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ABSTRACT 
With the shift from traditionally manufactured rigid-body 

mechanisms to lightweight compliant mechanisms (CMs) in 

additive manufacturing, researchers have become interested in 

modeling the behavior of  CMs with high flexibility. Due to the 

large deformations that can be achieved, the use of CMs has 

expanded into applications such as energy absorption, and in the 

case of cellular contact-aided compliant mechanisms (C3Ms), 

stress-relief through self-contact. Although CMs provide greater 

design freedom in terms of geometry, size, and functionality than 

their rigid-link mechanism counterparts, there are notable 

challenges in modeling their complexity. This complexity arises 

not only from the nonuniform geometry of CMs, but also from 

variable material properties such as effective modulus. Current 

research in this area has been primarily limited to the study of 

linear elastic materials. Thus, there is a need to develop a model 

that describes CMs with nonlinear material behavior.   

The focus of this work is on a low-fidelity model using 

nonlinear, superelastic materials. In order to account for both 

geometric nonlinearity and superelasticity, the use of a new 

pseudo-rigid body model is proposed. The model incorporates 

the mechanics of shape memory alloy (SMA) behavior in a 

folding C3M design. The combined application of pseudo-rigid 

body modeling and SMAs allows for the prediction of large 

recoverable deformations through superelasticity. In previous 

work, a segmented pseudo-rigid body model was used to account 

for the nonlinear behavior of a folding C3M.  A mathematical 

model of the superelastic SMA material is derived based on 2D 

beam flexure equations. The development of these equations 

allows for an analysis of the deflection under an applied force. 

As a part of this study, the results of the SMA model will be 

compared to high-fidelity finite element simulations as a judge 

of the accuracy of the analytical model. 

Keywords: Cellular contact-aided compliant mechanism, Shape 

memory alloys, superelasticity 

NOMENCLATURE 
σ stress, MPa 

ε strain, m/m 

EA  austenite modulus, GPa 

S modulus during phase transformation, GPa 

EM martensite modulus, GPa 

σMs martensite start stress, MPa 

σMf  martensite finish stress, MPa 

εl maximum residual strain, m/m 

x,y,z  coordinates, m 

x1, x2 phase transition points in x-direction, m 

ytr,1, ytr,2 phase transition points in y-direction, m 

a depth of beam into page in z-direction, m 

b half-thickness of beam, m 

L length of undeformed beam, m 

l projected length of deformed beam, m 

s arc length of deformed beam, m 

F  applied force at tip, N 

M  internal moment in beam, N·m 

κ curvature along beam, m-1

θ angle of deflection of beam, degrees 

δx, δy deflection at the tip of beam in x and y, m 

i, j  indices for beam and arc discretization 

α, β  interior angles of arc model, degrees 

γ angle of rotation for segmented arc, degrees 

ζ angle of rotation for deformed arc, degrees 
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T(xj,yj) tip positions of segmented arc model, m 

R radius of arc model, m 

Ls length of each segment in arc model, m 

MSE mean-squared error 

n number of segments 

N sample size of tip forces for arc model 

1. INTRODUCTION
Recent technological advancements in additive 

manufacturing, smart materials, and cellular structures have 

paved the way for innovative designs of structures in terms of 

shape and functionality. Trends to shift from traditionally 

manufactured rigid-body mechanisms to the use of additive 

manufacturing for fabricating lightweight compliant 

mechanisms (CMs) have raised interest in modeling the 

nonlinear behavior of CMs. CMs are defined as flexible 

structures that transmit energy, force and motion through elastic 

deformation. Many applications can benefit from the availability 

of large deformations in CMs including energy absorption, path 

generation and shape change. 

A special class of mechanisms are contact-aided compliant 

mechanisms that rely on incorporated contact surface(s) for non-

smooth path generation or tailoring nonlinear structural stiffness 

[1–3].  Previous research includes metamaterial-like arrays of 

contact-aided compliant mechanisms called cellular contact-

aided compliant mechanisms (C3Ms).  The benefits of C3Ms 

show potential in applications for stress relief [4–6] and energy 

absorption [7-9].  As C3Ms rely on high compliance for their 

functionality, combining their geometry with superelastic 

material behavior (such as Nitinol) can enhance their 

performance. This combined effort of the geometry and tailored 

superelasticity by functional grading for energy absorption is 

demonstrated in [8, 9].  

To be able to engineer structures based on C3Ms with 

nonlinear material properties such as superelasticity, designers 

rely on complex modeling techniques. The complexity of 

modeling arises from nonuniform geometry and variable 

material properties such as effective modulus. A “folding C3M” 

design from Nitinol based on a semicircular arc and contact 

surface was investigated for large scale applications [10]. The 

design was based solely on FEA to account for both material 

nonlinearity due to superelasticity and geometric nonlinearity 

due to large deformations. Systematic optimization of a C3M 

based only on FEA is not feasible as it will require many 

iterations of computationally intense FEA simulations. 

Therefore the focus of this work is on developing a low-

fidelity model of CMs with superelastic material behavior and 

large deformations. The model incorporates the mechanics of 

shape memory alloy (SMA) behavior in a beam and a folding 

C3M design. Based on large deflection beam theory and a SMA 

material model, the deflection under external loading is 

predicted.  As a part of this study, the results of the SMA beam 

model are compared to high-fidelity finite element simulations 

as a judge of the accuracy of the analytical model for model 

validation. 

2. MATERIALS AND METHODS
A CM is modeled as a cantilever beam subject to an applied

force at its tip, from which the resulting deflection is predicted. 

The cantilever beam model then serves as the basis for 

approximating the deflection of a compliant semicircular arc, to 

which a segmentation approach is applied. Finite element 

analysis (FEA) is performed to create a comparison between the 

mathematical and simulated models. First, the SMA material 

model is introduced in the context of the cantilever beam. 

2.1 Shape Memory Alloy (SMA) Material Model 
The primary goal of this work is to utilize the superelastic 

behavior of SMAs and their ability undergo large, yet 

recoverable, deformations. To study the applicability of SMAs 

in modeling the large deflection of CMs, Nitinol or NiTi is used 

as the material model. Figure 1 shows a multilinear material 

model for Nitinol originally developed by Auricchio et al [11]. 

