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Spatial Compression in Ultrasound Imaging
Pim van der Meulen∗, Pieter Kruizinga∗†, Johannes G. Bosch†, Geert Leus∗

∗Delft University of Technology, Delft, Netherlands
†Erasmus Medical Center, Rotterdam, Netherlands

Abstract—High quality three dimensional ultrasound imaging
is typically attained by increasing the amount of sensors, resulting
in complex hardware. Compressing measurements before sensing
addresses this problem, and could enable new clinical applica-
tions. We have developed an analogue compression technique,
by positioning a plastic coding mask in front of the aperture,
which distorts the ultrasound field by inducing varying local echo
delays. This results in a compression of the spatial ultrasound
field across the sensor surface, while retaining sufficient informa-
tion for 3D imaging. Using only a single sensor, complementary
measurements can be obtained by rotation of the sensor and the
mask to increase the conditioning of the reconstruction problem.
In this work, we study a method to optimize the shape of the
coding mask. To this end, we define an approximate signal model
that captures the ultrasound response of the mask, and use it to
pose mask shape optimization as a sensor selection problem. We
solve it by relaxing it to a convex problem, as well as by using a
greedy selection method. Our simulation results show that these
approaches are able to outperform the random design strategy,
in particular when mask rotations are included in the problem.

I. INTRODUCTION

Medical ultrasound imaging relies on the transmission of
short ultrasonic waves into the tissue and the reception of the
reflected echoes resulting from acoustic impedance contrasts
between different tissues. This type of imaging is convention-
ally done using an array of sensors which are lined up in either
one or two dimensions to provide a 2D or 3D image of the
object of interest. For 2D imaging, arrays consist of 64 up
to 256 individual sensors. For 3D imaging, these numbers are
squared, resulting in very large complex arrays with integrated
electronics and signal reduction in order to facilitate easy
integration with existing ultrasound acquisition systems that
have limited numbers (typically 128) of channels available.
This technological difficulty is one the prominent reasons why
3D ultrasound has not yet been widely adopted throughout the
clinical arena.

A possible solution to make 3D ultrasound more accessible
is to take advantage of the recent advances in the field of
compressive imaging [1–4] where the data compression takes
place before the sampling, thereby lowering the need for
fully populated sensory arrays. This compressive sampling or
imaging approach and its use for ultrasound imaging has been
explored by several research groups [5–9]. Most of these ap-
proaches use temporal compression of the array measurements
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or select fewer channels from a full array. Just recently, we
successfully showed that 3D compressive ultrasound imaging
is also possible using only one sensor and an irregular aperture
coding mask that is placed in front of the sensor [10]. This
aperture mask ensures that every pixel in the image is uniquely
contained in the compressed measurement by locally adding
temporal delays to the transmitted and received wavefield.
These temporal delays result from the local thickness vari-
ations of the mask which is made from a material with a
different acoustic impedance than the surrounding medium.
Additional measurements obtained by rotating this mask allow
for new measurements that can be used to reconstruct the
object of interest.

In this paper, we explore optimal mask design for single-
sensor imaging. To approximate the influence of the mask on
the received ultrasound field, we discretize the mask surface,
and regard each discretized point as an independent sensor that
measures the incident ultrasound field and delays it according
to the mask thickness at that point on the mask. We are
then concerned with the following questions: (i) how does
the mask discretization affect the imaging performance, (ii)
how does the mask thickness affect the imaging performance,
and (iii), given a mask discretization and maximum mask
thickness, how do we optimize the shape of the mask? The
second question was investigated in [10], where it is shown
how the mask thickness (and consequently, the maximum
locally induced delays) can improve the imaging performance,
although a random mask design strategy is used. In this
work we make a first attempt to answer the third question.
To this end, we will pose mask optimization as a sensor
selection problem. This is accomplished by defining a number
of sensors per mask surface point, corresponding to different
mask thickness levels. The mask shape algorithm should then
try to select one such a sensor for each surface point according
to a given performance criterium.

The goal in sensor selection is to select a given number of
sensors from a larger group of sensors, such that the desired
estimation (e.g. beamforming) or detection performance is
optimal. Popular sensor selection approaches in literature
use convex optimization strategies [11–15], or submodular
approaches [16, 17]. There is a distinct difference between
our optimization problem and those in the classical sensor
selection studies just mentioned. In the typical sensor selection
problem, each sensor candidate’s data will be fully accessible
after selection. However, for sensing using a coding mask,
selected sensors are summed into a single final measurement,
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as will be shown later. A second difference is that we want to
select one sensor from a group of sensors and this for several
groups, instead of a sparse selection from a single group. This
is similar to [14], except that we do not associate a cost to
sensors within a candidate group.

