessary to make sure that
ΓeffM for the specific mode is damping. A typical example is the second order notch
filter, with its transfer function shown in figure 3.9(a). It is essentially a bandpass
filter with 𝑎1 = 0 and 𝑎0/𝑎2 = 𝑏0 > 0 in equation 3.10. The center frequency of
the stopband is √𝑏0/(2𝜋), and the bandwidth is given by 𝑏1/(2𝜋). It has a large
phase tuning range of ±0.5𝜋 and low response at the center frequency. It is useful
to damp the response and tune the phase simultaneously. Small modifications to a
notch filter changes the response, with a different phase tuning range, is also useful
to tune the phase response. Some examples are shown in figure 3.9(b, c). They
are in general required for closely spaced mechanical modes whose frequencies
are around the region where the phase response of the bare feedback controller
is about 0.5𝜋. However, these tuning has an expense of increasing the gain for
some frequency ranges. Also, they make the filter more expensive in terms of the
resources on an FPGA.

In order to achieve a highly efficient cooling, the response of the feedback at
frequency of the main mechanical mode should be around −0.5𝜋. It is achieved
by adding delay cycles to tune the phase response. Note that each cascaded filter
also increases delay of the system. Both adding a pure delay and cascading a filter
might lead to the change of the phase condition from cooling to heating for some
of the modes. It is thus an iterative process to settle the final filter.

Besides cascading the filter, adding filters in parallel is another option and it does
not increase the delay. However, it is challenging to design a parallel scheme. Firstly,
the final response is the summation of the complex response of all the filters. It is
less intuitive to see how the transfer function behaves by adding a filter in parallel
to many existing filters, especially when working on phase and gain of the filter.
On the order hand, for a cascaded structure, the response is from a multiplication,
where the phase is summed directly. By looking on only the transfer function of
the added filter, it is immediate to know the new transfer function of the system.
Secondly, in practice, for a complicated mechanical structure with lots of modes,
the resource on an FPGA is precious. It is easier to optimize the resource usage
with cascaded filter by setting some of the coefficients of the second order filters
to be 0. It is also not immediately clear how to optimize for the parallel structure.
Therefore, I opted for the cascaded structure in this work.

After designing the filters, the continuous-time design are translated to discrete-
time design in MATLAB. The HDL coder module in MATLAB then generates Verilog
codes for the filter part. Auxiliaries functions are supplemented to form the final
feedback controller. After the signal is sent to the FPGA, the width of the signal
is first increased to 25 bits by padding zeros. A higher number of bits reduces
the rounding errors. Then, it is smoothed by averaging every 4 adjacent sampling
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points. It acts as a simple low pass filter. Immediately, it is decimated to half the
data rate. It makes it possible to handle the arithmetic (addition, subtraction and
multiplication) with the high bit width. The signal is then delayed, scaled and sent
to the filter part. The output of the filter is scaled again, truncated, and sent to
the output of the FPGA. Ideally, the first scaling should make good use of all the
available data bits while avoiding overflowing. The second scaling could be used to
tune the overall gain of the feedback. Note that a red-pitaya has 2 analog outputs
with 125 MSa/s sampling rate. Another output can be used to monitor the internal
signal in different phase of this process. This scheme is implemented in Verilog and
compiled by Xilinx Vivado.
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The rapid development of high-Q macroscopic mechanical resonators marks
great advances in optomechanics. They potentially allow quantum-limited
or quantum-enhanced applications at ambient temperature. However, cou-
pling these structures to light within an integrated structure and achieving
high coupling strength places a key challenge in their utilization. Here, we
present an integrated optomechanical structure with a versatile fabrication
method. A photonic crystal cavity is placed above a mechanical resonator
with high-Q fundamental out-of-plane mode, and both are separated by a
small gap. A highly confined optical field has a large overlap with the me-
chanical mode, enabling a high optomechanical interaction strength. With a
novel design of the photonic crystal, it is also possible to achieve a very large
cavity photon number. We further demonstrate feedback cooling on a device
at room temperature, yielding a phonon number of about 22 over the 1.1 MHz
mechanical mode. Our novel fabrication method potentially allow accessible
quantum experiments and applications with high-Q mechanical resonators.
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4.1. Introduction
Integrated cavity optomechanical systems have attracted lots of attentions for the
potential in both classical[8, 71, 72] and quantum[21, 73, 74] applications, and for
its ability to study fundamental physics[75, 76]. A mechanical resonator with high
quality (Q) factor and a large coupling to the optical cavity is important,[22] since
they are related to the ability to maintain coherence oscillations and to have an effi-
cient readout and control. Great progress has been made on designing and fabricat-
ing mechanical resonators with high quality factor at room temperature.[60, 64, 77]
It potentially enables quantum limited sensing[47, 78] or macroscopic quantum
phenomena[79] at high temperature. Integrating optical cavity and mechanical
resonator with high Q in-plane mechanical mode has also been demonstrated and
it shows a large single photon cooperativity. [40] Out-of-plane motion would pro-
vide a higher 𝑓M ⋅ 𝑄M product[37, 64], the mechanical frequency times its quality
factor, due to the achievable thickness. Even for the fundamental mode, it has
been proposed and shown to be able to achieve a high quality factor.[77, 80] Po-
tentially, mechanical structures with the high-Q fundamental out-of-plane modes,
with other modes separated far away which minimizes the disturbing from the other
closely spaced mechanical modes, provide a clean platform for further quantum op-
tomechanical experiments. However, coupling to an integrated optical cavity is still
challenging. Attempts on making integrated optomechanical devices coupling to
the out-of-plane motion have been made.[32, 81, 82] However, forming a fully in-
tegrated optomechanical device with high Q mechanical resonator is still yet to be
achieved as we have noticed.

In this work, we develop a novel type of flexible, fully integrated optomechanical
fabrication method that enables a large optomechanical coupling to the out-of-plane
mechanical mode. Especially, we demonstrate devices with mechanical resonator
having a high-Q fundamental mode. By using a pick-and-place technique [83, 84],
we fabricate structures where a photonic crystal is placed above a mechanical res-
onator with a 1.1 MHz fundamental out-of-plane mode and an intrinsic quality factor
of around 2× 107. The photonic crystal and the mechnical structure are separated
by a controllable small gap of around 100 nm. With the versatile fabrication tech-
nique, we have reliably fabricated devices with different gap distances, and find that
both the mechanical quality factor and the optomechanical coupling of the fully in-
tegrated structure are sensitive to the gap. For a spacing of 130 nm, it is possible to
achieve a 𝑔0/2𝜋 ≈ 260 kHz and 𝑄M ≈ 1.6 × 107 simultaneously. This corresponds
to 𝑓M ⋅ 𝑄M ≈ 2.9(𝑘B𝑇/ℎ) at room temperature. We further show that the struc-
ture allows a large intracavity photon number, potentially allowing approaching a
unity quantum cooperativity 𝐶qu at some high temperature. We perform feedback
cooling with a large feedback bandwidth on a device with 𝑄M = 1.5 × 107, and
we obtain an effective phonon occupation of 22.1±1.0. The minimum achievable
phonon number is currently limited by the mechanical motion of the photonic crys-
tal at low frequency, which introduces classical noise. This technique potentially
provides a versatile platform for future experiments and applications with high-Q
out-of-plane mechanical motion.
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4.2. Structure and fabrication

Figure 4.1: (a) Simulation of the fundamental out-of-plane mechanical mode of the fractal structure.
The mechanical motion is gradually damped from the center to the clamping points. (b) Electric field
distribution (top) on the upper surface of the mechanical layer and (bottom) on the center vertical plane.
The green dashed line on the upper plot shows the projection of the photonic crystal. The mechanical
layer in the simulation has a width of 1 µm, the same as the width of the photonic crystal. (c) An SEM
image of the coupling part between the photonic crystal structure (purple) and the mechanical resonator
(green). Spacers (yellow) are put between to separate the photonic crystal and the mechanical structure.
The assembling of the three-layer structure is sketched in (d). The process starts from three different
chips, all structures are fabricated on the silicon nitride thin film. They are patterned with (i) photonic
crystals, (ii) spacers, and (iii) mechanical structures. A fiber is used to pick up the spacers and to place
them on the mechanical chip. Then the photonic crystal is stacked on top of the spacer. Drawing in the
box at the bottom-right is the side view of the assembled structure. Photonic crystal is placed on top
of spacers, which are placed on the non-overhanging part of the silicon nitride. The thickness of the
spacers determines the gap distance between the photonic crystal and the mechancial resonator.

Our mechanical structure is inspired from a fractal-like structure [77, 80], which
has been proposed and shown to have an extraordinary high quality mechanical
factor over the fundamental mode for low frequency mechanics. The mechanical
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resonator in this work is targeted at around 1 MHz with a smaller footprint. The
fundamental mode of the self-similar structure is shown in figure 4.1(a). Each unit is
connected to three similar, but smaller, child units. Our mechanical structure is made
on 50 nm thick high stress silicon nitride, and it is well known that stress increases
the mechanical quality factor.[36, 37, 64] A thinner material would lead to a higher
mechanical quality factor [37, 64], at the expense of reducing the optomechanical
coupling. In our structure, comparing to the binary tree [77], an additional child
unit facilitates preserving the high stress on the parent unit. The stress at the center
can be maintained or even enhanced without significantly increasing the width of
the tethers in the child units. In our structure, the width of the tethers marginally
increases from 500 nm at the center to 1.4 µm at the clamping. In simulation, the
stress is increased to 1.6 GPa at the center tether, up from 1.3 GPa intrinsic stress.
The parent and the child units are connected by four tethers forming a diamond
shape. Each tether still connects to only two other tethers. The parent and the
child nodes, including the node straight after the parent, are then softly connected
and it reduces bending loss. In ringdown measurements, It allows achieving a high
quality factor as high as 2 × 107 at 1.1 MHz (figure 4.7a).

The optical cavity is formed by a separate photonic crystal cavity, made from
silicon nitride with a width of 1.0 μm. The structure and the simulation of the
electric field is shown in figure 4.1(b). The photonic crystal cavity strongly confines
the light at the center. Extra tethers on the side raise the frequency of its mechanical
motion to minimize its impacts onto the mechanical structure. Also, the clamping
tethers improve the thermal conductivity of our photonic crystal, allowing a large
cavity photon number. The mechanical structure is sensed by and hence coupled
to the evanescent field of the photonic crystal cavity, as shown in the bottom of
figure 4.1(b). The part of mechanical structure underneath being widened in order
to have a larger overlap to the optical field. In this work. we choose a width of
0.8 μm and 1.0 μm. A wider structure lowers the frequency of the low-Q torsional
mode of the mechanical resonator (figure 4.8b) and potentially interfere with the
measurements to the fundamental high-Q motion.

The fabrication of the devices is based on the “pick-and-place” method [83,
84]. Shown in figure 4.1(d), we first fabricate the mechanical structures, photonic
structures, and spacers on three separate chips. The spacers are used to provide
a support to the photonic crystals and the thickness defines the gap size. The SiN
spacer and the photonic crystals attach to the substrate via a weak tether, with
a width of about 100 nm. A tapered fiber with a sharp tip is then placed onto
the spacers and onto the photnoic crystal separately, and then a structure can
adhere onto the fiber. By moving the fiber, it is possible to break the weak tether
and the structure is still attached on the fiber. We first work on the spacers to pick
them up and put them on the mechanical chip. Then, a photonic crystal structure is
transferred and placed above the spacers, as the top layer. We monitor this process
by a camera with a 50× objective. It is sufficient to achieve a good alignment for
our silicon nitride photonic crystals, as shown in the SEM image (figure 4.1(c)). The
images for transferring a photonic crystal structure is shwon in figure 4.7.1.

Having a small gap between the two layers is important to achieve a high op-
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Figure 4.2: 𝑔0 for different (a) gap sizes, (b) thickness of the mechanical layer, (c) misalignment or
offsets and (d) widths of the clamping tethers. Dashed lines are simulations. In (a), The circles and
triangles are measurement results. Blue and orange are for different mechanical layer thickness.

tomechanical coupling. This is especially the case here as the mechanical resonator
only couples to the evanescent field from the photonic crystal. We calculate the op-
tomechanical coupling strength 𝐺OM using the perturbation method [69] and the
corresponding 𝑔0 for our structure, as shown in figure 4.2. Increasing the gap size
from 75 nm to 350 nm reduces the optomechanical coupling strength 𝐺OM/2𝜋 from
21.6 GHz/nm to 2.2 GHz/nm by one order of magnitude, for a mechanics width of
1 µm beneath the photonic crystal. With this technique, there is no fundamental
limit on the gap size, as it is fixed by the spacer. Also, since it is performed in air
and there is no process after, there would not be any adhesion issues [85]. With
this technique we reliably achieve a gap of 75 nm. We compare the measurements
on our devices to the simulations of the optomechanical coupling, which shows
good agreement. It also indicates that the alignment in the lateral direction is good
with this scheme, since a misalignment would largely reduce the optomechanical
coupling (figure 4.2b). In this work, we use a width of 0.8 µm and 1 µm for the me-
chanical structure direct underneath the photonic crystal. A wider structure allows
a larger tolerance, but we find that it is already sufficient. Also, for this asymmetric
photonic crystal design, a perfect alignment in the lateral direction does not give
the best optomechanical coupling as the clamping tethers attract the optical field
to the side (figure 4.2c). When there is no lateral offset, a small reduction in the
tether width increases the optomechanical coupling. Another factor for the optome-
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Figure 4.3: (a) Measured mechanical quality factor before (circle) and after (triangle) assembling the
mechanical resonator. (b) Increase of the mechanical linewidth ΓM.

chanical coupling is the thickness of the mechanical layer. For our structure, 𝐺OM
depends on the electric field difference on the upper and on the lower surface of
the mechanical structure. The presence of a thin mechanical layer only perturbs the
electrical field distribution. The electric field strength at certain location can then
be linearized and its value is very not sensitive to the thickness of the mechanical
layer. 𝐺OM is then proportional to the thickness of the mechanical structure. This,
however, imposes a trade-off for the thickness of the mechanical resonator since a
thinner layer is beneficial for the mechanical quality factor [37, 64].