EA, S, and EM, are the austenite, phase-transition, and martensite 

moduli respectively. The moduli represent the slopes of the 

stress-strain curve in each region. The martensite start stress 

(σMs) and finish stress (σMf) are the stresses between which phase 

transformation from austenite to martensite takes place. The 

maximum residual strain after loading is given by 휀𝑙  . 

FIGURE 1: STRESS-STRAIN CURVE FOR NITI MATERIAL 

Using this multilinear material model, Eshghinejad et al. 

derived an analytical model for the deflection of an SMA 

cantilever beam for small deformation [12].  Here, this beam 

model is adapted and extended to consider large deformations 

under force, F.  As shown in Figure 2, the beam is divided into 

three regions: (1) x2<x<L, which represents the portion of the 

beam that has not yet experienced the stress-induced phase 

transformation associated with superelasticty, (2) x1<x<x2, which 

represents the portion of the beam undergoing phase 

transformation, and (3) 0<x<x1, which represents the portion of 

the beam where phase transformation is complete. The lines, x1 
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and x2, represent the transition points into and out of the stress-

induced phase transformation region. The points, 𝑦𝑡𝑟,1 and 𝑦𝑡𝑟,2,

are the locations where the stress profile changes due to the 

multilinearity of the SMA material.  

FIGURE 2: STRESS DISTRIBUTION ALONG CANTILEVER 

BEAM MODEL  

In the current paper, unloading is not modeled; only the stress-

strain relations for loading are considered. The stress-strain 

equations for loading are based on a piecewise linear function 

that is defined for each region of the beam, as proposed in [12] 

and shown in Eq. 1 as the loading stress (σ): 

𝜎𝑖 =

{
  
 

  
 𝑅𝑒𝑔𝑖𝑜𝑛 1:  𝐸𝐴휀  if  휀 <

𝜎𝑀𝑠

𝐸𝐴

𝑅𝑒𝑔𝑖𝑜𝑛 2:  𝑆 (휀 −
𝜎𝑀𝑠

𝐸𝐴
) + 𝜎𝑀𝑠   if 

𝜎𝑀𝑠

𝐸𝐴
< 휀 <

𝜎𝑀𝑓

𝐸𝑀
+ 휀𝑙

𝑅𝑒𝑔𝑖𝑜𝑛 3: 𝐸𝑀(휀 − 휀𝑙)  if 휀 >  
𝜎𝑀𝑓

𝐸𝑀
+ 휀𝑙  

 

   
(1) 

where, 

𝑆 =
𝜎𝑀𝑓 − 𝜎𝑀𝑠

𝜎𝑀𝑓

𝐸𝑀
+ 휀𝑙 −

𝜎𝑀𝑠

𝐸𝐴

In the first region, where the stress distribution is linear, the 

strain, ε, is below the martensite start strain (σMs/ EA) and the 

slope of the curve is the austenite modulus. The second region is 

bounded by the martensite start and finish strain (σMf/ EM+ εl). 

Beyond the third region, the slope of stress-strain curve is the 

new, martensite modulus. The mathematical model implemented 

to derive the behavior of an SMA cantilever beam is described 

next, using this material model. 

2.2 Cantilever Beam Model 
Since the model derived by Eshghinejad et al. was applied 

only for small deformations, it was necessary to extend it to 

account for large deformations encountered in many CM 

applications. When a beam is subject to a higher tip load, the 

deflection is no longer a simple 1D problem, but instead the 

beam deflects both in the transverse and longitudinal directions 

due to geometric nonlinearity. Ghuku et al. presented an 

approach for modeling the large deflection of initially curved 

beams [13], and an integral approach was derived by Chen for 

large-deflection beams, which will be applied to this work [14].  

As shown in Figure 3, and described in [13], the arc length, s, 

along the deformed beam varies from 0 to L. However, the new 

range of x for the deformed beam is from 0 to l, where l is the 

projected length. The projected length is initially unknown and 

must be solved iteratively until the condition s(l) = L is met. By 

this assumption, the original length of the beam does not change 

under deformation. First, the method used by Eshghinejad et al. 

to calculate the moment and curvature will be discussed. 

Following this discussion, the modeling approach for the large 

deflection of a cantilever beam will be presented.  

FIGURE 3: CANTILEVER BEAM MODEL FOR LARGE 

DEFORMATION DUE TO AN APPLIED FORCE 

MATLAB is used to implement the analytical model of the 

cantilever beam. To find the moment as a function of x, the stress 

is integrated symbolically across the half-thickness of the beam, 

b, and is multiplied by the depth into the page, a.  It is assumed 

that the stress distribution is symmetric about the neutral axis so 

that the integrals are multiplied by a factor of two.  Eq. 2 defines 

the moment in a general region of the beam as: 

𝑀𝑖(x) = 2∫ 𝑦𝜎𝑖𝑑𝐴
𝑏

0

 

   
(2) 

The i-th stress and moment is replaced by 1, 2, or 3 depending 

on the x-position of interest in the beam. As a result, the moment 

equations are only valid in the region in which they are 

integrated. M1 is valid within the range x2<x<l, M2 within the 

range x1<x<x2, and M3 within the range 0<x<x1. The vertical 

distance, y, is integrated from 0 to the half-thickness of the beam, 

b. After the stress is applied to the moment equation for each

region of the beam, the strain, ε, can be replaced by Bernoulli-

Euler beam theory that defines the curvature, 𝜅(𝑥), as the slope 

of the linear strain distribution of Eq. 3: 

휀(𝑥, 𝑦) = 𝑦 ∙ 𝜅(𝑥) 
   

(3) 

The moment and curvature can be related directly and defined 

in each section of the beam using Eq. 2 and Eq. 3. In the first 

region of the beam where the stress distribution is linear, the 

integration of the stress gives a simple result for the moment. Eq. 