The remainder of this work is organized as follows. In
the next section, we define the approximate signal model
for a sensor with an aperture mask, and derive a convex
optimization approach to solve the mask optimization problem.
We also propose a simpler greedy approach. In section III, we
show that both the convex and greedy approaches can lead to
good results when optimizing the mask for a 1D line sensor
and few candidate sensors. We additionally optimize a mask
for a 2D circular sensor that can be used for the imaging setup
in [10] and obtain good results for various SNR scenarios. In
the final section we discuss the results and conclude this work.

II. METHODS

In order to analyse the role of the coding mask, we use the
same approximate model as in [10], where the mask surface
is discretized in the width and length (x and y) dimensions
into many smaller squares. Any mask is then approximated
by a collection of small pillars (channels), with the height (z
dimension) of each channel equal to the mask thickness at
that position. We then assume that every channel measures
the pulse-echo ultrasound field at the top of the channel,
independently from other channels, and delays the measured
signal in time according to the mask thickness of the channel
and the speed of sound inside the mask. This is illustrated
in Fig. 1. The output signal of the sensor is the summation
of all channel signals, since the output signal at any point in
time is the integration of the ultrasound field over the sensor
surface, convolved with the sensors electromechanical impulse
response.

Assuming a linear scattering model, and denoting the sam-
pled measurements a[n] (n ∈ {0, 1, . . . , N − 1}) on channel
s ∈ {0, 1, . . . , S−1} from pixel m ∈ {0, 1, . . . ,M−1} by the
vector as,m ∈ RN , the measured echo signal ys on channel s
resulting from the set of M scatterers is denoted as

ys = [as,0 as,1 ... as,M−1]x

= Asx.

where x ∈ RM contains the scattering coefficient per pixel.
Any additional measurements obtained by rotations can be
stacked vertically into ys and As. Since the ultrasound
transducer behind the mask effectively integrates the entire
ultrasound field over its surface, the transducer output signal
is approximated as the summation of all S channels:

y =

S−1∑
s=0

ys =

S−1∑
s=0

Asx. (1)

Based on the proposed model, we are able to pose mask
optimization as a sensor selection problem; each channel
can have one of several thickness levels, where each level
corresponds to a different measurement of the ultrasound field.

Fig. 1: Single sensor imaging setup. The coding mask distorts
measurements in such a way that previously ambiguous image pixels
become distinguishable based on (multiple) temporal pulse-echo mea-
surements. For the approximate model used in this study, the mask
is discretized into several channels, indicated by different shaded of
grey. We assume that each channel measures the incident wavefield
independently, and that the spatial integration of the ultrasound field
on the sensor surface can be approximated by summing the outputs
of all channel signals.

In other words, the measurement of each thickness level can
be represented by a candidate sensor. The goal is then to select
one sensor per channel in such a way that the best possible
imaging performance is obtained.

Suppose there are R potential sensors (or: R potential
thickness levels) for each channel s, and wr+Rs ∈ {0, 1}
indicates whether sensor candidate r ∈ {0, 1, . . . , R − 1} is
used for channel s or not. Then the output signal is written as

y =
RS−1∑
t=0

wtAtx (2)

= A(w)x,

where w = [w0, w1, . . . , wRS−1]
T. Note that in this for-

mulation only one sensor should be selected per channel,
resulting in only S non-zero values for w. More specifi-
cally, if ws only contains the entries of w that correspond
to the R selection coefficients for channel s, i.e., ws =[
wRs, wRs+1, . . . , wR(s+1)−1

]T
, then we want ‖ws‖0 = 1 for

all channels s.
Our goal is to optimally select sensors resulting in the

best performance. Many different performance criteria can
be considered, such as the largest or smallest eigenvalue of
A(w), or the determinant of A(w). A first approach to find an
optimal mask is to solve the problem by minimizing the mean
squared error (MSE) under additive zero-mean i.i.d. white
Gaussian measurement noise. More specifically, we minimize

f(w) = trace
[(

A(w)
H
A(w)

)−1
]
. (3)
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Using (2), A(w)
H
A(w) is equal to

A(w)
H
A(w) =

RS−1∑
t=0

RS−1∑
u=0

wtwuA
H
t Au. (4)

Ideally, the optimization problem can then be posed as

min
w

f(w) (5)

s.t. ‖ws‖0 = 1, s = 0, 1, ..., S − 1

[w]t ∈ {0, 1}, t = 0, 1, . . . , RS − 1

Unfortunately, both the objective function and the constraints
are not convex in w, so we need to apply some relaxation
techniques in order to solve (5).

