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Abstract

The estimation of satellite orbits and clocks plays a central role in different Global Navigation Satellite System (GNSS) domains, e.g.
precise positioning or time transfer. Such products can be computed in the process of Orbit Determination and Time Synchronization
(ODTS), which relies on a network of ground-based stations, well distributed around the globe. The mm-level precision of carrier-phase
measurements is exploited in this network estimation following a correct resolution of their ambiguities. For several stations, satellites
and/or signals, thousands of ambiguities have to be processed, which means having to deal with high-dimensional ambiguity resolution
(HDAR) problems. In this research work, we firstly account for the impact of ambiguity resolution in a varying network size, based on
GPS-only, Galileo-only and GPS+Galileo configurations. Using 25 or more stations, the accuracy (1D RMS orbital errors) of fixed solu-
tions reaches a plateau at 1–2 cm. Hence, we focus on a small global network of 14 stations, where the model strength decreases, so does
the reliability of the ambiguity fixing process and advantages over a float solution might become less evident. In order to allow reliable
HDAR, two implementations of the Vectorial Integer Bootstrapping estimator are presented and evaluated with respect to their scalar
counterpart. Finally, it is shown how the proposed fixing processes are more robust, still very efficient, and on certain days they provide a
large improvement to satellite products. The orbital results are ultimately validated by considering the satellite midnight discontinuity
errors over a 3-month period in 2019.
� 2021 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords: Global Navigation Satellite System (GNSS); Vectorial Integer Bootstrapping (VIB); Ambiguity Resolution (AR); Orbit Determination and
Time Synchronization (ODTS)
1. Introduction

The generation of satellite orbit and clock information
represents an essential element for any Regional/Global
Navigation Satellite System (RNSS/GNSS) and is gener-
ally based on the use of code and phase observations from
a ground-based network of station receivers. The so-called
process of Orbit Determination and Time Synchronization
(ODTS) makes the best use of state-of-the-art knowledge
https://doi.org/10.1016/j.asr.2021.09.023
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on orbital dynamics for all tracked satellites
(Montenbruck and Steigenberger, 2020). This a priori
information can be consequently improved by means of
an accurate functional and stochastic modeling of such
measurements, ideally consistent with the models later
adopted on the user side.

The contribution of carrier-phase measurements, very
precise but ambiguous, is a key aspect in the network esti-
mation, whether a global or a regional one. In fact, to
exploit their mm-level precision, the integer ambiguities
need to be correctly resolved, which is not an easy task
when dealing with global networks (Ge et al., 2006). Given
org/licenses/by/4.0/).
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denser networks, many satellites from different GNSS con-
stellations and/or multi-frequency signals, the number of
ambiguity components grows rapidly, along with the com-
plexity of the integer ambiguity resolution (IAR). This
leads to the necessity for a balanced trade-off between effi-

ciency and robustness of the IAR process, for example in
support of a low-latency generation of precise satellite
orbits and clocks products.

Simple and intuitive strategies can be used (Blewitt,
1989; Cocard and Geiger, 1992), e.g. well-known widelan-
ing approaches, but sophisticated ones are available. For
instance, the Least-squares AMBiguity Decorrelation
Adjustment (LAMBDA) method, introduced in
Teunissen (1995), which provides an effective solution to
the IAR. The LAMBDA approach enables the adoption
of a wide range of possible estimators, suitable for both
low and high accuracy applications, and it has been proved
to be relatively efficient up to a few hundred ambiguity
components (Li and Teunissen, 2011). Expected perfor-
mances for precise long-baseline positioning using both
GPS and Galileo are presented in Odijk et al. (2014) based
on a formal analysis, for instance in terms of predicted suc-
cess rate. The advantages when considering GPS+Galileo
have been further investigated (Nardo et al., 2016), where
different long baseline scenarios (ground- and space-
based) are simulated and examined.

However, nowadays, we might deal with problems of a
much larger dimensionality (Chen et al., 2014), where thou-
sands of ambiguity components are involved, and the over-
all complexity grows exponentially in such a ‘‘dimensional
curse” (Verhagen et al., 2012b). This dimensionality aspect
might lead to a computational bottleneck (Jazaeri et al.,
2012), and the high-dimensional ambiguity resolution
(hereinafter HDAR) problems are less likely solvable in a
reliable way and within short computational times.

In this work, we consider the Vectorial Integer Boot-
strapping (VIB) estimator described in Teunissen et al.,
2021. The flexibility of such a VIB formulation allows for
an arbitrary partitioning of the original n-dimensional
ambiguity problem, along with a suitable choice of the inte-
ger estimator in use. Two (possible) implementations are
described: firstly, a straightforward Cascade AR (CascAR)
algorithm and secondly, a blocked search approach in use
by Graz University of Technology (TUG). Both the two
algorithms are shown to be efficiently constructed starting
from the same triangular decomposition, while following
LAMBDA decorrelation of ambiguities.

Using the ODTS strategy and software developed at
Graz University of Technology (Strasser et al., 2019), we
analyze different network configurations in order to further
define the impact of ambiguity resolution with respect to
the network size. The latter is assessed by looking at the
accuracy of satellite products. We focus on a small global
network, where the correct ambiguity resolution shows to
provide the most benefits, e.g. in terms of orbital errors.
The two VIB implementations are validated over a 3-
month period in 2019, using GPS+Galileo real data from
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a network of 14 well-distributed stations. Both these
VIB-based approaches show the great convenience of this
easy-to-implement and flexible formulation, while also
leaving room for improvement. In fact, more advanced
algorithms might be designed ad hoc in several GNSS
domains, not limited to this network case.

In Section 2, the two algorithms are introduced as exam-
ples of implementation for the VIB estimator. In Section 3,
the network estimation strategy for satellite orbits and
clocks is delineated, along with configurations and a few
scenarios considered in this work. The main results are pre-
sented and analyzed within Section 4, focusing on a small
global network and also briefly comparing the two algo-
rithms. In Section 5, we perform an extensive validation
over a 3-month period, followed by a short discussion on
this vectorial formulation. Lastly, in Section 6, the overall
conclusions are given.
2. Integer ambiguity resolution methodology

We start from a linear(ized) mixed-integer GNSS model
estimation (Leick et al., 2015), given the vector of code and
phase observations as y 2 Rm with its positive-definite
variance-covariance (vc-) matrix as Qyy 2 Rm�m, such that

Efyg ¼ Aaþ Bb; Dfyg ¼ Qyy ð1Þ

with Ef�g and Df�g being the expectation and dispersion

operators, respectively. The matrix ðA;BÞ 2 Rm�ðnþpÞ

denotes a full-rank design matrix, with a 2 Zn as vector
of carrier-phase integer ambiguity and b 2 Rp as vector
of real-valued parameters. The latter refer, without loss
of generality, to estimable parameters in the ODTS pro-
cess, for example satellite orbit and clock products, as later
discussed in Section 3.

By means of an orthogonal decomposition (Teunissen,
1993), we can separate the quadratic objective function
(with integerness constraints) into a sum of three squares as

ky � Aa� Bbk2Qyy
¼ kêk2Qyy

þ kâ� ak2Qââ
þ kb̂ðaÞ � bk2Qb̂ðaÞ

ð2Þ

where kjk2Q ¼ ðjÞTQ�1ðjÞ refers to a squared Mahalanobis

distance (Mahalanobis, 1936), i.e. a weighted norm in the

metric given by Q�1. This previous decomposition leads
to a subsequent three-step minimization of the original
objective function.

