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Abstract—Recently, frequency-modulated continuous wave 

(FMCW) radar-based hand gesture recognition using deep 

learning has achieved favorable performance. However, many 

existing methods use extracted features separately, i.e., using one 

of the range, Doppler, azimuth or elevation angle information, or 

a combination of any two, to train convolutional neural networks 

(CNNs), which ignore the interrelation among the 5D time-

varying-range-Doppler-azimuth-elevation feature space. 

Although there have been methods using the 5D information, their 

mining of the interrelation among the 5D feature space is not 

sufficient, and there’s still room for improvements. This paper 

proposes a new processing scheme of hand gesture recognition 

based on 5D feature cubes which are jointly encoded by a 3D fast 

Fourier transform (3D-FFT) based method. Then a CNN is 

proposed by building two novel blocks, i.e., spatiotemporal 

deformable convolution (STDC) block and adaptive 

spatiotemporal context-aware convolution (ASTCAC) block. 

Concretely, STDC is designed to cope with hand gestures’ large 

spatiotemporal geometric transformations in the 5D feature space. 

Moreover, ASTCAC is designed for modeling long-distance global 

relationships, e.g., relationships between pixels of the feature at 

upper left corner and lower right corner, and exploring the global 

spatiotemporal context, in order to enhance the target feature 

representation and suppress interference. Finally, our presented 

method is verified on a large radar dataset including 19760 sets of 

16 common hand gestures, collected by 19 subjects. Our method 

obtains a recognition rate of 99.53% on validation dataset, and 

that of 97.22% on test dataset, which is significantly better than 

state-of-the-art methods. 

 
Index Terms—Frequency-modulated continuous wave (FMCW) 

radar, hand gesture recognition, spatiotemporal deformable 

convolution, spatiotemporal context modeling. 

 

I. INTRODUCTION 

AND GESTURE recognition (HGR) has important 

application value in human-machine interaction [1]-[3], 
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e.g., it can be used in sign language recognition [4], home 

automation [5] driving automation [6] and many other scenarios. 

Researchers can achieve HGR based on visual equipment or 

other sensors [7]. Visual-equipment-based methods need to 

acquire hand gestures’ images or videos first. However, visual-

equipment-based methods are sensitive to light conditions. 

Sensor-based approaches require the use of sensors, such as 

WiFi-based sensors, electromyography (EMG), to measure 

hand gestures’ accelerations, positions or velocities. However, 

WiFi-based methods are susceptible to interference because 

their waveforms are specially designed according to the 

purpose of communication [8]. EMG-based methods [9] could 

only work under contact conditions, which is not convenience 

and may put the user at risk of exposure to bacteria and virus. 

Because of the advantages such as small size of antennas and 

the ability of working under non-contact and non-light 

conditions, HGR solutions based on Frequency-modulated 

continuous wave (FMCW) radars, such as Google’s Soli [10], 

are promising, and have aroused widespread interests in the 

consumer electronics industry and the microwave communities. 

FMCW radar-based HGR methods usually have two key 

steps: (1) beat signal pre-processing is used to process the 

complex raw radar data stream for presentation as input of 

feature extract models, (2) multiple parallel processing feature 

extraction architectures are used to extract the information 

separately, and feature-level or decision-level fusion is 

employed for hand gesture prediction and classification. 

However, in terms of beat signal pre-processing, many 

existing methods extract features separately, such as range, 

Doppler, azimuth and elevation information, or a combination 

of any two [11]-[20], and these methods ignore one or several 

dimensions of information in the time-varying 5D feature space. 

Although there have been methods such as [21]-[23] which 

explore using the 5D feature representation, their mining of the  
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Fig. 1.  Our used antenna layout (left) and the equivalent virtual array (right). 

It’s an L-shaped array, and has 2 transmit antennas (Tx1 and Tx2) and 4 

receive antennas (Rx1~Rx4). Under TDM-MIMO mode, a virtual array is 

generated. In the virtual array, the vertically arranged Tx-Rx pairs 

(surrounded by the red dashed line) are used for elevation angle estimation, 

while horizontally arranged Tx-Rx pairs (surrounded by the blue dashed 

line) are used for azimuth angle estimation. Data collected by 8 virtual array 

elements are represented by ①-⑧. 

 

interrelation among the 5D feature space is not sufficient, and 

there is still room for improvement. For example, [22][23] use 

a multi feature encoder to encode the selected the first K points’ 

5D features of the gesture which have the greatest magnitudes 

in the range-Doppler spectrograms. However, the fixed 

manually selected K points are susceptible to dynamic 

interference and difficult to adapt to complex scenes. 

In terms of feature extraction and classification, traditional 

methods, such as Hidden Markov Models (HMM) [25], Support 

Vector Machines (SVM) [26], can only classify a few simple 

gestures. More complex gesture categories can be recognized 

via convolutional neural network (CNN) based methods [22]-

[24] or Long Short-Term Memory (LSTM) based methods 

[27][28] from thousands of data samples. However, using 

separately extracted range, Doppler and angle information to 

train CNNs, these methods are usually 2D-CNN based, and they 

cannot take a 5D feature representation as input. Even inputs in 

[22][23] consider the 5D feature, their used simple CNN 

networks have difficult in effectively extracting the key 

information that characterizes different gestures. 

This paper proposes a new processing scheme of HGR based 

on 5D time-varying-range-Doppler-azimuth-elevation feature 

cubes which are jointly encoded by using a 3D fast Fourier 

transform (3D-FFT) based method. And a modified CNN is 

proposed by building in two novel blocks. We summarize main 

contributions of this paper as follows. 

1) A 3D-FFT based beat signal pre-processing method is 

introduced for jointly encoding range, Doppler, azimuth and 

elevation angle information into the time-varying 5D feature 

space. 

2) A spatiotemporal deformable convolution (STDC) block 

is introduced to improve the ability of recognition network to 

model spatiotemporal geometric transformations in the 5D 

feature space by learning extra offsets, drawn inspiration form 

Dai et al. [29] and Ying et al. [42]. 

3) An adaptive spatiotemporal context-aware convolution 

(ASTCAC) block is proposed to improve the ability of 

recognition network to capture both global and local contextual 

information. 

The rest of this article is organized as follows. First, in 

Section II we review the related works. Then in Section III we  
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Fig. 2.  Diagram of our used 5D feature cubes. 
 

introduce the STDC block and the ASTCAC block, respectively. 

Moreover, in Section IV we introduce the experimental settings, 

and analyze the performance of the proposed STDC and 

ASTCAC block. Finally, in Section V, we give our conclusion 

and discuss some future works. 