4.3. Change of the mechanical quality factor

After forming the cavity, we see a reduction in the mechanical quality factor. The
reduction is more significant for a smaller gap (figure 4.3). We use a large laser de-
tuning to measure the mechanical quality factor, minimizing optomechanical heat-
ing or cooling. We have also measured the mechanical quality factor with both
blue and red detuned laser and we do not see any difference. Thus we eliminate
the possibility of optomechanical cooling or heating. We attribute the reduction of
quality factor to some coupling between the mechanical motion of the two layers.
The fundamental mode of the photonic crystal structure is shown in figure 4.8(c).
While the cause is still being investigating, we can define a coupling parameter.
Enlarging the distance reduces the coupling and thus the reduction of the quality
factor becomes smaller. An analysis (section 4.7.2) shows that the reduction of its
mechanical quality factor depends on the mechanical frequency and qualify factor
of the photonic crystal. In this scheme, a photonic crystal is stress-released and its
quality factor is low. Thus, clamping tethers are used to increase the mechanical
frequency. We saw that by introducing the extra tethers reduce the quality factor
degradation.
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Figure 4.4: Optical resonance frequency shift for different input power (converted to cavity photon
numbers on resonance). (a) Reflection spectrum when sweeping the laser from short wavelength to
long wavelength. Dashed lines are fittings to extract the frequency shift, and the results are plotted in
(b). A linear fit is performed to extract the coefficient for the optical resonance tuning, which is used
to obtain the bistability bound. The gray dashed line marks the maxim frequency shift above which the
optical bistability occurs. It corresponds to a bistability region in the gray area.

4.4. Improved cavity photon number
Getting a large cavity phonon number is important in cavity optomechanics, as
the single photon interaction strength is enhanced by the cavity photon number
𝑔 = √𝑛cav𝑔0. Especially, the quantum cooperativity 𝐶qu = 4

𝑛cav𝑔20
𝜅ΓM𝑛th

, being propor-
tional to 𝑛cav, is a figure of merit for optomechanics in the quantum regime.[22]
It compares the photon-phonon interaction rate to the decoherence of the sys-
tem, and a value comparable or even higher than unity is often desirable.[79]
However, due to the heat generation from the photon absorption and the static
optomechanical interaction, optical resonance frequency decrease.[86] When the
photon number is sufficiently high, bistability occurs and it limits the quantum
cooperativity.[22, 63, 87, 88] With the clamping tethers to the photonic crystals,
we show that it is possible to achieve a high cavity photon number before reaching
the bistability regime. We slowly sweep the laser across the optical resonance from
short wavelength to long at different input power and measure the reflection. A
measurement is shown in figure 4.4, with 𝜅/2𝜋 = 10.1 GHz and a gap size of 130
nm. It has a quality factor of 𝑄M = 1.49×107. The cavity photon number shown in
the plot is the value on resonance. As the input power is increased, the reflection
signal becomes more and more asymmetric. We fit the reflection curves and, from
the asymmetry, extract the cavity resonance frequency shift. For the device, we
found that bistability occurs for 𝑛cav ≳ 3000. This corresponds to 𝐶qu ≈ 0.2 at
room temperature, or 𝐶qu ≈ 1 at 50 K.

4.5. Feedback cooling
We perform measurement-based feedback cooling [70] with the aforementioned
device at 300 K. The optical cavity has a coupling to the waveguide 𝜅e/2𝜋 = 7.7
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Figure 4.5: (a) Sketch of the feedback cooling setup. A laser on cavity resonance frequency is first phase
modulated to generate a phase modulation tone (not shown). The light is then split into two arms. One
is attenuated by a variable optical attenuator (VOA), modulated by an intensity electro-optical modulator
(EOM), and sent into a waveguide. The light then evanescently couples into the photonic crystal cavity,
which is placed above the mechanical resonator (green). At the end of the waveguide it is patterned
with photonic crystal mirrors. The light coupled out is then reflected and collected back by an optical
fiber. The light then mixes with the light on the other path (local oscillator, LO) with a variable beam
splitter, which is tuned to 50:50. The phase difference between the two paths is locked such that the
𝑌 quadrature of the light is measured. The measured signal is then send to an FPGA controller, and it
controls the intensity EOM to modulate the input power. (b) The measured power spectrum density of
the mechanical displacement at different feedback strength. Noise squashing is observed on the light
blue curve. The gray dotted line indicates the noise floor of shot noise limited detection. The dashed
lines shows the fitting to the measured results, from which the average phonon number at different fitted
feedback gain is extracted. The results are shown in (c). The colors in (b) and (c) are correspondence.
The dotted line shows the expected phonon number with a shot-noise limited detection and the dashed
line shows the expected phonon number with the classical noise extracted from the measurement. They
both show good agreement at small feedback gain, while the dashed line captures the increased phonon
number due to the classical noise.

GHz. The optomechanical coupling is determined by an optical spring measure-
ment, showing 𝑔0/2𝜋 = 257.4 ± 4.9 kHz (figure 4.7). It corresponds to a large
single photon cooperativity of 𝐶0 =

4𝑔20
𝜅ΓM

= 350, meaning a large measurement
rate per photon.[32, 40] The measurement scheme is shown in figure 4.5(a). The
laser is tuned to be on resonance of the optical cavity, the phase quadrature of
the output light contains the information of the mechanical resonator. Being in the
deep sideband-unresolved regime [22, 23], the high bandwidth of the optical cavity
allows to resolve the mechanical motion at a high rate. A balanced homodyne mea-
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surement is used to measure the phase quadrature, from which the displacement
of the mechanical resonator can be obtained. A home-build low noise balanced
photodetector converts the optical signal to electrical signal, and then the signal is
sent to an FPGA controller (RedPitaya 125-14). The output of the controller con-
nects to an electro-optical intensity modulator right before the device, modulating
the input power. By tuning the filter and the delay such that the feedback phase
response is 𝜋/2, a cooling can be achieved.

Figure 4.5(b) shows the calibrated single side power spectrum density of the
displacement (𝑆𝑄, with 𝑄 being the displacement in the unit of quanta), at various
feedback strength. It corresponds to different gain of the feedback controller. In
the measurement, we keep the cavity photon number constant (𝑛cav = 341). The
mechanical peaks get broadened and its amplitude is reduced when we increase
the feedback gain, corresponding to a reduction of phonon occupation. We fit
the traces and extract the average phonon occupancy. It shows a minimum of
22.1 ± 1.0, down from 5.7 × 106 at room temperature. In the experiment, a much
higher optical power is still possible, as shown before. However, we are already
highly limited by the classical noise and a larger input power does not improve
the experiment. For a measurement without the classical noise, we are expecting a
phonon number of 10 (dotted line in figure 4.5(c)). The classical noise is mainly due
to the low-Q mechanical modes of the photonic crystal (the fundamental mode is
plotted in figure 4.8(c)). They all have resonance frequencies much higher than that
of the mode of interests. However, the internal damping has a frequency response
scaling as 1/𝑓 [38, 89, 90] for the frequencies lower than the resonance frequency.
The thermal force then leads to a substantial low frequency mechanical motion at
high temperature, especially for these mechanical modes with low quality factor. It
gives the elevated noise floor and it limits the sensing to the mechanical motion
of the high Q fundamental mode around 1 MHz. We expect that the noise floor
would go down when the device is cooled to a lower bath temperature, since the
thermal force is reduced and the intrinsic dissipation of the material get improved
[36, 80]. Furthermore, in this work, we use the stress-relieved LPCVD SiN for
the photonic crystal and its geometry is not optimized. It has a quality factor of
about 560. With this versatile fabrication technique, improvements would also be
available by choosing materials with a lower intrinsic mechanical damping and by
designing geometries minimizing radiation loss through the clamping. [36, 38, 91–
93] Also, by reducing the thickness of the mechanical layer, mechanical quality
factor over the mode of interest would increase. [37, 64] To perform feedback
cooling approaching the ground state, a measurement rate Γmeas = 4𝜂𝑛cav𝑔20/𝜅
should be at least comparable to the thermal decoherence rate, Γth = 𝑛thΓM.[32]
A higher quality factor on the mode of interest means that the measurement rate
can be reduced. Simultaneously the measured classical noise would be reduced,
improving the performance.

4.6. Conclusion
In summary, we have demonstrated a simple and flexible technique to integrate
a photonic crystal cavity with a mechanical device, realizing a large optomechani-
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Figure 4.6: Device assembling procedural for the spacers (top) and the photonic crystal (bottom).

cal coupling between a high-Q out-of-plane fundamental mechanical mode and an
optical mode of the photonic crystal cavity. The optomechanical coupling strength
is sensitive to the distance between the photonic crystal and the mechanical layer,
which can be easily set by using spacers of the desired thickness. We find that gap
size influences the mechanical quality factor, which is likely from the non-optical
coupling between the mechanical motion of the two layers. Further, we show that,
with the newly designed photonic crystals with clamping tethers, a large intra-cavity
photon number can be achieved. It potentially allows quantum optomechanical ex-
periment at high temperature. We choose an assembled device, with a mechanical
quality factor 𝑄M = 1.5 × 107 and an optomechanical coupling 𝑔0/2𝜋 = 257 kHz,
and we perform feedback cooling. We achieve an average phonon occupancy of
about 22, limited by the classical noise introduce by the thermal motion of the
photonic crystal structure. We expect that the classical noise can be overcome by
reducing the environment temperature, by using different material, by optimizing
the photonic structure design, and by realizing higher mechanical quality factor
using thinner mechanical structure.

4.7. Supplementary Information
4.7.1. Assembling procedure
The assembling of a devices is shown in figure 4.6, with the top rows showing
taking off and putting down a spacer, and the bottom row shows the process to the
photonic crystal. A chip with the spacers, suspended and weakly attached onto the
substrate, is first placed under the microscope and monitored by a camera. A fiber



4.7. Supplementary Information

4

53

touches the spacer, and bends the weak connection between for the spacer. The
connection then breaks. It is then directly brought directly above the mechanical
chip. The rotation alignment is done beforehand by fitting the edge of the spacer
and by comparing it to alignment markers close to the mechanical structure (not
shown). The chip is then brought up slowly until the spacer touches down. A change
of color is visible when this process is finished. The same procedural is repeated
for different spacers. The transferring of the photonic crystal follows the same
procedural. The fiber is attached to the side of the photonic crystal, avoiding any
contamination of the photonic crystal from the fiber. Note that the structure of the
photonic crystal is large, the whole structure might not touch down simultaneously.
It is noticeable in figure 4.6e from the difference of the color. Additional step is
performed to force other parts of the photonic crystal to stick onto the spacers.

4.7.2. Reduction of mechanical quality factor
In this work, we see a reduction of mechanical qualify factor after the full structure
is assembled. The exact cause is still not known. We attribute it to some cou-
pling between the mechanical structure and the photonic crystal. Examples of the
coupling can be from the charges on the structures, or the van der Waals force.

Label the displacement of the photonic crystal as 𝛿𝑧PhC, and the displacement
of the mechanical resonator as 𝛿𝑧M. If they have some arbitrary coupling, it is
possible to write

𝐹𝑐PhC = −𝐹𝑐M ≈ 𝐹𝑐0 + 𝛼𝑐(𝛿𝑧PhC − 𝛿𝑧M). (4.1)

𝐹𝑐PhC is the force exerted from the mechanical resonator to the photonic crystal,
and 𝐹𝑐M is the force on the mechanical resonator. 𝐹𝑐0 is the force at equilibrium,
and 𝛼𝑐 is the linear coupling strength. Higher order terms to the displacement are
neglected for small displacement. We will be interested in the dynamics. 𝐹𝑐0 only
introduce a constant shift for the equilibrium position and it will be neglected in the
following.

The photonic crystal also has its mechanical modes. Here, I simplify both the
mechanical resonator and the mechanical motion of the photonic crystal as damped
harmonic oscillators. In Fourier domain, they have equation of motion

𝜒−1PhC(𝜔)𝛿𝑧PhC(𝜔) = 𝛼𝑐(𝛿𝑧PhC(𝜔) − 𝛿𝑧M(𝜔)) + 𝐹PhC(𝜔),
𝜒−1M (𝜔)𝛿𝑧M(𝜔) = −𝛼𝑐(𝛿𝑧PhC(𝜔) − 𝛿𝑧M(𝜔)) + 𝐹M(𝜔).