In the first step, ê 2 Rm is the residual vector of a least-
squares solution that neglects the integerness constrains on
ambiguities. These estimated (float) ambiguities â 2 Rn,
and their vc-matrix Qââ 2 Rn�n, are therefore used in a sec-
ond step to solve an Integer Least Squares (ILS) problem,
e.g. considering a many-to-one map I : Rn ! Zn, such that
their integer-fixed estimate is �a ¼ IðâÞ. Given that no con-
strains are taken into account for b, a fixed solution to the
third step is easily found by considering
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b ¼ bð�aÞ ¼def b� Qb̂âQ
�1
ââ ðâ� �aÞ and, for Q�a�a � 0 (Verhagen,

2004), we can safely assume Q�b�b � Qb̂b̂ � Qb̂âQ
�1
ââ Qâb̂.

A focal point in this three steps process becomes the

minimization of kâ� ak2Qââ
, which can still be tackled by

different classes of estimators, i.e. Integer (I) estimators
(Teunissen, 1999), Integer Aperture (IA) estimators
(Teunissen, 2003a) or Integer Equivariant (IE) estimators
(Teunissen, 2002). These three classes are proper subsets
of one another, thence I � IA � IE, with the I- and IE-
class being the smallest and largest, respectively. Further
mathematical details are summarized and extensively dis-
cussed in Teunissen (2003b).
2.1. Review of Vectorial Integer Bootstrapping estimators

The Vectorial Integer Bootstrapping (VIB) method,
defined in Teunissen et al., 2021, hinges on a further
orthogonal decomposition of the second term in Eq. (2).
In fact, it is possible to define an arbitrary partitioning of
the initial vector a 2 Zn, i.e. a1 2 Zn1 ; a2 2 Zn2 , where all
ambiguity components are still involved, so n ¼ n1 þ n2.
It follows that

min
a2Zn

kâ� ak2Qââ
¼ min

a12Zn1 ;a22Zn2
kâ1ða2Þ � a1k2Q11j22

þ kâ2 � a2k2Q22

� �
ð3aÞ

� min
a12Zn1

kâ1ða2Þ � a1k2Q11j22

� �
þ min

a22Zn2
kâ2 � a2k2Q22

� �
ð3bÞ

for Q11j22 ¼ Q11 � Q12Q
�1
22 Q21 as Schur complement (Zhang,

2006) of block Q22 in Qââ. The latter follows from a con-
formable blocks’ partitioning, i.e. Q12 2 Rn1�n2 , such as

Qââ ¼
Q11 Q12

QT
12 Q22

� �
ð4Þ

with â1ða2Þ ¼ â1 � Q12Q
�1
22 ðâ2 � a2Þ here referring to the

float ambiguity subset 1 conditioned on 2. In the VIB
approach, the first term in parenthesis for Eq. (3a) is then
minimized only accounting for a1 2 Zn1 , thus assuming in
Eq. (3b) that a2 is given from the second minimization,
i.e. �a2 ¼ I 2ðâ2Þ for an admissible integer mapping
I 2 : R

n2 ! Zn2 .
The VIB solution is consequently suboptimal, and its

success rate depends upon the ambiguity parametrization,
as it does for its scalar counterpart (Teunissen, 1998). Still,
the integer search is now performed over two smaller sub-
sets rather than over a large domain, whose complexity
increases exponentially with the n dimensionality (Brack,
2019). A similar principle is, nonetheless, also known in
the scalar Integer Bootstrapping (IB) method, where the
number of blocks m is equal to n, so having
ni ¼ 1; 8i ¼ 1; . . . ;m. On the other hand, for m ¼ 1 we have
n1 ¼ n, and thence the overall ILS (optimal) solution is
computed.

It is important to observe that each block is always con-
ditioned on the previous ones, preferably going from the
most to the least precise subset. This conditioning should
not be neglected since it is a key aspect for improving the
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VIB success rate (Teunissen et al., 2021), and for the same
parametrization it can lead to a solution that is closer to
optimality than in the scalar IB case. In order to maximize
the robustness of the fixing within each subset, all blocks
are sequentially processed by means of an ILS estimator
as discussed in the following sections.
2.2. Cascade Ambiguity Resolution (CascAR) algorithm

The CascAR algorithm is based on a quite general
implementation of VIB estimators, and it allows having
an efficient characterization of each subset, since it requires

only a single LTDL-decomposition of the (float) ambiguity

vc-matrix. It follows as Qââ ¼ LT
âDâLâ, where

Lâ;Dâ 2 Rn�n are a lower unitriangular and a diagonal
matrix, respectively. This triangular decomposition has a
statistical interpretation, e.g. see Teunissen (1995), and it
leads to the desired sum-of-blocks structure discussed in
Section 2.1.

Given an arbitrary partitioning with m blocks, for
m 2 ½1; n�, we can write

kâ� ak2Qââ
¼

Xi¼m

i¼1

kâijJ � aik2QiijJ
; J ¼ fiþ 1; . . . ;mg ð5Þ

with the (conditioned) ambiguity subsets âijJ 2 Rni , for
n ¼ n1 þ . . .þ nm. Furthermore, we set âmjJ ¼ âm, being
the unconditioned block (i.e. firstly processed). In
Teunissen et al., 2021, a block-decomposition is shown to
define subsets, thus implying a certain selection for the par-
titioning, i.e. values ni. Nonetheless, in a very similar way,
the metric used in each sub-problem can be retrieved

directly as QiijJ ¼ LT
iiDiiLii, where a conformable (in size)

partitioning of Lâ;Dâ has been adopted. For the sake of
clarity, additional mathematical details are given in Appen-
dix A.

We can describe the CascAR algorithm (see Fig. 1) by
assuming that ambiguities are firstly decorrelated with the
LAMBDA software (Verhagen et al., 2012a) by means of
a Z-transformation, for Z 2 Zn�n (unimodular), such that

ẑ ¼ ZT â and Qẑẑ ¼ ZTQââZ. This ‘‘pre-processing” step
enhances the success rate for our VIB solution, improves
the integer search process, and it also assures that ambigu-
ity components are sorted based on their precision. The lat-
ter is an important element since it is convenient to firstly
fix very precise blocks (i.e. with a high success rate), so to
later condition the remaining ones on these more reliably
fixed blocks. In order to assure a full consistency with
LAMBDA routines, the most precise components are set
within the last block i ¼ m, which is where we start. We
then continue the cascade (conditioning) process to
i ¼ m� 1;m� 2; . . ., till we reach i ¼ 1.

The CascAR algorithm takes as inputs the triangular
decomposition for a decorrelated ambiguity vc-matrix,

i.e. Qẑ̂z ¼ LT
ẑ DẑLẑ, and a float vector ẑ relative to the full

set. Once the first partitioning has been defined by nm, we



Fig. 1. The CascAR algorithm is shown, where the initial ILS problem can be partitioned into m blocks, starting from ambiguity components that have
been previously decorrelated in LAMBDA.
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initialize the aforementioned inputs with ”*” and we divide
the problem in two subsets I and II.

Hence, we get ẑI 2 Rn
I and ẑII 2 Rn

II, where
nI ¼ n1 þ . . .þ nm�1 and nII ¼ nm. This second block (pre-
sumed to be more precise) is processed in order to obtain
an ILS solution �zII 2 Zn

II, later adopted to condition the
remaining ambiguities. We should observe that this condi-
tioning operation takes place directly by means of con-
formable blocks in the matrix Lẑ, so directly using
LQ 2 RnII�nI and LII 2 RnII�nII (see details in Appendix A).

