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Abstract: In this work, we present the development of a 4D-Ensemble-Variational (4DEnVar) data
assimilation technique to estimate NOx top-down emissions using the regional chemical transport
model LOTOS-EUROS with the NO2 observations from the TROPOspheric Monitoring Instrument
(TROPOMI). The assimilation was performed for a domain in the northwest of South America
centered over Colombia, and includes regions in Panama, Venezuela and Ecuador. In the 4DEnVar
approach, the implementation of the linearized and adjoint model are avoided by generating an
ensemble of model simulations and by using this ensemble to approximate the nonlinear model
and observation operator. Emission correction parameters’ locations were defined for positions
where the model simulations showed significant discrepancies with the satellite observations. Us-
ing the 4DEnVar data assimilation method, optimal emission parameters for the LOTOS-EUROS
model were estimated, allowing for corrections in areas where ground observations are unavailable
and the region’s emission inventories do not correctly reflect the current emissions activities. The
analyzed 4DEnVar concentrations were compared with the ground measurements of one local air
quality monitoring network and the data retrieved by the satellite instrument Ozone Monitoring
Instrument (OMI). The assimilation had a low impact on NO2 surface concentrations reducing the
Mean Fractional Bias from 0.45 to 0.32, primordially enhancing the spatial and temporal variations in
the simulated NO2 fields.

Keywords: 4DEnVar; variational ensemble-based data assimilation; top-down emission parameters
estimation; TROPOMI; nitrogen dioxide

1. Introduction

Chemical Transport Models (CTMs) are used to simulate and forecast air quality and
to understand contaminant dynamics in the atmosphere. CTMs are multivariate models
that incorporate hundreds of gaseous species and aerosols, as well as their related reac-
tions [1]. In CTMs, nonlinear and stiff chemical interactions occur at time periods that are
often significantly shorter than transport time scales, making accurate modelling of the
environment challenging [2]. Persisting uncertainties associated with emission parameters
and numerical approximations of certain model dynamics prevent the exact simulation
of air pollutants concentration from CTMs [3–5]. Accuracy in emission inventories is fun-
damental for proper simulations, inventories are generally outdated for the study region
and principally have been generated through bottom-up approaches at city levels [6–8].
Data Assimilation (DA) is the mathematical technique that integrates observations into
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numerical model simulations, alleviating the model’s weaknesses by improving parameter
and state representation and estimation [1]. Historically emission inventories for modelling
at regional scale uses a top-down approach [9,10], the present study assimilates satellite
data using the 4DEnVar technique to estimate from this approach emission factors for
the LOTOS-EUROS CTM.LOTOS-EUROS is an open-source CTM used for a wide range
of applications around the world [11,12], to support scientific research, regulatory pro-
grams, and air quality forecasts [13]. LOTOS–EUROS has been included in various model
intercomparison studies and has been tested for the assimilation of ground-based data
and satellite observations [14]. This model has been implemented for DA in studying the
dynamics particulate matter in the city of Medellín and the Aburrá Valley assimilating
ground measurements from the local air quality monitoring network [15]. Despite previous
applications of CTMs in Colombia (e.g., [16–19]), difficulties with the use of CTMs in the
tropical Andean region abound, as recently reviewed [20].

Data assimilation methods for CTMs are inspired mainly by meteorological DA expe-
riences [1]. Many successful applications have demonstrated the benefits of assimilation
for CTMs, either to produce re-analysis fields and forecasts, or with the focus on the
improvement of accuracy of model inputs (initial conditions, boundary conditions, emis-
sions) [21]. A common characteristic of these applications is that in regional air-quality
simulations, the influence of initial conditions quickly fades over time, as emissions and
lateral boundary conditions primarily determines the model fields [22].

