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A B S T R A C T   

Machine learning obtains good accuracy in determining the number of contributors (NOC) in short tandem 
repeat (STR) mixture DNA profiles. However, the models used so far are not understandable to users as they only 
output a prediction without any reasoning for that conclusion. Therefore, we leverage techniques from the field 
of explainable artificial intelligence (XAI) to help users understand why specific predictions are made. Where 
previous attempts at explainability for NOC estimation have relied upon using simpler, more understandable 
models that achieve lower accuracy, we use techniques that can be applied to any machine learning model. Our 
explanations incorporate SHAP values and counterfactual examples for each prediction into a single visualiza-
tion. Existing methods for generating counterfactuals focus on uncorrelated features. This makes them inap-
propriate for the highly correlated features derived from STR data for NOC estimation, as these techniques 
simulate combinations of features that could not have resulted from an STR profile. For this reason, we have 
constructed a new counterfactual method, Realistic Counterfactuals (ReCo), which generates realistic counter-
factual explanations for correlated data. We show that ReCo outperforms state-of-the-art methods on traditional 
metrics, as well as on a novel realism score. A user evaluation of the visualization shows positive opinions of end- 
users, which is ultimately the most appropriate metric in assessing explanations for real-world settings.   

1. Introduction 

1.1. Number of contributor estimation 

The interpretation of DNA profiles consists of several steps, including 
estimating the number of contributors (NOC). Determining the NOC 
from short tandem repeat (STR) profiles can be a challenging task due to 
occluding factors such as allele sharing between donors, or allelic drop 
out [1–9]. This becomes increasingly difficult when the number of 
contributors rises [10–12]. However, most probabilistic genotyping 
software that is used for weight of evidence calculations does require the 
user to supply the NOC [13,14], which can have profound impact on the 
size of the likelihood ratio returned [2,14–19]. 

Valuable steps have been taken to develop methods for accurately 
predicting the NOC. A simplistic method is provided by the maximum 
allele count (MAC), which constitutes taking the locus with the most 

alleles, dividing by two and rounding up [20]. Improvement of this 
method comes from incorporating more information such as the total 
allele count (TAC), peak heights, drop out and stutter rates, the distri-
bution of allele counts, and population allele frequencies [3,5,8,9]. More 
complex techniques like Bayesian networks are also used [4]. Machine 
learning models have shown to outperform other methods on both ac-
curacy and speed, though the quality of the models is highly dependent 
on the training data [16,21–24]. However, many machine learning al-
gorithms are considered to be black boxes [25–32], because the pre-
dictions they produce are made based on generalization from training 
data and the exact mechanism is not easily understood. Knowledge on a 
model’s performance can be obtained through validation and training, 
though it may remain unclear to DNA experts why the algorithm or 
model made a certain prediction. To gain knowledge on whether to trust 
the outcome on a per-case basis, the expert may learn from the model if 
it considered some information that the expert did not consider. 
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Conversely, experts may notice that the prediction cannot be trusted if 
the model made that decision based on information that should not be 
relevant to determine the NOC. By delivering such explanations, more 
informed decisions can be made. 

Kruijver et al. presented a decision tree as a more transparent way to 
use machine learning to estimate the NOC [23]. However, using a simple 
model such as a decision tree leads to less accurate predictions; they 
reported a decrease in accuracy of over 10% as compared to a random 
forest model. The method of Kruijver at al. also relies heavily on filtering 
of artefacts, for which another decision tree is used. Furthermore, the 
data used in this study are also derived from a small number of donors, 
which means that there is little diversity and less complexity in the data. 
If more complex data are used, the performance of a simple model may 
decrease even further. 

None of the previously mentioned techniques have explored the field 
of explainable artificial intelligence (XAI). XAI has emerged to provide 
explanations for machine learning models, since users want to know why 
a certain prediction is made [25–32]. The European Commission 
recently underlined the importance of explainability in a proposal for 
rules on AI systems in higher-risk settings such as law [33]. Though NOC 
estimation does not directly cause decisions without the involvement of 
human experts, these experts should be well-informed about the system 
that they might let influence their decision. We aim to provide some 
basic insight into XAI from the perspective of NOC estimation. For a 
more in-depth overview of the field of XAI, we recommend surveys by 
Carvalho et al. [27] and Barredo Arrieta et al. [28]. 

1.2. Explainable artificial intelligence (XAI) 

We introduce the main XAI terminology through the lens of applying 
machine learning to NOC estimation. The decision tree from Kruijver 
et al. is simple enough to walk through each node of the tree where 
decision conditions are assessed, until an output leaf node is reached 
[23]. This type of explanation is denoted as being model-specific, as it 
uses the structure of the decision tree model to explain the predictions 
made [27,28,31,32]. Some XAI techniques can instead work with only 
the training data and the predictions made on the training data, showing 
which parts of the input have influenced the output. This is called 
model-agnostic, which means that it works on all types of machine 
learning models, without relying on the (complex) mechanisms of how 
those models reach their decisions. Model-agnostic explanations can be 
used to describe how predictions are reached by the model on average, 
by using global methods [25,27–32,34]. However, DNA experts analyse 
one profile at a time and they would like the most accurate description of 
the prediction. For this case, local explanations could be more suitable. 
Local means that a new explanation is generated per sample, instead of 
averaging how the model makes predictions in general. Local, 
model-agnostic explanations are generally one of two types; feature 
importance or counterfactuals. 

Feature importance methods highlight which feature values of the 
input, e.g. MAC or TAC values of the DNA profile, were most influential 
for a particular model prediction [25,27–29,31,34]. This effectively 
answers the question “Why did the model predict A?”. An established 
method for arriving at such explanations is SHAP (Shapley Additive 
Explanations) [35]. SHAP values indicate how the feature values of the 
input have caused the model to make a certain prediction, in comparison 
to the average prediction. For example, the average prediction of a 
regression model that predicts the NOC, where the output can take any 
value between 1 and 5 contributors, is about 3 contributors. This 
average is also referred to as the base prediction. From this base value, 
feature values are assigned positive SHAP values if they made the pre-
diction higher, and negative SHAP values if they made the prediction 
lower. For example, a SHAP value of 0.2 for a feature indicates that the 
predicted NOC is 0.2 higher due to that feature value. Adding all positive 
and negative SHAP values together with the base value, yields that 
profile’s prediction. 