(4.2)

𝜒−1𝑗 (𝜔) = 𝑚𝑗 (Ω2𝑗 − 𝜔2 − iΓ𝑗𝜔) (4.3)

is the inverse of the susceptibility of the mechanical resonator (𝑗 = M) or of the
photonic crystal (𝑗 = PhC). 𝐹𝑗 is the force from other sources, such as the thermal
force. In a practical structure, multiple modes present. For the specific geometry
for the photonic crystal, the three lowest order modes do not have a large frequency
difference. Thus this simplified analysis only serve to understanding it phenomeno-
logically. Also, we acknowledge that the dissipation Γ𝑗 is also frequency-dependent
for internal damping[38, 89, 90]. Here, we will only be focusing on a small fre-
quency range around ΩM and hence we drop the frequency dependency here. It,
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however, could be different from ΓPhC(𝜔 = ΩPhC) by a factor ΩPhC/ΩM for a purely
internal damping model. For the whole system, it is then

(𝜒
−1
PhC(𝜔) − 𝛼𝑐 𝛼𝑐

𝛼𝑐 𝜒−1M − 𝛼𝑐)(
𝛿𝑧PhC(𝜔)
𝛿𝑧M(𝜔) ) = (

𝐹PhC(𝜔)
𝐹M(𝜔) ) . (4.4)

Inverting the matrix on the left-hand side, we then have

𝜒 = (
(𝜒−1PhC +

𝛼𝑐
𝛼𝑐𝜒M−1

)
−1

(𝜒−1PhC + 𝜒−1M − 𝜒−1PhC𝜒−1M
𝛼 )

−1

(𝜒−1PhC + 𝜒−1M − 𝜒−1PhC𝜒−1M
𝛼 )

−1
(𝜒−1M + 𝛼𝑐

𝛼𝑐𝜒PhC−1
)
−1 ) , (4.5)

(𝛿𝑧PhC(𝜔)𝛿𝑧M(𝜔) ) = 𝜒(𝜔) (
𝐹PhC(𝜔)
𝐹M(𝜔) ) . (4.6)

The two modes are coupled. For the device we have, ΩPhC ≫ ΩM. Around ΩM, we
can still approximate them as separate modes and

𝛿𝑧M(𝜔) ≈ (𝜒−1M (𝜔) +
𝛼𝑐

𝛼𝑐𝜒PhC(𝜔) − 1
)
−1
𝐹M(𝜔). (4.7)

as the off-diagonal terms are much smaller in magnitude. Then, for the mechanical
resonator, the inverse of effective susceptibility becomes

1/𝜒effM (𝜔) = 𝜒−1M (𝜔) +
𝛼𝑐

𝛼𝑐𝜒PhC(𝜔) − 1
. (4.8)

Its imaginary part represents the dissipation [22]. Evaluate around the frequency
of the mechanical resonator,

Im
1

𝜒effM (𝜔)
≈ −𝑚M (ΓM +

𝛼2𝑐ΓPhC/𝑚M𝑚PhC

(𝛼𝑐/𝑚PhC − (Ω2PhC − Ω2M))
2 + Γ2PhCΩ2M

)𝜔. (4.9)

The dissipation is increased by

𝛿ΓM =
𝛼2𝑐ΓPhC/𝑚M𝑚PhC

(𝛼𝑐/𝑚PhC − (Ω2PhC − Ω2M))
2 + Γ2PhCΩ2M

≈ 𝛼2𝑐
𝑚1𝑚2

ΓPhC
Ω4PhC

.
(4.10)

We see that, if there is any coupling between the mechanical resonator and the
mechanics of the photonic crystal, the quality factor of the mechanical resonator
is always reduced. The last approximation is appropriate for our devices since
ΩPhC ≈ 8ΩM for the fundamental mechanical mode of the photonic crystal. Though
the equation shows a Ω−4PhC dependency, we would like to emphasis that ΓPhC also
depends on ΩPhC. Especially, for structural damping, ΓPhC ∼ Ω2PhC[38, 89, 90]. Still,
increasing the mechanical frequency of the photonic crystal reduce the dissipation
degradation, and it is one of the reason why the tethers are used. We have designed
and assembled photonic crystals without the clamping tethers. ΩPhC ≈ 3ΩM, and
we see a systematic larger degradation in the mechanical quality factor.
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4.7.3. Optical bistability
Optical bistability can be either caused by photon absorption of the material or the
static optomechanical effect [22, 86]. Here, we are not intended to distinguish both
since they cause similar effects in our measurement.

In the present of linear absorption or the static optomechanical effect, the optical
resonance frequency shifts and it is proportional to the cavity photon number with
a coefficient 𝛽,

𝛿𝜔cav = 𝜔cav − 𝜔(0)cav = 𝛽𝑛cav(Δ). (4.11)

𝜔(0)cav is the original cavity resonance frequency. In a typical situation, 𝛽 < 0. The
actual detuning, is then a function of the cavity photon number

Δ(𝑛cav) = Δ0 − 𝛽𝑛cav(Δ). (4.12)

Δ0 is the detuning with vanishing input power and it is a fixed value with given laser
wavelength.

Let the cavity photon number at resonance be 𝑁cav, as a fixed value for a given
input power,

𝑛cav(Δ) =
(𝜅/2)2

(𝜅/2)2 + Δ2𝑁cav. (4.13)

Equation 4.12 and 4.13 define the behavior of the system, and we use them to
fit the traces in figure 4.4a. Combining these two equations, we get a equation of
Δ,

Δ3 − Δ0Δ2 + (
𝜅
2)

2
Δ + (𝜅2)

2
(𝛽𝑁cav − Δ0) = 0 (4.14)

Optical bistability occurs when there are more than one possible Δ ∈ 𝑅 for a fixed
laser frequency, namely a fixed Δ0. This regime corresponds to an unstable regime.
Consider a situation when Δ = 0 in the bistability regime. A small pertubation,
either slightly reducing the photon number or Δ becoming slightly smaller than 0,
the cavity photon number is reduced and hence the optical resonance frequency
drifts to high frequency side. This then reduces cavity photon number and it makes
Δ more negative. Without an active feedback, the resonance would be lost. On
the other hands, if there is only a single solution, with a small perturbation, Δ and
cavity photon number would return to their original value. For an optical cavity,
proposals have been made to work in the regime Δ > 0 [87]. However, this blue
detuned regime heats up the mechanical resonator. Thus, the transistion between
multiple solution and single solution in equation 4.14 marks the boundary between
a stable and an unstable system.

Define

𝑦(Δ) = Δ3 − Δ0Δ2 + (
𝜅
2)

2
Δ + (𝜅2)

2
(𝛽𝑁cav − Δ0) . (4.15)

For equation 4.14, having multiple solutions implies that 𝑦 is not a monotonically
increasing function. 𝑦′(Δ) should have 2 real solutions. Thus, Δ20 −

3
4𝜅

2 > 0. With
this satisfied, the local minimum and maximum happens when

Δ = Δ± =
1
3Δ0 ±

1
6√4Δ

2
0 − 3𝜅2. (4.16)
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Figure 4.7: The characterization of the device used in the feedback cooling. (a) Ringdown measurement
shows a quality factor of 𝑄M = 1.49 × 107 (ΩM/2𝜋 = 1.10 MHz). (b) Cavity reflectivity close to the
resonance (1554.6 nm). The fitting yields a linewidth 𝜅/2𝜋 = 10.1 GHz. (c) Optical spring measurement
by detuning the input laser around the cavity resonance frequency. On blue detuning (𝜔L > 𝜔cav),
mechanical frequencies is not stable because of optical heating.

Then, the bistability happens if and only if there exists a real 𝜖0 such that 𝑦(Δ+) < 0
and 𝑦(Δ−) > 0. Note that both 𝑦(Δ+) and 𝑦(Δ−) are monotonically decreasing as
Δ0 increases in their ranges. The bistability bound is then given by

𝑁cav > |
4√3𝜅
9𝛽 | . (4.17)

The non-stable regime is colored in gray in figure 4.4b, with 𝛽 obtained by the linear
fit of the change of optical resonance frequency. We note that the measurement
in the bistability regime might not be reliable. We first do a linear fit to all the
data points in figure 4.4b, extracting a bistability bound of 𝑁cav ≈ 3000. We then
perform another fitting with only the data 𝑁cav < 3000. We do not see substential
different between the two fits. In figure 4.4b, we present the fitting result and the
corresponding bistability bound from the latter fit.

4.7.4. Characterization of the device for the feedback cooling
The characterization of the device we used in the feedback cooling is shown in figure
4.7. Ringdown measurement for the mechanical resonator after assembling the full
device, optical cavity reflection measurement and the optical spring measurement is
shown. A fitting shows a quality factor of 𝑄M = 1.49×107 and 𝑔0/2𝜋 = 257.4±4.9
kHz.

In figure 4.8(a) the spectrum with a wide frequency range is shown. The mode
of interest, namely the fundamental mode of the mechanical resonator, is high-
lighted with green dashed line. Other mechanical modes have very different fre-
quencies. We notice two mechanical modes with low quality factor, one (figure
4.8(b), 2.8 MHz) corresponds to the fundamental torsional mode of the mechanical
structure, and the other one corresponds to the fundamental mechanical mode of
the photonic crystal (figure 4.8(c), 8.9 MHz). Due to the structural damping in the
silicon nitride,[38, 89, 90] they give raise to a noise floor that is much higher than
the shot noise at low frequencies (gray dashed line). In the measurement, we also
suspect that the mechanical motions of the photonic crystal structure couple to
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Figure 4.8: (a) A spectrum measurement with a wide frequency range, normalized to the shot noise
(gray dashed line). The mechanical mode of interest is marked with green. It is the fundamental mode
of the mechanical resonator, and it is far away from other mechanical modes. Two mechancial modes
with low quality factor are highlighted, with (b) the torsional mode of the mechanical resonator and (c)
the fundamental mechanical mode of the photonic crystal structure.

the mechanical resonator, reducing the mechanical quality factor of the mechanical
resonator.

4.7.5. Mechanical resonator design
The mechanical resonator is formed by the fractal structure. On each level of the
fractal, parameters, including the tether widths, lengths, the size of the diamond-
shape connections, are assigned. This forms a large parameter space. Optimization
is then performed with the package Py-BOBYQA [94]. It implements a derivative-
free optimization algorithm to minimize the objective function (mechanical quality
factor) within a bounded parameter space. It approximates a small region in the
parameter space by a quadratic function, and then seek the next point by interpo-
lation. Due to the expensive simulation of the mechanics and the large parameter
space, the optimization is terminated when the quality factor is “good enough”. For
the mechanical structure, it still has in-plane motions and torsional modes. We
also want the frequency of the fundamental in-plane mode and the torsional mode
far away. It is, however, not included in the optimization part. This is done by
manually enlarging the center diamond. It slightly reduces the mechanical quality
factor.





5
Coherent feedback of

optomechanical system in the
sideband-unresolved regime

Preparing macroscopic mechanical resonators close to their motional quan-
tum groundstate and generating entanglement with light offers great opportu-
nities in developing new generation of quantum applications and in studying
fundamental physics. We propose an experimental relevant scheme based
on coherent feedbackwith linear, passive optical components to achieve ground-
state cooling and photon-phonon entanglement generation with optomechan-
ical devices, especially in the sideband-unresolved regime. We find that,
by introducing another passive optical cavity with narrow linewidth, an op-
tomechanical system in the deep sideband-unresolved regime could have a
dynamics similar to a sideband-resolved system. The feedback introduces
added noise, which depends on the optical loss on the feedback path. Overall
the effective quantum cooperativity can be improved with small loss and at
reasonable original quantum cooperativity. We also show that it is possible to
perform ground state cooling by introducing such an optical cavity, or a mirror
with a delay line. Finally, we propose a coherent feedback scheme to gen-
erate optomechanical entanglement with additional optical cavities, and the
entanglement can be verified by measuring the output light from the cavities.
We show that a large squeezing of the Einstein-Podolski-Rosen quadratures
for the output light is achievable with feasibly high-Q mechanical resonator,
efficient feedback and large quantum cooperativity.
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5.1. Introduction
In the past decade, optomechanical systems have seen great progress on many
applications and on studying fundamental physics [8, 21, 46, 71–74, 76]. Espe-
cially, a microfabricated optomechanical system with a large mechanical resonator
and an integrated optical cavity has attracted lots of interest, as it provides a ver-
satile and easy-to-use platform in many areas including sensing,[8, 47] potential
usage in a quantum network,[14, 95, 96] and the studying of quantum effect in a
truly macroscopic system[11]. These structures typically have a high optomechani-
cal interaction strength, due to the confined optical modes.[86, 97] Recently, many
advancements have been achieved over the mechanical resonator, including coher-
ent oscillations at room temperature[40, 60, 64, 80], and over the integration with
optical cavities[40] (and see chapter 4). These optomechanical systems typically
operate at the sideband-unresolved regime, where the mechanical resonance fre-
quency is lower than the linewidth of the optical cavity. This is a consequence the
large mechanical resonator, lowering the mechanical resonance frequency. Also,
for the integrated optical cavity with small mode volume, which is essential to obtain
a large optomechanical coupling, a small dissipation is challenging to achieve.

Many advancements in optomechanics have been made in the sideband-resolved
regime. They are mostly based on the idea of suppressing either the phonon cre-
ation or the annihilation process through the optical cavity.[22, 33] In a sideband-
unresolved system, however, the suppression is insignificant due to the large opti-
cal linewidth, making many proposals incompatible to a sideband-unresolved sys-
tem. On the other hand, the large bandwidth of the optical cavity allows obtaining
the information of the mechanical resonator and interacting to it efficiently. This
leads to the ideas including measurement-based feedback[70] and short-pulses
based[28–31] schemes. While the measurement-based scheme is still largely lim-
ited to performing ground state cooling, cooling and entanglement generation has
been proposed based on pulses with a duration much shorter than the mechanical
resonance period (short pulse). However, a mechanical resonator is typically not a
single-mode system, and the additional modes might present as noise with the short
pulses.[98] For continuous measurement, inferring photon-phonon entanglement
has also been proposed, with a squeezing of the Einstein-Podolski-Rosen (EPR)
quadratures up to 50%.[79] In this work, by further exploring the large bandwidth
of the optical cavity, we propose schemes based on coherent feedback by other lin-
ear, passive optical elements. We show that it is possible to achieve ground state
cooling with continuous drive, and large squeezing of the EPR quadratures with
long pulses.