At the end of this first iteration, the block I is re-
initialized with ‘‘*” and we re-iterate the process till
nII ¼ n1, while nI ¼ 0. During each i-th iteration, the

integer-fixed solution �zfig 2 Zni of the respective subset is
stored in a single (column) vector �zVIB, given as

�zVIB ¼

�zf1g

..

.

�zfig

..

.

�zfmg

2
66666664

3
77777775
2 Zn ð6Þ

that still represents an integer solution to the problem as
seen in Eq. (3b). The selection over number of blocks m

and their respective dimensionality ni is discussed in
Section 3.2.1.

2.3. TUG’s ‘‘blocked search” IAR method

When looking at vectorial approaches, there are several
examples available in literature as highlighted in Teunissen
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et al., 2021. Another possible approach that can be placed
within the family of VIB estimators is the so-called
‘‘blocked search” algorithm that has been firstly described
in Strasser et al. (2019). It shows quite some similarities
with the CascAR implementation, but with an alteration
of the cascade processing.

This method considers overlapping blocks, de facto re-
processing several components twice but as part of different
subsets. The driving motivation is that the optimal solution
for a certain ILS problem is unique, i.e. a definite n-
dimensional set of integer ambiguities, and therefore fixed
solutions for overlapping blocks should have the same inte-
ger components. If two adjacent blocks lead to different
integer values for their overlapping components, then the
integer search is performed over their joint subsets.

We should carefully consider that while this approach is
not formally defined from a mathematical point of view, it
still presents a quite interesting variation of the VIB
approach and is therefore considered in this investigation.
In Fig. 2 a schematic view of the TUG method is given
for a simplified case, as a matter of example, based on a
blocked partitioning of an ILS problem with n ¼ 400,
where each block involves 100 ambiguity components.

The TUG algorithm starts processing each 100-
dimensional block in a main cascade and overlapping
blocks (of same dimensionality) in a secondary one. When
all integer-fixed components in common sub-blocks (i.e.
here 50 ambiguities) are the same we obtain the respective
fixed solution (in green color) for that portion of the block.
When a different solution (in red color) is found between
this main and secondary cascade, then the search is per-
formed in the joint subset that contains 150 ambiguities.



Fig. 2. The TUG algorithm is shown based on decorrelated ambiguities. The overlapping subsets are fixed and used to conditioning the following ones.
See text for more details.

L. Massarweh et al. Advances in Space Research 68 (2021) 4303–4320
The solution of this larger integer search provides the 100
fixed components, including those 50 that differed origi-
nally, while the last 50 solution components are not yet
accepted. In fact, these last 50 components overlap with a
new block in the main cascade (i.e. from ẑ200 till ẑ101) that
has not been processed yet. Once this block has been pro-
cessed and the overlapping integer components match, we
continue the process; otherwise the same ‘‘expansion and
search” strategy is performed as before. Note that when
working with such larger subsets, then we condition the
successive ambiguities based on this new solution.

It is understandable that such an overlapping vectorial
approach leads to higher computational times, since most
components are processed twice. In addition to that, when
rejections occur, we also deal with larger ILS problems.
Increasing the dimensionality by 50% might lead (in some
cases) to higher computational times, depending on the ini-
tially chosen size. Hence, it is also important to somehow
limit the expansion strategy otherwise the entire process
could become jammed in an interminable integer search
process.
3. Processing strategy and scenarios selection

The experiments presented in this article are conducted
using the open-source software GROOPS (Mayer-Gürr
et al., 2021), which is developed and maintained at Graz
University of Technology. The source code of GROOPS
is available on GitHub (https://github.com/groops-devs/-
groops) together with documentation and an installation
guide. The software features GNSS processing capabilities
based on an implementation of the raw observation
approach (Strasser et al., 2019). It supports multi-GNSS
and multi-signal environments and is optimized for the
processing of large GNSS station networks. GROOPS
was used to process up to 800 stations and 75 GPS, GLO-
NASS and Galileo satellites per day for TUG’s contribu-
tion (Strasser and Mayer-Gurr, 2021) to IGS repro3, the
third reprocessing campaign of the International GNSS
Service (Johnston et al., 2017). GROOPS-based GNSS
products are thus going to be incorporated into the next
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version of the International Terrestrial Reference Frame
(i.e. ITRF2020).

The processing setup for the conducted experiments is
similar to that of repro3 and generally follows what is doc-
umented in Strasser et al. (2019). All processing is per-
formed in daily 24-h batches. The parameters estimated
per day are listed in Table 1. The seven ECOM2 solar radi-
ation pressure parameters are {D0;D2C;D2S ; Y 0;B0;B1C;
B1S} (cf. Arnold et al. (2015)). Strasser et al. (2019) pro-
vides more detailed information on the parametrizations
used for the different components, for example how the
ionospheric influence is separated from code biases and
clock errors. The estimated code and phase biases account
for satellite-specific and receiver-specific hardware biases
(e.g., Håkansson et al. (2017)). Combined satellite-and-
receiver-specific biases, for example as observed by
Hauschild et al. (2019), were not considered in the
processing.

The system of equations is firstly solved in an iterative
weighted batch least-squares adjustment. The ambiguities,
initially treated as float-valued together with other real-
valued parameters, are then decorrelated and fixed accord-
ing to the methodology in Section 2. The experiments are
limited to GPS and Galileo, either in a single- or dual-
GNSS processing. To keep the setup as simple as possible,
only observations with the RINEX 3 encoding C1C, C2W
(GPS) and C1C/C1X, C5Q/C5X (Galileo) are used, along
with their respective phase counterparts. The code and
phase observations are processed at a 30-s sampling period.
Satellite and receiver antenna calibrations are taken from
‘‘igsR3_2135.atx”, i.e. the repro3 ANTEX file described
in Villiger et al. (2020).

The station coordinates from a preliminary repro3 com-
bined solution (IGSR03SNX) are introduced here as
known, resulting in station-fixed solutions. This reduces
the number of unknown parameters, allowing a more
focused analysis of the impact of AR onto satellite prod-
ucts. In combination with the repro3 ANTEX file, it leads
to products that are aligned to the IGSR3 reference frame.
Any potential reference frame and antenna model differ-
ences affecting satellite orbit comparisons are taken into

https://github.com/groops-devs/groops
https://github.com/groops-devs/groops


Table 1
Estimated parameters per component and their a priori constraints (r).

Component Parametrization

Satellite orbits Initial state, 7 ECOM2 parameters, stochastic pulse at midday (r ¼ 0:1 lm=s per axis)
Satellite/receiver clocks Epoch-wise
Satellite/receiver code biases Constant per day, signal (e.g., C1C), and constellation
Satellite phase biases Constant per day, frequency, and constellation
Receiver phase biases Constant per day, signal (e.g., L1C), and constellation
Phase ambiguities Constant per continuous track and signal
Tropospheric zenith wet delay Degree-1 spline with 2-hourly nodes per station (r ¼ 5 m)
Tropospheric gradient delays Constant and trend per day and station in north and east directions (r ¼ 5 m)
Ionospheric influence Slant total electron content per satellite-receiver line of sight and epoch
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account in our analyses by means of a 7-parameter Helmert
transformation. For example, IGS Final/CODE MGEX
products used for evaluation are both aligned to the
IGb14 reference frame and are based on different satellite
antenna Z-offsets, which results in a difference in scale that
is accounted for by the transformation parameters. The
small global network adopted in the experiments is detailed
in Section 3.2. In case any of the stations are unavailable
on a specific day, they are replaced by nearby IGS stations
to keep the network geometry as stable as possible.