Counterfactual explanations are example data points which have a 
different prediction from the input data point [25,27,28,31,36–51]. By 
highlighting the differences between these instances, the user could 
derive how the original instance could have been predicted differently if 
certain input features had different values. As such, counterfactuals 
answer the question “Why did the model not predict B?”. In this paper, we 
present a counterfactual method that is suitable for practical problems 
that show strong correlations between the features, such as in NOC 
prediction. 

The alternative outcome of the counterfactual is referred to as the 
target of the counterfactual [36–51]. To help the user relate this new 
prediction as a possibility for the original input, the counterfactual must 
be similar to the input. This ‘similarity’ is most commonly measured by 
difference between the input and the counterfactual [37–43,45–48,52]. 
Most methods use L1 or Manhattan distance, which corresponds to the 
sum of the absolute differences in the feature values [37,38,40–42,46, 
48]. Alternatively, the similarity of a counterfactual can be measured by 
the number of differences in feature values in comparison to the input 
[36,37,40,42,44–48,50,51]. 

In summary, we regard a counterfactual useful if it is:  

– Valid: it has the target outcome.  
– Proximal: it has minimal distance to the input.  
– Sparse: it has minimal number of feature differences with regards to 

the input. 

Counterfactuals can either be created by choosing instances from the 
training data [45,53], or by artificially sampling them [37–42,46,47, 
49–51]. The main advantage of presenting a training data point, is that it 
is a real-life example. Training data can for instance consist of real 
person’s DNA profiles, which are realistic data points. One study dem-
onstrates how to create counterfactuals from the training data, though 
they rely on the assumption that there are inherently sparse counter-
factuals in the training set (with less than 2 feature differences) [45]. As 
the authors point out, this method will most likely fail on more real-life 
datasets which can be thinly populated. The most similar counterfactual 
might still be widely different from the input that you are comparing to. 
Sampling-based approaches usually do not suffer from this problem as 
they simulate an abundance of new data in close range to the input 
[37–42,46,47,49–51]. The issue with such sampling-based methods is 
realism. As the samples are often generated by randomly changing 
feature values, or by combining instances, they might be infeasible. For 
example, consider a machine learning model that decides whether a 
person is eligible for a loan. A generated instance in this context might 
be a 20-year-old person with 15 years of working experience as an ideal 
candidate for a loan. Such examples are of no value to the user as they do 
not represent real-life situations. A counterfactual example must be a 
plausible data point to be valuable to the user. 

There have been some attempts to create more plausible counter-
factuals. These often assume that features are independent. For example, 
the distance to the training data can be measured to see if the found 
counterfactual is close to the realistic training data [37]. Similarly, the 
sampled feature values can be limited to user-defined ranges, or ranges 
derived from the training data [39,41]. The issue with our previous 
example is that age and working experience are correlated, and the 
combination of the feature values is highly unlikely. None of the pre-
viously discussed techniques take correlation into account. 

Some efforts have been made to handle correlated data. However, 
these methods require the user to model the relationships between all 
features [40,42]. Though several studies have brought up the issue there 
should be a way to handle correlated features [39,40,54,55], no method 
has been published that inherently adapted this in a way that is viable 
for real-life data, without the need to manually model feature relation-
ships. To the best of our knowledge, we are the first to develop a method 
that is intrinsically suitable for real-life datasets with correlated fea-
tures, while presenting sparser counterfactuals than those taken from 
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the training data. 
Finally, presenting counterfactuals in a visual way is regarded as 

helpful to users. Most counterfactual methods for tabular data present 
the comparison of the input and counterfactual in a table [37,40–42,44, 
45,47,53,56], or in natural language [48,57,58]. This does not clearly 
communicate the magnitude of the feature value differences between 
these instances. With a visual approach, communication of these mag-
nitudes can be improved [59]. Though some previous visualizations 
were developed for counterfactuals [46,51], it was unclear for which 
audience these were fit and how well they worked for those users. 
Furthermore, no visualization has incorporated feature attributions with 
counterfactuals, which could be beneficial to form a complete picture of 
the prediction [51,59]. 

1.3. Contribution 

With this paper, we aim to demonstrate the value of XAI to the field 
of forensic science by applying it to a real-world use case. We generate 
explanations for individual predictions of the NOC to a DNA profile, 
which can be applied to any type of machine learning model. To that end 
we used a slightly modified version of an existing machine learning 
model that we trained on an expanded dataset. The original model was 
developed by van der Linden and coworkers [21]. The explanations 
consist of SHAP values and a counterfactual example in a compound 
visualization which we have found to be the first explanation that unifies 
these techniques. We also implemented a new method for finding real-
istic counterfactuals (ReCo), which to the best of our knowledge is the 
first technique that automatically handles correlated data, yet finds 
sparse counterfactuals. Lastly, we have created a new realism metric 
that scores counterfactuals on the plausibility of their feature 
combinations. 

2. Materials and methods 

2.1. Data analysis and sampling 

We used a dataset from a previous study by Benschop et al., con-
sisting of 590 PowerPlex® Fusion 6C (PPF6C) profiles, either from a 
single donor, or from a mixture of up to 5 donors [21]. The mixtures 
were formed from 1174 different single donors that were mixed in 
various proportions and using various amounts of DNA to create profiles 
that are regarded representative of real casework. The ground-truth 
NOC was therefore available. Each profile x was characterized by 19 
features consisting of allele counts, allele frequencies and peak heights 
such that x = {x1,…, x19}. These are all numeric variables which can be 
found in more detail in Supplementary Table 1. 