5.2. Optomechanical system
We consider an optomechanical system consisting of a single mechanical mode
and a single-mode optical cavity. The mechanical mode has an angular resonance
frequency ΩM and an energy damping rate ΓM. Its field is bosonic, and the position
and momentum quadratures are described by two normalized Hermitian operators
�̂�M and �̂�M. The optical field has a resonance frequency of 𝜔C and an energy
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damping rate 𝜅C, with the amplitude and phase quadratures �̂�C and �̂�C. Through
out this work, we will also use a vector �̂� = (�̂�, �̂�)𝑇 to represent the quadratures.
The four quadrature satisfies the commutation relation [�̂�𝛼,𝑖 , �̂�𝛽,𝑗] = i𝜎𝛼𝛽𝜀𝑖𝑗, where
𝛼, 𝛽 are for C (cavity field) or M (mechanical field), 𝑖, 𝑗 ∈ (1, 2) for the 𝑋 or 𝑌
quadrature. In the following, we will also use 𝑖, 𝑗 to denote the components of
�̂�. 𝜀𝑖𝑗 is the Levi-Civita symbol. 𝜀𝑖𝑗 = 1 for 𝑖 = 1, 𝑗 = 2, 𝜀𝑖𝑗 = −1 for 𝑖 =
2, 𝑗 = 1, and 0 otherwise. The annihilation operators of the two bosonic field are
�̂�𝛼 = (�̂�𝛼 + i𝑌𝛼)/√2. In a frame rotating with the laser (drive) frequency 𝜔L, the
Hamiltonian of the linearized dynamics of the system (ℏ = 1 throughout this work)
[23, 33]

𝐻 = −ΔC2 (�̂�
2
C + �̂�2C) +

ΩM
2 (�̂�

2
M + �̂�2M) + 2𝑔�̂�M�̂�C. (5.1)

The coupling between the optical and the mechanical filed has a strength 𝑔 =
√𝑛C𝑔0, which is the single photon coupling 𝑔0 [22] enhanced by the photon number
inside the optomechanical cavity 𝑛C. The detuning ΔC = 𝜔L − 𝜔C is the frequency
difference between the input laser and the cavity field. The coupling between the
two �̂� quadratures introduces two processes. One is the Stokes process, where a
photon from the laser is scattered to a photon with a lower frequency and a photon.
Another one is the anti-Stokes process, where a drive photon absorbs a phonon and
it is scattered into a photon with a higher frequency.[22] In a sideband-resolved
system, depending on the detuning, one process is suppressed by the optical cav-
ity. The asymmetry of these two processes are used in ground-state cooling of the
mechanical resonator [48] and entanglement generation and readout [46]. How-
ever, in a sideband-unresolved system, the two scattering processes happen at a
similar rate. Thus, a single sideband-unresolved system is not compatible to many
works based on this idea.[29, 31]

The mechanical resonator and the optical cavity couples to the environment
through their loss channels. For the optics, we consider a cavity where the reflec-
tion is measured. The resonance frequency is much larger than 𝑘B𝑇/ℎ (𝑘B is the
Boltzmann constant and ℎ is the Planck’s constant), as optical photons is used. This
gives a thermal occupation of 0. The optical cavity contains two loss channels. The
extrinsic loss with a rate 𝜅e couples to the drive �̂�in,eC . For a constant drive, the
intrinsic field is simplify a vacuum field for the linearized dynamics. They have the
commutation relation [�̂�in,eC,𝑖 (𝑡), �̂�in,eC,𝑗 (𝑡′)] = i𝜀𝑖𝑗𝛿(𝑡 − 𝑡′). The intrinsic loss with a
rate 𝜅(i)C , including all the other losses such as scattering and material absorption,
couples to a vacuum filed �̂�in,iC . The two channels give the total decay of the optical
cavity, 𝜅C = 𝜅(e)C +𝜅(i)C . The mechanical resonator oscillates at a low frequency and
it couples to a bath having a large number of excitations (phonons) 𝑛th. In a typical
experiment in the sideband-unresolved regime, 𝑛th ≈

𝑘B𝑇
ℏΩM

≫ 1 and the mechani-
cal quality factor 𝑄M is high. The bath only couples to the momentum quadrature
of the harmonic oscillator and it is approximately Markovian, �̂�inM = (0, �̂�inM), with
⟨�̂�inM(𝑡)�̂�inM(𝑡′) + �̂�inM(𝑡′)�̂�inM(𝑡)⟩ ≈ (𝑛th+1/2)𝛿(𝑡 − 𝑡′). [79] The linearized dynamics
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of the system follows the Quantum Langevin equation [23, 79]

̇�̂�C = −
𝜅C
2 �̂�C − ΔC�̂�C +

√𝜅(e)C �̂�in,eC +√𝜅(i)C �̂�in,iC ,

̇�̂�C = ΔC�̂�C −
𝜅C
2 �̂�C − 2𝑔𝑋M +

√𝜅(e)C �̂�in,eC +√𝜅(i)C �̂�in,iC ,
̇�̂�M = ΩM�̂�M,

̇�̂�M = −ΩM�̂�M − ΓM𝑌M − 2𝑔𝑋C +√2ΓM�̂�inM ,

(5.2)

with an output of the optical field

�̂�outC = �̂�in,eC −√𝜅(e)C 𝑢C. (5.3)

Experimentally, when a reflection measurement scheme [22] is used, only the light
couples back to the input channel could be collected and hence the output only
includes this part of light. Typically, the optomechanical cavity is treated with a
single loss channel with 𝜅(e)C = 𝜅C.[70, 79] The intrinsic loss is thought to be as
part of an inefficient in detection. However, we will see in section 5.5.1 that it is
not sufficient to describe the system with coherent feedback.

5.3. Coherent feedback with linear optical elements
A coherent feedback loop can change the dynamics of a system significantly.[99–
104] Work has been done on many systems, including sideband-resolved optome-
chanical cavity[105, 106], directly coupled cavities[107, 108], and hybrid systems
such as those involving atoms[109]. They have shown promising results. Here,
we consider the scheme where the optomechancial cavity is connected to either an
external optical cavity or a mirror via an optical path. The scheme is shown in figure
5.1. Experimentally, the optical path might be free-space optics, optical fiber, or
on-chip waveguides. The light traveling through the path acquire a single way de-
lay 𝜏s, phase shift 𝜙s and the path has a single way efficiency 𝜂s. We consider the
situation where the delay, efficiency and phase shift is independent of time. Then,
the input, output of the optomechanical cavity are related to the input, output of
the auxiliary component,

�̂�in,1A (𝑡) = √𝜂s𝑅(𝜙s)�̂�outC (𝑡 − 𝜏s) + √1 − 𝜂s�̂�infw(𝑡),
�̂�inC (𝑡) = √𝜂s𝑅(𝜙s)�̂�out,1A (𝑡 − 𝜏s) + √1 − 𝜂s�̂�inbw(𝑡).

(5.4)

�̂�infw and �̂�inbw are the input vacuum due to the dissipation on the optical connection.
𝑅 is a rotational matrix,

𝑅(𝜙) = ( cos𝜙 sin𝜙
− sin𝜙 cos𝜙) , (5.5)

due to the phase acquired in the optical path. The auxiliary component in general
has two sides, with channel 1 coupling to the optomechanical system, and channel
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Auxiliary
component

Auxiliary cavity

(a)

Auxiliary mirror
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Figure 5.1: (a) Coherent feedback scheme. The optomechanical cavity, with an intrinsic loss 𝜅(i)C and
an external coupling 𝜅(e)C , is connected an auxiliary component via an optical path. The output light
from the optomechanical cavity couples to the auxiliary component, and then it travels back to the
optomechanical cavity. It forms a feedback loop. The optical path introduces a single-way delay of 𝜏s,
phase 𝜙s, and it has a single-way efficiency of 𝜂s. On the left, it can be used as a channel to couple
driving laser into the feedback system and to perform measurements. We consider (b) an auxiliary cavity
or (c) an auxiliary mirror for the auxiliary component in this work. The auxiliary cavity has a coupling of
𝜅(1)A to the internal feedback optical path and 𝜅(2)A to the outside. The auxiliary mirror has a reflectivity
of 𝑅A.

2 coupling to the outside such as for the driving and the readout. With a constant
drive or without a drive from channel 2, the input �̂�in,2A is simplify a vacuum field.

In this work, we will mostly focus on using an optical cavity as the auxiliary
component, where the intracavity field is denoted as �̂�A = (�̂�A, �̂�A). Then,

̇�̂�A = −
𝜅A
2 �̂�A − ΔA�̂�A +

√𝜅(1)A �̂�in,1A +√𝜅(2)A �̂�in,2A ,

̇�̂�A = ΔA�̂�A −
𝜅A
2 �̂�A +

√𝜅(1)A �̂�in,1A +√𝜅(2)A �̂�in,2A ,
(5.6)

where 𝜅(1)A and 𝜅(2)A are loss, or coupling, to the right and left channels. The output
on both sides are given by the input-output relation [22]

�̂�out,𝑘A = �̂�in,𝑘A −√𝜅(𝑘)A �̂�A, (5.7)

where 𝑘 ∈ (1, 2) denotes the index of the coupling channel.
For the coherent feedback cooling in section 5.5.2, we also consider the scheme

where a mirror with a reflectivity 𝑅A is used as the coherent feedback component.
In this case, there is no addition fields with a time derivative and the output is
directly given by the input

�̂�out,1A = √𝑅A𝑢in,1A +√1 − 𝑅A𝑢in,2A . (5.8)
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Here, we drop an added phase from the reflection. Any additional phases can be
included into phase of the optical path 𝜙s.

Combining the dynamics in the system, we reach a Langevin equation of the
form,

̇�̂�(𝑡) + 𝐷 ̇�̂�(𝑡 − 𝜏) = 𝐴0�̂�(𝑡) + 𝐴1𝑢(𝑡 − 𝜏) +
2

∑
𝑛=0

𝐶𝑛�̂�in(𝑡 − 𝑛𝜏s). (5.9)

All the localized fields are included in �̂�, and all the input fields are included in
�̂�in. For example, for the coherent feedback with an auxiliary cavity, we can write
�̂� = (�̂�M, �̂�M, �̂�C, �̂�C, �̂�A, �̂�A)𝑇. The delay 𝜏 depends on the scheme. For the
coherent feedback with mirror, 𝜏 = 𝜏s. For the scheme with an auxiliary cavity,
𝜏 = 2𝜏s. We, however, do not need to distinguish the two schemes for the input
noise term.

5.4. Static state dynamics
5.4.1. Dynamics with delay for steady state
Equation 5.9 is a delayed differential equation of the neutral type [110] when 𝐷, 𝐴1,
𝐶1 and 𝐶2 are non-zero. In this work, only coherent feedback cooling is analyzed
with delay, where the laser drive and the internal parameters are all constant. It
allows transforming equation 5.9 to the Fourier domain,

− i𝜔 (𝐼 + 𝐷ei𝜔𝜏) �̂�(𝜔) = (𝐴0 + 𝐴1ei𝜔𝜏) �̂�(𝜔) + (
2

∑
𝑛=0

𝐶𝑛ei𝑛𝜔𝜏s) �̂�in(𝜔), (5.10)

where 𝐼 is the identity matrix, and the Fourier transform is defined as

ℱ[�̂�(𝑡)](𝜔) = ∫
+∞

−∞
�̂�(𝑡)ei𝜔𝑡d𝑡. (5.11)

Rearranging equation 5.10 yields

�̂�(𝜔) = 𝑀(𝜔)�̂�in(𝜔), (5.12)

where the transfer matrix

𝑀(𝜔) = −(i𝜔 (𝐼 + 𝐷ei𝜔𝜏) + 𝐴0 + 𝐴1ei𝜔𝜏)
−1 (

2

∑
𝑛=0

𝐶𝑛ei𝑛𝜔𝜏s) . (5.13)

The input noise has a single-side spectrum [70]

𝑆𝑢in𝑖(𝜔) = 1,
𝑆𝑋inM (𝜔) = 𝑆𝑌inM (𝜔) = 2𝑛th + 1,

(5.14)
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where 𝑢in𝑖 are for the elements corresponding to the optical input noise only. It is
then possible to get the spectrum of �̂�,[70]

𝑆𝑢(𝜔) = |𝑀(𝜔)|
2 𝑆𝑢in . (5.15)

The absolute value and the square are performed entry-wise. The average phonon
occupancy can be derived by integrating the spectrum of the mechanical field, [70]

𝑛phn =
1
2 (∫

∞

0

𝑑𝜔
2𝜋 (𝑆𝑋M(𝜔) + 𝑆𝑌M(𝜔))) −

1
2 . (5.16)

Note that the above scheme is valid only when the system is stable. Determining
the stability of the system can be done purely classically. A stable system means
that all the poles of the corresponding transfer function in equation 5.15 are in
the lower-half plane in the Fourier domain, or in the left-half plane in the Laplace
domain. For a system without delay, i.e., 𝐷 = 𝐴1 = 𝐶1 = 𝐷2 = 0, the real part of all
the eigenvalues of the matrix 𝐴0 should be negative. [111, 112] For a system with
delay, the exponential term ei𝜔𝜏 introduces infinity poles to the system. It makes
it very different from a system without delay and it is more challenging to test
the stability. In our case, only a single delay parameter presents and the method
performing the stability test is established in control theory. We follow the scheme
described in [110, 113], and details are described in section 5.7.2.

5.5. Results
In this section, I provide some results for a system with coherent feedback. Espe-
cially, we are interested in an optomechanical system in the sideband-unresolved
regime, which is relevant for many integrated optomechanical systems with low-
frequency mechanical resonators[8, 32, 40, 47, 86, 96, 97] (and see chapter 4).
We demonstrate, under specific condition with an auxiliary cavity, that the effective
dynamics of the system is similar to a single optomechanical cavity. By introducing
an auxliary cavity with a narrow bandwidth 𝜅A < ΩM, we can effectively bring the
system into a sideband-resolved regime. A coherent feedback system has more
parameters to tune, allowing further optimizations. We also study the performance
when a coherent feedback is used in reducing the energy of the mechanical motion.
Cooling its motion to close to the ground state is possible with a large quantum co-
operativity. Furthermore, we show that a coherent feedback scheme with auxiliary
cavities without delay allows producing and verifying entanglement between the
mechanical resonator and the input light.