4 gives the expression for the moment in this region as: 

3 Copyright © 2021 by ASME



𝑀1(x) = 2a∫ 𝑦2𝐸𝐴𝜅(𝑥)𝑑𝑦
𝑏

0

=
2

3
𝐸𝐴𝑎𝑏

3𝜅(𝑥) 

   
(4) 

The curvature can be solved from Eq. 4 by setting the moment 

equal to the boundary condition, 𝐹 ∙ (𝑙 − 𝑥), since the origin is 

placed at the fixed end of the beam. The projected length, l, is 

used rather than the length of the undeformed beam, L, to 

account for large deflections. The curvature in the first region of 

the beam is given by Eq. 5: 

𝜅1(𝑥) =
3𝐹(𝑙 − 𝑥)

2𝐸𝐴𝑎𝑏
3

   
(5) 

The transition point at phase transformation, x2, is found by 

setting Eq. 5 equal to the maximum curvature in the linear region 

to enforce continuity. From the stress-strain relations defined in 

Eq. 1, the maximum curvature in this region occurs when 𝑦 = 𝑏 

and when the strain equals to the strain at transformation, 

𝜎𝑀𝑠/𝐸𝐴. The maximum curvature is thus given by Eq. 6:

𝜅1(𝑥2) =
𝜎𝑀𝑠

𝑏𝐸𝐴
   

(6) 

Then, the transition point is found in Eq. 7 as: 

𝑥2 = −
2𝐸𝐴𝑎𝑏

3 (
𝜎𝑀𝑠

𝐸𝐴𝑏
−

3𝐹𝑙
2𝐸𝐴𝑎𝑏

3)

3𝐹
   

(7) 

In the second region of the beam, where phase transformation 

occurs, the equations for the moment and curvature are more 

complex and are solved using symbolic integration. The moment 

in this region is separated into two integrals, representing the 

change in the stress distribution at the vertical transition point, 

𝑦𝑡𝑟,1. The integration of the stress is defined in Eq. 8:

𝑀2(x) = 2a∫ 𝑦2𝐸𝐴𝜅(𝑥)𝑑𝑦
𝑦𝑡𝑟,1

0

 + 2a∫ 𝑆𝑦2𝜅(𝑥) − 𝑆𝑦
𝜎𝑀𝑠

𝐸𝐴
+ 𝑦𝜎𝑀𝑠𝑑𝑦

𝑏

𝑦𝑡𝑟,1

 

   
(8) 

The point, 𝑦𝑡𝑟,1, is determined by setting the Bernoulli-Euler

relation for the strain in Eq. 3 equal to the transformation strain, 

𝜎𝑀𝑠/𝐸𝐴. Eq. 9 gives the expression for 𝑦𝑡𝑟,1:

𝑦𝑡𝑟,1 =
𝜎𝑀𝑠

𝐸𝐴𝜅(𝑥)
   

(9) 

The moment is then defined by Eq. 10: 

𝑀2 = ab2𝜎𝑀𝑠 −
𝑎𝜎𝑀𝑠

3

3𝐸𝐴
2𝜅(𝑥)2

+
2𝑆𝑎𝑏3𝜅(𝑥)

3

+
𝑆𝑎𝜎𝑀𝑠

3

3𝐸𝐴
3𝜅(𝑥)2

−
𝑆𝑎𝑏2𝜎𝑀𝑠

𝐸𝐴
   

(10) 

As was similarly done for the first region of the beam, the 

moment in the region of phase transformation is equated to the 

boundary condition, 𝐹 ∙ (𝑙 − 𝑥), to derive an equation solely as 

a function of the curvature, 𝜅(𝑥), in Eq. 11.   

𝐹 ∙ (𝑙 − 𝑥) = ab2𝜎𝑀𝑠 −
𝑎𝜎𝑀𝑠

3

3𝐸𝐴
2𝜅(𝑥)2

+
2𝑆𝑎𝑏3𝜅(𝑥)

3

+
𝑆𝑎𝜎𝑀𝑠

3

3𝐸𝐴
3𝜅(𝑥)2

−
𝑆𝑎𝑏2𝜎𝑀𝑠

𝐸𝐴
   

(11) 

The expression of Eq. 11 is multiplied by a factor of 𝜅(𝑥)2,

and then the coefficients are combined and re-arranged to obtain 

a cubic equation as a function of the curvature (Eq 12). The 

coefficients (A, B, and C) are substituted in order to find the 

solution of the cubic equation symbolically. Eq. 12 is used for 

both the second and third regions of the beam, but the appropriate 

coefficients are applied in each case: 

𝐴𝜅(𝑥)3 + 𝐵𝜅(𝑥)2 + 𝐶 = 0 
   

(12) 

where, 

𝐴 =
2𝑆𝑎𝑏3

3
, 

 𝐵 = 𝐹(𝑥 − 𝑙) + 𝑎𝑏2𝜎𝑀𝑠 −
𝑆𝑎𝑏2𝜎𝑀𝑠

𝐸𝐴
, 

 𝐶 =
𝑆𝑎𝜎𝑀𝑠

3

3𝐸𝐴
3 −

𝑎𝜎𝑀𝑠
3

3𝐸𝐴
2

Solving the cubic equation, the expression for the curvature 

is given by Eq. 13: 

𝜅(𝑥) = (√(
𝐶

2𝐴
+

𝐵3

27𝐴3
)

2

−
𝐵6

729𝐴6
−
𝐶

2𝐴
−

𝐵3

27𝐴3
)

1/3

−
𝐵

3𝐴
+

𝐵2

9𝐴2 (√(
𝐶
2𝐴

+
𝐵3

27𝐴3
)
2

−
𝐵6

729𝐴6
−
𝐶
2𝐴

−
𝐵3

27𝐴3
)

1/3

   
(13) 

Re-substituting the coefficients of Eq. 12 into Eq. 13 gives the 

equation of the curvature in the second region of the beam. 
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In the third region of the beam, after phase transformation is 

complete, the moment is separated into three integrals, 

representing the change in the stress distribution at the vertical 

transition points, 𝑦𝑡𝑟,1 and 𝑦𝑡𝑟,2. The integration of the stress is

defined in Eq. 14: 