II. RELATED WORKS 

A. FMCW Radar Beat Signal Pre-Processing 

Generally, FMCW radar beat signal pre-processing contains 

estimation of range, Doppler and angle information, and 

suppression of static and dynamic interference. Typical process 

is summarized as follows. 

First, FMCW radar transmit chirp signals and the range-

Doppler maps can be obtained via range-FFT and Doppler-FFT 

(2D-FFT) for each receiver [48].Then CA-CFAR detectors are 

used for target detection. After target detection, target’s range 

and radial velocity information can be measured [48]. 

Fig. 1 show our used antenna layout and the equivalent 

virtual array under TDM-MIMO mode. The vertically arranged 

transmit-receive antenna pairs are used for elevation angle 

estimation, and the horizontally arranged transmit-receive 

antenna pairs are used for azimuth angle estimation. Azimuth 

(elevation) information of the target is estimated by azimuth-

FFT (elevation-FFT) or other super-resolution algorithms, such 

as multiple signal classification (MUSIC) algorithm [31]. 

Note that during the switching time of different transmit 

antennas, the amount of phase change owing to moving hand 

gestures’ Doppler frequency are coupled to each receive 

antenna, resulting in a defocusing effect of the spectrum [32]. 

This phase change would have effect on the elevation angle 

estimation in our case, and we carry on phase compensation 

before elevation angle estimation. 

In this paper, we choose azimuth-FFT (elevation-FFT) 

method over other azimuth (elevation) angle estimation 

methods mainly because, (1) despite of other super-resolution 

estimation algorithms perform better angle resolution than 

azimuth-FFT (elevation-FFT) method, however, the large 

amount of calculation imply that they may be unable to achieve 

real-time processing, (2) it is difficult to perform 2D-FFT based 

range-Doppler estimation in parallel with MUSIC-based angle 

estimation for jointly encoding range, Doppler, azimuth and 

elevation angle information into the time-varying 5D feature 

space, hence the interrelation information among range-

Doppler-azimuth-elevation domains is neglected, this may 

degrades the performance of HGR. 
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Fig. 3.  Pipeline of our signal processing method to generate the 5D feature 

cubes. ①-⑧ indicate the data collected by 8 array elements (refer Fig. 1 to 

query which array element each number represents). 

 

To suppress static interference such as walls, we use an inter 

frame difference method, which can be described as: 

 ' 1k k kF F F   (1) 

where kF represents the 
thk  radar frame, 'kF represents the 

thk  

frame after inter frame differential operation. There is still 

dynamic interference, such as moving bodies or arms, after 

suppressing static interference. Generally, when a subject is 

making a gesture, distance between bodies and radar is larger 

than that of hands, while velocity of bodies is smaller than that 

of hands. Based on this prior information, we can suppress the 

dynamic interference by filtering out the scatters with larger 

distance and velocities. 

As input of our CNN-based feature extraction models, the 

data structure of our used 5D feature cubes are described as 

follows: as shown in Fig. 2, there are 4 channels in the feature 

cube of each frame channel (time channel), namely the 

amplitude channel, elevation channel, the first azimuth channel 

and the second azimuth channel, representing the amplitude of 

the range-Doppler spectrograms, the estimated elevation 

information, the estimated azimuth information from the upper 

horizontally arranged transmit-receive antenna pairs, and that 

from the lower horizontally arranged transmit-receive antenna 

pairs. The x-axis of each channel data is the range axis and the 

y-axis of each channel is the Doppler axis. That is to say, if we 

visualize the 4 channels of each frame’s feature cube data, we 

get range-Doppler maps (RDMs), range-Doppler-elevation 

maps (RDEMs) and range-Doppler-azimuth-maps (RDAMs) 

accordingly. The feature cubes of each frame are concatenated 

along the time axis to generate the finally 5D feature cubes, 

which can be considered as a tensor type with a shape of 

T×H×W×C, where T is the time dimension, i.e. number of 

frames, H and W are the dimensions of range and Doppler 

domain respectively, C is the number of channel, i.e. 4 in our 

case. 

Fig. 3 shows the pipeline of the proposed FMCW radar beat 

signal pre-processing method. 

B. 3D CNNs 

Different with 2D spatial convolutional kernels used in 2D  
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CNNs, 3D convolutional kernels used in 3D CNNs [33][35] are 

extended to three dimensions, and the added dimension is the 

time dimension. 3D convolutions use a three-dimensional 

sliding window to scan the spatiotemporal data at the same time, 

which can capture unified spatiotemporal characteristics. Hence 

3D CNNs are suitable for video-related tasks, such as action 

recognition. However, training 3D CNNs is more difficult than 

2D CNNs due to the sharply increased parameters. Until the 

emergence of large-scale video datasets [50][51], 3D CNN 

based methods outperform 2D CNN based methods gradually. 

Ji et al. first proposed C3D network [33] for human action 

recognition. Later, Hara et al. proposed Res3D network [36] 

based on ResNet network [37]. Carreira et al. propose I3D 

network [34] based on the Inception network. Fig. 4 (a) and (b) 

show an illustration of 2D and 3D convolution. 

III. HAND GESTURE RECOGNITION NETWORK 

We can represent the 5D feature cubes as a tensor 

X T H W C . We argue that it is more suitable to model 

spatiotemporal feature extraction based on 3D CNNs than 2D 

CNNs when using the 5D feature cubes as input. Although 3D 

CNNs are usually computationally expensive, we can exploit 

some efficient variations, such as replacing 3D convolutions 

with separable convolutions or S3D network [38], to tradeoff 

model complexity with speed and accuracy. 

In this paper, we choose S3D-like network as our backbone, 

and we first perform some adaptive modifications to the 

original S3D network to make it suitable for 5D feature cube 

inputs. Then we elaborate the STDC block and the ASTCAC 

block to further improve the accuracy of HGR. 

 

Fig. 4.  (a) 2D convolution, (b) 3D convolution and (c) spatiotemporal 

deformable convolution (STDC). Note that (c) is modified from [42]. 
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Fig. 5.  (a) Architecture of our HGR network. Backbone is S3D [38]. 

Compared with the original S3D architecture, we replace Sep-Inc 3b and 
Sep-Inc 3c layers with STDC blocks, and plug the ASTCAC block after 

Sep-Inc 4f. (b) Our used temporal separable convolution block (Sep-

Conv). (c) Our used 3D temporal separable inception block (Sep-Inc). 

 

A. Modified S3D network 

In original S3D network, 3 3 3   convolutions are replaced 

with one 3 1 1   convolution in temporal domain and one 

1 3 3   convolution in spatial domain. This block is called 

temporal separable convolution (Sep-Conv) block as shown in 

Fig. 5 (b). What’s more, S3D uses a 3D temporal separable 

inception (Sep-Inc) block as basic block, which is shown in Fig. 