State-of-the-art force and principal models have been
applied in this processing, as described in Strasser et al.
(2019). These are summarized in Table 2, where we refer
to both dynamical accelerations for the satellite orbital
motion and corrections to the GNSS code and phase obser-
vations. Since these two elements refer to inertial and non-
inertial reference systems, the Earth orientation is intro-
duced here as known based on the IERS EOP 14 C04
(IAU2000A) time series, along with an additional model
covering the high-frequency effects (Desai and Sibois,
2016). An elevation-dependent stochastic model in the
form rðelÞ ¼ rz= sinðelÞ is applied to define the a priori
standard deviation of an observation based on its elevation
angle ‘‘el”, which is then used to weight the observations.
Following repro3 configurations of GPS and Galileo, the
Table 2
The list of a priori models considered for the dynamical accelerations of satell

Dynamical accelerations Model adop

Earth’s gravity field GOCO06s
Astronomical tides JPL DE432
Solid Earth tides IERS 2010
Ocean tides FES2014b
Pole and ocean pole tides IERS 2010
Atmospheric tides AOD1B RL
General relativity IERS 2010
Solar radiation pressure Box-wing
Earth radiation pressure Box-wing
Antenna thrust Narrow-bea

Observables corrections Model adop

Solid Earth tides IERS 2010
Ocean tides FES2014b
Pole and ocean pole tides IERS 2010
Atmospheric tides AOD1B RL
Tropospheric delay VMF3
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standard deviation at zenith rz for raw code and phase
observations is 22 cm and 1 mm, respectively.
3.1. Impact of ambiguity resolution with the network size

We start considering a global network of IGS stations,
comprised of 60 well-distributed ground-based receivers,
and a few sub-networks are selected starting from this lar-
gest one. The network and subsets are illustrated in Fig. 3,
with a number of stations M 2 ½10; 60�.

For seven consecutive days (DOY 298–304 in 2019) we
compute, on a daily basis, orbit and clock products consid-
ering GPS-only, Galileo-only and GPS+Galileo. Further-
more, in each configuration we compute both a float and
a fixed solution. The latter is found based on an integer
bootstrapping (IB) estimator and fixing for the most reli-
able subset (Verhagen et al., 2011) with a sufficient success
rate, e.g. 99.9%. With IB, each ambiguity component is
conditioned on the previous ones that are sequentially fixed
by simply rounding. This conditioning introduces informa-
tion that enhances the fixing success rate with respect to an
Integer Rounding (IR) estimator where a component-wise
rounding is performed. In this way, IB allows for a good
computational efficiency with respect to integer search-
ite orbital motion and corrections to GNSS code and phase observations.
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Fig. 3. Illustration of networks with different sizes between 10 and 60,
with ground-based station receivers well distributed around the globe.
Each smaller network is a subset of larger ones.
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based processes, even if it remains sub-optimal and largely
dependent upon the ambiguity parametrization.

The resulting satellite orbits are compared with refer-
ence orbits referring to IGS Final and CODE MGEX
(Prange et al., 2020) products for GPS and Galileo, respec-
tively. The overall 1D root mean square (RMS) of the orbit
differences is therefore computed for all GNSS satellites
involved in a certain scenario. The RMS values (in log-
scale) are shown in Fig. 4, where we observe some relevant
features. Each curve is related to a single daily solution
(seven in total), while increasing the network size. All these
global networks are subsets of larger ones, while we have
considered some different sizes, e.g. M ¼ ½10; 12; 14; 16;
18; 20; 25; 30; 40; 60�.
Fig. 4. The results for orbital (1D RMS) errors given for different GNSS con
based on a GPS+Galileo combined processing, rather than G-only or E-only.
shown, while the fixed/float ratio is given (in black) in the bottom plots. (For
referred to the web version of this article.)
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In the float solutions (blue), the underlying observa-
tional model strength increases with a larger network and
the overall RMS substantially decreases down to a 2–
3 cm level. This is visible for both constellations and each
configuration. In the fixed solutions (red), the overall
RMS decreases quickly, but it reaches a plateau with global
networks of around 25–30 stations. Adding more stations
only leads to very small improvements in terms of orbit dif-
ferences, as they ultimately become limited by the consis-
tency between our estimates and the reference orbits in
terms of force modeling and/or processing strategy (Sec-
tion 3). Nonetheless, for M ¼ 25, the satellite orbit differ-
ences (1D RMS) for GPS and Galileo fixed solutions are
at 1–2 cm level, whereas the respective float solutions are
at around 3–5 cm.

When focusing only on fixed solutions for small-size net-
works, i.e. M 6 20, we note that IAR benefits seem some-
how limited, probably due to a lower model strength of
such small networks. In fact, a crucial condition for
improving the accuracy of estimates (conditioned on the
fixed carrier-phase ambiguities) is related to the successful-
ness of the IAR process. After all, given stochastic inputs
to an integer estimator, also the outputs are expected to
manifest a certain stochastic nature (Teunissen, 1998) and
the least precise components might not be correctly fixed
to their integer values. These wrong fixes might deteriorate
our solution (e.g. jumps), while it is visible that for M > 20
we can (generally) already reach the 1–2 cm level in terms
of orbit difference (1D RMS).
figurations over 7 consecutive days. The notation (G+E) refers to results
Both ambiguity-float (in blue) and ambiguity-fixed (in red) solutions are
interpretation of the references to color in this figure legend, the reader is
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It is also interesting to compare the single- and dual-
constellation processing. In fact, for the GPS+Galileo case,
our fixed solutions (based on the same network) are show-
ing slightly larger RMS values than for the respective GPS-
only or Galileo-only scenario. The model inconsistencies
between the two constellations might be compensated by
real-valued ambiguities that are estimated (float solution),
whereas they become more visible when applying the inte-
ger constraints (fixed solution). Moreover, in this dual-
GNSS case, we are considering (integer-estimable) ambigu-
ities mixed from both GPS and Galileo constellations,
therefore processed as one full set. In this way, a
between-constellation correlation is introduced. It seems
interesting to further investigate such a GPS+Galileo sce-
nario within small networks, e.g. looking at M ¼ 14,
whereas still thousands of ambiguities are involved.
3.2. Small-size network and configurations

We consider a small global network with 14 stations,
and assuming a 5� elevation mask we obtain a visibility
of 3 to 7 ground stations. For example, assuming a GPS
satellite altitude, in Fig. 5 the number of ground-based sta-
tions visible at any point is illustrated by the depth-of-
coverage (Blomenhofer et al., 2005). With Galileo satellites’
higher altitude, and given the same elevation mask, station
visibility is slightly increased. Hence, the depth-of-coverage
is not exactly the same, nonetheless the patterns illustrated
within Fig. 5 are found to be very similar.

In all our analyses, we consider a total of around 30
GPS and 24 Galileo satellites. This number can however
change if certain satellites are not available on specific
days. In general, for such a dual-frequency processing
(and specified number of satellites/stations), we can find
an ambiguity dimensionality of n � 830, 1290 and 2120
for Galileo-only, GPS-only and GPS+Galileo, respec-
tively. Hence, with only 14 stations, we are already dealing
Fig. 5. The depth-of-coverage is given for GPS satellite altitude and 5� elevatio
ground-based stations.
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with quite large dimensionalities and with more Galileo
satellites having been deployed in 2020, this dimensionality
might further increase.