𝑀3(x) = 2a∫ 𝑦2𝐸𝐴𝜅(𝑥)𝑑𝑦
𝑦𝑡𝑟,1

0

 + 2a∫ 𝑆𝑦2𝜅(𝑥) − 𝑆𝑦
𝜎𝑀𝑠

𝐸𝐴
+ 𝑦𝜎𝑀𝑠𝑑𝑦

𝑦𝑡𝑟,2

𝑦𝑡𝑟,1

 + 2a ∫ 𝑦2𝐸𝑀𝜅(𝑥) − 𝑦𝐸𝑀휀𝑙  𝑑𝑦
𝑏

𝑦𝑡𝑟,2

(14) 

The transition point, 𝑦𝑡𝑟,2, is determined by setting the

Bernoulli-Euler relation for the strain equal to the strain after 

transformation, (𝜎𝑀𝑓/𝐸𝑀 + 휀𝑙), and solving for 𝑦𝑡𝑟,2 (Eq. 15):

𝑦𝑡𝑟,2 =
(𝜎𝑀𝑓/𝐸𝑀 + 휀𝑙)

𝜅(𝑥)
   

(15) 

The moment in the third region is solved for symbolically 

similar to Eq. 10, and the curvature can be determined using the 

same approach of setting the moment equal to the boundary 

condition of the applied tip force as done in Eq. 11. The newly 

found coefficients (A, B, and C) from Eq. 12 are substituted into 

Eq. 13. The expressions for the moment and curvature become 

functions of only the unknown projected length, l, and x.   

To determine the deflection of the beam, the expression of the 

curvature for large deflection is used, as given by Eq. 16: 

𝜅(𝑥) =
𝑑2𝑦/𝑑𝑥2

[1 + (𝑑𝑦/𝑑𝑥)2]
3
2

   
(16) 

Chen [14] provides a method to simplify this curvature 

expression by substituting 𝑧 = 𝑑𝑦/𝑑𝑥 to obtain Eq. 17: 

𝜅(𝑥) =
𝑑𝑧/𝑑𝑥

[1+ 𝑧2]
3/2

   
(17) 

From trigonometric relationships, the curvature can also be 

expressed as a function of 𝜃, which is the angle of deflection. Eq. 

17 and Eq. 18 are used to relate the curvature to the deflection 

angle, continuing under the assumption of large deflection: 

sin 𝜃 =
𝑑𝑦

𝑑𝑠
   

(18) 

where, 

𝑑𝑠 = √𝑑𝑥2 + 𝑑𝑦2 

The differential arc length, ds, is related to the differential 

lengths, dx and dy, by Pythagorean theorem. Simplifying this 

expression and using that 𝑧 = 𝑑𝑦/𝑑𝑥, Eq. 18 becomes Eq. 19: 

sin 𝜃 =
𝑑𝑦/𝑑𝑥

√1 + (𝑑𝑦/𝑑𝑥)2
=

𝑧

√1 + 𝑧2
   

(19) 

The expression for sin 𝜃 is the integral of the curvature given 

in Eq. 14. The deflection angle is then described by Eq. 20: 

𝜃(𝑥) = arcsin (∫𝜅(𝑥)𝑑𝑥) 

   
(20) 

The trapezoidal integration method is used to approximate all 

integrals. To find the deflection angle for a given point along the 

beam, numerical integration is performed across small divisions 

of width, dx. These values are summed together in a separate 

variable, from which the integrated points are subtracted to 

obtain the actual value of  𝜃(𝑥). This approach was adapted from 

the work of Hsu in the derivation of moment-curvature and 

deflection relationships for a nonlinear material [15].  

In order to account for large deflections, the projected length, 

l, has to be solved iteratively under two constraints: (1) the value 

of the arc length at the tip of the beam is approximately equal to 

the original length, or 𝑠(𝑙)  ≈  𝐿, and (2) the integral of the 

curvature is less than 1 so that Eq. 20 can be solved. The second 

condition is inherently critical to meet the first condition. The arc 

length, is defined by Eq. 21: 

𝑑𝑠 = √𝑑𝑥2 + 𝑑𝑦2 = √1 + (𝑑𝑦/𝑑𝑥)2 𝑑𝑥 
   

(21) 

Taking the integral of both sides of Eq. 22, with 𝑧 = 𝑑𝑦/𝑑𝑥: 

∫𝑑𝑠 = ∫√1 + 𝑧2 𝑑𝑧 

   
(22) 

Chen relates the arc length, s, to the curvature by Eq. 23: 

𝑠 = ∫
𝑑𝑥

√1 − (∫ 𝜅(𝑥) 𝑑𝑥)
2

   
(23) 

The projected length is solved for iteratively until the 

maximum value of ∫ 𝜅(𝑥)𝑑𝑥 is less than 1. It is defined as the 

original length, L, subtracted by an initial guess, 𝛿𝑥 (Eq. 24):

𝑙 = 𝐿 − 𝛿𝑥
   

(24) 
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This guess primarily affects the speed of the iterative solver. 

For this reason, a binary search algorithm is implemented to 

search for the value of 𝛿𝑥 between 0 and L. In calculating the

moments and curvatures, the transition points are also subtracted 

by this guess to account for the deformation of the beam, as 

shown in Eq. 25:  

𝑥1
∗ = 𝑥1 − 𝛿𝑥
𝑥2
∗ = 𝑥2 − 𝛿𝑥

   
(25) 

The first condition is met iteratively to make the arc length 

value at the tip, s(l), as close to L as possible. The stopping 

criterion for this condition is when the error between s(l) and L 

is less than a suitable tolerance. After the solver converges such 

that 𝑠(𝑙)  ≈  𝐿, the final values for the integral of the curvature 

are used to calculate the y-deflection, y.  

The y-deflection is related to the curvature by Eq. 26 [14]: 

𝑦 = ∫
∫𝜅(𝑥) 𝑑𝑥

√1 − (∫𝜅(𝑥) 𝑑𝑥)
2

𝑑𝑥 

   
(26) 

In terms of evaluating the accuracy of the analytical solution, 

the error at the tip of the beam is calculated for the projected 

length, l, the arc length, s(l), and the y-deflection at the tip, 𝛿𝑦.