5 (c). These structures are proved to tradeoff model accuracy 

with complexity better in action recognition tasks compared 

with conventional 3D CNNs [38]. 

The original S3D network has two Sep-Conv blocks, nine 

Sep-Inc blocks, four max pooling layers, one average pooling 

layer and one convolution layer. 

However, in 5D feature cubes, the input length along the 

spatial dimensions is much longer than those along the time 

dimension. When using 5D feature cubes as input, retaining 

origin S3D network configurations may result in premature 

down-sampling in the time dimension. Hence we have to 

modify these configurations. Concretely, strides in the spatial 

dimensions of the first two Sep-Conv layers and max pool 

layers are both modified from 1 to 2, while strides in the time 

dimension remain unchanged at 1, as illustrated in Fig. 5 (a). 

B. STDC Block 

Fig. 6 shows two sets of RDAMs (i.e. visualizations of the 

3rd channel of the 5D data cubes) of push right gestures made 

by different subjects. In order to show the time-varying features 

contained in multi-frame RDAMs in one figure, we start from 

the first frame and take 5 of the 31 frames at equal intervals, 

and draw these 5 frames in the same figure. The curve formed 

by the red arrows indicates the trajectory of the palm. 

It can be seen that the trajectories of the gestures in Fig. 6 (a) 

and (b) show similar characteristics, the range first decreases 

and then increases, and the radial velocity changes from 

negative to positive. This can be seen as the common feature of 

push right (PS-R) gesture reflected by RDAMs. However, the 

PS-R gesture in Fig. 6 (a) has a larger range of range-Doppler  
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Fig. 6.  Two sets of RDAMs of push right (PS-R) made by different subjects. 
 

change, while the range of azimuth angle change in Fig. 6 (b) is 

larger. This indicates that the large spatiotemporal deformation 

during gesture movement. It is related to the subject’s personal 

habit of making gestures, e.g., the size of the palm of the subject 

is different, the speed of the gesture is different, and the angle 

of the gesture relative to the radar line of sight is different. 

Similar with PS-R gestures, other types of gestures also have 

in-class commonalities and differences reflected in RDAMs. 

However, it’s tough for conventional 3D convolutions to 

handle abovementioned huge spatiotemporal deformations, 

because their sampling process on the feature map is usually 

performed on regular, rectangular sampling grid. To this end, 

we try to augment conventional 3D convolutions with learnable 

3D sampling offsets to model complex geometric 

transformations, inspired by Dai et al.[29] and Ying et al [42]. 

Different from [42] which applies deformable convolution in 

low-level video super resolution task and only performs kernel 

deformation in spatial dimension, we use STDC block for a 

high-level, FMCW radar-based HGR task, and for radar data. 

What’s more, we perform kernel deformation in both spatial 

and temporal dimensions. 

Next we introduce STDC in detail. Suppose there are nk 3D 

convolution kernels F k k k kn t h w , with the kernel size of tk×
hk×wk. Note that for simplifying the presentation, we omit the 

channel dimension with reference to [30], i.e. for 

X T H W C  we assume the channel dimension C=1 here. A 

3D convolution operation which takes X={xt,h,w} as input and 

outputs O={ot,h,w} can be written as: 

 
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0

1 2

, , , , , , , ,

, , , , , ,

, ,

where

, ,..., ,k
T

n

t h w t h w t h w t h w

t h wn n

t h w t h w t h w

t h w

q q q

q

= F  

o

O X,

F X

   

 

 (2) 

where t0, h0, w0 represents the start spatiotemporal position of 

the 3D convolution, q
t0,h0,w0

n denotes the output of the nth 3D 

convolution kernel at position t0, h0, w0. Since we have 
kn  3D 

convolution kernels, the output feature map O={ot,h,w} have nk 

channels. 

From (2) we can know that the conventional 3D 

convolutional operation is restricted to fixed spatiotemporal 

sampling grid when sampling input feature cubes, which 

degrades the ability of feature representation. 

To better perceive the long-distance and diverse-change 

motion characteristics in 5D feature cubes, the proposed STDC 

block learns offsets {  , , , , 1,...,t h wT H W t h w k    } (k is the  

1 1 1 
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kernel size) to deform the standard sampling grid instead of 

using regular sampling grids. STDC can be described as: 

 
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0

1 2

, , , , , , , ,

, , , , ( , , )

, ,

where

, ,..., ,k
T

n

t h w t h w t h w t h w

t h wn n

t h w t h w t T h H w W

t h w

q q q

q

=  

o

O F X,

F X   

   

 

 (3) 

Compared with conventional convolution in (2), 

corresponding convolution field of STDC has been modified 

form 0 0 0

, ,Xt h w

t h w  to 0 0 0

( , , )Xt h w

t T h H w W   . 

Take a STDC block with 3 3 3   kernel size as an 

example, we explain the calculation process of the STDC 

block as follows. First, a conventional 3 3 3   convolution, as 

shown in the upper branch of Fig. 4 (c), is used to obtain the 

3D spatiotemporal offsets, taking X T H W C  as input. It 

should be noted that the learned 3D spatiotemporal offsets 

have 3N sets of channels, which represent the deformation of 

STDC’s sliding windows among spatiotemporal domains [42]. 

Then the deformation of the conventional sampling grid is 

guided by these learned offsets. Finally, we obtain outputs 

with these deformable sampling grid following (3). Specially, 

we use a trilinear interpolation method [44] to generate exact 

values of the offsets, since they are usually fractional. 

C. ASTCAC Block 

In addition to the obvious spatiotemporal deformations of 

gestures, local differences of different gesture types in the 5D 

feature cubes are not obvious and there are still clutter and 

interference after signal processing. To enhance the target 

feature representation and suppress interference, we need to 

mine global spatiotemporal context information. However, 

conventional convolutions can only extract local context and 

cannot model long-distance global relationships, e.g., 

relationships between upper left corner and lower right corner 

pixels of the feature. 

Recently, previous channel-wise feature re-weighting 

methods (such as SE-Net [45]) are proved efficient to perceive 

global context for re-weighting feature channels. However, 

previous methods usually model the long-distance global 

relations with global-consistent feature re-weighting vector. 

Different with previous methods, we propose the ASTCAC 

block, a spatiotemporally-varying feature weighting factors 

based method, to mine higher level spatiotemporal contextual 

information. 

We show the detailed ASTCAC architecture in Fig. 7. 

Instead of using the fully-connected-layers (FC-layers) to 

predict all ASTCAC kernel parameters as previous dynamic 

kernels do [46], we generate the ASTCAC kernel parameters 

via matrix multiplication to reduce computation. Next is the 

specific implementation of the ASTCAC block. 