The original dataset was expanded with 5000 samples simulated to 
ensure a higher density of samples in the feature space. In a development 
version of the statistical library DNAStatistX [60], realistic profiles can 
be generated by using the same model that is used for calculating 
weights of evidence. DNAStatistX implements an algorithm to calculate 
the Maximum Likelihood Estimate which is largely based on the source 
code of the probabilistic genotyping system EuroForMix [15]. This 
program was used to generate factors such as peak height, degradation, 
and mixture proportions within ranges derived from the original dataset. 
Note that elevated stutter peaks were not simulated. However, the 
probability of drop-in was set quite high at 0.05 by which the simulated 
DNA profiles could include additional peaks, not belonging to one of the 
donors, as can occur under casework circumstances. In Supplementary 
Table 2, the exact parameters can be found. With these parameters in 
place, the genotypes are generated randomly based on Dutch population 
frequencies [61]. To ensure that all donors have at least some of their 
alleles observed in the generated profile, we chose to set the requirement 
that each donor must have an LR of at least 1000 when computed using 
DNAStatistX. Since the generated profiles were simulated before the 
features were extracted, a well-fitting probability model could be used to 

generate as plausible as possible profiles. As the used features are 
strongly correlated (see Supplementary Figure 1), and not as well 
studied as the DNA profiles, it would make sampling in a later step more 
difficult [68,69]. 

Simulating DNA profiles that are generated using capillary electro-
phoresis techniques is challenging and require a careful examination. To 
ensure that the simulated DNA profiles appropriately reflect the ground 
truth samples, we compared the features that were extracted from the 
simulated 5000 data points to those from the original dataset of 590 
instances. In Supplementary Figure 2 and 3, we observed some dis-
crepancies in variation between the two datasets. With further analysis, 
about half of the newly generated features appeared to have been drawn 
from a different distribution as compared to the original dataset (see 
Supplementary Figure 4 and 5, and Supplementary Table 3). For 
instance, the TAC and MAC values of the sampled data appear to be 
slightly higher, implying neater, easier to interpret data or perhaps more 
drop-in. On the other hand, the variation in allele counts and peak 
heights is larger, adding more diversity in the data. Because of these 
discrepancies, we tested the value of the simulated data in a bench-
marking study, which demonstrated that the model performs better once 
trained on the combined dataset of the original 590, and simulated 5000 
samples together (see Supplementary Table 4 and Supplementary 
Figure 8 and 9, in comparison to Supplementary Table 5 and Supple-
mentary Figure 6 and 7). 

2.2. Machine learning model 

The machine learning model for NOC estimation used in this study is 
described in [21]. In that previous study, the prediction of the NOC was 
treated as a classification problem, f(x) = y, where x is an input profile 
consisting of the 19 features, y represents the possible NOC output 
y ∈ N1 ≤ y ≤ 5, and f is a random forest classifier (denoted RFC19) 
[21]. 

Since the NOC outputs of the model are ordinal, meaning that there is 
an inherent order between the output categories, the problem could 
benefit from being tackled with a regression model. In this way, we can 
penalize a wrong prediction more if it is further away from the ground- 
truth; a prediction of an NOC of 4 is more wrong than an NOC of 3 when 
the profile has an NOC of 2. After a short benchmarking study with a 
default random forest regressor (see Supplementary Figure 6 - 9 and 
Supplementary Table 4), we concluded that a regression model has the 
potential to achieve more accurate predictions. The regression model in 
combination with the larger dataset even improved performance on the 
profiles that originated from the original dataset (see Supplementary 
Table 6). This shows that the model performs well on real profiles, and 
not just on the simulated ones. 

Explanations can also benefit from using regression, as the classifi-
cation approach ignores the ordinal relation between the outputs, which 
is apparent to the user. With regression the output contains decimals 
such that y ∈ R1 ≤ y ≤ 5. This value can give an impression of certainty 
of the prediction, as a value close to an integer (e.g., 3.1) indicates a 
more confident result than a value that lies on a threshold between two 
integers (e.g., 3.4). 

In this study, we used the regression model trained on the expanded 
dataset (denoted RFR19_merged) as we find it most intuitive for this 
problem. Note that the XAI method will be applicable independent of the 
type of machine learning model, though we recommend regression for 
ease of interpretation. 

2.3. Explanation goals 

The explanation should answer two main questions [25,38,39]:  

1. What were the main reasons for the model to reach the current prediction?  
2. With which feature changes could the model have arrived at a different 

prediction? 
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These questions fit with the scenarios that DNA experts are faced 
with when analyzing the output of the machine learning model, and 
deciding on the NOC. The first question can best be answered by an 
explanation of what features of the profile contribute most to the pre-
diction [62], for which we deem SHAP suitable. For the second question, 
a counterfactual explanation demonstrating what changes in this profile 
would lead to a different prediction is best fit. 

2.4. Requirements counterfactual explanations 

To develop the most suitable counterfactual method, we derived a 
list of requirements that it must accommodate (see Table 1 and Sections 
1.2 and 2.3). 

Given possible future improvements to machine learning modeling, a 
model-agnostic method is preferred. In this way, the same explanations 
can be generated regardless of the underlying algorithm. 

Most existing counterfactual methods assume a binary classification 
problem, meaning that there are only two possible outcomes. The 
counterfactual target then automatically becomes the outcome that was 
not reached in the current prediction. In our problem however, the range 
of possible outcomes is 1–5. In an example where the NOC is predicted to 
be 2, certain users might be interested in a counterfactual target NOC of 
1, while others prefer 3 or 4. We therefore let the user pick the target 
through an interactive prompt. 

It should be possible to generate a counterfactual for any input. If the 
most similar counterfactual example is very different from the input 
profile, that shows a limitation of using the dataset in this way. This is 
not inherently bad; it could even provide the user some insight in how 
the model works. We have designed counterfactual targets to be integers 
between 1 and 5 to match directly with the NOC that DNA experts must 
report. Since the model in this study uses regression, we consider in-
stances with a rounded-off prediction that match the target to be valid 
counterfactuals. 

