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Abstract

Automated scheduling systems and decision support tools re-
quire at least four kinds of knowledge: 1) domain knowledge,
2) problem instance knowledge, 3) control knowledge, and 4)
solving knowledge. This short paper draws attention to learn-
ing from human experts for these different kinds of knowledge,
and advocates a complementarity of knowledge acquisition by
automated techniques and by human knowledge engineers.

Introduction

Knowledge – computational knowledge – is the fulcrum of
Artificial Intelligence. Whether hand-coded in a logical for-
malism, or extracted from data by a deep learning network,
knowledge is the basis for computation. AI-based scheduling
and planning is no different. Take a now-ubiquitous ‘intelli-
gent’ personal assistant agent. One of the pain points helped
by an assistant like Siri is scheduling meetings and managing
your calendar (Berry et al. 2011). This assistance is based on
knowledge of your calendar, to-do list, emails, location – and
learned preferences.

If knowledge for computation is the fulcrum, then AI rests
on its acquisition. As the KEPS workshop organizers put it,
automated planning and scheduling systems “still need to be
fed by carefully engineered domain and problem descriptions,
and fine tuned for particular domains and problems.” This po-
sition paper draws attention to learning from human experts
as a way to accelerate the knowledge engineering process,
which we take to comprise both elicitation and encoding.

We briefly discuss four of the kinds of knowledge required
for automated scheduling:

1. Domain knowledge. What is the ‘physics’ of the problem
domain?

2. Problem knowledge. What are the particulars of the prob-
lem instance, including its data and objectives?

3. Control knowledge. How does the system go about de-
ciding how to solve the problem instance, and manage the
solving process?

4. Solving knowledge. What solving approaches and heuris-
tics can be used?

Information science has for decades distinguished between
data, information, knowledge, and wisdom (Ackoff 1989).
According to Ackoff’s oft-quoted taxonomy, starting from the

broad base layer of a pyramid and progressing to its narrow
pinnacle layer1, we have:

• Data: raw symbols (‘know-nothing’ (Zeleny 1987))

• Information: data that is processed to be useful; provides
answers to ‘who’, ‘what’, ‘where’ and ‘when’ questions
(know-what)

• Knowledge: application of data and information; answers
‘how’ questions (know-how)

• Wisdom: evaluated appreciation of ‘why’ (know-why)

Seen with this lens, the activity of ‘knowledge engineering’
– such as for an automated scheduling system – aims to apply
raw data and processed data in order to support the answering
of ‘how’ questions. For example, the calendaring assistant
can (has the know-how to) arrange a meeting with Alice
and Bob for next week. While not dwelling on nuances of
terminology, we can see domain and problem knowledge as
fitting closer to Ackoff’s Information level, and control and
solving knowledge as fitting closer to his Knowledge level.

We advocate a complementarity of knowledge acquisition
by automated techniques and by human knowledge engineers,
for the purpose of automated scheduling.

Learning for Domain and Problem Acquisition

The power of automated planning and scheduling systems
comes from the combination of the model of the problem and
the problem-solving techniques applied to that model. Two
elements comprise the former: the model of the domain, and
the model of the problem instance. The domain model tells
us what is possible, while the problem instance models the
questions we want to answer.

As surveyed by Vaquero et al. (2013), real-world problems
require detailed knowledge elicitation, encoding and manage-
ment. These authors’ methodology, itSIMPLE, strives to use
common notations such as UML in a process of moving from
requirements analysis all the way to an input-ready model for
solving algorithms.

This kind of methodology, which starts from a graphical
representation used to represent statements from subject mat-
ter experts (SMEs), is found not only in AI planning and

1We follow a number of authors and join Ackoff’s Understand-
ing and Wisdom layers.
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scheduling, but across other areas of AI such as organiza-
tional modelling and agent-based simulation (van Putten et
al. 2008) and goal-oriented programming (Abushark et al.
2017).

In line with the rise of machine learning (ML), we can un-
dertake automated acquisition of domain and problem models
from data, as Celorrio et al. (2012) survey for AI planning.
Since that survey, there has followed much more work on
learning domains and problem instances.

Pushing further with learning from data, Lombardi, Mi-
lano, and Bartolini (2017) propose a strongly empirical ap-
proach to model learning for general combinatorial optimiza-
tion problems, using ML to construct components of a model
from data. The model encompasses both problem domain
and instance. The data is obtained either from a relaxed ver-
sion of the model (a form of boot-strapping), or if applicable
and possible, from the modelled system itself. The SME
could be involved in creating the initial approximate model;
otherwise this approach is driven by data.

A key question is representation: how do we formulate
the domain and problem models? There are various represen-
tations for AI planning, including standard languages such
as PDDL, and ML approaches to acquire models into these
representations are actively researched.