Assume the size of kernel is s s s  . First, we transform 

input feature X  into the key feature map K T H W C  and 

the query feature map 
3sQ T H W  via a spatial attention 

block (SAB). In detail, first, by transmission TE, X  is used to 

generate the spatial-attention feature map A . TE is 

implemented with non-linear project function and Sigmoid 

activation function. Then we perform Hadamard product 

between A  and X  to get E . Let key feature map K =E . At 

the same time, by another transformation TQ which is 

implemented by independent non-linear project function, we 

get the query feature map Q  which can capture spatiotemporal 

distributions of K . Particularly, the non-linear project 

functions can be implemented with 1 1 1   convolutions. The 

pipeline of SAB is shown in Fig. 7. 

After generating K  and Q , we reshape them to 2D vectors
' ( )K T H W C  and 

3' ( )Q T H W s , respectively. We argue 

that each column of 'K  represents one of the C -dimensional 

characteristics of X , and each column of 'Q  captures one of 

the 
3s -dimensional spatiotemporal features. 

 

 

Fig. 7.  Our proposed adaptive spatial temporal context aware convolution (ASTCAC) kernels. We first use a spatial attention sub-module  (the blue dashed 

box)  to generate the key feature map K  and the query feature map Q . Then we use a matrix multiplication method to generate the predicted ASTCAC kernels. 

After that, to generate the weighting map M , the predicted kernels are used to convolved with X  by a depth-wise convolution (the red dashed box). Finally, by 

element-wise multiplication (Hadamard product) between M and X , we get the output feature map Y . 
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Fig. 8.  Experimental environment and equipment. 

 

Then, for extracting the interrelation between each column of 
'Q  and 'K  among the overall T H W  spatiotemporal 

positions, a dot product is performed: 

 
( )

1

( , ) ( , ) ( , )S Q K
T H W

q

i j q i q j
 



 ' ' '  (4) 

where 31,2,...,i s , 1,2,...,j C . Because we have 
3s  query 

vectors, we can capture 
3s  features of the overall 

spatiotemporal distributions of K'  which has C  feature 

channels. (4) can also be rewritten as a form of matrix 

multiplication [47]: 

 S Q KT' ' '  (5) 

where 
3'S s C , T'Q  denotes the transpose matrix of 'Q . 

After that, to obtain the final predicted ASTCAC kernels, we 

reshape 
3'S s C  into S s s s C , and a batch 

normalization layer is used to modulate S . S  is the predicted 

ASTCAC kernels. We can use S  to generate the global 

spatiotemporally-varying weighting factor M
T H W C    for 

all T H W   locations. 

Importantly, when generating M , a depth-wise convolution 

is operated between S  and X  to ensure each channel of S  can 

independently modulate the corresponding channel of X , and 

save computation at the same time. The depth-wise convolution 

is first introduced by [52] to reduce computation. As shown in 

the red dashed box of Fig. 7, the depth-wise convolution works 

as follows, first S s s s C  is split into C kernels, and each 

kernel has a dimension of s s s . Subsequently, these C 

kernels are applied over each channel of the input 

X T H W C  independently to obtain an intermediate 

feature map, followed by a 1×1×1 convolution to project the 

intermediate feature map's channels onto a new channel space 

and get the output of the depth-wise convolution. The output of 

the depth-wise convolution is further passed through one 

Sigmoid activation function  to obtain M
T H W C   .Finally, 

M  and X  are multiplied by elements to get the output feature 

map Y . 

IV. EXPERIMENTS AND ANALYSES 

A. Experimental Platform 

As shown in Fig. 8, we use the Texas Instruments (TI) 

single chip AWR1642BOOST-ODS radar system to collect 

hand gesture data [49], which is equipped with two transmit 

antennas and four receive antennas. Descriptions about the 

antenna layouts are already shown in Fig. 1. We set the ADC 

sampling frequency to 10MHz under complex 2x sampling 

module. Under this configuration, we obtain complex raw  

(a) Left (L)        (b) Right (R)        (c) Left-Right (L-R)      (d) Right-Left (R-L) 

(e) Push (PS)     (f) Pull (PL)       (g)  Push-Pull (PS-PL)   (h) Pull-Push (PL-PS) 

(i) Up (U)        (j) Down (D)       (k)  Up-Down (U-D)       (l) Down-Up (D-U) 

(m) Push-Left

         (PS-L)

(n) Push-Right

        (PS-R)
(o) Rotate Clockwise

             (RC)

 (p)    Rotate 

Counter-Clockwise  

         (RCC)  
 

Fig. 9.  Our used 16 kinds of gestures. 
 

 

TABLE I  
 

RADAR SYSTEM PARAMETERS FOR HAND GESTURE RECOGNITION 

 
 

Parameters 

 

 
Values 

 
Number of transmit antennas NTX 2 
Number of transmit antennas NRX 4 

Duty cycle 44.2% 
Chirp Bandwidth (B) 4 GHz 

Frequency modulation rate 105.22 MHz/us 
Sampling mode complex 2x 

Time duration of the chirp (TS) 38 us 
Actual chirp duration (Tc) 138 us 

Time duration of per frame (Tf) 40 ms 
Number of chirps per frame (Nchirp) 64 

Number of sampling points per chirp 

(Nsamples) 
256 

Total number of frames (Nframe) 32 

 
 

radar data. We list detail radar configuration parameters in 

Table I. 

A spacious indoor environment, as shown in Fig. 8, is used 

for data collection. The subject sits directly in front of the 

radar and collects data according to the prescribed gestures. 

After collecting data, we use MATLAB to implement the 3D-

FFT based FMCW radar beat signal pre-processing algorithm 

to generate 5D feature cubes dataset. Then we use the PyTorch 

frame work to build the HGR network. 

B. Dataset 

We organize 19 graduate students for basic skill training on 

radar systems and radar signal processing. The training 

included an experiment operation and data processing based 

on this platform. With their help, we built a dataset with rich 

diversity. 16 kinds of hand gestures containing both azimuth 

and elevation movements are used, as shown in Fig. 9, and the 

total number of realizations is (16 classes) × (19 subjects) × 

(65 times), namely 19760. 

The collected dataset is divided into train dataset, validation 

dataset and test dataset according to a certain proportion of 

4:1:3. The train dataset and validation dataset are used to train 
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our HGR model, and the generated model is used to classify 

the gestures in test dataset after training. 

C. Experimental Results and Analysis 

We implement our models on a server which is equipped 

with 3NVIDIA TITAN RTX graphics card. We use Adam 

optimizer and cross entropy error function for back 

propagation. Our used batch-size is 32 and learning rate is 

0.0001. What’s more, we train each of the models for 100 

epochs. 