5.5.1. Similarity of a sideband-resolved system with auxiliary
cavity

In this part, we show that the linearized dynamics of a sideband-unresolved system
can be made to be similar to a sideband-resolved system under practical experi-
mental condition. Consider an optomechanical system within the deep sideband-
unresolved regime, 𝜅C ≫ ΩM. The cavity field has a dynamics that is much faster
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than the dynamics of the mechanical resonator. Essentially, for the dynamics
we are interested in, |⟨ ̇�̂�C,𝑖⟩| ≪ |⟨𝜅C2 �̂�C,𝑖⟩|. It is then possible to eliminate the
derivative to cavity field by approximating an instant response to the mechanical
resonator.[70, 79] Also, let ΔC = 0. Then, the optical field

𝜅C
2 �̂�C ≈

√𝜅(e)C �̂�in,eC +√𝜅(i)C �̂�in,iC ,

𝜅C
2 �̂�C ≈ −2𝑔𝑋M +

√𝜅(e)C �̂�in,eC +√𝜅(i)C �̂�in,iC ,
(5.17)

For the feedback part, let 𝜙s = 0. This can be achieved by locking the length of the
feedback path. Also, we consider a short feedback path 𝜏s ≪ 2𝜋/ΩM, which allow
us to approximate 𝜏s ≈ 0. It results in a linearized Langevin equation

̇�̂�A =
�̃�A
2 �̂�A − ΔA�̂�A +

√�̃�(1)A
̂�̃�in,1A +√𝜅(2)A �̂�in,2A ,

̇�̂�A = ΔA�̂�A +
�̃�A
2 �̂�A − 2�̃��̂�M +

√�̃�(1)A
̂�̃�in,1A +√𝜅(2)A �̂�in,2A ,

̇�̂�M = ΩM�̂�M,

̇�̂�M = −ΩM�̂�M − ΓM�̂�M +√2ΓM𝑃in − 2�̃� (�̂�A −√
(1 − 𝜂s)𝜉1
𝜂OM𝜂rt𝜅(1)A

�̂�add) ,

(5.18)

where 𝜂OM = 𝜅(e)C /𝜅C and 𝜉𝑛 = 1 − 𝜂𝑛s 𝑟𝑛OM with 𝑟OM = 1 − 𝜅(e)C
𝜅OM/2

. We have also

introduced two effective fields, ̂�̃�in,1A = ( ̂�̃�in,1A , ̂�̃�in,1A )
𝑇
and �̂�add = (�̂�add, �̂�add)𝑇,

̂�̃�in,1A = 1
√𝜉2

⎛

⎝

−
√𝜂s𝜅(e)C 𝜅(i)C
𝜅C/2

�̂�in,iC + 𝑟OM√𝜂s(1 − 𝜂s)�̂�inbw +√1 − 𝜂s�̂�infw⎞

⎠

,

�̂�add = √
𝜂OM

(1 − 𝜂s)𝜉1
((1 − 𝜂s)√

𝜅(i)C
𝜅(e)C

�̂�in,iC +√1 − 𝜂s𝑢inbw +√𝜂s(1 − 𝜂s)𝑢infw) .

(5.19)

They are from the combination of the optical vacuum field, and they satisfies the
Bosonic commutation relation. Equations (5.18) give a dynamics that is similar to a
bare optomechanical cavity where the mechanical resonator is directly coupled to
the auxiliary cavity, with modified parameters,

�̃�(1)A = 𝜉2
𝜉21
𝜅(1)A ,

�̃�A = �̃�(1)A + 𝜅(2)A ,

�̃� = −
√𝜂s𝜅(1)A 𝜅(e)C

𝜉1𝜅C/2
𝑔.

(5.20)
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Now, the effective optical decay rate is �̃�A. By using a narrow-linewidth auxiliary
cavity, it brings the system into the sideband-resolved regime. Especially, with
the optical cavity of the optomechanical system being overcoupled, which can be
routinely achieved experimentally [40, 63], 𝑟C < 0 and 𝜉2/𝜉21 < 1, �̃�A < 𝜅A. The
effective optical decay rate is smaller than the actual decay rate of the auxiliary,
enabling even less stringent linewidth requirement over the auxiliary cavity. Ex-
perimentally, Fabry-Pérot cavities can have a much narrower linewidth than the
mechanical frequencies in many integrated low-frequency optomechanical systems.
They, however, might not be suitable for mechanical resonators oscillating at some
high frequencies[86, 96, 97] since connecting a Fabry-Pérot cavities to an optome-
chanical system introduces delay. It becomes an issue when the mechanical reso-
nance frequency is high. Within this regime, an integrated optical cavity [114, 115]
is available to meet the linewidth requirement. The drastic reduction of the effec-
tive linewidth of the optical cavity allows experiments and applications originally
proposed for the sideband-resolved regime. However, it comes with an expense
of a reduction of the (effective) optomechanical coupling �̃�. Also, the added noise
�̂�add increases the effective phonon number of the bath,

�̃�th = 𝑛th + 4
1 − 𝜂s
𝜉1

𝑔2
ΓM𝜅C

. (5.21)

Note that the added noise vanishes at the limit of 𝜂s → 1, i.e., no loss on the optical
path. It does not require a fully overcoupled optomechanical cavity (𝜅i = 0).

In an optomechanical experiment, a figure of merit is the quantum cooperativity
𝐶qu =

4𝑔2
𝑛th𝜅ΓM

.[22] A higher value means a more robust optomechanical interaction
against decoherence because it compares the interaction rate to the photon and the
phonon decoherence rate. A higher value is usually more desirable. For a coherent
feedback system with the effective dynamics in equation (5.18), we can write down
the effective cooperativity with respect to the quantum cooperativity 𝐶qu of a bare
optomechanical cavity,

�̃�qu =
4�̃�2

�̃�AΓ̃M�̃�th
= 4𝜂s𝜂C(𝜅(1)A /𝜅A)/𝜉21

(1 + 2𝜂s𝑟C𝜉1
𝜅(1)A
𝜅A
) (1 + 1−𝜂s

𝜉1
𝐶qu)

𝐶qu. (5.22)

For a lossless optical path, the effective quantum cooperativity is enhanced as long
as 𝜅(1)A > 𝜅A/2, i.e., the auxiliary cavity is overcoupled to the optomechanical side.
This is due to the fact that an overcoupled auxiliary cavity recycles photons. When
the auxiliary cavity becomes undercouped, the photons can hardly get into the op-
tical cavity. Further, once a photon is coupled into the cavity, it is more likely to exit
on the other port and leave the feedback system. When both the optomechanical
cavity and the auxiliary cavity are fully overcoupled and when the loss on the optial
path vanishes, the enhancement diverges since photon cannot leave the system.
It, however, does not correspond to a physical situation. With an inefficient feed-
back 𝜂s < 1, the enhancement would become reduction when the original quantum
cooperativity is very large due to the added noise coupled from the optical path.
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Figure 5.2: (a) Effective quantum cooperativity as a function of the original quantum cooperativity and
(b) their ratio at different single-way optical path efficiency. When the original quantum cooperativity
is large, the enhancement is reduced and it could become a reduction. The dotted line in (a) draws
�̃�qu = 𝐶qu. (c, d) The quantum cooperativity ratio as a function of the coupling of the optical cavities
to the feedback system. The dotted line, dashed lines, and the solid line are for an original quantum
cooperativity of 0.1, 0.5 and 1, respectively. In (c), 𝜅C/2𝜋 = 10 GHz is fixed. In (d), 𝜅A/2𝜋 = 500 kHz
is fixed. Other parameters for the plot are listed in section 5.7.1.

For a set of practical parameters (section 5.7.1), the effective quantum cooper-
ativity and the ratio between the effective and the original quantum cooperativity is
shown in figure 5.2a, b. For an optical feedback path without loss, the cooperativity
is enhanced by a factor of 1.5. Also, despite of the added noise, we note that the
enhancement is still robust against the loss over the feedback path. With a mod-
erate single way efficiency of 70%, the enhancement of the quantum cooperativity
persists until 𝐶qu ≈ 3.25. It already allows for experiments with a relatively large
quantum cooperativity. Improving the efficiency still drastically increases the en-
hancement region. A moderate increase of the single-way efficiency to 0.8 allows
a upper bound of 𝐶qu = 6.98, more than doubling the previous value. The results
for changing the coupling efficiency 𝜅(e)C /𝜅C and 𝜅(1)A /𝜅A are plotted in figure 5.2c,
d, where the dotted, dashed, and solid lines are for 𝐶qu = 0.1, 0.5, 1. The total
decay rate 𝜅A and 𝜅A are fixed. As expected, increasing the coupling to the internal
feedback system increases the enhancement of the quantum cooperativity.



5.5. Results

5

69

s = 0.70

s = 0.80

s = 0.90

s = 0.95

s = 0.99

(a)

(b)

(c)

(d)

(e)

10 2 10 1 100 101 102
Cqu

10 1

100

101

102

P
h
o
n
o
n
 n

u
m

b
e
r

100 101 102 103 104

Cavity photon number

10 1

100

101

102

P
h
o
n
o
n
 n

u
m

b
e
r

10 2 100 102
Cqu

0.0

0.5

1.0

2
s/

1

0

1

A
/2

 (
M

H
z)

100 102 104

Cavity photon number

0.5

1.0

1.5

2.0
(1

)
A

/2
 (

M
H

z)

Figure 5.3: Coherent feedback cooling with an auxiliary cavity without delay. The dashed lines show
the sideband cooling result for a similar optomechanical cavity (see section 5.5.1), and circles show
the optimized results. (a) Only 𝜙s and ΔA are optimization parameters and (b) 𝜙s, ΔA and 𝜅(1)A are
optimization parameters. The optimized parameters are plotted in (c-e).

5.5.2. Coherent feedback cooling
Preparing a mechanical resonator close to a state with low phonon occupation has
attracted lots of interest[42, 78, 116, 117]. For a mechanical resonator contact-
ing a high temperature bath, a phonon occupation below 1 has been achieved in
sideband-resolved systems [48, 118] and in sideband-unresolved systems with the
measurement-based feedback cooling[52]. Inspired by the similarity between a
sideband-unresolved system with coherent feedback and a sideband-resolved sys-
tem, we show in this section that it is possible to reduce phonon occupation with
the coherent feedback scheme. With a large quantum cooperativity, ground-state
cooling, where the phonon occupation is below 1, can be achieved. Further, com-
paring to a single optomechanical system, the coherent feedback scheme has more
parameters to tune, allowing it to perform better than a similar optomechanical
system described in section 5.5.1.

In figure 5.3a, we show the average phonon occupancy with the coherent feed-



5

70
5. Coherent feedback of optomechanical system in the

sideband-unresolved regime

back cooling, where an optomechanical system is coupled to an auxiliary cavity
without delay. The phonon number is minimized numerically with respect to the
phase acquired on the optical path 𝜙s and the detuning of the auxiliary cavity ΔA.
When the quantum cooperativity approaches 1, the phonon number starts to drop
below 1. For a single-way efficiency of 70%, 80% and 90%, it is possible to achieve
a minimum phonon number of 0.24, 0.16 and 0.10. When the quantum efficiency
becomes too high, the added noise from the feedback and the back-action noise
in the optomechanical system dominates and thus the phonon number increases.
The sideband cooling results of an equivalent optomechanical system as discussed
in 5.5.1 is shown in dashed line. They correspond to a feedback cooling where
𝜙s = 0 and ΔA = −ΩM. We see that the optimized phonon number is slightly
lower. The reduction is larger when the efficiency is higher. A greater benefit
can be obtained when we further include 𝜅(1)A as an optimization parameter (figure
5.3b). Experimentally, since the auxiliary cavity is not part of the optomechanical
system, it allows us to freely choose the parameters as long as it is feasible. For
example, for a Fabry-Pérot cavity, it can be done by choosing the mirror coupling to
the feedback system with a correct reflectivity. Here, we keep the coupling to the
outer channel the same as before, 𝜅(2)A /2𝜋 = 100 kHz. For a single-way efficiency
of 70%, 80% and 90%, it is then possible to achieve a minimum phonon number of
0.15, 0.10 and 0.07. Clearly, it outperforms the condition of simply setting 𝜙s = 0
and ΔA = −ΩM. The optimized parameters are shown in figure 5.3c-e, showing the
optimal parameters being very different from simply setting 𝜙s = 0 and ΔA = −ΩM.
The optimal detuning is not necessarily on the red sideband due to the extra de-
gree of freedom 𝜙s. The optimal linewidth is larger than or comparable to the
mechanical frequency, resulting an auxiliary cavity that is heavily overcoupled to
the feedback system. It is also interesting to note an optimal point that is fixed
for different efficiencies over the feedback optical path. It occurs at roughly at 500
cavity photon (𝐶qu ≈ 2.8), with the optimal set of parameters 𝜙s ≈ 𝜋/4, ΔA/2𝜋 ≈ 0
MHz, and 𝜅(1)A /2𝜋 ≈ 2 MHz. Especially, 𝜅(1)A is significantly larger for smaller optical
path efficiency, except for this point. The phonon occupancy, however, does not
coincide. The reason for this fixed point is not yet understood and it may require
solving the model analytically.

In a practical experiment, the optical path would introduce a delay. A delay
brings incoherence to the feedback, since the feedback misses new information
of the mechanical resonator. For low frequency mechanical resonator, the delay
is in general small comparing to the oscillation period. Here, we stress that the
delay does not introduce a significant reduction of the cooling performance if the
mechanical decoherence rate is small. The decoherence has a time scale that is
much longer than the feedback delay. In figure 5.4a, the cavity-assisted coherent
feedback with delay is studied, where the round trip delay 2𝜏s is set to 0, 0.05 and
0.1 μs. They corresponds to a single-way free-space optical path of 0, 7.5, and
15 m. We do not see a noticeably higher phonon number for different delays with
different 𝜂s. The cooling performance is worse at extremely high photon number,
which is already outside regime with optimal photon number.

Besides the coherent feedback with an auxiliary cavity, coherent feedback cool-
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Figure 5.4: Coherent feedback with delay for (a) an auxiliary cavity and (b) an auxiliary mirror. In (a),
the round trip delay are 0, 0.05 and 0.1 μs, corresponding to a feedback phase 2ΩM𝜏s of 0, 0.1𝜋 and
0.2𝜋. The single way efficiency over the optical path is 𝜂s = 0.7, 0.8, 0.9 for blue, orange and green
curves. The phonon number is minimized numerically with respect to 𝜅(1)A , ΔA and 𝜙s. In (b), the
reflectivity of the auxiliary mirror is set to 1. Non-unity reflectivity can be included in the optical path
efficiency. The phonon number is minimized with respect to 𝜏s and 𝜙s.

ing can also be achieved by using a mirror as the feedback element (figure 5.1c) in
the presence of optical delay. With a round-trip delay of around 1/4 of the mechan-
ical oscillation cycle, similar to the measurement-based feedback cooling[40, 117],
the feedback can introduce a damping force to the mechanical resonator when 𝜙s
is properly tuned. In figure 5.4b the cooling with a mirror is studied. The reflec-
tivity of the mirror is set to be 1. Typically, a commercially available mirror can
have an extremely high reflectivity (>99%). Also, any reduction in the reflectiv-
ity from unity can be included in the optical path efficiency 𝜂s. We find a similar
performance comparing to the coherent feedback by an auxiliary cavity. At large
quantum cooperativity, the resulting phonon number is higher due to the larger
delay which introduces more incoherent signal to the feedback. However, similar
to the feedback by an optical cavity, the impact is small at the optimal quantum
cooperativity. A direct comparison is plotted in figure 5.5.