The FEA model is used as the exact solution from which these 

errors are evaluated. For example, the percent error for the y-

deflection at the tip is defined as 100% ∙ |(𝛿𝑦 − 𝛿𝑦 )/𝛿𝑦|, where

𝛿𝑦 and 𝛿𝑦 are the projected lengths of the analytical and FEA

models respectively.  

Next, the cantilever beam is extended to model more complex 

CM geometries by segmenting a semicircular arc into small 

cantilever beam segments. 

2.3 Approximation of Arc with Segmentation 
The solution for the cantilever beam model is used to 

approximate the deflection of a semicircular arc by utilizing the 

approach of segmentation. The goal of the segmentation is to 

approximate the deformation of the arc by using the model of the 

cantilever beam previously explained in this paper. For this, the 

arc is divided into n-number of segments, each represented by 

one cantilever beam as marked in red in Figure 4. Each segment 

is defined by the angle, 𝛼𝑗, which is calculated as in Eq 27:

𝛼𝑗 =
π

n
(27) 

In this paper, the angle 𝛼𝑗 is considered to be the same for all

segments (𝛼𝑗 =  𝛼), so geometrically, the beams comprise a

polygon inscribed in a semicircle. The subscript, j, ranges from 

1 to n. The side of the polygon or the length of one segment, 𝐿𝑠,
is defined by Eq. 28.  

𝐿𝑠 = 2𝑅𝑠𝑖𝑛
𝛼

2
(28) 

The arc defined by the radius, R, and its segments are shown 

in Figure 4. The global coordinate system is established at the 

origin by the coordinates 𝑥𝑔 and 𝑦𝑔. The local coordinate system

is represented by coordinates 𝑥𝑗 and 𝑦𝑗. The tip location at the

end of each segment in the local coordinate system is Tj(xj,yj).  

FIGURE 4: SEGMENTATION OF THE ARC IN N-NUMBER OF 

SEGMENTS, EACH APPROXIMATED WITH A CANTILEVER 

BEAM 

Since each beam is rotated with respect to the global 

coordinate system (𝑥𝑔 , 𝑦𝑔) in the undeformed state, the position

of each beam can be calculated by projecting the length of the 

segment with the angle 휁𝑗 , which is defined between the segment

and the global horizontal axis, as shown in Figure 5(a). After the 

deformation of the arc, the segments are additionally rotated by 

the angle 𝜃𝑗. In this case, the angle defined between the segment

and the x-axis is the angle, 𝛾𝑗 , shown in Figure 5(b). This is the

angle of rotation between the global and local coordinate 

systems. The position of the tip of the j-th segment after the 

deformation is calculated using Eq. 29 and Eq. 30: 

𝑥𝑗 = 𝐿𝑠 cos 𝛾𝑗 (29) 
𝑦𝑗 = −𝐿𝑠 sin 𝛾𝑗     (30) 

The angle 𝛾𝑗, shown in Figure 5(b), can be calculated as the

sum of the angle before the deformation, 휁𝑗 , and the angle that

accounts for the deformation, 𝜃𝑗 (Eq. 31). The sign of the angle,

𝜃𝑗, in Eq. 31 depends on the direction of the load and is positive

when the force is directed in the negative y direction. 

𝛾𝑗 = 휁𝑗 ± 𝜃𝑗 (31) 

The angle, 휁𝑗 , marked in red in Figure 5(a), depends on 𝛼 and

the angle between the first segment and the global x-axis, 𝛽 (Eq. 

32). 
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휁𝑗 = 𝛽 − 𝛼(𝑗 − 1) (32) 

Since the radius is constant, each triangle shown in Figure 5(a) 

is isosceles and therefore the angle, 𝛽, is calculated in Eq. 33 as: 

𝛽 =
𝜋 − 𝛼

2
(33) 

(𝑎) 

(𝑏) 

FIGURE 5: ANGLES OF THE SEGMENTED ARC MODEL IN 

THE UNDEFORMED (A) AND DEFORMED STATE (B)  

As aforementioned, when a load is applied, the segments bend 

and are additionally rotated with respect to the x-axis of the 

global coordinate system by the angle, 𝜃𝑗, shown in Figure 5(b).

This angle is different for each segment along the arc. In order to 

calculate this angle, Eq. 20 for the angle of deflection along the 

cantilever beam was used. Namely, each segment defined in the 

local coordinate system of the arc is considered to be a segment 

of a cantilever beam in the global coordinate system, with a total 

length equal to 𝐿 = 𝑛𝐿𝑠, as shown in Figure 6(a). When it is

loaded with the same force that loads the arc, the beam deforms. 

The slope of the beam changes with the position on the beam 

along the x-axis, as shown in Figure 6(b). In this way, after the 

deformation, each segment at its end has a slope that is equal to 

the slope of the beam at a point 𝑠𝑗 = 𝑗𝐿𝑠.

FIGURE 6: SEGMENTS OF A CANTILEVER BEAM LOADED 

WITH A TIP LOAD (A) AND CALCULATION OF THE SLOPE AT 

THE END OF EACH SEGMENT (B) 

For validation of the segmented arc model, the results for the 

position of the tip of each segment (i.e., its x and y coordinates), 

as a function of increasing tip load, are compared to results from 

FEA discussed in the next section. The mean-squared error, 

MSE, of the deflection profile is calculated between the 

analytical and FEA arc models using Eq. 34: 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦 − �̃�)2
𝑁

𝑖=1

(34) 

The variables, 𝑦 and �̃�, represent the y-coordinates of the 

analytical arc model and FEA model respectively. The sample 

size, N, or the data points of the arc tip position as it is deflected, 

corresponds to the increasing the tip load applied to the arc 

model. Next, the details of the FEA study performed for the 

cantilever beam and arc model are presented. 

2.4 Finite Element Analysis 
FEA models of the cantilever beam and the semicircular arc 

were developed in COMSOL Multiphysics using the structural 

mechanics module. The FEA model is analyzed in 2D with an 

out of plane thickness of 5 cm. Geometric nonlinearity is 

included, and the models are solved with a fully coupled 

approach. The NiTi material model shown in Figure 1 is used 

with the parameters shown in Table 1 in the following section. 