Fig. 10 (a) and (b) show visualizations of multi-frame 

RDAMs of a left and right gesture respectively, the azimuth 

angle of the right gesture increases over time, while that of the 

left gesture decreases over time. Fig. 10 (c) and (d) show 

multi-frame RDEMs of an up and down gesture respectively. 

The elevation angle of the up gesture increases over time, 

while that of the down gesture decreases over time. These 

angular changes can be considered as the feature enjoyed by 

specific kind of gestures, especially by those with obvious 

angular changes. This kind of information are learned by 

feature extraction models and are guided for classification. 

In order to effectively evaluate the performance of the 

proposed STDC and ASTCAC blocks, we make the following 

ablation studies. We first train the modified S3D network on 

our built dataset. The recognition accuracy on validation dataset 

is 98.80%, the accuracy on test dataset is 95.33%, as listed in 

Table II and Table III, respectively. 

Then, to analyze the rationality of the proposed STDC block, 

we plug STDC block in the modified S3D network. We argue 

that it is unreasonable to directly replace all conventional 

convolutional layers with STDC blocks, because too many 

STDC blocks will inevitably bring additional parameters, 

thereby affecting the convergence of the model [44]. In order to  

find out in which part of the network structure is most suitable 

to replace the conventional convolution with STDC blocks, we 

gradually replace the conventional convolution layers with 

STDC blocks from shallow layers to deep layers [44]. As listed 

in Table IV, when using more STDC blocks from shallow layer 

to deep layers gradually, the recognition accuracy is improved 

steadily, and we get the best accuracy when conventional 

convolutions in Sep-Inc 3b layer and 3c layer are replaced with 

STDCs. According to the experimental results, two STDC 

blocks are good enough for this architecture. We call this model 

S3D+STDC, which achieve an accuracy of 99.12% on 

validation dataset, 96.31% on test dataset, as shown in Table II 

and Table III respectively. Similarly, to demonstrate the 

effectiveness of the ASTCAC block, we gradually embed 

ASTCAC block after conventional convolutional layers on the 

basis of S3D. As listed in Table II and Table III, the best 

recognition accuracy (99.01% on validation dataset and 96.47% 

on test dataset) is obtained when we plug one ASTCAC module 

after Sep-Inc 4f layer. We called this architecture 

S3D+ASTCAC model. 

Combination of these two complementary blocks can further 

improve the recognition accuracy. According to above analysis, 

we replace Sep-Inc 3b and Sep-Inc 3c layers with deformable 

versions, and plug one ASTCAC block after Sep-Inc 4f. We call 

this structure S3D+STDC+ASTCAC model. The recognition 

accuracy on test dataset is significantly improved from 95.33% 

to 97.22%, as listed in Table III. Fig. 11 illustrates the confusion 

matrix of the recognition result on the test dataset with this 

network. 

 

TABLE II 

 
RECOGNITION ACCURACY (%) COMPARISON OF DIFFERENT METHODS ON VALIDATION DATASET 

 

Methods (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) Avg. 

2D-CNN 

(RTM+DTM) 
92.47 91.95 91.00 92.67 97.33 93.19 92.34 90.23 94.42 90.35 96.48 91.44 88.74 97.38 90.93 96.10 92.93 

2D-CNN 

(RTM+DTM 

+ATM+ETM)[20] 

99.06 99.17 99.35 99.22 99.3 99.28 97.77 99.17 99.17 99.26 99.39 99.96 94.18 99.17 99.46 99.15 98.87 

3D-CNN 

(MPCA)[22] 
95.21 95.18 95.99 95.08 97.87 95.47 96.78 97.14 97.64 94.56 99.02 94.46 89.00 94.96 93.68 95.16 95.45 

3D-CNN 

+LSTM[23] 
98.38                  98.38 98.44 99.54 99.14 100.00 99.54 97.83 98.48 97.87 99.57 99.02 92.38 97.34 98.36 95.49 98.11 

2D-CNN 

(Multi-feature 

encoder)[23] 

98.35 98.35 98.40 99.45 98.92 100.0 99.45 97.80 98.38 97.85 99.45 98.95 92.34 97.27 98.28 95.40 98.04 

S3D  

(5D feature cubes) 
98.51 99.20 99.70 99.55 99.42 99.14 97.76 99.55 99.50 99.69 99.46 98.80 93.65 99.47 99.04 98.50 98.80 

S3D 

+STDC 

(ours) 

99.51 99.70 99.27 99.42 99.74 99.62 98.04 99.47 99.60 99.90 99.86 99.35 93.98 99.70 99.35 99.55 99.12 

S3D 

+ASTCAC 

 (ours) 

100.0 99.58 98.88 99.39 99.87 97.27 97.27 99.32 99.92 99.65 98.88 99.71 93.68 99.48 99.94 99.79 99.01 

S3D 

+STDC 

+ASTCAC 

 (ours) 

100.0 100.0 100.0 100.0 100.0 100.0 98.11 100.0 100.0 100.0 100.0 100.0 94.51 100.0 100.0 100.0 99.53 
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We summarize the recognition accuracies on the validation 

dataset and test dataset of different network settings in Table II 

and Table III. Through the above quantitative analysis, it can be 

seen that STDC and ASTCAC can help to improve recognition 

accuracy, especially when we use them into a deeper layer. 

V. DISCUSSION AND CONCLUSION 

In this paper, we try to improve existing radar-based HGR 

methods from two perspectives of radar signal processing and 

recognition network designing. 

To evaluate our methods, we first collect a large dataset of 

16 kinds of gestures containing both azimuth and elevation 

movements, and the total number of realizations is (16 classes) 

× (19 subjects) × (65 times), namely 19760. Compared with 

model performances evaluated on small datasets with just 

hundreds or thousands of realizations or collected by several 

subjects such as [8][22][23], our dataset is more challenging 

and results performed on our dataset are more convincing. 

Since verification results on a large and independent test 

dataset can assess the model’s generalization ability and its 

robustness, we focus on analyzing results on the test dataset. 

From experimental results we can know that, first, HGR 

methods with combination of range, Doppler, azimuth and 

elevation angle information as inputs (such as 

RTM+DTM+ATM+ETM or the 5D feature cubes, where RTM 

DTM, ATM and ETM represent range-time-maps, Doppler-

time-maps, azimuth-time-maps and elevation-time-maps 

respectively, note that in [20] they only use RTM+DTM+ATM 

because their linear antenna array can’t estimate azimuth and 

elevation angle at the same time, and here we use 

RTM+DTM+ATM+ETM for comparisons) outperform 

methods with single range, Doppler, azimuth or elevation 

information as inputs, or combination of any two (such as 

RTM+DTM). This shows that providing more dimensions of 

information is beneficial for radar based HGR, in line with the 

expected conclusion. Actually, for gestures with similar 

features in range-Doppler domain, it’s necessary to introduce 

angular information for better recognition results. 