Techniques in DA follow variational or sequential approaches. The variational ap-
proach optimises a cost function that calculates the mismatches between the model and the
observations. In contrast, the sequential approach is progressively updated, reconciling the
state using the uncertainties defined for the simulated state and the observations [23–25].
A considerable drawback of variational DA is the requirement for a direct model adjoint
representation, prohibitive for large-scale models (∼106–109 state elements), and very
expensive to maintain [1]. Hybrid approaches tackle this problem aiming to take ad-
vantage of the characteristics of each method [24,26]. Ensemble-based approaches avoid
the construction of tangent linear and adjoint representations of the forecast model (see,
e.g., in [27]), which is interesting for low-budget operational scenarios. The variational
ensemble-based data assimilation combines the benefits of ensemble data assimilation
(flow dependence and flexibility) with the variational techniques perceptive to solve the
optimisation problem. Emili et al. [27] give details on the four-dimensional ensemble-based
variational methodology (4DEnVar) and its application to highly nonlinear reactive species
in chemical transport data assimilation and state that the emissions are often the most
uncertain, but also most influential parameters.

Data assimilation experiments with the LOTOS-EUROS CTM mainly used an Ensem-
ble Kalman Filter (EnKF) approach, with most of the applications over Europe [28–30].
In Colombia, the LOTOS-EUROS CTM has been used since 2017 [31], including studies on
the assimilation of observational data from surface network using a Localised Ensemble
Kalman Filter (LEnKF) technique for particulate matter forecasts [15]. Recent applications
elsewhere use variational approaches with the LOTOS-EUROS model to estimate volcanic
ash emissions [32,33]. Jin et al. [34] proposed and adjoint-free 4DVar technique to assimilate
satellite data into the LOTOS-EUROS model and improve the simulation of dust transport
from the Gobi Desert to Chinese cities.

The present work uses the variational ensemble-based technique for data assimila-
tion proposed in [35] known as 4DEnVar, which emerged in Numerical Weather Predic-
tion. 4DEnVar combines ensemble information with the variational method, avoiding
the explicit development of the observation and forward model adjoint operators or its
linearisation [36]. The LOTOS-EUROS CTM was used to simulate NO2 concentrations
over Northwest South America, modifying the simulations through 4DEnVar satellite data
assimilation for emission parameter estimation. The increasing availability of observations
from both satellites and ground-based instruments allowed reducing the uncertainty of at-
mospheric chemistry models in many applications [27]. The reason to incorporate satellite
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retrieved NO2 data is to improve the numerical models and induce parameter estimation
capabilities that could overcome the complex tasks of emission inventory developing.
The variational technique helps assimilate the large number of observations produced
from each satellite overpass, iteratively searching for the optimal values of the quantity
of interest.

NO2 is a very reactive compound, emitted as part of the family of the nitrogen oxides
NOx (NO + NO2) from anthropogenic (industrial activity, transport and biomass burning)
and natural (NOx soil emissions and lighting) sources. NO2 lasts in the atmosphere from
a few hours in summer to several days in winter for higher latitudes. During festival
conditions it can act as an ozone precursor [27]. Different low altitude orbiting sensors
have been monitoring NO2 concentrations in the atmosphere since 1996 to the present (the
Global Ozone Monitoring Experiment (GOME, 1996–2003), GOME2A (2007–), GOME2B
(2013–) [37,38], the Scanning Imaging Absorption Spectrometer for Atmospheric Cartog-
raphy (SCIAMACHY, 2002–2012) [39] and the Ozone Monitoring Instrument (OMI) [40]).
Each instrument generation has improved different data characteristics in the measured
spectra, solving ratios and signal-to-noise problems and also increasing spatial and tempo-
ral resolution. The most recent NO2 low altitude polar orbiting satellite measurements for
this study region comes from the TROPOMI (TROPOspheric Monitoring Instrument [41])
instrument, a spectrometer sensing ultraviolet (UV), visible (VIS), near- (NIR) and short-
wavelength infrared (SWIR) to monitor Ozone, Methane, Formaldehyde, Aerosol, Carbon
Monoxide, NO2 and SO2. Although the high levels of cloudiness in the area continue to be
a significant problem for retrieving pollutants, the high density of the TROPOMI observa-
tions allows the use of these data over the region [42], in turn the TROPOMI observations
have been applied in inversion studies, demonstrating the ability for tracking small-scale
pollution and emission sources [43].