In some very rare cases, some stations are replaced since
they are not available on specific days in the 3-month per-
iod considered for our validation, here DOY 244 till 334 in
2019. In that case, the station is replaced by a different
close-by IGS station. As a matter of example, SGOC is
replaced by DGAR on DOY 263, and KRGG by PERT
on DOY 322.
3.2.1. Block size selection for partitioning

The selection of suitable block sizes for the partitioning
follows a balanced trade-off between the computational
complexity, i.e. the efficiency aspect, and the reliability of
fixed solutions, i.e. the robustness aspect. In this research
work we consider a fixed block size q for all subsets, and
in both VIB implementations we adopt q ¼ 200, while in
the Section 2.3 an example was given based on q ¼ 100.
The former value is found to be suitable for solving a
GPS+Galileo HDAR problem (i.e. n > 2000) within a
few tenths of a second in most of the experiments. Given
that generally q is not a perfect divisor of n, we first process
a (most precise) block with nm components where
nm ¼ n� q � bn=qc with b�c as the floor function. It follows
that the other ambiguity blocks are given by ni ¼ q, for
i ¼ m� 1; . . . ; 1 and the number of blocks is simply found
as m ¼ 1þ bn=qc.

It should be remarked that for very small block sizes,
e.g. q � 100, the integer search process is almost instanta-
neous, but we also have many more conditioning opera-
tions to perform. The latter might contribute to increase
the overall computational effort since it involves additional
matrix operations. The cost of such matrix operations, as
well as for the integer search in each block, depends upon
the computational capabilities and/or hardware of the plat-
form in use, but is not numerically discussed in this work.
n mask in this small global network, which consists of 14 well-distributed
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Nonetheless, by using larger blocks we can obtain more
reliable solutions, since closer to the optimality given by
an ILS solution. Still, it is important to avoid ending up
into computational bottlenecks due to the exponential
growth of number of candidates spanned in the search tree
for too large subsets.

4. ODTS results and comparison

In this section we focus on the small global network
described in Section 3.2. Here, the different IAR strategies
are compared and their beneficial impact onto satellite
products is evaluated. When comparing the fixed results,
we will refer to the integer bootstrapping estimator as
‘IB’, while ‘CascAR’ and ‘TUG’ are the two algorithms
presented in Section 2.2 and Section 2.3, respectively. For
the sake of convenience, we might refer to ‘VIB’ when
results from CascAR and TUG are identical, for example
in comparison with the (scalar) IB.

4.1. Results for Galileo-only

We start with the Galileo-only processing, where up to
850 ambiguities need to be fixed for each day. In this sce-
nario, over the same testing week (DOY 298-304 in 2019)
used in Fig. 4, we would be able to actually compute an
ILS solution in less than a few seconds. The latter is possi-
ble due to the Z-transformation on ambiguity components,
which improves the overall search time. Moreover, this
decorrelation also makes quasi-optimal both the IB and
VIB-based solutions, so leading here to the same integer
solution as ILS. The latter is thus compared with respect
to the float one.

The results are shown in Fig. 6, where the float and
(ILS) fixed solutions are shown in black and magenta col-
ors, respectively. For these seven days, the overall RMS of
the entire constellation is computed epoch-wise. Looking at
the radial component we see that a fixed solution allows
RMS values below 3 cm for a large part of the day, whereas
the float solution can exceed several centimeters. For the
along-/cross-track components, large improvements are
Fig. 6. The comparison for seven days of the epoch-wise RMS error over
the entire constellation, divided into radial/along/cross orbital compo-
nents and satellite clock error.
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found and the overall RMS of fixed solutions are generally
within a few centimeters. For what concerns the satellite
clock component, smaller RMS errors are noted, but, as
for the radial direction, the improvements are less
pronounced.

These results are in agreement with the results of Li et al.
(2019) and Laurichesse et al. (2013), since the ambiguity
resolution in ODTS does not constrain much the radial
direction due to its correlation with the clock error bias.
Consequently, the largest improvements are generally
found in the along-/cross-track error components. With
respect to the float solution, the 1-week mean RMS value
in the ILS solution is around 47% smaller for both radial
and clock components. For what concerns the along- and
cross-track components, the RMS value is 72% and 74%
smaller, respectively.

For the sake of completeness, we might very briefly look
at the error distribution, here based on all Galileo satellites
over this 7-day analysis. In Fig. 7, the distribution is shown
with four histograms (1 cm bins) for each component,
while considering both a float and a fixed solution. It is vis-
ible that in the fixed case, most of the errors are bounded
within 3 cm, although the largest improvements mainly
concern along and cross components.
4.2. Results for GPS-only

When considering the GPS-only process, we deal with a
higher dimensionality due to more satellites available at
that time. Moreover, large computations for an ILS solu-
tion make this optimal solution unfeasible, possibly also
due to the poorer stochastic model that affects the precision
of float ambiguity estimates (Amiri-Simkooei et al., 2016).
Several elements might concur in the uncertainty of observ-
ables, as investigated in (Hou et al., 2021), such as the
robustness of different signals tracking scheme or the recei-
ver model in use. Still, such features have not been further
investigated in the scope of this work.

In order to enable fixed solutions within seconds (or
less), we consider a quite reliable (and very efficient) IB
Fig. 7. The error distribution is shown for all Galileo satellites considering
DOY 298 till 304 in 2019. The results are overlapped for a float and a
(ILS) fixed solution, separating each component.



Fig. 8. The epoch-wise RMS of orbital components is shown for the fixed
solutions with respect to float (dashed lines). A total of 7 days (DOY 298–
304 in 2019) is used in this GPS-only processing.

L. Massarweh et al. Advances in Space Research 68 (2021) 4303–4320
solution, as well as the TUG and CascAR algorithms. All
three solutions can largely benefit from the decorrelating Z-
transformation that has been previously applied with
LAMBDA. In this second scenario, the fixed solutions
found with IB, TUG and CascAR are now different, and
differ in terms of satellite orbit and clock estimates. Here,
we focus our analysis mostly on the orbits, with Fig. 8
showing the epoch-wise overall RMS values per orbital
component.

In almost all cases, both VIB-based solutions lead to
same results, meanwhile the IB solution shows some larger
errors in particular for DOY 300-302. In fact, RMS values
might even largely exceed the ones for the respective float
solution, as a possible consequence of wrong fixes. A differ-
ent scale has been used for the radial component, where
errors are within a few centimeters. It is interesting to
observe, as expected, that the VIB-based results are gener-
ally equal to or better than the scalar IB ones (Teunissen
et al., 2021).

A more detailed analysis shows that in most cases those
larger errors are related to a one or two satellites, for exam-
ple on DOY 302, but on some other days might be affecting
Fig. 9. The orbital errors over 24 h (DOY 300) for different solutions,
considering GPS-only and highlighting (with colors) certain satellites
where fixed-solution errors are quite large. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)
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more satellites, e.g. on DOY 300. This last case is shown in
Fig. 9, where specific GPS satellites presenting large orbital
errors have been highlighted in color (same in all solu-
tions). The remaining ones are still shown in grey dashed
lines, but are generally bounded within 5 cm.