Moreover, although there’re already methods considering 

using the 5D feature representation, such as 3D-CNN (MPCA) 

[22], 3D-CNN+LSTM [23] and 2D-CNN (multi-feature 

encoder) [22]. However, our methods outperform all of these  

 

TABLE III 

 
RECOGNITION ACCURACY (%) COMPARISON OF DIFFERENT METHODS ON TEST DATASET 

 

Methods (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) Avg. 

2D-CNN 

(RTM+DTM) 
92.64 80.11 73.83 75.86 81.80 81.24 78.68 98.29 95.36 91.74 93.77 87.08 63.94 58.98 65.12 62.80 80.08 

2D-CNN 

(RTM+DTM 

+ATM+ETM)[20] 

91.05 91.81 97.95 94.64 96.36 97.32 86.1 97.56 96.64 92.27 94.23 97.63 87.90 94.54 88.56 92.36 93.56 

3D-CNN 

(MPCA)[22] 
92.25 88.46 95.24 86.01 86.81 92.18 83.13 97.59 95.26 92.75 94.87 93.09 87.39 85.10 85.78 87.68 90.22 

3DCNN+LSTM[23] 93.17 93.88 94.01 91.81 97.61 95.45 89.43 99.67 94.71 97.99 97.56 94.64 88.00 90.70 94.04 96.52 94.32 

2D-CNN 

(Multi-feature 

encoder)[23] 

95.28 97.13 97.73 89.54 96.20 92.71 89.65 98.03 96.31 94.43 95.17 97.17 91.04 94.67 94.64 95.89 94.72 

S3D  

(5D feature cubes) 
92.78 98.34 98.75 96.03 96.63 98.10 88.24 98.63 95.72 93.57 97.91 96.6 91.34 96.05 93.21 93.34 95.33 

S3D 

+STDC 

(ours) 

95.89 98.74 98.98 98.31 96.72 97.57 91.04 98.23 98.88 95.96 96.18 96.99 93.24 94.58 96.89 92.72 96.31 

S3D 

+ASTCAC 

 (ours) 

95.76  98.69 99.41 97.55 96.81 97.60 89.68 98.55 99.59 95.43 97.65 97.64 93.18 95.83 95.95 94.16 96.47 

S3D 

+STDC 

+ASTCAC (ours) 
96.74 98.91 99.46 98.38 97.80 98.91 91.26 98.90 100.0 96.20 98.35 98.35 94.54 96.31 97.13 94.24 97.22 

 

 
 

 

 

TABLE III 
 

EFFECTS OF DIFFERENT POSITIONS FOR STDC BLOCK. THE ‘POSITION’ 

COLUMN IN THE TABLE REPRESENTS THE POSITION WHERE THE 

CONVENTIONAL CONVOLUTION LAYER IN S3D NETWORK IS REPLACED BY 

THE STDC BLOCK. 

 

Position Accuracy on test dataset(%) 

None 95.33 
Sep-Cov 2 96.00 

Sep-Inc 3b 96.23 

Sep-Inc 3b, Sep-Inc 3c 96.31 

Sep-Inc 3b~3c, Sep-inc4b~4f  96.31 

 

 

TABLE VI 
 

EFFECTS OF DIFFERENT POSITIONS FOR ASTCAC BLOCK. THE 

‘POSITION’ COLUMN IN THE TABLE INDICATES WHERE THE ASTCAC BLOCK IS 

INSERTED IN THE S3D NETWORK. 

 

 

Position Accuracy on test dataset(%) 

None 95.33 
Sep-Cov 2 96.08 

Sep-Inc 3c 96.39 

Sep-Inc 4f 96.47 

Sep-Inc 3c, Sep-Inc 4f 96.47 

 

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2021 at 12:58:43 UTC from IEEE Xplore.  Restrictions apply. 



0196-2892 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2021.3122332, IEEE
Transactions on Geoscience and Remote Sensing

 9 

(a) Visualization of multi-frame RDAMs of a left gesture
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(b) Visualization of multi-frame RDAMs of a right gesture
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(c) Visualization of multi-frame RDEMs of an up gesture

(d) Visualization of multi-frame RDEMs of a down gesture
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Fig. 10.  Examples of visualization of multi-frame RDAMs and RDEMs. 

 

methods. The 3D-CNN (MPCA) only gets an accuracy of 

90.22%, and this may be explained by that this method suffers 

from the high dimensionality of the extracted 5D feature tensor 

[22]. The 2D-CNN (multi-feature encoder) method gets an 

accuracy of 94.72% on the test dataset, 4.5% higher than that of 

3D-CNN (MPCA), a little (0.4%) higher than that of 3D-

CNN+LSTM, comparable with that of S3D (5D feature cubes), 

but still lower than that of our methods, such as S3D+STDC, 

S3D+ASTCAC and S3D+STDC+ASTCAC. Note that the 

multi-feature encoder used in [22] and [23] directly extract the 

first K points’ range, Doppler, azimuth and elevation 

information with the greatest amplitudes in the incoherently 

integrated range-Doppler spectrogram of different receive 

antennas to represent the features of the gesture, while the 

selected K points may not only encode features of gesture 

targets but also that of dynamic interference. Although their 

multi-feature encoder reduces the dimensionality of the hand 

gestures’ features and reduces the amount of calculation, this 

has an impact on recognition accuracy. 

In conclusion, owing to effective 3D-FFT based beat signal 

pre-processing method, and the carefully designed STDC and 

ASTCAC blocks, our methods improves by 2.50% (97.22% 

versus 94.72%) on the test dataset than the best result of other 

methods using 5D feature representation, and this improvement 

may help the HGR systems play robustly in practical 

application scenarios, especially in high-risk application 

scenarios such as autonomous driving, where small increase in 

recognition accuracy may have a chance to avoid driving 

accidents and ensure driving safety. 

ACKNOWLEDGMENT 

Thanks to Shengyuan Wang for setting up and commissioning 

the radar system, and thanks to the subjects for helping us 

collect radar data. 