This paper is organised as follows. Section 2 presents the LOTOS-EUROS config-
uration used for the experiment, followed by the TROPOMI satellite data description;
afterwards, the 4DEnVar mathematical formulation for the experiments and the emis-
sion uncertainties perturbation model that will drive an ensemble of CTM simulations
is explained and complemented with the mathematical development of the method in
the Appendix A. At the end of this section an overview of data used for validation is
presented. Subsequently, in Section 3, the results of the 4DEnVar assimilation experiments
are described, focusing on estimating the optimal emission factors and the impact in the
model simulations. Finally, Section 4 summaries the results and discusses the usability of
this kind of data assimilation technique for future applications.

2. Methodology

We aim to illustrate our contribution by presenting the large scale system model
simulations of chemical dynamics in what we called Tropical Andes Region TAR [20].
To deploy a data assimilation system, we expand the problem of parameter estimation
by explaining the location of points-of-interest and their relevance for the application.
Afterwards, we present details on the satellite data taking into account that the scarcity of
TROPOMI observations led to a challenging data assimilation technique implementation
that required data preprocessing and the use of kernels to integrates the concentration
of pollutants into a vertical profile. We further extend the data used for validation to
that available on board of the AURA Satellite for Ozone and Nitrogenous species. At the
end of this section, we formulate and explain the 4DEnVar Data assimilation technique.
The evaluation metrics can be found in the Appendix A.

2.1. LOTOS-EUROS Simulations

LOTOS-EUROS was used to simulate the troposphere and study NO2 dynamics.
A nested two domain configuration was used (Figure 1) to increase the study resolu-
tion domain. Boundary conditions were obtained from CAMSIRA (CAMS Interim Re-
Analysis [44]) for the outer (D1) domain at a 0.27° horizontal resolution with a size of
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(2957 km × 2668 km). The inner domain (Dcol), with a grid resolution of 0.09° (∼10 km)
and with a extent of 1981 km × 1541 km, encompasses the continental Colombian territory,
western Venezuela, almost all of continental Ecuador, the north of Peru and a small fraction
of the Brazilian Amazon.

Figure 1. Illustration of simulation domains and vertical extent. (Left) Simulation nested domains. (Right) A conceptual
state representation in the gridded model and the column being sampled by the observation operator that maps the emission
parameters to the observation spaceHk(δe) (see Section 3).

Table 1 summarises the simulation model settings. The meteorological input was
obtained from the European Centre for Medium-Range Weather Forecasting (ECMWF)
with a 0.07 deg ∼7.8 km of horizontal resolution and 18 levels of vertical resolution. We
used updated land cover and topography data [45]. The topography was updated to the
GTMED2010 global digital elevation model (Spat.res: 0.002°), while land cover data were
updated to the LCCCI2009 (Land cover from the Climate Change Initiative), on a resolution
of 0.3 km × 0.3 km.

Table 1. LOTOS-EUROS configuration settings for the simulations performed in this work.

Preliminary comparison periods 16 January–1 February 2019

Assimilation periods 1–3 February 2019

Metereology ECMWF; Temp.res: 3 h; Spat.res: 0.07◦ × 0.07◦

Initial and boundary LOTOS-EUROS (D1). Temp.res: 1 h.
conditions Spat.Res: 0.09◦ × 0.09◦

Anthropogenic emissions EDGAR v4.3.2 Spat.res: 10 km × 10 km

Biogenic emissions MEGAN Spat.res: 10 km × 10 km

Fire emissions MACC/CAMS GFAS Spat.res: 10 km × 10 km

Landuse CCLI. Spat.res: 1 km × 1 km

Topography GMTED2010. Spat.res: 0.002°× 0.002°

Domain 1 (D1) Lat × Lon [−8.5◦, 18◦] × [−84◦, −60◦]