We would like the input- and counterfactual profiles to differ in a 
small number of their features. This sparsity is encouraged to prevent 
users from experiencing cognitive overload. We also know that humans 
pick explanations in a biased way, meaning that if many options are 
available, only a few will be selected and the rest ignored [26]. This 
would not paint an accurate picture of the differences between the 
profiles; therefore, a small number is regarded better. 

For the distance between the input and counterfactual, we first 
analyzed the underlying data. The distance function used should be 
catered towards the problem [38]. As our dataset has outliers, and most 
features are not normally distributed (see Supplementary Figure 4 and 
5), L1 distance is most appropriate. We also scale with each feature’s 
range to minimize the influence of features with different ranges, vari-
ations, and distributions [37,39]. The distance measure is shown in 
Equation 1. 

d(x, x
′

) =
1
n

∑n

i=1

1
R̂i

|xi − x
′

i| (1)  

Where R̂i represents the range of the i-th feature, x the profile to be 
explained, and x′ the counterfactual profile. We divide by n, the number 

of features (n = 19 in this study), such that the score lies between 0 and 
1, independent of how many features a profile consists of in the data. 
This score can also be used for categorical variables by replacing 
1
R̂i
|xi − x′

i| with I[xi ∕= x′

i]. 

The requirements discussed so far have been well-covered in the 
literature. For realism, there is not such a proper definition. Within the 
problem of NOC estimation, it is essential to present the user with data 
points that are plausible. None of the sampling methods discussed in 
Section 1.2, are automatically suitable for datasets with correlated fea-
tures, as they would produce unlikely feature combinations. For 
example, a TAC of 150 is impossible in combination with a MAC of 2 for 
this kit (from which 23 loci are used in this study), even though these are 
both normal feature values when looking at the feature distributions. 
Instead, we utilize the training data which inherently consist of realistic 
instances. 

2.5. Realistic Counterfactuals (ReCo) 

To fulfil all previously defined requirements, we developed an al-
gorithm called Realistic Counterfactuals (ReCo). Instead of generating 
data and then filtering instances that are infeasible with respect to the 
training data, ReCo starts with the training instances and forms them 
into sparser counterfactuals. ReCo therefore consists of two parts: First, 
the most suitable counterfactual training instance is found. Second, that 
counterfactual training instance is made sparser by applying a filter. 

2.5.1. Finding the most suitable counterfactual training instance 
From the input profile x and its prediction f(x) = y, where f can be 

any machine learning model, the user defines a target prediction y′ ∕= y. 
ReCo then finds all instances x∗ from the training data with the target 
prediction f(x∗) = y′. 

ReCo then finds the optimal set of instances with regards to sparsity 
and proximity using multi-objective optimization. By minimizing both 
objectives simultaneously, we find non-dominated instances. These are 
depicted by the filled green crosses in Fig. 1. What this entails is that for 
each of these instances, there exists no better alternative; there cannot 
be an improvement for one objective, without getting a worse score for 
another objective [37]. As we intend to present a single counterfactual, 
we select the median instance x’ from this set which balances the two 
scores most equally as highlighted by the circled data point in Fig. 1. 

The advantage of this approach is that additional objectives could be 
added if deemed important in the future, and the selection from the set 
can be adjusted if a certain score is preferred over another. Objectives 

Table 1 
Requirements for the counterfactual explanations with their definitions.  

Requirement Definition 

Model- 
agnostic 

Can be applied to any model 

Interactive Target output can be chosen by the user 
Valid Target output must always be reached 
Sparse Has minimal number of features differing between input and 

counterfactual 
Proximal Has minimal distance between input and counterfactual 
Realistic Has plausible combinations of feature values in counterfactual  

Fig. 1. The filled green crosses represent data points that are non-dominated; 
they have good scores for both d(x, x∗) as defined in Eq. 1, and fd(x, x∗)

which represents the number of feature differences between profiles x and x∗. 
For both metrics, lower is better. The circled instance will be chosen as it is the 
median of the set of non-dominated instances. 
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can also be compared without any normalization. 
The counterfactual instance x′ is part of the training data, making it a 

realistic data point to present. However, such an instance likely has 
many different feature values as compared to the input profile; it is not 
sparse. Moreover, not all of these differences are relevant to arrive at the 
target prediction as it is simply an example. ReCo tackles both issues by 
applying a filter to the found counterfactual instance, selecting only the 
most relevant differences from the input. 

2.5.2. Filtering the counterfactual training instance 
Filtering is done using the following five steps. Table 2 shows an 

illustrative example.  

1. Start by finding the set of features that have different values between 
the input xi and the counterfactual x′

i. The size of this set can be a 
maximum of n, the number of features of which an instance consists. 
In Table 2, there are three features in this set. 

differences = {∀i ∈ ℕ ∧ 1 ≤ i ≤ n|xi ∕= x′
i } (3)    

2. Compute the SHAP values for both the input instance and the 
counterfactual instance, per feature in differences. Subtract the SHAP 
values of the input instance from the SHAP values of the counter-
factual instance. This set is then sorted by the elements’ magnitudes. 
This gives us an impression of which changes in feature values from 
the input instance to the counterfactual instance have impacted the 
change in prediction the most. The biggest positive or negative SHAP 
changes have likely made the most impact on the change in predic-
tion. In Table 2, the SHAP change of Feature 1 is largest, while it is 
the smallest for Feature 3. 