The superelasticity is accounted for using this material model.  
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The length of the base geometry of the cantilever beam is 50 

cm and the thickness is 1 cm, loaded with a force ranging from 

0 to 10 kN with a step of 5 N. The inner radius of the arc is 22 

cm, and the thickness is 3 cm. The load for the arc model is again 

a force applied at the tip ranging from 0 to 40 kN with a step of 

100 N. The mesh for both models is an automatic, physics-

controlled mesh with a maximum element size of 0.005 m and 

minimum element size of 1.0E-5 m. 

3. RESULTS AND DISCUSSION
This section outlines the results for the large deflection of

the cantilever beam model, followed by the results for the 

segmented arc model. Both analytical models are compared with 

FEA to judge the accuracy of the proposed solution methods.  

3.1 Cantilever Beam Model and FEA 
For the selected SMA, the elastic moduli, martensite start 

stress σMs, and martensite finish stress σMf shown in Table 1 are 

extracted from the multilinear material model of NiTi in Figure 

1. The maximum residual strain, εl, is extrapolated by extending

the line representing the slope, EM, to the x-axis. These 

parameters are substituted into the moment, curvature, and 

transition point equations presented in Eqs. 4-15. 

Table 1: PARAMETERS FOR MATERIAL MODEL 

EA 71.4   (GPa) 

EM 69.2   (GPa) 

σMs 900  (MPa) 

σMf 1500  (MPa) 

εl 0.032  (m/m) 

The parameters given in Table 2 are used for the baseline 

cantilever beam model for a tip load of 10 kN. The numerical 

values of the moment, curvature, and transition points are 

calculated using the parameters described in Table 1 as well as 

in the following Table 2.  

Table 2: INITIAL PARAMETERS FOR CANTILEVER BEAM 

L 50   (cm) 

a 5   (cm) 

b 0.5   (cm) 

F 10   (kN) 

The moment and curvature of the cantilever beam are shown 

in Figures 7(a) and (b). The curvature of the analytical model is 

compared both with the linear elastic solution of a cantilever 

beam and the FEA model. For the linear elastic beam, an elastic 

modulus that is the average of the martensite and austenite 

moduli is used. From the nonlinear curvature as a function of the 

projected length, 𝜅(𝑥), in Figure 7(b), it can be seen that the 

analytical model is a suitable predictor of the beam behavior 

compared to the FEA model. Both models show a slope change 

marking the phase transformation in region 2 and the completed 

phase transformation in region 3. The transition points at which 

the phase transformation begins and ends are marked by the 

dotted vertical lines on the plot, x1 and x2, respectively. For the 

analytical model, x1 is 0.0365 m and x2 is 0.1147 m. 

 In the FEA solution, there was a spike in the curvature at 

the fixed end which is attributed to a numerical error due to the 

fixed constraint and the effect of a nonzero Poisson’s ratio on the 

deformation of the beam. Mesh refinement did not appear to 

change this result, but adding a fillet at the support of the beam 

or using a Poisson ratio of zero could resolve the singularity. In 

Figure 7(b), the data corresponding to this spike was instead 

removed near the fixed end.   

(𝑎) 

(𝑏) 
FIGURE 7: MOMENT ALONG DEFORMED CANTILEVER 

BEAM (A) AND CURVATURE PROFILES COMPARING THE 

ANALYTICAL BEAM MODEL WITH A LINEAR-ELASTIC 

BEAM SOLUTION AND FEA (B) FOR A FORCE OF 10000 N 

The analytical model was used to conduct parameter 

variation studies.  First, five different forces were used as the tip 

load. The plot of the curvature for the analytical and FEA 

models, in Figures 8(a) and (b), demonstrates how large of a 

force is needed for phase transformation to begin, i.e., the 

curvature, 𝜅(𝑥), becomes nonlinear. Smaller forces, such as 100 
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N, 500 N, and 2000 N result in the stress distribution being linear 

and it is expected that the curvature would also be a linear 

function of x in these cases.  

When the force is increased, the stress becomes significant 

enough to induce phase transformation, which is shown by the 

dramatic change in slope of the curvature. The magnitude of the 

force also has a similar effect on the angle of deflection, in Figure 

8(c), behaving as a small-deforming beam when the force is low 

and exhibiting large deformations with an increase in force.  

(𝑎) 

(𝑏) 

(𝑐) 
FIGURE 8: CURVATURE ALONG DEFORMED CANTILEVER 

BEAM (A,B) AND ANGLE OF DEFLECTION (C) FOR 

INCREASING TIP LOAD 

The deflection of the cantilever beam was compared with 

FEA, as shown in Figure 9(a) and (b). Both studies involved 

calculating the deflection of the neutral axis of the cantilever 

beam (1) along the projected length dimension, x, and (2) along 

the arc length, s. The y-deflection is the same along both x and s. 

There was good agreement between the original length, L = 

0.5 m, and the value of s(l), as shown in Table 3. There was also 

an increase in error between the projected lengths of the 

analytical and FEA models. Figure 9(a) shows that the analytical 

model underestimates the projected length as the force enters the 

range where phase transformation occurs. For smaller forces, in 

the linear range, the error is nearly trivial. The analytical and 

FEA models are in much better agreement along the arc length 

in Figure 9(b), where the two curves nearly overlap in most of 

the load cases. 

As shown by Figure 9(a) and Table 3, the x-coordinates of 

the analytical and FEA models do not align exactly. To 

accurately find the error between the models, the x-coordinates 

of the FEA data were linearly interpolated within the analytical 

data and the y-deflections at these x-coordinates were extracted. 

Since the analytical model does not reach the same final x-

coordinate as the FEA model, due to the solver being an iterative 

guess of the projected and arc lengths, the y-deflection was 

extrapolated linearly for these values. Then, the error could be 

calculated between the two models over the same x-coordinates. 

(𝑎) 

(𝑏) 
FIGURE 9: Y-DEFLECTION OF CANTILEVER BEAM AS A 

FUNCTION OF THE PROJECTED LENGTH, l, (A) AND THE ARC 

LENGTH, s (B) 

The y-deflection with respect to s is used in calculating the 

error between the models. This is done because extrapolating the 

y-deflection with respect to x introduces additional error to that 

shown in Table 3. The percent error of the tip y-deflection, δy, 
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and mean-squared error (per Eq. 34) for increasing force is given 

in Table 4. It is observed that there is better agreement in the y-

deflection for larger tip loads, in contrast to the trend shown for 

the projected length in Table 3. The extent of error depends on 

which measure of error and which load case are used, but in any 

case, the error is less than 9%. 