By contrast to planning, quite commonly scheduling prob-
lems have a fixed structure of domain and data, such as flow
shop scheduling and other classical Operational Research
(OR) scheduling problems. Learning into these representa-
tions is more straightforward, and it can suffice to learn from
data – since the human expertise has already been put into
defining the problem structure. For example, a knowledge
engineer encodes the problem as a flow shop with a cyclic job
structure, and obtains the data from instrumentation embed-
ded in the manufacturing process. We note that a difficulty,
however, given classical OR models is that the modeller can
be tempted to coerce the actual problem at hand into one of
the standard models, for the sake of convenience, tractability,
or the assurance of familiarity.

A more general model for scheduling problems is based
on Constraint Satisfaction Problem (CSP): see Salido et al.
(2007) for a typical example. ML approaches to acquire
(general) CSPs are also actively researched (O’Sullivan 2010;
Beldiceanu and Simonis 2016; Bessiere et al. 2017). Bessiere
et al. (2017) exemplify this line of work, in deriving CSP mod-
els – which like Lombardi, Milano, and Bartolini (2017)’s
approach encompass both domain and instance – from a user;
both passive and active elicitation are supported.

We advocate for a position that uses data-driven methods
as much as possible, and hand-engineered methods in all
other aspects. The advantage is to attempt to gain the best
from both types of methods: automation and parsimony, and
judgement and completeness. In some cases, the two can
be used together to triangulate certain knowledge. In other
cases, the knowledge acquired with ML can form the starting
point for the knowledge engineer’s refining of models. In
still other cases, manual knowledge engineering can provide
or structure data far enough so that ML can then be used.

Learning for Control and Problem Solving

Control knowledge decides what search and reasoning strate-
gies to apply in a problem-solving process, and can adjust
the strategies as solving proceeds. Problem solving knowl-
edge comprises of the available strategies, in particular those
suited to the domain or to the problem instance. Hence
control knowledge is predicated on having problem solving
knowledge available to it.

A potent recipe for control knowledge consists of portfolio
solving approaches, in which control knowledge is acquired
in the form of selection among solving algorithms for a prob-
lem instance. Portfolio approaches have proved successful in
several subareas of AI, such as SAT (Xu et al. 2008) and au-
tomated planning (Gerevini, Saetti, and Vallati 2014). Beck
and Freuder (2004) is one example of a portfolio approach
specifically for a scheduling problem.

We identify problem solving knowledge for scheduling as
‘heuristics’. The literature is substantial on learning how to
solve a particular scheduling problem or class of problems
(e.g., (Li, Pan, and Mao 2015)). Perhaps because scheduling
problems tend to have structure – and at that often a variant
of a standard structured problem class, as we have noted – it
is easier for scheduling problems than for planning problem
to hand-code the problem domain, and extract instance data
from some book-keeping system or instrumentation.

Hence the focus of ML for scheduling is drawn to solving
problem instances. In a now-classic paper, Gratch, Chien,
and DeJong (1993) learn control knowledge for an aerospace
scheduling problem; a whole literature on learning meta-
heuristics is now known. Shahrabi, Adibi, and Mahootchi
(2017) is a recent example of learning control knowledge
for scheduling, using reinforcement learning. Examples of
heuristic learning are many (Russell et al. 2009; Braune and
Doerner 2017).

In contrast to this kind of work, which focuses on learning
from data, Alzugaray and Sanfeliu (2016) learn path planning
heuristics from human expert problem solvers. The point
here is that the experts may not be cognisant of their own
strategies: they cannot articulate them fully.

Similarly, Berry et al. (2011) learn users’ calendering pref-
erences (heuristics) from user actions, with explicit elic-
itation being optional. These authors found that users’
stated preferences often differ from their preferences ex-
posed by their actions. Generalizing, Gombolay et al. (2016a;
2016b) coin the term ‘apprenticeship scheduling’ for appren-
ticeship learning techniques applied to scheduling problems.
These authors learn heuristics from experts’ actions, and in
two domains show how an automated scheduling system per-
forms at or exceeds a level that satifices for human approval.

We note that a difficulty of learning from a scheduling prob-
lem can arise when the data is gathered under a certain policy
(objective, schedule) that we are now trying to optimize.
This situation amounts to the classic exploration/exploitation
dilemma in reinforcement learning.

We advocate for a position that uses data-driven methods
inasmuch as data is available; using learning from experts,
particularly to acquire expert knowledge that the SMEs can-
not articulate; and using “fine tuned” interventions of knowl-
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edge engineers in synergy with the ML techniques. Indeed,
it has not passed un-noticed that the engineering of a ML
model can be as much effort as manually engineering solving
strategies and heuristics (Domingos 2012).

Outlook

We have considered four types of knowledge of automated
scheduling, and drawn attention to learning from human ex-
perts for these different kinds of knowledge. We note that
SME knowledge, and certainly human decision-making, may
be imperfect; both (semi-)automated and manual knowledge
engineering must recognize this. In advocating a complemen-
tarity of knowledge acquisition by automated techniques and
by human knowledge engineers, we anticipate a growth in
the KEPS sub-community and fruitful interactions with the
ML community, including reinforcement learning. Let us
take up this opportunity.
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