SHAP change = {SHAP(x′i) − SHAP(xi)|∀i ∈ differences } (4)    

3. To make the counterfactual instance sparser in its differences to the 
input instance, we need to remove the irrelevant feature differences. 
If the prediction goes down from the input to the counterfactual, or 
becomes more negative, we expect the features with negative SHAP 
change to be most relevant. On the other hand, positive SHAP 
changes are defined to be misaligned with the change in prediction in 
this case. This is listed in the bottom row of Table 2; the change in 
Feature 2 is misaligned. We also include very small SHAP changes 
such as for Feature 3. These feature differences are most likely not 
relevant for the counterfactual prediction, and could therefore 
possibly be filtered from the counterfactual instance. 

misaligned =

{
{ ∀i | SHAP changei > − ϵ }, if f (x′) − f (x) < 0
{∀i | SHAP changei < ϵ }, otherwise

(5)    

4. The next step is to check if the feature differences with misaligned 
SHAP change can be removed. ‘Removing’ in this context means that 
the feature value of the counterfactual x′

i is replaced with the feature 
value of the input instance xi. We will denote xi as the counterfactual 
with feature i filtered. If the prediction of this filtered counterfactual 
f(xi) stays the same as the target y′, it is labelled as irrelevant_diff. 

irrelevant diff =
{
∀i ∈ misaligned

⃒
⃒f
(
xi) = y′

}
(6)    

5. Once removing the next feature difference causes a different 
outcome than the target prediction, filtering stops. All irrelevant 
feature differences are filtered from the counterfactual so that the 
final counterfactual is defined as: 

counterfactual = xi
⃒
⃒∀i ∈ irrelevant diff (7)   

2.6. Realism score 

We present a novel realism score which can be used to evaluate 
counterfactuals. This score assesses whether a generated counterfactual 
has feasible combinations of feature values in relation to the training 
data. It is calculated as follows:  

1. When the dataset is loaded, a list is generated for each feature that 
ranks all other variables according to their correlation with the 
feature.  

2. When a counterfactual is found, each feature that has a different 
value than the original instance is assessed. We will refer to this 
feature under investigation as Fdiff .  
a. The feature’s top correlated variable Fcorr is looked up from the list 

in step 1.  
b. We check that the value Fdiff = fdiff in combination with the value 

Fcorr = fcorr exists in the training data. If so, add 1 to the realism 
score. If not, add 0.  

c. If Fcorr was also part of the set of features that differs between the 
original and the counterfactual instance, we return to step a, and 
pick the next most correlated feature with Fdiff to be Fcorr. In this 
way, the score is always grounded in the values of a real instance.  

d. The total realism score is normalized by dividing by the number of 
features that were scored; the number of times we ran through 
steps a and b. 

Please refer to Fig. 2 for an example. In this case, instances only 
consist of a TAC and a MAC value. The counterfactual only has a 
different TAC value from the original instance, so we need to check 
whether that generated TAC value is plausible. The most highly- 
correlated feature to the TAC is the MAC. We assess if the combina-
tion of TAC = 30 (from the counterfactual) with MAC = 6 (from the 
input) exists in the training data. Since it does not exist, the realism score 
is incremented by 0. The MAC feature is not part of the differences be-
tween the counterfactual and the original, so the algorithm terminates. 
The final realism score for this counterfactual is 0. 

2.7. Set-up quantitative evaluation ReCo 

To determine the quality of ReCo, we have assessed it on the six 
metrics defined by the requirements described in Section 2.4. As our 
method is model-agnostic and valid by design, and interactivity is a 
built-in feature, we chose to focus on the three remaining metrics of 
sparsity, proximity and realism. Proximity to the training data is often 
used as a score of realism, measuring the distance between the coun-
terfactual and the closest training instance. However, we argue that our 
realism metric defined in Section 2.6 reflects this purpose better. We will 

Table 2 
Example of how a counterfactual is filtered. The input instance has a prediction 
of 4 contributors, and the counterfactual has a prediction of 3 contributors; the 
direction of the change in prediction is negative. Features 1–3 are the features 
that differ between the input and counterfactual. Their SHAP values are calcu-
lated for both the input and the counterfactual. For Feature 1, the SHAP change 
is negative, matching the direction of the change in prediction. In contrast, the 
SHAP change in Feature 2 is positive, and the SHAP change in Feature 3 is small. 
These last two differences in feature values are therefore likely not relevant to 
the counterfactual prediction, and thus are candidates to be filtered.   

Feature 1 Feature 2 Feature 3 

SHAP value in input 0.300 -0.200 0 
SHAP value in counterfactual 0 -0.150 -0.001 
SHAP change -0.300 +0.050 -0.001 
Candidate to be filtered from counterfactual? No Yes Yes  
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present both for comparison. 
These metrics are used to compare ReCo against three other coun-

terfactual methods [40]. As constraints, we have chosen methods that 
are model-agnostic, suitable for regression, and suitable for numeric 
tabular data. WhatIf is our own implementation of Google’s What-If tool 
for searching the closest counterfactual from the training data [53]. 
DiCE random is a sampling approach that generates counterfactuals from 
the input by randomly sampling different feature values until the target 
prediction is reached [40]. For this implementation, we used default 
parameters and set the target prediction between target − 0.5 and target +
0.4. The algorithm automatically takes the minimum and maximum 
values of each feature into account. Lastly, we compare with DiCE genetic 
for which we also used the default parameter values. Its implementation 
is inspired by GeCo [42], as it generates counterfactuals using a genetic 
algorithm. The algorithm starts from training instances with the target 
prediction and evolves them to form new samples. When generating a 
new instance, two training instances are used as its parents. This means 
that for each feature, it can either take the value of instance 1, instance 2 
(crossover), or a random value is assigned (mutation). Through selection 
of the best instances with respect to sparsity and proximity, a counter-
factual is found. 

For all these methods, the target is set to the second most likely 
prediction. 

2.8. Set-up visualization 

We incorporated both SHAP values, and the counterfactual example 
generated by ReCo into a single figure so that the user can understand 
the main reasons for the original prediction, along with how a different 
outcome could have been achieved. The following requirements were 
considered from conferring with the consulted DNA experts in addition 
to some requirements already expressed in the literature [63,64]. 

First, the visualization is consistent. Each profile is presented in the 
same format to help users reach some level of familiarity with the 
visualization over time. The feature values are plotted on a normalized 
scale to get a visual representation of how large a value is compared to 
the range of possible values. Secondly, the explanation is contextualized 
with informative text about the current prediction, and the conditions of 
the two parts of the explanation. In this way, the user understands for 
which conditions the explanation holds. By encoding the two separate 
explanations with different color palettes, a distinction is made between 
the SHAP values and the counterfactual. Only the counterfactual dif-
ferences will be shown with arrows as they indicate changes. Thirdly, 
the used color palettes are specifically chosen to be accessible as they are 
distinguishable to the color-blind [65]. Lastly, some interactivity is 
introduced by enabling the user to choose the counterfactual target. 