Using a common technique to make the objective func-
tion convex, w ∈ {0, 1}RS is lifted to obtain the matrix
W = wwT, with W ∈ {0, 1}RS×RS . Consequently, (4) is
equivalent to

A(w)HA(w) =

RS−1∑
t=0

RS−1∑
u=0

[W]t,uA
H
t Au. (6)

The non-convex equality W = wwT together with W ∈
{0, 1}RS×RS is relaxed to W − wwT � 0 and diag(W) =
w. Since all coefficients of w will be non-negative using
this relaxation, we also drop the Boolean constraint W ∈
{0, 1}RS×RS . The l0 norm is finally relaxed to the l1 norm,
which due to the positivity of the elements of w, is simply the
sum of the components of ws. The relaxed problem is thus
stated as

min
w,W

f(W) (7)

s.t. 1Tws = 1, s = 0, 1, ..., S − 1

W −wwT � 0

diag(W) = w

A simple scheme to obtain a discrete solution from the
relaxed problem, is by taking the sensor corresponding to
the maximum of the solution ŵs per channel. We denote this
solution by ŵdirect:[

ŵdirect
s

]
r
=

{
1, if r = argmaxv [ŵs]v
0, otherwise

, (8)

assuming each ŵs has a unique maximum.

Greedy optimization alternative
As an alternative rounding method to further optimize the
solution obtained from the relaxed problem (7), we can use
a greedy optimization scheme, by iteratively (re)selecting the
sensor on the channel that most increases the overall MSE,
until a (local) optimum is reached. In other words, we use the
algorithm as specified in Alg. 1, using win = ŵdirect.

Alternatively, we could use the greedy optimization scheme
by using a flat mask as a starting point (i.e., ∀s ∈
{0, 1, . . . , S−1},

[
win

s

]
0
= 1), instead of the convex solution.

Algorithm 1 Greedy optimization scheme

1: Input: win

2: Output: ŵ
3: α = f(win), it = 0, ŵ(0) = win

4: while α > 0 do
5: it = it+ 1
6: for s in S do
7: for r in R do
8: ŵtemp = ŵ(it−1)

9: ŵtemp
s = 0

10:
[
ŵtemp

s

]
r
= 1

11: εs,r = f(ŵtemp)
12: end for
13: end for
14: ŵ(it)is the ŵtemp corresponding to the minimum of εs,r
15: α = f(ŵ(it−1))− f(ŵ(it))
16: end while
17: ŵ = ŵ(it)
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Convex relaxed
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Fig. 2: Expected MSEs for varying number of channels S.

Although we have no optimality guarantees in this case, it is
much more time and memory efficient than solving the convex
relaxation in (7).

III. RESULTS

We first test the various optimization schemes for a rel-
atively small problem for R = 5 and varying values of S,
without using rotations. We optimize delays for a linear array
of 1.1 cm, with a maximum mask thickness of 2 mm, excited
with a single transmitted 5 MHz Gaussian pulse, and pixels
in a 5 by 3 grid in a (z, x) plane covering a 4 by 2 cm
region. To prevent solutions to (7) which are symmetric after
rounding, we shift the grid in the x-dimension such that it
is non-symmetrically positioned with respect to the z-axis.
The results are shown in Fig. 2. We take the results of the
convex relaxation and obtain a discrete solution using the
direct rounding scheme. We also plot the results of the MSE
before rounding, which acts as a lower bound on the best
obtainable MSE. When tractable, we plot the MSE of the
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Fig. 3: Optimized and random mask used for the results in Figs. 4
and 5.

best discrete solution obtained by an exhaustive search. We
also generated 500 random masks and plot their mean MSE.
For the random masks, the probability of selection for each
sensor candidate per sensor is equivalent, and independent
of other channels. From Fig. 2 we conclude that for small
imaging problems, all techniques can do better than a random
optimization strategy, and are near-optimal.