We also compare the coherent feedback to the measurement-based feedback.
For the measurement based feedback cooling, we adapt the results from [70] with
the regime 𝜅C ≫ 𝜔fb ∼ ΩM ≫ ΓM. 𝜔fb is the feedback bandwidth. We minimize the
phonon number with respect to 𝜔fb and the feedback gain numerically. We use a
detection efficiency that matches the single-way optical path efficiency, 𝜂det = 𝜂s.
We see that, at small quantum cooperativity, the measurement-based feedback
cooling is much more efficient. The weak cooling power for the coherent feedback
cooling is due to the fact that there is no gain in the coherent feedback system
proposed here. On the other hand, in the measurement-based feedback cooling,
the gain can be tuned to reach the noise-squashing regime.[52, 119] However, at
large cavity photon number, it is possible to achieve a lower phonon occupation
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Figure 5.5: A comparison between coherent feedback by mirror (crossings, results from 5.3b), by aux-
iliary cavities (circles, results from 5.4b), and the from measurement-based feedback (dashed lines,
results from [70]). The measurement based feedback cooling has a detection efficiency 𝜂det that is
equal to 𝜂s of the corresponding coherent feedback case.

with the coherent feedback. When viewing from the optomechanical system, for
the coherent feedback, the feedback signal coherently mixes with the input-noise.
�̂�inC = √𝜂�̂�fb + √1 − 𝜂�̂�vac, where 𝜂 is the efficiency for the feedback signal �̂�fb
coupling to the optomechanical cavity. It mixes with the vacuum noise �̂�vac. For
the measurement-based feedback cooling, however, the feedback signal is classical.
Then, �̂�inC = √𝜂𝑢fb + �̂�vac. The input noise is therefore lower in the coherent
feedback case, with 0 < 1 − 𝜂 < 1 always satisfied.

5.5.3. Entanglement generation and verification between pho-
tons and phonons

Quantum entanglement between photons and phonons has been proposed and
demonstrated in optomechanical system with the sideband-resolved regime.[33]
When the device is at a low-phonon occupation state, two pulses with duration
longer than the mechanical resonance period is sent to the optomechanical sys-
tem. The first pulse, where the laser is blue-detuned, is used to create the photon-
phonon entanglement. A photon in the pulse has a probability to create a phonon
and it generates a photon at a lower frequency. The later pulse is red-detuned.
A photons has a probability to absorb a phonon, resulting a photon at a higher
frequency. It swaps the state of the phonon into the reflected light. By measuring
the reflection of the two pulses, it is then possible to infer photon-phonon entan-
glements if the separation of the two pulses is long enough. The two processes
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Figure 5.6: The entanglement generation and verification scheme considered in this work. The optome-
chanical cavity connects to three auxiliary cavities via an optical switch. The three cavities are for cooling,
entanglement generation, and state-swap for entanglement verification. By measuring the output of the
last two auxiliary cavities, photon-phonon entanglement can be detected. Between the entanglement
generation and verification, a gap without the feedback is inserted. Optionally, as considered in this
work, light from the laser is coupled into the optomechanical directly to keep a constant cavity photon
number.

rely on a narrow linewidth cavity, which suppresses one of the processes during
each pulse. On a sideband unresolved system, the suppression is negligible. When
creating the entanglement, the state-swap process happens at a similar rate and it
losses entanglement. Similarly, in the state-swap phase, it creates entanglement
between the photons in the second pulse and phonons and it effectively add de-
coherence. It is thus challenging to detect optomechanical entanglement with this
scheme. Inferring entanglement through continuous measurement inspired by the
similar idea has been proposed, with a maximum squeezing of EPR quadratures
reaching up to 50% of the vacuum noise.[79] In this section, we argue that it is
possible to verify optomechanical through the coherent feedback scheme with auxil-
iary cavities. A squeezing of the EPR quadratures beyond 50% of the vacuum noise
could be achieved by optimizing the mechanical quality factor with a reasonably
high efficiency of the optical path.

We consider a scheme shown in figure 5.6, without any delay in the feedback.
It expands the coherent feedback scheme in figure 5.1 to a setup with three cavi-
ties. With a fast optical switch, it is possible to select the auxiliary cavity coupling
to the optomechanical system. Light is sent into the system through port 2 (the
port connecting to the outside) of the auxiliary cavities. Firstly, the switch is set
to the first cavity, which is used to pre-cool the mechanical resonator into a low
thermal occupation state. For simplicity, we set 𝜅(1)A /2𝜋 = 400 kHz, 𝜅(2)A /2𝜋 = 100
kHz, ΔA = −1 MHz, and 𝜙s = 0 though out the calculation. We set an interaction
time of 0.1 second in our calculation, which is sufficient to reach a steady state.
Then, it switches to the second cavity, which is for the entanglement generation.
Finally, it switches to the third cavity, performing state-swap for reading the state of
the mechanics. We assume a switching time of 100 ns between the entanglement
generation and the state-swap phase, during which there is no feedback (shown as
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an empty channel with dotted optical lines in figure 5.6). It expands the scheme in
[33]. By introducing the dark switching time which is much larger than 1/𝜅C, the
entanglement generation cavity and the state-swap cavity are effectively isolated.
The light carrying information during the entanglement generation cannot be de-
tected by the state-swap measurement. Optomechanical entanglement can thus
be verified by measuring the 𝑋 and 𝑌 quadratures of the output of the two cavities.

We calculate the entanglement through solving the linearized dynamics de-
scribed by equation 5.9, with 𝐷 = 𝐴1 = 𝐶1 = 0. The calculation routine is similar
to that in reference [120], but without the use of the rotating wave approximation
(RWA). The evolution of the system is of the form

�̂�(𝑡) = exp(𝐴0𝑡)�̂�(𝑡0) + ∫
𝑡

𝑡0
d𝑠 exp (𝐴0(𝑡0 − 𝑠)) 𝐶0�̂�in(𝑠). (5.23)

For 𝑡 being in different phases (pre-cooling, entanglement generation, switching,
state-swap), 𝑡0 represents the starting of the corresponding phase. With this set-
ting, 𝐴0 and 𝐶0 are constant. The output of the auxiliary cavities, for the entangle-
ment generation and verification, are then defined,

�̂�𝛼 = 𝑢in,2A,𝛼 −√𝜅A,𝛼𝑢A,𝛼 . (5.24)

𝛼 ∈ {g, s} denotes the components involved in the entanglement generation and
the state-swap phase. Further, we define optical temporal modes [33, 79]

�̂�𝛼 = ∫
𝑡𝑓

𝑡0
d𝑡𝑓𝛼(𝑡)𝑅(𝜃𝛼(𝑡))�̂�𝛼 . (5.25)

The integration is carried out only within the corresponding phase, starting from 𝑡0
and ending at 𝑡𝑓. 𝑅 is the rotation matrix defined in equation 5.5, with 𝜃g(𝑡) = ΩM𝑡
and 𝜃s(𝑡) = −ΩM𝑡 + 𝜙s. The rotation matrix is necessary since we do not use
the RWA in order to handle the sidebnd-unresolved regime. Also, we take the
exponential form of for the envelope 𝑓𝛼 [33, 79],

𝑓g(𝑡) = (
1 − e−2Γtm𝜏p

2Γtm
)
1/2

eΓtm(𝑡−𝑡
(f)
g ),

𝑓s(𝑡) = (
1 − e−2Γtm𝜏p

2Γtm
)
1/2

e−Γtm(𝑡−𝑡
(0)
g ).

(5.26)

𝑡(f)g is the end time of the entanglement generation, and 𝑡(0)g is the starting time
of the state-swap process. Both have a duration of 𝜏p. Outside the period they
are equal to 0. This definition ensures that the temporal mode �̂� satisfies the
bosonic commutation relation, [�̂�𝛼,𝑖 , �̂�𝛽,𝑗] = 𝛿𝛼𝛽𝜖𝑖𝑗, where 𝑖, 𝑗 ∈ {𝑋, 𝑌} are for the
two quadratures included in �̂�. The covariance matrix of the temporal mode can
then be evaluated

𝜎𝑖𝑗 = ⟨�̂�𝑖 �̂�𝑗 + �̂�𝑗 �̂�𝑖⟩, (5.27)
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with �̂� = (�̂�g,𝑋 , �̂�g,𝑌 , �̂�s,𝑋 , �̂�s,𝑌). In this work, we use the EPR-variance to quantify
the entanglement, ΔEPR = (𝜎11 + 𝜎22 + 𝜎33 + 𝜎44)/2 + (𝜎13 − 𝜎24). [79]

We further note that a switching with dark time might introduce classical noise
to the mechanical resonator due to the resulting change in the cavity photon num-
ber. It thus reduces the entanglement and it is not captured by the linearized
model.[121] It is more relevant to the calculation here, because the mechanical
oscillation considered here is significantly less coherent comparing to the typical
optomechanical experiments in the sideband-resolved regime.[21, 42] For the case
here, a higher interaction strength with a shorter pulse is favorable, as demon-
strated below. However, we stress that the switching time considered here is
much shorter than the mechanical oscillation period and thus the disturbance would
mainly be at very high frequency. The impact to the mechanical resonator is min-
imized. Furthermore, in this work, we opt to take a more conservative approach.
We assume an unchanged average photon numbers inside the optomechanical cav-
ity and it eliminates the effect of the switching. Experimentally, this can be done
by introducing another coupling channel, such as another waveguide into the op-
tomechanical system. Alternatively, note that many on-chip optical switches do not
block light[122–124], an additional channel on the optical switch that couples to the
laser directly can be introduced. It is included in the scheme in figure 5.6, shown
as the dotted red lines for the optics and the faded dashed line inside the switch.
By controlling the light intensity on this additional channel, it is then possible to
achieve a constant cavity photon number. This approach reduces entanglement
since the photons during the switching are not measured, corresponding to a loss
of information. The photons also interact with the mechanical resonator, creat-
ing decoherence. Therefore, we choose a switch with a short switching time. We
note that on-chip optical switches with low loss and a much smaller switching time
has been demonstrated.[122, 125] For a more optimal configuration, models cap-
turing the full dynamics might be required.[121] Other potential solutions include
further reducing the bath temperature or developing mechanical resonator with
higher 𝑄M × 𝑓M. Both reduce decoherence and hence allow longer pulses.

In the scheme considered here, the auxiliary cavities for entanglement gener-
ation and verification have the same parameters, except for an opposite detuning.
The phases of the optical paths 𝜙s for both stages also have opposite signs. We
then minimize ΔEPR with respect to 𝜅(1)A , 𝜅(2)A , ΔA, 𝜙s, Γtm and 𝜏p. Different from
the feedback cooling, we include 𝜅(2)A as an optimization parameter since the en-
tanglement is detected from the output light of channel 2. The result is plotted in
figure 5.7, with a unity detection efficiency for the light getting out of the feedback
system. We consider mechanical resonator with 𝑄M = 2 × 107 and 108. They cor-
respond to a thermal decoherence rate, in the unit of mechanical resonance cycles
𝑄M𝑓M/(𝑘B𝑇/ℎ), of 230 and 1100. The details of the optimized parameters are
shown in the appendix (section 5.7.3). When increasing the cavity photon number,
ΔEPR first drops, and then increases. The increase is probably due to a fast heat-up
and cooling rate from the two pulses, resulting a short pulse and large ΓM. Also, in
the present of optical loss in the feedback, additional noise would also couple in and
introduces decoherence. Nevertheless, for a single-way efficiency of 0.7, 0.8 and
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Figure 5.7: Optimized ΔEPR for (a) 𝑄M = 2 × 107 and (b) 𝑄M = 108. The gray solid line shows the
separability bound ΔEPR = 2.

0.9, it is possible to achieve a ΔEPR of 1.37, 1.22 and 1.05 with 𝑄M = 2 × 107, and
1.23, 1.05 and 0.84 with 𝑄M = 108. ΔEPR < 2 shows that there is entanglement
between the temporal modes of the two output light pulses. It then witnesses the
entanglement between the photons and the motion of the mechanical resonator.
The calculation shows that it is beneficial to achieve low loss over the feedback path
and a low thermal decoherence. However, it is still remarkably robust against any
dissipation in the system, making it feasible in experiment. In figure 5.8 the opti-
mized linewidth for the auxiliary cavity is shown, with an optimal 𝜅(2)A /2𝜋 around
500 kHz. We note that a total linewidth of 220 kHz has been reported recently by
on-chip disk resonators[114], a fully integrated coherent feedback system might
be achievable and it is beneficial in reducing optical loss over the feedback path. A
reasonable increase of the mechanical frequency would also make a fully integrated
system more feasible.

5.6. Conclusion and outlook
In this work, we propose a coherent feedback scheme with linear, passive optical
components. We mainly consider optomechanical systems in the deep sideband-
unresolved regime, and some experimentally relevant parameters. We show that
an additional optical cavity can effectively bring the optomechanical system into a
sideband-resolved regime for a specific set of parameters (𝜙s = 0, 𝜏s = 0, ΔC = 0).
A non-unity feedback efficiency introduces noise to the mechanical resonator. Over-
all, the effective quantum cooperativity can be enhanced, depending on the path
efficiency and the original quantum cooperativity. This analysis shows that it is
promising to broaden the usage of a sideband-unresolved system. We then con-
sider using either an optical cavity or a mirror plus an optical path with significant
delay as an auxiliary to perform cooling of the mechanical resonator. We show
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that ground state cooling is achievable under practical experimental conditions. For
feedback cooling with auxiliary optical cavity without delay, the choice of 𝜙s = 0,
𝜏s = 0 analyzed in the first part does not yield the optimal result. Further improve-
ments can be done by adjusting these parameters. Finally, based on the protocal
to generate and verify entanglement via long pulses[33], we propose an experi-
ment scheme using three auxiliary cavities for cooling, entanglement generation
and verification. By switching among the cavities in order and allowing a small time
gap without feedback between the later two cavities, we argue that the output light
detects photon-phonon entanglement. We quantify the entanglement of the output
light by evaluating the EPR-variance of the temporal optical mode. Though it is not
necessary the optimal optimal witness to detect entanglement[79, 126] and the
scheme considered here is also not optimal, it still shows a significant squeezing
comparing to the inseparability bound. Finally, we would like to mention that a fully
integrated on-chip coherent feedback structure is within the reach of the state-of-
the-art on-chip optical resonators[114, 115] even with the mechanical frequency as
low as 1 MHz. Such an integrated structure would drastically reduce the complexity
of an experiment and it is beneficial in potential applications.