2.9. Set-up user study 

It was important to evaluate the explanation from the perspective of 

the end-users, an aspect often brushed over in XAI studies [56,59]. The 
explanation was specifically designed for DNA experts within the 
context of NOC estimation, so we invited DNA experts who use a NOC 
machine learning model in casework at NFI. In total, eight experts 
participated. 

The evaluation was set up around two aspects; the first was to see if 
users can gain insight into the predictions of the model, and by exten-
sion, if that information helps regulate the users’ trust. The second 
aspect concerned how user-friendly the explanation is. Examining 
whether users can more accurately determine the NOC was out of scope 
for this study as this is the experts’ initial introduction to any XAI 
implementation, and as such require more training and experience to 
properly use it as a decision-making tool. The data on which the 
explanation is based are also not fully understandable to users as many 
of the features are too abstract or unclear in how they relate to NOC 
estimation. 

For the exercise on trust, we selected two exemplary profiles for two 
use-cases. Profile 1 was fairly simple for the model to predict, where we 
intended the explanation to increase trust in the prediction. Profile 2 was 
difficult for the model, leading to an erroneous prediction. In this case 
the explanation was meant to make the user doubt the prediction. We 
measured trust with two questions:  

1. Which number(s) of contributors do users consider?  
2. Do users think that the prediction is correct? 

As a baseline, we asked these questions when users were only pre-
sented with the prediction. Then we asked them once again after a state- 
of-the-art explanation, and once after our visualization. If users had 
more trust in the prediction after seeing the explanation, we expected 
them to be able to pinpoint the NOC more (choose less options), and 
believe the prediction is (more) correct. For profile 1, we compared our 
visualization against a SHAP force plot [66]. As SHAP is designed for 
users to understand “why a model makes a certain prediction”, we 
deemed it fit for the goal of increasing trust. For profile 2, we compared 
our visualization against a counterfactual table, as this representation is 
common for counterfactuals [37,40–42,44,45,47,53,56]. As counter-
factuals show how a different prediction can be reached, it can decrease 
trust in the original prediction if that change seems small or irrelevant. 
Since the scale of the survey was small, we allowed users to motivate 
their answers. 

Before these questions were asked, all types of explanations (SHAP 
force plot, counterfactual table, our visualization) were introduced with 
a video, figure and bullet points to ensure that the participants under-
stood the presented information in each explanation. The most impor-
tant features and their interpretation were presented as well. With a 
qualification test, we checked that the participants had completed the 
introduction. 

Within the section about user-preference, we asked users to pick 
their favorite explanation based on three aspects: ease of use (how easily 

Fig. 2. Example of a counterfactual that receives a realism score of 0; the proposed counterfactual contains a feature combination that could not have resulted from a 
DNA profile. 
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users could find the relevant information), appeal (how nice users 
thought it was to use), and completeness (how well users could form a 
total picture of the prediction). The aim was to determine if the par-
ticipants had an absolute preference for any of the explanations they had 
seen. 

3. Results and discussion 

This work presents two distinct products: a new counterfactual 
method ReCo, and a visualization combining the results from ReCo with 
SHAP values. We show the results of the quantitative evaluation of 
ReCo, after which we present the visualization and the corresponding 
user study results. 

3.1. Quantitative evaluation ReCo 

The obtained scores on the test data for the four methods can be 
found in Fig. 3. 

The WhatIf method could be seen as a baseline, using only existing 
training examples as counterfactuals. The realism score and distance to 
the training data are therefore perfect, but it suffers from many feature 
differences and a higher distance score due to the sparsity of the training 
data. 

While DiCE random performs best in terms of the number of feature 
differences, and quite well on distance, it performs poorly on realism 
and is the furthest away from the training data. This is because DiCE 
random starts from the original instance and perturbs a random feature 
until the target prediction is reached. This strategy helps keep the 
number of feature differences and the overall distance score low, but 
does not account for the relations between the features. This makes this 
method inappropriate for our dataset. 

An improvement can be seen when the genetic version is used (DiCE 

genetic); the median realism score is quite high, and the distance to the 
training data is practically zero. We can attribute these better scores to 
the fact that this approach combines existing profiles from the training 
data. However, this crossover step still mixes the feature values of two 
instances into one, which can create unlikely feature combinations. The 
mutation step has a similar effect. It is interesting to see that this algo-
rithm leads to significantly larger distances and more feature differ-
ences. It could be that by combining training instances, the newly 
formed amalgamation becomes more generalized for the target predic-
tion and as such, moves further away from the input. One final aspect to 
note about both DiCE techniques is that they failed to generate a 
counterfactual for about 2% of the test inputs, thereby failing our 
desideratum for validity. 

ReCo scores relatively well on all four metrics. As the method first 
finds the closest and most sparse training instance, this is an inherently 
realistic starting point. Because both sparsity and distance are opti-
mized, in contrast to WhatIf, which only minimizes the distance, the 
obtained counterfactuals are already sparser. Then because of ReCo’s 
filtering step, which removes any irrelevant differences, these two scores 
can go down further. The reason that we can filter so many differences 
without moving too far away from the training data and producing 
unlikely feature combinations, could be explained by several factors. 
First, the filter removes small or counterintuitive differences that are 
likely insignificant to the model. These limited differences will not cause 
the counterfactual to move too far away from the training data. Sec-
ondly, the features that are filtered could have little discriminatory 
power between the original and target output. This could be because 
their values are similar for instances of the original and target prediction 
in the training data. For example, if for both the original and the target 
NOC, the median of a feature in the training data is equal, it possibly has 
little discriminatory power between the two outcomes. 