A clear improvement is observed with respect to the
float solution, nonetheless, the IB solution leads for many
satellites to large orbital errors, up to 15 cm in the radial
component and several decimeters for the along-track. In
the VIB-based solutions we get large errors only in the case
of a single satellite (PRN16), most likely due to a wrong fix.
These issues of specific satellites cause the noticeably
increasing RMS, particularly in the along-track compo-
nent, towards the end of a day, as visible for most days
in Fig. 8. In most cases, the underlying issue is short obser-
vation arcs caused by the cut-off at day boundaries which
lead to ambiguities that are not well determined and can
cause issues in ambiguity resolution. Due to the GPS
ground-track repeat period of 1 sidereal day, this effect is
very similar for the 7 days shown in Fig. 8. However, this
is coincidental and a slowly changing observation geometry
leads to this effect being less pronounced for other parts in
the 91-day period.

Still, it is visible (as also for other testing days) that VIB
solutions generally offer more reliable fixes without much
impacting the computational effort, later discussed in Sec-
tion 4.4. For instance, HDAR solutions of such a dimen-
sionality (n�1300) can be often found within hundredths
of a second for standard desktop processors, e.g. Intel i7-
4790 @3.6 GHz. As a matter of example, in Fig. 10 we
show the RMS values (over these 24 h on DOY 300) for
all GPS satellites based on the four solutions previously
discussed. The CascAR and TUG solutions are identical
on this day, as is the case on almost all days of this sce-
nario. With respect to the float solution, the R/A/C com-
ponents are improved here by around 31/42/71% and
52/67/77% for the IB and both VIB solutions, respectively.
As already seen for the Galileo-only ODTS results, larger
benefits of fixed solutions are mostly observed in the
along-/cross-track components.
Fig. 10. The overall RMS error is shown relative to a 24-h period, i.e.
DOY 300 in 2019. For each orbital component, we consider the float
(black) and three fixed solutions.
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4.3. Results for GPS+Galileo

At this point we can focus our investigation on the GPS
+Galileo processing scenario. This is also the most interest-
ing one, due to a larger ambiguity dimensionality involved,
where in general for our small network we always have
n > 2000. For a more extensive analysis of this HDAR
problem, we consider a 3-month period in 2019, starting
from DOY 244 till 334, both days included. We examine
the solutions for these 91 days, so processing GPS+Galileo
on a daily basis as described in Section 3.

Firstly, we start considering the RMS errors over all days
while referring to each satellite for GPS and Galileo, and
each orbital component. These RMS values are then
divided with the ones relative to a float solution (dashed
line), and ratios are provided, as percentages, in Fig. 11.
Smaller % values imply larger improvements with respect
to the float solution, which is often the case. For GPS satel-
lites, the mean improvement in terms of R/A/C orbital com-
ponents is approximatively 28/44/56% and 33/50/63% for
the IB and the VIB-based solutions, respectively. For Gali-
leo satellites, this is approximatively 30/56/62% for the IB,
while 32/60/64% again for both TUG and CascAR solu-
tions. These two VIB solutions show a high consistency in
the results, but not always the exact same solutions.

At this point we can consider in Fig. 12 the results in
terms of overall orbital errors (1D RMS) for GPS (left
plot) and Galileo (right plot). For each day we compute
values over all satellites (and components) of each constel-
lation. By comparing the fixed solutions for Galileo, we see
that they are usually quite similar, with the exception of
specific days where the (scalar) IB solution shows much lar-
ger errors with respect to TUG or CascAR. This is for
instance visible on DOY 268 where the 1D RMS value
exceeds 12 cm. In these Galileo results, a slight discrepancy
is also visible for the TUG and CascAR solutions, specifi-
cally on DOY 294, which is discussed in more details later
in Section 4.4.
Fig. 11. The results for all GPS and Galileo satellites are given in terms of
RMS ratio w.r.t. float solution for each orbital component over the 3-
month period considered (DOY 244-334 in 2019).
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When looking at the GPS results, similarly to what was
seen in Section 4.2, we observe several 1D RMS differences,
and on several days we have high values for the IB. This is
again most likely due to wrong fixes, which deteriorates the
performance of the ODTS process in this small global net-
work estimation. With respect to the Galileo results, float
values are generally found at around 5 to 7 cm, whereas
we have observed some much higher peaks in Galileo dur-
ing the first four weeks, i.e. in September 2019. Neverthe-
less, this particular behavior has not been further
investigated in the context of this research work.

Before proceeding with the validation of these GPS
+Galileo results, we might firstly consider a small compar-
ison between the two VIB methods.

4.4. Comparison between TUG and CascAR solutions

The high consistency shown between VIB-based solu-
tions is mostly due to the similarity of the two algorithms,
although in the TUG ‘‘blocked search” approach addi-
tional checks are performed on the integer solution by
looking at overlapping blocks (see Section 2.3). If the solu-
tions are always consistent in each overlap, then both TUG
and CascAR are basically equivalent, i.e. return the same
integer solution. This is the case for most of the days tested
here, however, not always. By a detailed comparison in
Fig. 12, only in a few occasions the two VIB-based results
are quite different. For DOY 294 we clearly see CascAR
being suboptimal to both IB and TUG. In Fig. 13, we pre-
sent the orbital errors (as 3D scalar displacement) for all 54
satellites over the 24 h on DOY 294. It is visible that in the
CascAR solution, some wrong fixes occur and results are
largely affected, with errors exceeding some decimeters. It
should be mentioned that such large errors are not only
affecting Galileo, but GPS as well, and in general only lim-
ited to very specific days.

At this point we might wonder whether such robustness
of the TUG algorithm comes at a higher computational
cost, thence on a much lower efficiency. As mentioned,
the VIB-based approaches allow for high flexibility in the
design of most effective algorithms, but this also depends
on the specific application, the considered scenarios and/
or available computational capabilities. Hence, the daily
computational time is very briefly compared for the differ-
ent IAR methods considered in this numerical experiment.

The IB solution is generally computed in a few millisec-
onds and it is only dependent upon the ambiguity problem
dimensionality, which was quite constant over this 3-
month period. For instance, in the GPS+Galileo process-
ing we have always between 2050 and 2250 ambiguity com-
ponents. In Fig. 14, we show the computation times for the
two VIB-based solutions, based on an average over 100
runs. It is visible that both VIB-based solutions are compu-
tationally more expensive than IB, but they seem to pro-
vide a more reliable solution as shown in the previous
section, and further validated in Section 5. Still, for most
of the cases, a HDAR solution (i.e. n > 2000) can be found



Fig. 12. GPS+Galileo results in daily 1D RMS values over each constellation. The float solution is shown, along with three fixed ones: IB, TUG and
CascAR.

Fig. 13. A detailed example for DOY 294 (in 2019) concerning the epoch-
wise orbital errors of all satellites processed (different curves) with TUG
and CascAR ambiguity resolution methods.

Fig. 14. The computational time (log-scale), averaged over 100 runs, is
given for the TUG and the CascAR algorithms with respect to the GPS
+Galileo HDAR problem (n > 2000).
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within a few tenths of a second, e.g. here based on the Intel
Core i7-4790 @3.6 GHz central processor.