 
 

REFERENCES 

[1] S. Z. Gurbuz and M. G. Amin, “Radar-based human-motion recognition 

with deep learning: Promising applications for indoor monitoring,” IEEE 

Signal Process. Mag., vol. 36, no. 4, pp. 16–28, Jul. 2019. 
[2] Y. Zhang, S. Dong, C. Zhu, M. Balle, B. Zhang and L. Ran, “Hand 

Gesture Recognition for Smart Devices by Classifying Deterministic 

Doppler Signals,” IEEE Trans. Microw. Theory Tech., doi: 
10.1109/TMTT.2020.3031619. 

[3] J. Le Kernec et al., “Radar signal processing for sensing in assisted living: 

The challenges associated with real-time implementation of emerging 
algorithms,” IEEE Signal Process. Mag., vol. 36, no. 4, pp. 29–41, Jul. 

2019. 

[4] T. Starner, J. Weaver and A. Pentland, “Real-time American sign 
language recognition using desk and wearable computer based video,” 

IEEE Trans Pattern Anal. Mach. Intell., vol. 20, no. 12, pp. 1371-1375, 

Dec. 1998. 
[5] Wan Q et al., “Gesture recognition for smart home applications using 

portable radar sensors,” in 36th Annu. Int. Conf. IEEE Eng. Med. Biol. 

Soc., Chicago, IL, USA, 2014, pp. 6414-6417. 
[6] Faheem K, Seong L, Sung C, “Hand-Based Gesture Recognition for 

Vehicular Applications Using IR-UWB Radar,” Sensors, vol 17, no. 4, pp. 

833-850, Apr. 2017. 
[7] Cheok M J, Omar Z, Jaward M H, “A review of hand gesture and sign 

language recognition techniques,” Int. J. Mach. Learn. Cybern., vol 10, 

pp. 1-23, Jan. 2019. 
[8] Z. Xia, Y. Luomei, C. Zhou and F. Xu, “Multidimensional Feature 

Representation and Learning for Robust Hand-Gesture Recognition on  

Commercial Millimeter-Wave Radar,” IEEE Trans. Geosci. Remote 
Sensing, pp. 1-16, July 2020. 

[9] X. Zhang, X. Chen, Y. Li, V. Lantz, K. Wang and J. Yang, “A Framework 

for Hand Gesture Recognition Based on Accelerometer and EMG 
Sensors,” IEEE Trans. Syst. Man Cybern. A Syst., vol. 41, no. 6, pp. 1064-

1076, Nov. 2011. 

[10] J. Lien et al., “Soli: Ubiquitous gesture sensing with millimeter wave 
radar,” ACM Trans. Graph., vol. 35, no. 4, p. 142, 2016. 

[11] Z. Zhang, Z. Tian, and M. Zhou, “Latern: Dynamic continuous hand 

gesture recognition using FMCW radar sensor,” IEEE Sensors J., vol. 18, 
no. 8, pp. 3278–3289, Apr. 2018. 

Fig. 11.  Confusion matrix of recognition results of S3D+STDC network on 

test dataset. 

 

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2021 at 12:58:43 UTC from IEEE Xplore.  Restrictions apply. 



0196-2892 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2021.3122332, IEEE
Transactions on Geoscience and Remote Sensing

 10 

[12] M. Ritchie, A. Jones, J. Brown, and H. D. Griffiths, “Hand Gesture 

Classification using 24 GHz FMCW Dual Polarised Radar,” in Int. Conf. 

Radar Sys. (Radar 2017), Belfast, UK, 2017, pp. 1–6. 
[13] B. Dekker et al., “Gesture recognition with a low power fmcw radar and 

a deep convolutional neural network,” in Proc. Eur. Radar Conf. 

(EuRAD), Nuremberg, Germany, pp. 163–166, 2017. 
[14] J. S. Suh et al., “24 GHz FMCW Radar System for Real-Time Hand 

Gesture Recognition Using LSTM,” in Asia-Pacific Micro. Conf. (APMC), 

Singapore, pp. 860–862, 2018. 
[15] J. Yu, L. Yen and P. Tseng, “mmWave Radar-based Hand Gesture 

Recognition using Range-Angle Image,” in IEEE 91st Veh. Tech. Conf. 

(VTC2020-Spring), Antwerp, Belgium, 2020, pp. 1-5. 
[16] S. Skaria, A. Al-Hourani, M. Lech, and R. J. Evans, “Hand-gesture 

recognition using two-antenna Doppler radar with deep convolutional 

neural networks,” IEEE Sensors J., vol. 19, no. 8, pp. 3041-3048, Apr. 
2019. 

[17] T. Sakamoto, X. Gao, E. Yavari, A. Rahman, O. Boric-Lubecke and V. 

M. Lubecke, “Hand Gesture Recognition Using a Radar Echo I–Q Plot 
and a Convolutional Neural Network,” IEEE Sensors Letters, vol. 2, no. 

3, pp. 1-4, Sept. 2018. 

[18] H. Li, A. Mehul, J. Le Kernec, S. Z. Gurbuz and F. Fioranelli, “Sequential 
Human Gait Classification with Distributed Radar Sensor Fusion,” IEEE 

Sensors Journal, doi: 10.1109/JSEN.2020.3046991. 

[19] Y. Wang, S. Wang, M. Zhou, Q. Jiang, and Z. Tian, “TS-I3D based hand 
gesture recognition method with radar sensor,” IEEE Access, vol. 7, pp. 

22902-22913, 2019. 

[20] Y. Wang et al., “Gesture Recognition with Multi-dimensional Parameter 
Using FMCW Radar”, Journal of Electronics and Information 

Technology, vol. 41, no. 4, pp. 822-829, 2019. 

[21] Y. Sun, T. Fei, S. Gao, and N. Pohl, “Automatic radar-based gesture 
detection and classification via a region-based deep convolutional neural 

network,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2019, 

pp. 4300–4304. 
[22] Y. Sun, T. Fei, X. Li, A. Warnecke, E. Warsitz, and N. Pohl, “Multi-

feature encoder for radar-based gesture recognition,” in Proc. IEEE Int. 

Radar Conf. (RadarConf), 2020, pp. 351–356. 
[23] Y. Sun, T. Fei, X. Li, A. Warnecke, E. Warsitz and N. Pohl, “Real-Time 

Radar-Based Gesture Detection and Recognition Built in an Edge-

Computing Platform,” IEEE Sensors Journal, vol. 20, no. 18, pp. 10706-
10716, Sept. 2020. 

[24] A. D. Berenguer, M. C. Oveneke, H. Khalid, M. Alioscha-Perez, A. 
Bourdoux and H. Sahli, “GestureVLAD: Combining Unsupervised 

Features Representation and Spatio-Temporal Aggregation for Doppler-

Radar Gesture Recognition,” IEEE Access, vol. 7, pp. 137122-137135, 
2019. 