As a final remark, we note that the current realism metric is strict; it 

Fig. 3. Quantitative evaluation of ReCo in comparison to WhatIf, DiCE random and DiCE genetic on four different metrics; sparsity measured by the number of 
feature differences (A – lower is better), proximity measured by the distance to the input (B – lower is better), the distance to the training data (C – lower is better), 
and realism (D – higher is better). 
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does not check if a feature value is close to known combinations in the 
training data, the values must match 100%. In theory, it would be more 
appropriate to compute the total probability density of the counterfac-
tual feature values. As this is infeasible, the current realism score ap-
proximates this idea. 

Although the current implementation of ReCo is used for regression, 
it can be used for classification as well. In this case, we do not analyze if 
SHAP values are aligned with the direction of the change in prediction, 
but we determine if changes in feature values correspond to more positive 
SHAP values for the target class. However, we argue that regression is 
more fit for the domain of NOC estimation as the SHAP values are more 
informative. For example, a negative SHAP value in a regression context 
means that the corresponding feature value fits with a lower NOC, 
whereas within the context of classification it means that the feature 
value does not fit the predicted class. With the latter, it is unclear if that 
value fits better with a higher or lower number of contributors. 

3.2. Visualization 

The visualization for the explanation of a single DNA profile pre-
diction is depicted in Fig. 4. 

The top line informs the user about the current profile and what the 
model’s prediction is. We show the raw and rounded prediction to give 
the user an impression about the certainty of the prediction. The top line 
further includes a summary of what information can be found in the 
figure. On the left-hand side, all 19 features and their values as defined 
by this profile are listed. These same feature values also appear in the 
right section as normalized grey bars, aligned with the feature values on 
the left. 

The SHAP values are visible in the left section; red bars mean that the 
feature values pushed the prediction down, while blue bars represent 
feature values that pushed the prediction up. Starting from the base 
prediction of 3, adding the SHAP values together forms the current 
prediction of 3.22. In this case, there are twelve feature values influ-
encing the decision, though only about six or seven are clearly visible. 
We intentionally only added the SHAP value legend at the bottom as we 
do not want the users to focus on the exact values, but on the direction 
and relative size instead. For this prediction, the model observed this 

profile’s higher values of MAC, loci with 5 or 6 alleles, and peaks below 
800 RFU (the stochastic threshold that applies to the data in this study) 
as indicators for more contributors. More alleles per locus indeed imply 
more donors, and lots of low peaks indicate that more donors may have 
contributed than expected based on the number of detected alleles. For 
example, alleles might have dropped out as a result of low quality or 
quantity of the DNA profile. In contrast, the TAC and peak height vari-
ation at locus vWA have low values that typically occur in lower-order 
mixtures. 

To generate a counterfactual explanation for this profile, we have set 
the target at two contributors. As often a minimum NOC is reported it 
might be interesting to be able to rule out a NOC of two, and instead go 
with the current prediction of three contributors. Within the application, 
the user can first explore the factual explanation consisting of the fea-
tures and SHAP values before choosing their desired counterfactual 
target. The counterfactual that ReCo has found for this explanation has 
six lower feature values as denoted by the purple arrows. If any features 
would need to increase their value, the arrow would be olive-colored. 
The arrows demonstrate all the changes that are required to reach the 
target prediction. Three of the arrows relate to the three feature values 
that we discovered were pushing the prediction up (MAC, number of loci 
with 5 or 6 alleles, and number of peaks below the stochastic threshold 
of 800 RFU). By adjusting these values, along with the other three 
feature values, a lower prediction can be achieved. It seems that to reach 
this target of two contributors, many features need to change, and by a 
large extent. This can provide an indication that the model is fairly 
certain that the NOC is not two. 

Note that the explanation gives information about the model, not 
about the underlying data. This means that even though the model 
might be certain about a prediction, it can still be incorrect. The user 
should be aware that the explanations only give insight into how the 
model makes decisions. 

3.3. User study results 

In total, eight answers to the survey described in Section 2.9 were 
collected from DNA experts. One of these responses had to be eliminated 
as they failed the qualification tests. Because of the limited size of the 

Fig. 4. Visualization for the explanation of a profile with 3 contributors, that was correctly predicted to have 3 contributors (profile 1 in the user study). Its feature 
values are listed on the left and plotted on the right. SHAP values are depicted on the left with red and blue bars, and a counterfactual example generated by ReCo for 
a prediction of 2 contributors is shown on the right with arrows. 
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group, we treated the obtained results as a subjective collection of the 
participants’ opinions. The results of the first exercise about trust can be 
found in Fig. 5. It shows whether users gained or lost trust in the pre-
diction after seeing the two explanations for profile 1 and 2, in com-
parison to seeing no explanation. For profile 1, the intended goal was to 
increase users’ trust in the prediction, while for profile 2, we hoped to 
decrease their trust. Though the results in Fig. 5 show only minor dis-
crepancies between each comparison of our visualization against either 
the SHAP force plot and CF table, we could derive more nuance from the 
participants’ motivations. 

When the model is fairly certain about the prediction (profile 1, 
presented in Fig. 4), seeing any explanation makes some users (3/7) both 
gain more trust in the correctness of the prediction, and in pinpointing a 
certain NOC. This can be partly attributed to the fact that the feature 
values of the profile were first presented with the explanations. As such, 
a few participants (2/7) became more certain of a certain NOC because 
of the feature values, not because of what the SHAP force plot was trying 
to communicate. SHAP can induce some confusion seeing that one user 
gained less trust in the correctness of the prediction and considered a 
wider range of contributors. The way that the bars of the SHAP force plot 
work against each other, was not intuitive for some users (2/7) as they 
expressed difficulty with understanding it. For the visualization, most 

users (4/7) noted that a lot of change was required to reach the pre-
diction of two contributors, and therefore dropped this outcome from 
consideration. One user thought that the visualization presented similar 
information to reach a prediction of two contributors as they would have 
thought, thereby increasing their trust in this explanation. 