Next, we optimize for a circular mask as used in [10],
and include rotations in our signal model. We define a disc
covering the area of a circular transducer of 12.6 mm diameter,
and cover it with 373 channels. For each channel, we take
five sensor candidates corresponding to five mask thickness
levels uniformly distributed between 0 and 1 mm per channel.
We use an image pixel grid of 2.4 by 2.4 cm at a depth of
1.2 cm, for a total of 121 pixels, and rotate the transducer
40 times, uniformly distributed over 360 degrees. We assume
that the transducer simultaneously transmits on 4, 5, and 6
MHz. Typically, ultrasound is used with band limited pulses,
but to reduce the problem size we only use three single
frequencies from a typical ultrasound bandwidth. Together
with 40 rotations, this results in 120 measurements. Since
the problem size is relatively large, we only use the greedy
rounding scheme initialized with a flat mask. Moreover, since
A(w) is typically ill-posed due to high pulse-echo signal
correlations between neighbouring pixels, we inevitably have
to regularize the least squares estimate of the image. Hence,
we optimize for the Bayesian MSE instead, BMSE =
trace(C−1

x + A(w)HC−1
n A(w))−1, assuming that x and the

measurement noise are zero-mean, i.i.d. white Gaussian, and
have covariance matrices Cx = I and Cn = σ2

nI. When
optimizing the mask, we set σ2

n such that it corresponds to
an expected SNR of 20 dB for a flat mask. Fig. 3 shows
the obtained optimized mask in the left pane. It shows a
definite structure, and tends to select either the smallest or
largest thickness levels. It also tends to select neighbouring
elements, resulting in clusters of maximum and minimum
thickness levels.

After optimization, we first compare the reconstruction of a
fixed image with the optimized mask to the reconstruction
with a random mask for a high SNR scenario (40 dB).
The random masks were generated as described before. To
estimate the image, we use the Bayesian linear estimator
x̂ = (C−1

x + A(w)HC−1
n A(w))−1A(w)HC−1

n y. The noise

Fig. 4: Reconstruction of a letter P image. The top figures show the
true image and its reconstructions using both the optimized mask and
a random mask. The bottom figures show the error maps for each
reconstruction result.

is zero-mean white Gaussian. The results using the masks in
Fig. 3 are shown in Fig. 4. Clearly, the optimized mask is
better able to exploit the additional measurements obtained
by rotation. Pixels at the outer edges of the image, where the
pulse-echo signals change more rapidly between rotations than
pixels close to the centre, are significantly better reconstructed
using the optimized mask than the random mask.

As a final experiment, we iteratively reconstruct many
random images, and carry out the reconstruction as before,
using both the optimized mask and a random mask. Each value
of x is drawn independently from a zero-mean unit-variance
Gaussian distribution. For each random image, a random mask
is generated as described earlier. The additive noise is zero-
mean white Gaussian noise. We then compare the normalized
MSE between each random image and its reconstruction,
NMSE = ‖x− x̂‖22/‖x‖22, for many realizations and several
SNR scenarios. The results are shown in Fig. 5. The results in
Figs. 3-5 show that the selection algorithm is able to exploit the
extra structure provided by taking rotations into account, and
that the optimized mask is able to outperform the randomly
generated masks.

IV. CONCLUSION AND DISCUSSION

In this work, we proposed a convex and greedy method to
optimize the coding mask for a single-sensor imaging setup,
and have compared their effectiveness to a random design
strategy. For a small problem size, we tested both methods,
and both show near-optimal performance, outperforming the
random design strategy. For a larger problem similar to our
previous work, we tested the greedy approach, and show
that it performs significantly better than a randomly designed
mask for various SNR scenarios. Although our cost-function is
currently not sub-modular, we were able to obtain good results
using the greedy selection method with the current model
parameters. Solving this problem by finding a submodular
surrogate for our sensor selection problem can provide us
with optimality bounds, and is a topic of future research.
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Fig. 5: NMSE spread for many image reconstructions for various
SNR scenarios. The vertical bars indicate the standard deviation of
the NMSE for 1000 random images per SNR scenario.

Currently, an approximate signal model is used. An extensive
validation of this model has not yet been done, and may
invalidate our results in real experiments, although [10] shows
that correlations between pixels for the approximate model
and real measurements are very similar.
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