Table 3: PROJECTED AND ARC LENGTHS OF THE 

ANALYTICAL AND FEA MODELS AND PERCENT ERROR FOR 

INCREASING TIP LOAD 

F (N) 
lanly 

(m) 

lFEA 

(m) 

Error in 

l (%) 

s(l)anly 

(m) 

Error in 

s(l) (%) 

100 0.4998 0.4998 0.0064 0.5000 9.79e-4 

500 0.4944 0.4952 0.1538 0.5001 1.71e-2 

2000 0.4362 0.4437 1.7030 0.5000 8.01e-3 

5000 0.2922 0.3123 6.4462 0.5000 7.60e-3 

10000 0.1897 0.2038 6.9100 0.4993 0.1425 

Table 4: PERCENT ERROR OF Y-DEFLECTION AT THE TIP 

AND MEAN-SQUARED ERROR OF THE DEFLECTION PROFILE 

FOR INCREASING TIP LOAD 

F (N) Error in δy(s) (%) MSE 

100 8.8672  3.078e-7 

500 8.6039 6.996e-6 

2000 6.1293 4.158e-5 

5000 4.3393 8.839e-5 

10000 1.5311 1.884e-5 

The effect of changing geometric parameters, such as 

thickness, was studied to determine the scalability of the 

analytical beam model in how accurately it could evaluate the 

deflection. In this case, the original half-thickness, b, was 

multiplied by a factor of 1.5 and a factor of 2, as shown in Figure 

10. This increase in thickness also increases the bending stiffness

of the beam, and consequently decreases the deflection. From the 

previous study, when the tip load is decreased, the trend 

suggested that the error in the y-deflection along the beam 

increased. In other words, the analytical model appears to be 

more precise for large deformations. Thus, for a change in the 

half-thickness, it would be relevant to see if a similar trend exists. 

The applied tip load remains a constant value of 10 kN for this 

analysis.  

In Table 5, there is not a clear trend in the percent errors, but 

the error is still less than 9% and the MSE is considerably small 

in each case. As shown in Table 6, the error in the tip deflection 

decreases when the half-thickness of the beam is small, i.e., when 

the deflection is large. Thus, a change in the half-thickness of the 

analytical model depicts a similar trend as a change in the tip 

load shown in Table 4. For the original half-thickness, b = 0.5 

cm, the analytical model is the most accurate based on the 

percent error of the y-deflection at the tip and the MSE being the 

lowest out of the three cases. For half-thicknesses larger than 

0.75 cm, the model may not be as precise. 

FIGURE 10: COMPARISON OF DEFLECTION FOR 

ANALYTICAL MODEL WITH FEA FOR INCREASING HALF-

THICKNESS, b 

Table 5: PROJECTED AND ARC LENGTHS OF THE 

ANALYTICAL AND FEA MODELS AND PERCENT ERROR FOR 

INCREASING HALF-THICKNESS 

b (cm) 
lanly 

(m) 

lFEA 

(m) 

Error 

in l (%) 

s(l)anly 

(m) 

Error in 

s(l) (%) 

0.500 0.4998 0.4998 0.0064 0.5000 9.79e-4 

0.750 0.3502 0.3720 7.1658 0.5000 6.70e-3 

1.000 0.4641 0.4717 1.6153 0.5000 4.40e-3 

Table 6: PERCENT ERROR OF Y-DEFLECTION AT THE TIP 

AND MEAN-SQUARED ERROR OF THE DEFLECTION PROFILE 

FOR INCREASING HALF-THICKNESS 

b (cm) Error in δy(s) (%) MSE 

0.500 1.5311 1.884e-5 

0.750 7.1650 1.576e-4 

1.000 12.843  1.055e-4 

3.2 Segmented Arc Model and FEA 
The analytical semicircular arc model is derived from the 

segmentation of a cantilever beam as shown in Figure 6(a).  For 

the case of the tip of the arc subject to a load of 40 kN, the plot 

of the curvature along the beam (Figure 11) shows that phase 

transformation occurs because both transition points, x1 = 0.0693 

m and x2 = 0.2452 m, can be calculated.  This is verified by the 

von Mises stress distribution of the deformed FEA model, shown 

in Figure 12, where the highest measured stress is greater than 

1600 MPa which is beyond the martensitic finish stress of NiTi 

(1500 MPa). Again, the curvature profile is compared between 

the analytical, FEA, and linear elastic solutions. 

10 Copyright © 2021 by ASME



FIGURE 11: CURVATURE PROFILE OF ANALYTICAL, FEA, 

AND LINEAR-ELASTIC BEAM TO REPRESENT SEGMENTED 

ARC MODEL BEHAVIOR 

FIGURE 12: VON MISES STRESS DISTRIBUTION OF FEA 

ARC MODEL FOR A FORCE OF 40000 N 

As described previously, the angle of deflection of the 

cantilever beam model is used in the deformation of the arc 

model. This angle is discretized along the beam and is used as 

the deflection angle of each segment, 𝜃𝑗, as shown in Figure 5(b).

As the number of segments is increased, the value of 𝜃 for each 

segment lies over a smaller interval. This would suggest that the 

approximation of the entire arc model could become more 

precise as, eventually, the segments are short enough to capture 

sufficient points on the plot of 𝜃(𝑥), shown in Figure 6(b). 

Figure 13(a) shows the tip deflection of the FEA arc model, 

from its original shape shown in green to its deformed shape 

shown in blue. The tip of the arc is taken at the neutral axis of 

the beam. Then, the tip deflection determined in FEA was 

compared with the analytical model by gradually incrementing 

the force from 0 to 40 kN to extract the tip positions. To examine 

the effect of the number of segments, n, on the accuracy of the 

analytical arc model, the deflection was calculated for increasing 

number of segments from n = 2 to n = 24. The parameters 

outlined in Table 7 are used to find the deflection profile of the 

arc. As expected, a small number of segments is a poor 

approximation of the arc, and increasing the number of segments 

improves the agreement of the analytical model with FEA, as 

shown in Figure 13(b).  