When the model is uncertain or incorrect (profile 2, presented in  
Fig. 6), the counterfactual table had no effect on how users perceived the 
correctness of the prediction, while the visualization made some users 
(2/7) trust the prediction less. Note that this is in comparison to only 
seeing the prediction without any explanation, so the fact that this 
prediction is close to the boundary of three and four contributors is 
already considered. From the additional textual input, the majority of 
the users did mention that they started to doubt the prediction (5/7), but 
not all of them changed their answer. The remarks that participants 
made with the visualization related most frequently to the fact that only 
minor changes are required to change the prediction to 3; changing the 
TAC from 98 to 96. DNA experts would not make a different decision 
depending on such a small difference in TAC value, they always use 
ranges. As such, the experts began to doubt whether the model made a 
correct decision. One participant even noted that for a TAC of 98, there 
can be 2 artefact peaks and that therefore they thought the prediction 
was incorrect. 

Fig. 5. Results from the user study trust exercise. For profile 1 (top), it shows the influence of seeing a SHAP force plot explanation in comparison to our visual-
ization, on trust in the correctness of the model prediction, and on the users trust to pinpoint the NOC. For profile 2 (bottom), it shows the influence of seeing a 
counterfactual (CF) table explanation in comparison to our visualization, on trust in the correctness of the model prediction, and on the users trust to pinpoint the 
NOC. Less, same and more trust are in relation to the answers given after only seeing the prediction without any explanation. 
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The visualization in general made users more confident to pinpoint 
the NOC as they considered less options than with the SHAP or coun-
terfactual table explanations (more trust to pinpoint NOC in Fig. 5). 

In short, it seems that our visualisation (Figs. 4 and 6) provides some 
insight into the model, which influences how users view and trust the 
prediction. The users might even feel more equipped to make a narrower 
estimation of the NOC. Our visualization seems to be less confusing than 
a SHAP force plot, and more informative than presenting a counterfac-
tual in a table. Note that because the study was limited, these results are 
an indication of the participants opinions and might vary once repeated, 
or revisited with a larger group of people. We expect that the users’ 
impression might change once they gain more experience with these 
explanations. 

As a final remark, we want to re-iterate that the current features with 
which the DNA profiles are presented, are not fully understandable to 
the users. We aided the experts during this user study by providing 
simplified explanations for groups of features, but ultimately the fea-
tures should be intuitive on their own. 

The results of the second task about user preferences can be found in  
Table 3. Our compound visualization scored the best out of the three 
options, though some users had a preference for SHAP for its ease of use. 
The experts who preferred our visualization, mostly chose it because of 
its visual representation, the amount of available information and 
because the information was easy to find. 

3.4. Future work 

In this study, an existing machine learning model was used [21]. XAI 

was applied to this machine learning model which we slightly modified 
and trained on an expanded dataset. As the DNA experts we consulted 
have indicated, the features on which the explanation are based are still 
difficult to comprehend. It also seems that the features of the machine 
learning model that was used can be further investigated on redun-
dancy, perhaps re-designed and expanded upon. For one, to ensure that 
they are understandable to users on how they relate to the NOC esti-
mation task, and secondly that they are as informative to the machine 
learning models as possible. With any machine learning model, it is 
advised that the features are made comprehendible to the users prior to 
implementing the explanations in forensic DNA casework, as this will 
further enhance understanding the model’s predictions. 

Though the explanations work for both classification and regression, 
we recommend using regression for NOC estimation as the interpreta-
tion of the SHAP values becomes more informative. It might benefit the 
NOC estimation problem to develop multiple binary models that 
differentiate between just two options; one for 1 or 2 contributors; one 
for 2 or 3; etc. This could create more specialized models, and thus more 
specific explanations. We refer to an implementation of such a structure 
for selecting the most suitable eye-surgery option for a patient [67]. 

Another direction of interest is to further develop the proposed re-
alism metric. For example, by introducing some matching tolerance with 
values from the training data, or by comparing more feature combina-
tions than with the top correlated variable. It could also be incorporated 
into the fitness function of a genetic sampling algorithm. In this way, the 
algorithm can optimize on generating counterfactuals with realistic 
feature combinations as well. 

4. Conclusion 

This study describes the research and design of an application of XAI 
for predictions of the number of contributors of DNA profiles which can 
be used for any type of machine learning model. The explanation con-
sists of SHAP values and a counterfactual example incorporated into a 
compound visualization, which we believe is the first visualization to 
unify these two components. With a user study, the explanation has been 
evaluated by a small group of forensic DNA experts. From their 

Fig. 6. Visualization for the explanation of a profile with 3 contributors, that was incorrectly predicted to have 4 contributors (profile 2 in the user study). Its feature 
values are listed on the left and plotted on the right. SHAP values are depicted on the left with red and blue bars, and a counterfactual example generated by ReCo for 
a prediction of 3 contributors is shown on the right with arrows. 

Table 3 
Results of user preferences. The numbers represent how many users selected 
each type of explanation they preferred in terms of ease of use, appeal and 
completeness.   

Ease of use Appeal Completeness 

SHAP force plot  2  2  1 
Counterfactual table  0  0  1 
Compound visualization  5  5  5  
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observations, the visualization seems to provide some insight into the 
predictions of the model. We further present a method for finding 
realistic counterfactuals, called ReCo. ReCo creates a counterfactual by 
first obtaining the most suitable training instance, and then filtering the 
irrelevant feature value differences between this instance and the input. 
This produces counterfactuals that have fewer feature differences than 
by using training examples, and are more realistic than counterfactuals 
generated by sampling-based approaches. To the best of our knowledge, 
ReCo is the first method that can handle correlated data automatically, 
but still creates sparse counterfactuals. Additionally, a realism metric 
was defined that scores how plausible counterfactuals are in terms of 
their feature combinations. 

Finally, we hope that this study encourages other implementations of 
machine learning to incorporate an XAI-component, especially when the 
users of such models are not familiar with the underlying concepts of 
machine learning. 

The code is available at github.com/martheveldhuis/ReCo. 
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