For what concerns the TUG algorithm, the computa-
tional time is indeed higher due to the overlapping strategy
mentioned in Section 2.3. In only one case, on DOY 255,
the search time is larger for the CascAR approach, while
it only exceeds 0.6 s once, i.e. 	20 s on DOY 294. The
91-day averaged ratio of CascAR over TUG computa-
tional time is 47.8%, therefore being twice as efficient as
the TUG algorithm. The much-increased search times
observed on some days for the TUG method is caused by
the expansion to larger block sizes in case the overlapping
of fixed ambiguity components does not match. In fact, in
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many occasions we see that for the TUG approach it takes
more than 0.6 s to compute an integer solution to the
HDAR problem.

Finally, we should not forget that these examples of VIB
algorithms are only two possible implementations, leaving
further more advanced strategies still to be investigated. A
few suggestions will be given in Section 5.2. We can now
continue to focus on a validation of results for the GPS
+Galileo scenario.
5. Validation and discussion

We can now present a further analysis of the results,
where a different metric is adopted. In fact, as mentioned,
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the adoption of external products as ’ground truth’ for the
evaluation of orbit and clock errors has some limitations in
terms of consistency. Given that we have processed net-
work data on a daily basis, we might instead consider the
orbital discontinuity at midnights. This evaluation strategy
is independent from external sources and quantifies jumps
in satellite orbits between consecutive days.
5.1. Analysis of orbital discontinuity at midnight

The GPS+Galileo scenario is considered, and for each
satellite we compute the 1D RMS of orbital discontinuities
at the midnight between two consecutive days. For the float
solution we have always larger discontinuities, almost
always exceeding 10 cm and it is therefore not illustrated
here. Furthermore, TUG and CascAR solutions are
matching basically in most of the results, except for 1–
2 days. This difference has been already discussed in Sec-
tion 4.4, so for this analysis we focus on IB versus VIB,
the latter referring to the TUG solution. These results (over
the 3-month period) are provided in Fig. 15 based on a
color scale between 0 and 10 cm, while separating the satel-
lite groups for each constellation.

In the IB case, we see that many days present much lar-
ger values with respect to the vectorial counterpart. The
VIB solution is sometimes exceeding the dm-level only
for a few satellites, i.e. E14/E18 for Galileo and G05/
G16/G26 for GPS. In the former case it should be noted
that those two satellites are the ones placed into slightly
Fig. 15. The satellite orbit discontinuity errors at midnight are shown for GP
solutions are considered, as described in the text.
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elliptical orbits, making it more challenging to properly
model their orbit and attitude.

The most notable differences between IB and VIB
clearly fully affect either one or both GNSS constellations,
so we can examine the range of discontinuity values for
both constellations. For each midnight epoch we compute
a box plot over each system and results are shown in
Fig. 16 for the three methods: the float solution, along with
the fixed IB and VIB ones. A box plot visualizes the median
value as a red line within a blue box that defines the
interquartile range, i.e. the difference between 75th and
25th percentiles. The full range is given by grey whiskers,
excluding outliers that are marked as red dots.

Many days show only small improvements when com-
paring IB to VIB, but on some days the discontinuities
are much smaller in case of VIB-fixed solutions. However,
improvements with respect to the float case are always evi-
dent. It is interesting to observe that for the (scalar) IB esti-
mator we have, on specific days, errors exceeding the float
ones. Once again, a wrong fixing can lead to an inconsis-
tent satellite orbit, and this can impact the discontinuity
values at the boundary/ies of that particular day. In this
circumstance, many satellites might be affected and fixed
results are visibly worse than the float solution.

At this point, for the sake of completeness, we define an
overall empirical cumulative distribution of these orbit
midnight discontinuity errors for each solution. Also in this
case, both VIB-based solutions are represented by a single
curve since no (visible) differences were found. In Fig. 17
we see that in terms of orbit midnight discontinuity errors,
S+Galileo processing over a 3-month period in 2019. Both IB and VIB



Fig. 16. The box plot results for midnight discontinuities of GPS and Galileo considering three methods based on a float solution, then a scalar (IB) and a
vectorial (VIB) integer bootstrapping.
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over the 91 days, the float solution has quite large errors,
and in 50% of the cases those values exceed 8 cm. For
the fixed solutions we have around 3 cm, with a negligible
difference between the two methods. At 95% probability,
float-solution errors are around 18.3 cm, roughly twice
the respective value of the fixed solutions. This also con-
firms how substantial improvements can be achieved by
robust (and ideally efficient) ambiguity resolution schemes
in the estimation of satellite orbits and clocks, even when
using a small global network.

We need to remark that such a good result is possible
also thanks to the LAMBDA decorrelation of ambiguities.
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In fact, this can substantially improve the optimality of
integer bootstrapping approaches. Still, the VIB solutions
further improve the results with respect to the scalar IB,
thus reducing the discontinuity errors from 10 to 8 cm
(at 95% probability). As mentioned in Section 4.4, these
more reliable solutions are possible without too much com-
promising the computational efficiency of the IAR process.
Lastly, it should be remarked that enhancements at the
decorrelation step might further benefit the here presented
VIB formulations, where an example of comparison among
different ‘‘reduction” methods can be found in Jazaeri et al.
(2014).



Fig. 17. Empirical cumulative distribution for midnight discontinuity
errors relative to the different solutions and all satellites processed over the
3-month period (DOY 244–334 in 2019). The error values at 95%
probability are marked with circles.
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5.2. Limitations and further possibilities

When adopting VIB, it is important not to generalize
properties of a certain estimator to the entire ambiguity
set. For example, the optimality of ILS within each block
does not hold for the full set where VIB solutions are indeed
suboptimal with respect to an ILS solution over the full n-
dimensional set. The use of larger ambiguity blocks can lead
to higher robustness performance, but sometimes at a very
high cost for the efficiency. With the VIB approaches, here
focused on a small global network, the daily fixed solutions
can still be computed in less than a second and generally
lead to smaller errors. On some days, these errors might
exceed a few decimeters when making use of the (still con-
venient) integer bootstrapping estimator.

The VIB formulation shall not be restricted to the use (in
each subset) of I-estimators, e.g. ILS, but it can benefit from
more advanced schemes (Teunissen et al., 2021). Hence, by
the use of a vectorial formulation, it is possible to combine
different types and/or classes of estimators in this vectorial
approach. As mentioned, a proper selection of the parti-
tioning strategy can depend upon computational resources
available, along with applications and latencies that users
would like to be addressed by the IAR process.

For instance, adoption of integer validation tests (i.e. a
data-driven approach) is possible and it might further pre-
vent the wrong fixing of some ambiguity subsets. In addi-
tion to that, more efficient estimators, for example
rounding or bootstrapping, might be used only in the more
precise ambiguity subsets, while adopting ILS in the
remaining ones. Another notable example of VIB-like
strategies is given by the Sequential Best Integer Equivari-
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ant (SBIE) approach, described in Brack et al. (2013),
which enables a more efficient adoption of BIE-related
solutions. Still, in their work, this was limited to a scalar
case, therefore not taking full advantage from the vectorial
formulation analyzed in this research contribution.

6. Conclusions

The high complexity involved in the search for an opti-
mal integer least-squares solution to high-dimensional
ambiguity resolution (HDAR) problems is still a challenge.
In order to find a trade-off between robustness and effi-
ciency of a certain IAR process, in this work we present
two implementations of a vectorial integer bootstrapping
(VIB) estimator. Based on the VIB principle, introduced
in Teunissen et al., 2021, it is possible to design more flexible
IAR algorithms. This allows finding an effective solution to
a given HDAR problem, thus balancing available computa-
tional resources and reliability of the fixed solutions.