[25] G. Malysa, D. Wang, L. Netsch, and M. Ali, “Hidden Markov model-

based gesture recognition with FMCW radar,” in Proc. IEEE Global Conf. 
Signal Inf. Process. (GlobalSIP), Washington, DC, USA, Dec. 2016, pp. 

1017–1021. 

[26] Huang D Y, Hu W C, Chang S H, “Vision-based hand gesture recognition 
using PCA+ Gabor filters and SVM” in IEEE Int. Conf. Intelligent Inf. 

Hiding Multimedia Signal Process (IIH-MSP), Kyoto, Japan, Sep. 2009, 

pp. 1-4. 
[27] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural 

computation, 1997. 

[28] Liu J, Wang G, Duan L Y, et al., “Skeleton-Based Human Action 
Recognition With Global Context-Aware Attention LSTM Networks,”. 

 IEEE Trans. Image Process., vol. 27, no. 99, pp. 1586-1599, Apr., 2018. 

[29] Jifeng Dai et al., “Deformable convolutional networks” in Int. Conf. Com. 
Vis. (ICCV), Venice, Italy, 2017, pp. 764-773. 

[30] Y. Zhou, X. Sun, Z. Zha, andW. Zeng, “MiCT: Mixed 3D/2D 

convolutional tube for human action Recognition,” in Proc. IEEE Conf. 
Comput. Vision Pattern Recognit.(CVPR), 2018, pp. 449–458. 

[31] Ralph O Schmidt, "Multiple Emitter Location and signal Parameter 

Estimation", IEEE Trans. On Antennas and Propagation, vol. 34, pp. 276-
280, March 1986. 

[32] C. M. Schmid, R. Feger, C. Pfeffer and A. Stelzer, "Motion compensation 

and efficient array design for TDMA FMCW MIMO radar systems," in 

Proc. Eur. Conf. Antennas Propag. (EUCAP), 2012, pp. 1746-1750. 
[33] S. Ji, W. Xu, M. Yang, K. Yu, “3D Convolutional Neural Networks for 

Human Action Recognition,” IEEE Trans. Pattern Anal. Mach. Intell., 

vol. 35, no. 1, pp. 221–231, 2013. 
[34] J. Carreira, A. Zisserman, Quo Vadis, “Action Recognition? A New 

Model and the Kinetics Dataset,” in Proc. Conf. Com. Vis. Pat. Rec. 

(CVPR), Honolulu, Hawaii, 2017, pp. 6299–6308. 
[35] D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri, “Learning 

Spatiotemporal Features with 3D Convolutional Networks, in Proc. IEEE 

Int. Conf. Comput. Vis. (ICCV), Santiago, Chile, 2015, pp. 4489–4497. 
[36] K. Hara, H. Kataoka, Y. Satoh, “Can Spatiotemporal 3D CNNs Retrace 

the History of 2D CNNs and ImageNet?,” in Proc. Conf. Com. Vis. Pat. 

Rec. (CVPR), Salt Lake City, Utahp, 2018, pp. 6546–6555. 
[37] K. He, X. Zhang, S. Ren, J. Sun, “Identity Mappings in Deep Residual 

Networks” in Proc. Euro. Conf. Com. Vis. (ECCV), Amsterdam, The 

Netherlands, 2016, pp. 630–645. 
[38] S. Xie, C. Sun, J. Huang, Z. Tu, K. Murphy, “Rethinking Spatiotemporal 

Feature Learning: Speed-accuracy Trade-offs in Video Classification,” in 

Proc. Euro. Conf. Com. Vis. (ECCV), Munich, Germany, 2018, pp. 305–
321. 

[39] Z. Qiu, T. Yao, T. Mei, “Learning deep spatio-temporal dependence for 

semantic video segmentation”, IEEE Trans. Multimedia, vol. 20, no. 4, 
pp. 939-949, 2017. 

[40] Bertasius, G., Torresani, L., and Shi, J, “Object detection in video with 

spatiotemporal sampling networks,” in Proc. Euro. Conf. Com. Vis. 
(ECCV), Munich, Germany, 2018, pp. 342-357. 

[41] Tian, Yapeng, et al. “TDAN: Temporally-Deformable Alignment 

Network for Video Super-Resolution,” in Proc. Conf. Com. Vis. Pat. Rec., 
Jun. 2020, pp. 3360-3369. 

[42] X. Ying, L. Wang, Y. Wang, W. Sheng, W. An, and Y. Guo, “Deformable 

3D convolution for video super-resolution,” 2020, arXiv:2004.02803. 
[Online]. Available: http://arxiv.org/abs/2004.02803. 

[43] Wang Y, Yang J, Wang L, et al., “Light field image super-resolution using 

deformable convolution,” IEEE Trans. Image Process., vol. 30, pp. 1057-
1071, 2020. 

[44] Zhang Y, Shi L, Wu Y, et al. “Gesture recognition based on deep 

deformable 3D convolutional neural networks,” Pattern Recognit., 2020. 
[45] Hu J, Shen L, Sun G., “Squeeze-and-excitation networks” in Proc. Conf.  

Com. Vis. Pat. Rec. (CVPR), Salt Lake City, Utah, June 2018, pp.  7132-
7141. 

[46] Jia X, De Brabandere B, Tuytelaars T, et al., “Dynamic filter networks,” 

in Adv. Neul. Inf. Proc. Sys. (NIPS), Barcelona, Spain, Dec. 2016, pp. 
667-675. 

[47] Liu J, He J, Qiao Y, et al., “Learning to Predict Context-adaptive 

Convolution for Semantic Segmentation” in Proc. Euro. Conf. Com. Vis. 
(ECCV), Aug. 2020, pp. 769-786. 

[48] M. Jankiraman, FMCW Radar Design. London, U.K.: Artech House, 

2018. 
[49] Texas Instruments. Robust traffic and intersection monitoring using 

millimeter wave sensors, Available: 

http://www.ti.com/cn/lit/wp/spyy002b/spyy002b.pdf, 2017. 
[50] Karpathy A et al., “Large-scale video classification with convolutional 

neural networks,” in Proc. Conf. Com. Vis. Pat. Rec. (CVPR), Columbus, 

OH, USA, 2014, pp. 1725-1732. 
[51] Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T, “HMDB: a large 

video database for human motion recognition,” in 15th Res. Rev. Wor. 

High. Perf. Com. Sci. Eng.(HLRS), Stuttgart, 2012, pp. 571-582. 
[52] F. Chollet, “Xception: Deep learning with depthwise separable 

convolutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 

(CVPR), Jul. 2017, pp. 1800–1807. 

 

 

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2021 at 12:58:43 UTC from IEEE Xplore.  Restrictions apply. 

http://arxiv.org/abs/2004.02803