Table 7: BASELINE PARAMTERS FOR ARC MODEL  

𝑅 25   (cm) 

a 5   (cm) 

b 1.5   (cm) 

F 40   (kN) 

(𝑎) 

(𝑏) 
FIGURE 13: DEFLECTION AT THE TIP, 𝑇(𝑥𝑛 , 𝑦𝑛), OF THE

FEA ARC MODEL FROM AN UNDEFORMED TO DEFORMED 

STATE (A) AND COMPARISON OF TIP DEFLECTION OF 

ANALYTICAL ARC MODEL WITH FEA FOR INCREASING 

NUMBER OF SEGMENTS, n (B) 
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The mean-squared error of the x-deflection of the analytical 

and FEA models, in Table 8, shows that the error decreases as 

the number of segments increases from n = 2 to n = 22. Beyond 

n = 24 segments, the mean-squared error begins to deviate again 

from the exact solution. This finding could be a result of the 

analytical model becoming less accurate when the length of the 

segments is not large enough to represent the deflection. For this 

reason, the remaining models of the semicircular arc are 

approximated using n=20 segments since the error is 

considerably trivial when compared to n = 18 or n = 22 segments. 

Table 8: MEAN-SQUARED ERROR BETWEEN ANALYTICAL 

AND FEA ARC MODEL DEFLECTION PROFILES 

Number of segments 

(n) 
MSE 

2 6.9952E-3 

4 1.1645E-3 

8 2.2969E-4 

14 6.0652E-4 

18 8.0405E-4 

20 8.8195E-4 

22 9.4953E-4 

24 1.0075E-3 

The deflection profile of the analytical arc model, along the 

neutral axis, was also compared with the FEA-predicted 

deformation. To make a direct comparison, the results of the 

analytical model were overlayed on top of the FEA results using 

the same scaling and aspect ratio (Figure 14). For a force of 40 

kN and n = 20 segments, the analytical model shows very close 

agreement with the neutral axis of the FEA model. To examine 

the linear range of deformation, a force of 2000 N was also used 

for the analytical model in Figure 15. In this result, the deviation 

of the deflection profile from the FEA model is much more 

noticeable, although the approximation agrees well near the root. 

The segmented arc model might not be accurate enough to 

estimate the behavior of an SMA semicircular arc for smaller 

forces. This outcome could be influenced by the trends observed 

in the percent error of 𝛿𝑦 for small forces, shown in Table 4,

since the analytical beam model is integral to the derivation of 

the segmented arc model. 

FIGURE 14: ANALYTICAL ARC MODEL DEFLECTION 

PROFILE ALONG THE NEUTRAL AXIS AND FEA 

MODEL DEFLECTION FOR N = 20 SEGMENTS AND A 

FORCE OF 40000 N 

FIGURE 15: ANALYTICAL ARC MODEL DEFLECTION 

PROFILE ALONG THE NEUTRAL AXIS AND FEA 

MODEL DEFLECTION FOR N = 20 SEGMENTS AND A 

FORCE OF 2000 N 

The location of the neutral axis changes depending on the 

extent of phase transformation due to the changing composition 

of solid phases within the SMA during phase transformation. By 

examining the stress-distribution of the FEA arc model, it is clear 

that the von Mises stress is not symmetric in tension and 

compression, as shown in Figure 16. The stress is lower on the 

compressive side than on the tension side.  
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FIGURE 16: SEGMENTED ARC APPROXIMATION AND 

FEA MODEL DEFLECTION FOR N = 20 SEGMENTS AND 

A FORCE OF 2000 N 

4. CONCLUSIONS
In this paper, an analytical model is developed for a

compliant cantilever beam made of superelastic material 

experiencing large deformation.  A segmentation approach is 

used to extend the beam model to a model of a semicircular 

compliant arc. In comparing the models to FEA simulations, the 

results indicate that the analytical model successfully captures 

the effect of the stress-induced phase transformation on large 

deflections for both the cantilever beam and semicircular arc 

cases. Differences in the analytical model compared to FEA 

could be attributed to the discrepancy in the x-coordinates used 

for the analytical and FEA models. The same number of points 

are sampled, but due to the analytical model being an iterative 

solver in 𝑥, the sampled points are not exactly at the same 

locations as those extracted from the FEA study. As a result, 

interpolation was done to resolve this issue. The effect that this 

result may have warrants further investigation in refining the 

current model, despite the relatively small mean-squared errors 

that were obtained.   

An additional source of error can be related to the symmetry 

of the stress distribution in the model proposed by Eshghinejad 

et al. Prior research, such as analytical methods proposed by Viet 

et al. [16] for modeling SMA alloy beams, suggests that during 

loading, the neutral axis shifts with increasing tip load toward 

the compressive side of the deformed beam. The assumed 

symmetric stress distribution in the analytical model does not 

account for the tension-compression asymmetry in the bending 

of SMAs. This insight could explain the error that is seen in the 

deflection of the analytical cantilever beam model, specifically 

in Figure 9(a). In this plot, the neutral axis of the analytical model 

appears to deviate more from the FEA model when the applied 

tip load is large, or in the region of phase transformation. 

Similarly, the plots shown in Figures 7 and 8 show that the 

curvature profile of the FEA model deviates from the analytical 

solution as the tip load increases. This result could also be an 

influential factor in improving the accuracy of the analytical 

model. Future work should explore the effect of tension-

compression asymmetry caused by the changing martensitic 

volume fraction within the SMA. Further research in this area 

can potentially improve the current analytical models by 

considering the shifting of the neutral axis during phase 

transformation of the SMA. 

Ongoing work includes further investigation of the stress 

distribution in the three regions as predicted by the model and 

comparison to the stress-distribution given by FEA. Also, the 

neutral axis of the arc modeled in COMSOL should be extracted 

to find the mean square error between FEA and the analytical 

results. This would provide a clearer picture of how the neutral 

axis is changing in both models. 
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