5.7. Appendix
5.7.1. Default parameters in this work
We consider the following parameters in the calculations though out this chapter if
not specified.

Mechanical frequency ΩM/2𝜋 1 MHz
Mechanical quality factor 𝑄M = ΩM/ΓM 2 × 107

Energy decay rate of optomechanical cavity 𝜅C 2𝜋 × 10 GHz
Detuning of the optomechanical cavity ΔC 0

Coupling efficiency of optomechanical cavity 𝜂C = 𝜅(e)C /𝜅C 0.8
Coupling rate of auxiliary cavity to the feedback 𝜅(1)A 2𝜋 × 400 kHz
Coupling rate of auxiliary cavity to other channels 𝜅(2)A 2𝜋 × 100 kHz

Environment temperature 𝑇 4.2 K
Delay (only for the feedback by auxiliary cavity) 𝜏s 0

They are inspired by the recent developments of high-Q mechanical resonators
with high stress Silicon Nitride the integration into an cavity optomechanical device
(see chapter 4).

5.7.2. Stability test with delay
As mentioned in the main text, a system with delay possesses infinity poles, and
it makes it more challenging to do a rigorous stability testing. In our specific
case, where only one delay for the internal system1 presents, methods have been
established.[110, 113] We follow the scheme in the two references, with details

1Number of delays of the input noise part is not included in the stability analysis.
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described as below. In this part, we work on the Laplace space.
We consider the neutral delayed differential equation 5.9 in the classical regime

and without the explicitly driving,

�̇�(𝑡) + 𝐷�̇�(𝑡 − 𝜏) = 𝐴0𝑢(𝑡) + 𝐴1𝑢(𝑡 − 𝜏). (5.28)

By performing laplace transform with the complex variable 𝑠,

(𝐼 + 𝐷e−𝑠𝜏)𝑠𝑢(𝑠) = (𝐴0 + 𝐴1e−𝑠𝜏)𝑢(𝑠),
((𝑠𝐼 − 𝐴0) + (𝑠𝐷 − 𝐴1)e−𝑠𝜏) 𝑢(𝑠) = 0.

(5.29)

For a system being stable, all the poles of the transfer function corresponding to
equation 5.29 should be on the left-half plane. Equivalently, all the poles of the
polynomial

det ((𝑠𝐼 − 𝐴0) + (𝑠𝐷 − 𝐴1)e−𝑠𝜏) (5.30)

should only have zeros on the left-half plane.
When continuously changing the delay of the system, the locations of the poles

moves. The system might switch from a stable system to an unstable one or vice
versa. However, there are only finite number of points on the imaginary axis
where the poles can cross for all 𝜏 > 0.[110] We first determine these points.
For max |eig 𝐷| < 1, where eig is for the all the eigenvalues and this relation
always holds in this work, the poles can be found by first constructing the two
matrices,[110]

𝐸0 = (
𝐼 ⊗ 𝐼 𝐷 ⊗ 𝐼
𝐼 ⊗ 𝐷 𝐼 ⊗ 𝐼 ) ,

𝐽0 = (
𝐴0⊗ 𝐼 𝐴1⊗ 𝐼
−𝐼 ⊗ 𝐴1 −𝐼 ⊗ 𝐴0) ,

(5.31)

The matrix 𝐼 is the identity matrix and 𝐼, 𝐷 𝐴0 and 𝐴1 have the same dimension. ⊗
is the Kronecker product. It is shown in [110] that the poles of the equation 5.28,
when exactly on the imaginary axis, are included in the zeros of the polynomial

det (𝑠𝐸0 − 𝐽0). (5.32)

All the zeros of the polynomial can be computed by calculating the generalized
eigenvalue problem eig(𝐽0, 𝐸0) = eig (𝐸−10 𝐽0). Those that are not purely imaginary
are dropped since they do not correspond to the imaginary poles. Still, not all the
eigenvalues are the imaginary zeros of equation (5.30). More importantly, the poly-
nomial 5.32 contains no information about the delay 𝜏. It is due to the periodicity
of e𝑠𝜏 for a purely imaginary 𝑠 = −i𝜔. Since all the possible purely imaginary 𝑠
where the polynomial 5.30 is singular is contained in the zeros of 5.32, it is then
straight forward to find all the 𝑠 and the corresponding set of 𝜏 that makes the poly-
nomial 5.30 singular. Substitute 𝑠 by each of the remaining eigenvalues eig(𝐽0, 𝐸0),
if there is a set of real 𝜏 being the solution of det ((𝑠𝐼 − 𝐴0) + (𝑠𝐷 − 𝐴1)e−𝑠𝜏) = 0,
the pair (𝑠, {𝜏}) corresponds to imaginary poles of the system 5.29. Note the pe-
riodicity of 𝜏, with a period 2𝜋/|𝑠|. By repeating the process for all the remaining
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eig(𝐽0, 𝐸0) = eig (𝐸−10 𝐽0), all the pairs (𝑠𝑘, {𝜏}𝑘) are found. 𝑘 is an index differenti-
ating different zeros of 5.30.

Finding all the imaginary poles of the system 5.29 does not reveal whether the
system is stable. However, it is useful to monitor whether there is a pole crossing
the imaginary axis when continuously changing the delay.[113] Since it is straight
forward to calculate all the poles of the system with vanishing delay (it can be done
by calculating the eigenvalues of (𝐼 + 𝐷)−1(𝐴0 + 𝐴1)), it is then possible to test
whether a system is stable with some arbitrary delay 𝜏 by tracing the number of
poles crossing the imaginary axis and their direction. For a given finite 𝜏, the number
of possible delays where a pole crosses is finite and the values are determined in
the previous paragraph. This forms a series of 𝜏𝑘𝑙, where 𝑙 is for index the element
in 𝜏𝑘. We follow the procedure described in [113] to see how the zeros behaves
around 𝜏𝑘𝑙 by checking the “root tendency”

RT𝑘𝑙 = sgn Re(d𝑠
d𝜏)𝑠=𝑠𝑘 , 𝜏=𝜏𝑘𝑙

(5.33)

It basically calculates the direction of the zeros move when changing 𝜏 at the vicinity
of 𝜏𝑘𝑙. Since we are only interested in the direction a zero crosses the imaginary
axis, only the real part is considered. We can then count how many zeros there
are in the right-half plane, starting from 𝜏 = 0. For RT𝑘𝑙 = 1 or −1, 2 more zeros
are added to or subtracted from the right-half plane. We don’t consider the case
where the zero crosses at 𝑠 = 0. This process requires calculating all the 𝜏𝑘𝑙 ≤ 𝜏,
where 𝜏 is the delay of interest. In the range including 𝜏, if there is no zero of the
polynomial 5.30 in the right-half plane, the system is stable.

For a final remark for the stability test, as described in [113], more details have
to be considered. These include the requirement that the spectral radius of matrix 𝐷
is strictly smaller than 1 and the 𝜏-stability for the number of unstable zeros around
e𝜏𝑠 = ±1. We refer readers to the original paper [113] for the details. While the
first requirement is necessary, we take a conservative test by requiring both to be
satisfied in this work.

5.7.3. Supplementary plots to the optomechanical entangle-
ment

The optimized parameters are shown in figure 5.8. At small photon number, the
optomechanical interaction is too weak, and changing the parameters does not
significantly alter ΔEPR. Thus, the optimizations do not converge well. Trends of
the parameters is are more clear for larger photon numbers. For very large photon
number, the pulses become short due to the fast heating and cooling. Further,
𝑄 = 2 × 107 in general require a shorter pulse and larger Γtm due to the larger
thermal decoherence rate. In the optimization, there is a trade-off about 𝜅(2)A . For
a large 𝜅(2)A , the feedback is effectively less efficient, since information leaks from
the auxiliary cavity. It, however, increases the detected information and raises
the effective overall detection efficiency. The feedback cooling scheme does not
have this concern. Both the optimal 𝜅(1)A /2𝜋 and 𝜅(2)A /2𝜋 are around 500 kHz,
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Figure 5.8: Optimized parameters for optomechanical entanglement, with (a) 𝑄M = 2 × 107 and (b)
𝑄M = 108.

which is experimentally feasible with a simple Fabry-Pérot cavity. Furthermore,
on-chip optical cavities have achieved an intrinsic linewidth that is similar or even
smaller[114, 115]. Potentially, a fully integrated coherent feedback with 1 MHz
mechanical resonator is feasible.

5.7.4. Unintentional coherent feedback in experiments
In experiments, I have observed that the mechanical resonator occasionally gets
heated up even when the laser is red-detuned. An example trace is shown in figure
5.9(a). On the left panel it shows the recorded trace (blue) of the detected signal
from a phase quadrature measurement, where the laser is red-detuned. Since the
detection is from the signal of a mixture of multiple modes, a filtered signal around
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Figure 5.9: (a) A trace showing the increase of the measured signal, with homodyne measurement
measuring the phase quadrature and with the laser being red-detuned. It corresponds to a heating
process of the mechanical resonator. The blue curve is the measured signal, while the orange shows the
filtered signal around the resonance frequency of the fundamental mechanical mode. A zoom in of the
trace around the green dashed line is shown in the right plot. Due to the large mechanical resonance
amplitude of the fundamental mode which exceed the linear detection regime of the phase measurement,
the measured signal is wrapped. The asymmetry is due to the fact that the laser is red detuned. (b)
The maximum round trip time and the equivalent free space round trip path length of the back reflection
signal, above which instability may occurs for different reflectivity (left) and detuning (right). The solid
line on the left figure shows the results for Δ = 0, and the dashed line shows 𝛿 = −0.1𝜅. The solid
line on the right plot right shows the results for 𝑅 = 10−7, while the dashed line shows 𝑅 = 10−9. The
insert on the left plots shows a simplified picture for the back reflection.

the resonance frequency of the fundamental mechanical mode is plotted in orange.
The signal increases from small amplitude to large, with a time scale of 0.1 second.
On the right I plot a zoom-in of the measured signal around 0.75 second, indicated
by the green dashed line. At this point, the measured signal is wrapped at nega-
tive voltage, indicating that it is highly excited into a non-linear detection regime.
The amplitude of the mechanical oscillation causes a cavity resonance frequency
modulation that is comparable or larger than the linewidth 𝜅. The wrapping only
happens at negative frequency because the laser is red-detuned. On the positive
frequency side, a flat top is also seen. At this point, the filtered signal is no-longer
a good indication of the magnitude of the fundamental mode, since it neglects the
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higher order terms from the non-linearity. Instability has been reported elsewhere,
which was suspected to be the nonlinear dynamics in a system with a large ther-
mal fluctuation.[127] It is, however, not the case here as the cavity frequency shift
caused by the thermal fluctuation is still smaller than the optical cavity linewidth.

In my experiment, I attribute it to the back-reflections of the optical compo-
nents. By manually stretching the fiber between the circulator and the device, the
random heating disappears. Also, either by introducing a frequency modulation or
turning on coherent control2 on the laser, the heating issue disappears. In this
section, I will show that the back reflection, albeit extremely small, can drive the
mechanical resonator into a state with a large oscillation amplitude in my experi-
mental condition. This corresponds to an unstable system in the linearized regime.

The critical part of a typical experimental setup is shown in the insert of figure
5.9(b). The light is sent to an optical circulator, and then it goes into the device. The
reflected light from the device is measured. Ideally, all light should travel to another
port. It is, however, not the case for a practical device. There are always back
reflection from the circulator.3 In our lab, we have optical circulators with a return
loss about or less than 60 db, as shown in the data sheets for individual devices.
This corresponds to a back reflection of about 𝑅br = 10−6. This forms a coherent
feedback scheme, with an effective reflection 𝑅A = 𝑅br𝜂rt. The “efficiency” of the
feedback, 𝜂rt, takes all the additional losses in the round trip and the mismatch in
the polarization into account. In an experiment, the loss in optical path is usually
minimized in order to increase the detection efficiency. The main source would
be from the polarization mismatch, where the polarization of the light changes in
the fiber. Then the reflected light in general would not have the exact polarization
that can couples back into the cavity efficiently. In principle, a fiber polarization
controller can be added to enhance this polarization mismatch in order to minimize
the effective reflection 𝑅A. However, tuning the polarization is challenging because
of the extremely small magnitude of the back reflection. Thus it is not performed
in experiments. An optimistic guess of 𝜂rt would be of the order of 0.1, leading
to an effective 𝑅A to be of the order of 10−7. Further, the device is in a vacuum
chamber, while the circulator is in air. A long fiber is required to connect them.4 In
the experimental setup, the exact length is not measured, but it is estimated to be
around 5 meters. The fiber introduces a delay for the back-reflected signal.