The two algorithms are CascAR, as a straightforward
implementation of VIB, and the ‘‘blocked search” method
developed at Graz University of Technology. In both cases,
we take advantage of the same initial triangular decompo-
sition, along with LAMBDA Z-transformation to decorre-
late the ambiguity components. These two VIB-based
solutions are therefore compared with respect to their sca-
lar counterpart, i.e. Integer Bootstrapping (IB) estimator,
and investigated in the context of Orbit Determination
and Time Synchronization (ODTS). This is performed
based on TUG’s open-source software GROOPS.

Firstly, we consider for different network sizes, between
10 and 60 stations, the 1D RMS orbital errors relative to
GPS-only, Galileo-only and GPS+Galileo scenarios. In
all cases, we adopt a 24-h batch processing and 30-s sam-
pling period for dual-frequency code and phase observa-
tions. The float and IB fixed solutions are considered, the
latter showing a plateau at 1–2 cm, reached with 25 or
more well-distributed stations. When looking at smaller
networks the improvements over the float solutions are sig-
nificant, but in several occasions wrong fixes might lead to
quite large orbital errors. Hence, we focus our investigation
on a small global network, i.e. 14 stations, where the three
IAR strategies are evaluated and compared.

In the Galileo-only case, all fixed solutions seem to be
optimal over the entire set and lead to large improvements
over the float results, both evaluated with respect to the
CODE MGEX products. On several days, the mean
RMS (radial and clock) for a fixed solution can be around
50% smaller than the float one, and more than 70% for
both along-and cross-track error components. These last
two are in fact generally more affected by IAR, in agree-
ment with literature. In the GPS-only case, with respect
to IGS Final products, more visible differences are found
among fixed solutions, where orbital errors in the radial/
along/cross component can be improved (e.g. on DOY
300) by 31/42/71% and 52/67/77% for IB and VIB solu-
tions, respectively.
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The most interesting scenario considered is the GPS
+Galileo processing, where more than 2000 ambiguities
are fixed per day. This HDAR problem is not trivial, espe-
cially when looking for a computationally cheap and reliable
fixed solution. BothGPS andGalileo are processed together,
so an inter-system correlation of carrier-phase ambiguities
might be introduced. The scenario is numerically assessed
on a daily basis over a 3-month period (DOY 244 till DOY
334 in 2019), and then analyzed separately for each constel-
lation. In some days, the IB solution showsmuch larger orbi-
tal errors (in terms of RMS over each single constellation),
which can exceed several centimeters.

The validation of the GPS+Galileo results is performed
by an intrinsic quality check, thus not relying on external
orbital information. We look at the orbit discontinuity
errors at midnights over the 3-month period. For multiple
days, the discontinuities based on an IB solution are quite
large, whereas VIB-based methods provide better results.
The two different VIB approaches present quite similar per-
formances over all tests, as expected; nonetheless the TUG
solution further improves the results on a few occasions.
This comes at a higher computational cost, shown for each
day over the testing period. Still, in most of the cases, this
HDAR problem can be robustly solved within fractions of
a second, while providing substantial benefit to the ODTS
estimates. By means of VIB fixed solutions, with a global
network of 14 stations, it is possible to compute orbits
within a few centimeters error.

The vectorial formulation shows to be a suitable candi-
date, due to its flexibility, in the design of more effective
IAR algorithms, in particular for HDAR problems. It
enables a trade-off between efficiency and robustness, based
on a very easy-to-implement strategy that has been exten-
sively described in this work. Although referring here to
the case of small global network estimation, its applicabil-
ity extends over any mixed-integer GNSS model, and shall
not be restricted to the network case. Additional works,
also involving other classes of estimators or different strate-
gies, shall be conducted to further exploit the VIB theory.

Data Availability
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are provided by the International Earth Rotation and Ref-
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Appendix A

The implementation of a generic VIB estimator can ben-
efit from a conformed partitioning of the triangular decom-

position for the ambiguity vc-matrix, i.e. ~Q ’ ~LT ~D~L. Based
on Eq. (4), we can consider ~L 2 Rn�n (lower unitriangular)

and ~D 2 Rn�n (diagonal), such as

~L ¼
~L11 0
~LQ

~L22

" #
; ~D ¼

~D1 0

0 ~D2

" #
ðA:1Þ

and for k ¼ 1; 2, we have that ~Lkk 2 Rnk�nk is lower unitrian-

gular, ~Dkk 2 Rnk�nk is diagonal, while ~LQ 2 Rn2�n1 is a rect-
angular block matrix. The latter one represents the
correlation between the two subsets, therefore involved in
the conditioning, i.e. here {2}!{1}.

It is straightforward to prove that each block of the vc-

matrix ~Q is retrieved from

~Q ¼def
~Q11

~Q12

~Q21
~Q22

" #
¼

~LT
11
~D1

~L11 þ ~LT
Q
~D2

~LQ
~LT
Q
~D2

~L22

~LT
22
~D2

~LQ
~LT
22
~D2

~L22

" #

ðA:2Þ
while the first ambiguity block, conditioned on the second

one, is described by ~Q11j22 as follows

~Q11j22 ¼ ~Q11 � ~Q12
~Q�1
22
~Q21

¼ ~Q11 � ð~LT
Q
~D2

~L22Þð~L�1
22
~D�1
2
~L�T
22 Þð~LT

22
~D2

~LQÞ
¼ ~LT

11
~D1

~L11

ðA:3Þ

that represents its unique LTDL-decomposition due to the

form of matrices ~L11 and ~D1. These mathematical relation-
ships also enable a straightforward computation of the
conditioning for the float ambiguity subset {1}, given
âk 2 Rnk for k ¼ 1; 2. Hence, we can write

https://www.igs.org/data-products-overview
https://www.igs.org/data-products-overview
https://www.iers.org
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â1j2 ¼ â1 � ~Q12
~Q�1
22 � ðâ2 � �a2Þ

¼ â1 � ð~LT
Q
~D2

~L22Þð~L�1
22
~D�1
2
~L�T
22 Þ � ðâ2 � �a2Þ

¼ â1 � ~LT
Q
~L�T
22 � ðâ2 � �a2Þ

ðA:4Þ

with all matrix blocks already available from Eq. (A.1). In
this case, for example, we have that �a2 ¼ I 2ðâ2Þ, where I 2

can be any integer mapping function taken from the class
of


 I-estimators (Teunissen, 1999), which always return
�a2 2 Zn2 (integer-valued);


 IE-estimators (Teunissen, 2002), which always return
�a2 2 Rn2 (real-valued);


 IA-estimators (Teunissen, 2003a), which either return an
integer- or a real-valued ambiguity vector, depending
upon the result of the integer validation test.

With Eq. (A.3), we observe that the metric for the block
{1}, being conditioned on {2}, is already ‘extracted’ from
the same initial triangular decomposition. Furthermore, a
selection of nk values was arbitrary, and by setting
~L � ~L11; ~D � ~D1, we can further partition the sub-
problem, thus equivalently obtaining an arbitrary number
m 2 ½1; n� of subsets. Each one can have an arbitrary
dimensionality, as long as their sum is equal to n.

We should remark that such a partitioning strategy
holds also if looking at a reversed conditioning, therefore
f1g ! f2g ! . . . ! fmg. In this case we would need to
consider a different decomposition, e.g. see De Jonge and

Tiberius (1996), so having ~Q ¼ ~L~D~LT , where ~L and ~D are
once again a lower unitriangular and a diagonal matrix,
respectively.
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