With the coherent feedback scheme with an auxiliary mirror, it is possible to
calculate the maximum allowed delay for avoiding having instability of the system.
Also, the phase of the reflected light is not a controllable parameter in the exper-
iment. It drifts over time, with a time scale of second. Thus, it is illustrative to
look at the shortest maximum allowed delay for all the phases. In the calculation I
minimize the maximum allowed delay with respect to the phase. In figure 5.9(b) I
show the calculated results, with ΩM/2𝜋 = 1 MHz, 𝑄M = 2×107. On the left panel

2It makes the laser output less coherent. The linewidth of the laser gets broadened.
3There are more sources for the back reflection, such as the fiber connectors and the fusion point for
splicing the fibers. For simplicity, I only focus on the circulator in this text.
4In practice, the length of the fiber cannot be too short in the consideration of the ease of replacing
fiber when needed.
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I show the effect of 𝑅A. Clearly, an extremely small 𝑅A would have a significant
effect, especially for zero detuning (solid lines), and it is sensitive to the cavity pho-
ton number. For red detuning Δ = −0.1𝜅 (dashed lines), a larger round-trip time is
allowed. The requirement is still stringent. An effective reflection of 10−7 requires
a round-trip delay of smaller than 2.6 ns. It corresponds to a free-space optical
path of 8 m, which means that it requires a fiber connection between the device
and the optical circulator to be shorter than 2.7 m. It is shorter than the length I
have in the experiment. A smaller 𝑅A ≲ 3×10−9 does not introduce instability. For
Δ = 0.1𝜅, the damping from the optical spring is larger than the intrinsic damping
of the mechanical resonator and thus the heating is not very sensitive to the cavity
photon number. Note that a large detuning is not very favorable in some potential
experiments, such as entanglement generation[79]. For various detunings, I plot
the results on the right panel, with the solid line for 𝑅A = 10−7 and the dashed line
for 𝑅A = 10−9.

To conclude this section, due to the unintended coherent feedback from the
back-reflection of the optical components, instability is very likely to occur in an
experiment. Note that the above analysis only studies the instability within a lin-
earized model. It does not include nonlinearity when the mechanical resonator is
driven hard. More importantly, the instability is only an extreme case of heating.
Even in the stable regime predicted by the stability analysis, heating can still occur.
When the heating power is sufficiently strong but still not strong enough to lead
to instability, it can still lead to the regime where the detuning modulation caused
by the mechanical resonator is larger then the optical linewidth. Thus, the above
analysis may yield more optimistic results comparing to the practical situation.





6
Conclusion and outlook

The work in this thesis is aiming at bringing a macroscopic mechanical resonator
in a classical environment towards the quantum regime, based on integrated cav-
ity optomechanical structures. The central tasks are to reduce the coupling of the
mechanical resonator to the environment, and to have efficient measurement and
control over the mechanical resonator. It means that we want a mechanical res-
onator with a high 𝑄M × 𝑓M, and an optomechanical device allows large 𝑔2/𝜅. In
the following, I will conclude the way I took to approach the goal. I will also discuss
challenges and potential further improvements.

Optomechanical device with long mechanical string
In chapter 3, this type of devices has been designed and fabricated on high-
stress silicon nitride. It involves a mechanical resonator with adiabatically chirped
phononic crystals. By designing the geometry of the phononic structure, it would
then localize a mechanical mode with high mechanical quality factor. The opti-
cal cavity is derived from the zipper cavity[86], with one part connecting to the
phononic structure, and the other part attaching to the substrate directly. A sub-
stantial improvement is achieved by introducing a fishbone structure to both the
photonic and phononic structures. I then perform feedback cooling at room tem-
perature, achieving an average phonon number of 27 from 6 × 106. The limitation
was from classical noise outside the structure, which was removed afterward.

This type of devices, however, has its issues.

• The mode-of-interest is not the fundamental mode of the system. There
are many modes closed by. Furthermore, they have a similar optomechanical
coupling strength 𝐺OM to what the mode-of-interest has. The motion of these
modes can easily become classical noise. It is especially important if resolving
the motion at a very small time scale is needed.

• Many mechanical modes have low frequencies and thus larger thermal fluctu-
ations. They also have a similar 𝐺OM to what the mode-of-interest has. They

85



6

86 6. Conclusion and outlook

impose a limit of the optical linewidth 𝜅 that it cannot be too small. Otherwise
the non-linearity from the optical cavity would be significant.

• A long string leads to a bad thermalization. For practical devices they absorb
photons and convert them to heat. The raise of the temperature shifts the
optical resonance frequency. At large cavity photon number it would enter the
thermal bistability regime. For this type of structure, the “large” cavity photon
number is too small to achieve the rate where the photon-phonon interaction
is comparable to the thermal decoherence.

• It is hard to achieve a higher 𝑄M×𝑓M. It is mostly limited by the width of the
structure, which can not be too narrow. It might also suffer from fabrication
imperfections, which introduces lots of surface loss, and suffer from all the
phononic geometries that introduce large bending at specific locations. Mak-
ing the structure longer can potentially reduce the overall bending strength
and increase the stress at the center, potentially leads to a higher 𝑄M × 𝑓M.
However, apart from the difficulties in fabrication, a longer string is unfavor-
able considering the aforementioned issues.

To tackle these problems, I have developed a new type of devices.

Integrated optomechanical device coupling to out-of-planemode
The new type of devices is based on the development of a novel and versatile fabri-
cation technique, described in chapter 4. By using a fiber tip transferring microfab-
ricated components, it is possible to place a photonic crystal above a mechanical
structure, separated by a small gap. It allows a large optomechanical coupling to
the out-of-plane motions of mechanical resonators. Especially, I adapt a mechanical
structure possessing high-Q fundamental out-of-plane mode. The mode-of-interest
is then the fundamental mode, with all the other modes far away and without modes
with larger thermal fluctuations. By implementing clamps to each of the unit cells of
the photonic crystal cavity, the thermal conductivity is greatly enhanced. It allows
a large intracavity photon number. We performed measurement based feedback
cooling at room temperature, achieving a phonon number of 22.

However, fabricating device in this way also comes with costs. Two issues are
listed below

• Coupling between the mechanical motion of the photonic crystal and the me-
chanical resonator. This leads to some reduction of the mechanical quality
factor on the mechanical resonator.

• Classical noise introduced by the thermal motion of the photonic crystal.

The first issue can be solved by increasing the distance between the photonic
crystal and the mechanical structures, at the cost of a great reduction in the op-
tomechanical coupling. Investigating the source of the coupling is also important,
and potentially it leads to ways reducing the coupling. The second can potentially
be addressed by cooling down the device into a cryogenic temperature. However,
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it counteracts a long-standing goal to bring quantum-limited or quantum-enhanced
applications to high temperature, or even to room temperature. For both issues,
improvements can also be done on the photonic crystal structure, namely by mak-
ing it more ”rigid” in the frequency range we are interested in. We need a photonic
crystal with a much lower mechanical dissipation, higher mechanical frequencies,
and higher effective mass. It is nevertheless still challenging. For the photonic
structure, it is fully released and it does not have any stress. The quality factor and
the frequency is largely limited by the material properties, i.e., the internal damping
rate and the Young’s modulus. Investigating different materials, potentially with a
lower loss, for the photonic crystal might thus be an option. Alternatively, putting a
bulk material with low refractive index, such as silicon dioxide, directly on top of the
photonic crystal might address this issue. The bulk material typically does not have
a high response on the frequency range considered here. Also, the mass is large.
By sticking the photonic crystal onto the bulk material, the motion of the photonic
crystal would be small and the coupling might be weak. A bulk material, however,
might not be compatible to the technique introduced here due to the large thickness
and mass. Methods similar to wafer bounding techniques, such as flip-chip,[128]
with precision alignments might potentially be employed. It is still technically chal-
lenging considering the coupling interface between the photonic crystal and the
fiber. It also needs the surface to be flat. Further developments are needed.

Coherent feedback in the sideband-unresolved regime
Now, imagine that a good device already exists. It has a weak coupling to the envi-
ronment, and it is possible to have an efficient and fast interaction to the mechanical
resonator. Such a device is still extremely challenging at room temperature, but it
might already be feasible at 4.2 K by marginally improving the device in chapter 4.
For such a situation, is there anything still missing? I consider such a question in
chapter 5.

In cavity optomechanics, people usually consider an optomechanical system
in the sideband-resolved regime. However, for many integrated optomechanical
system with really macroscopic mechanical resonator, including everything in this
thesis, they are in the sideband-unresolved regime. A fundamental difference be-
tween these two regimes is the effect of the cavity response. When light comes,
if it interacts with the mechanical resonator weakly which is the typical situation
here, it generates two sidebands. In the sideband-resolved regime, one of the
sideband generation can be suppressed by the cavity response for a proper detun-
ing. The suppression, however, is negligible in the sideband-unresolved regime.
The difference can also be viewed in a feedback picture, where the optical cavity
of the optomechancial system is a feedback component[101]. The feedback re-
sponse is different for difference frequency range of interest. The positive part of
a sideband-unresolved system is that the information of the mechanical resonator
couples to the outside unfiltered, allowing building an extra feedback. This builds
the basic idea of a measurement-based feedback, which is effective in cooling the
mechanical resonator. It is also largely limited to cooling due to the destroy of
optical coherence through the measurement. In this chapter, I consider feedback
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by linear, passive optical components without measurement. I show that it is pos-
sible to go beyond the cooling. Indeed, the linearized dynamics can be made to be
similar to a sideband-resolved system. Further improvements can be achieved by
optimizing all the parameters involved in such a system. With this, it is possible to
achieve cooling, which outperforms a simple measurement-based feedback cooling,
and phonon-photon entanglement generation and verification.

This work aims at potential experiments. The parameters considering in this
work is feasible, and it might even be possible to integrate the full coherent system
onto a chip. However, in a real experiments, it is much more than a simplified
model plus a few parameters. Here, I list some challenges, and some with potential
solutions.

• In a practical system, delay exists and a feedback might heat up some of
the modes. On the other hands, the delay can be minimized if it is possible
to integrate the whole feedback system on-chip, with the exception of the
coherent feedback with mirror and intentional delay line. Also, in coherent
feedback cooling, since it is continuous measurement, other modes can still
be stabilized by measurement-based feedback cooling. The measurement-
based feedback cooling does not have to achieve a very large cooling power,
thus most of the light can still be used for the coherent feedback of the main
mode. For entanglement generation and verification, it might not be an issue
since the interaction time is limited. Additional stabilization is also possible.

• Efficiency. In the calculation, I show that the scheme is reasonably robust
against photon loss on the feedback path. An highly efficient feedback is still
desirable. This might be achieved by integrating the whole system onto a
chip. Otherwise, a free-space setup might also provide improvements to a
fiber-based setup.

• Complexity and integration. An optomechanical system with optical feed-
back would result in a complex setup. An integrated system is thus favor-
able. It is, however, technical challenging for the devices considered in this
work, which have a mechanical resonance frequency of 1 MHz. Although
on-chip optical resonator with sub-MHz linewidth have been demonstrated
recently[114, 115], their fabrication is still challenging. Furthermore, how to
integrate them with an optomechanical structure is still an open question.

• Device quality. A better optomechanical device is always beneficial. This,
however, is beyond the scope of this specific work. I would refer readers to
the previous chapters.

Summary
In general, to push the field forward, having a good integrated optomechanical
device is still the key. In the recent years, such as the works in chapter 3, 4
and references [60, 64, 77, 80, 129], we have seen many promising designs of
the mechanical resonators. In this work, I have also made progresses in the in-
tegration with an optical cavity, allowing large optomechanical interaction. With
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further developments in the integrated optomechanical system, and a more ad-
vanced integration technique which potentially allows complex functions on a chip,
it is promising to achieve quantum-limited or quantum-enhanced applications with
mechanical resonator. This is a long and outstanding goal, and by no mean it can
be answered by this single thesis. Still, it makes small improvements, bringing
classical mechanical resonators towards the quantum regime in its own way.





A
Devices fabrication

The fabrication of devices process is shown in figure A.1.

(a) High stress thin silicon nitride film is first deposited on Silicon wafer using
low pressure chemical vapor deposition (LPCVD) process. By controlling the
deposition temperature to be 800 ∘C, it would result in a internal stress of >
1 GPa in the silicon nitride thin film. The wafer is then diced into chips of
1 cm × 1 cm.

(b) A thin layer of e-beam resists (AR 6200-13) is spin coated onto the chip.
The spinning speed depends on the thickness of the silicon nitride film. For
350 nm film, a spinning speed of 900 rpm is used. A thicker layer of resists
guarantees that the resit would not be etched away in the following steps.
However, a thicker resists reduces the usable area of a chip. On a larger area
of the chip, extended from the boundary of the chip to the inside, the resists
is non-uniform. Immediately, the chip is baked on a hot plate at 150 ∘C for 3
minutes.

(c) The resists are patterned using electron beam (e-beam) lithography. the re-
sists exposed to the electron changes its chemical properties.

(d) The chip is developed in pentyl acetate, xylene, and then IPA for 1 minute, 5
seconds and 1 minute, respectively. The resists used in this work are positive
resists. The areas exposed to electron are washed away.

(e) The pattern on the resists is transferred onto the SiN film. This is done by
exposing the chip to CHF3 in a reacting ion etcher. The SiN which is not
covered by the resists would be etched away. Note that CHF3 also etches
resists. This determines the minimum resists thickness, and the maximum
spinning speeds in step (b).
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Figure A.1: Fabrication of Silicon Nitride devices.

(f) The resists is then removed by dimethylformamide (DMF). The chip is im-
mersed in the solution, and then it is sonicated with a low power. This re-
moves most of the resists on the chip. Then, piranha solution, a mixture of
H2SO4 and H2O2, is used to clean the chip. H2SO4 is pre-heated to above 70
∘C. After the mixture, the temperature can go up to ∼ 120 ∘C and it forms lots
of bubbles. The chip is put into the solution immediately, and it stays inside
for 8 minutes. Piranha solution is a strong oxidizing agent and it removes the
residue organics on the chip. However, it also could oxidize silicon, and more
importantly, probably silicon nitride. It has been shown that the oxidation
of silicon nitride reduce its mechanical quality factor. The oxidation layer is
removed by immersing the chip into 1% HF solutions for 1 minute. Since HF
also etches siilcon nitride, for the chip where mechanical quality factor is not
of concern and with very fine structures, the process time is reduced.

(g) The last step is to etch the silicon underneath the silicon nitride. This is done
by a dry etching process, exposing the chip with SF6 at -120 ∘C. The etching
is isotropic and fast. The etching distance is typically 6 𝜇m with an etching



93

time of 20 seconds in this work. For the mechanical chip in chapter 5, in order
to have a lower overhanging part, the etching time is reduced to 11 seconds.

(h) A chip is finished.
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