Domain Colombia (DCol) Lat × Lon [−4.55◦, 13.27◦] × [−79.80◦, −65.94◦]

Due to the lack of a regionally detailed and updated emissions inventory, emissions
input data were obtained from the Emission Database for Global Atmospheric Research
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(EDGAR v.4.3.2) (https://edgar.jrc.ec.europa.eu/, accessed in January 2019). Depositions
were calculated using the DEPosition of Acidifying Compounds (DEPAC) module [46].
More details about the parametrisation of the model for this experiment can be found in
Manders et al. [14]

2.2. TROPOMI Satellite Data

NO2 satellite data products were obtained from the TROPOMI TM5-MP/DOMINO
offline data from (www.temis.nl) [47] and reprojected to the grid of the LOTOS-EUROS
model (0.09◦ × 0.09◦) simulation to facilitate graphical comparison. Each grid cell was
filled with a area-weighted sum of contributions from pixels that (partly) overlap the cell.
A model simulation of the satellite retrieval could be derived from the multiplication of
the average kernel with the satellite product concentration column of the LOTOS-EUROS
concentration to produce simulations of the gridded data. The average kernel integrates the
concentrations over height, as the sensitivity of the satellite instrument to tracer densities is
height-dependent. The model profile is convoluted with these averaging kernels, provided
in the satellite download data product to simulate the retrieval for a correct model and
satellite retrieval products comparison [48]. The averaging kernels are implemented to
the model output at the time of the nearest satellite overpass, which is usually at 18:30
UTC [49]. A selection on the pixel quality flag (qa) was been applied, averaging over the
pixels filtered for (qa) > 0.55. This contrasts with [42] who recommend using pixels with a
qa value of 0.52 or above for data assimilation and model comparison studies.

For data assimilation, it is essential to get estimations of the accuracy of the observa-
tions to construct the observation error covariance matrix, the error from the observations
is used to construct a diagonal matrix R because the error values at this stage are corre-
lated only with the observed state in the already remapped grid. The inaccuracies in the
TROPOMI observations result from the retrieval method’s three stages that are a previous
step in the preprocessing of the satellite information from manipulating the crude light
spectroscopy data to have the NO2 vertical column density. The stages that add errors
in this process are the quantification of slant columns, the separation of the stratospheric
and tropospheric components of slant columns, and the tropospheric air mass factors
multiplication [42]. The overall error is provided per pixel in the TROPOMI data product.

2.3. Data for Validation

To validate the results, two sources of information were used: The first corresponded
to version 4.0 of the Nitrogen Dioxide (NO2) Standard Product (OMNO2) from the
Ozone Monitoring Instrument (OMI) on board of the AURA satellite since 2004. OMI
is the precursor of the TROPOMI instrument and the two NO2 measurements have
been compared previously [42,50]. In this work, OMI data were used to calculate the
tropospheric NO2 vertical column density (VCD) time-series, which can be found at
(https://disc.gsfc.nasa.gov/datasets/OMNO2, data accessed in May 2021). The over-
pass time of the instrument is at 18:00 UTC also in a synchronous orbit. OMI’s spa-
tial footprint is approximately 13 km by 24 km for the nadir pixels. Spatial resolu-
tion reduces as the swath edge approaches (pixel size rises). The second, consisted of
data from the Sistema de Alerta Temprana del Valle de Aburrá (SIATA), a network of sen-
sors that offer high-quality measurements for different pollutants in the atmosphere
across the Aburrá Valley, monitoring species such as O3, SO2, PM10, PM2.5, and PM1.
The network has seven ground-based sensing stations for NO2. SIATA data is available
(https://siata.gov.co/descargasiata/index.php/index2/, data accessed in June 2021).

3. 4DEnVar Formulation

The 4DEnVar methodology is used for estimating uncertain parameters. In our ap-
plication, the emissions are the major sources of uncertainty, and they are parameterised
by introducing multiplicative correction factors. Let δe ∈ <n with n the number of un-

https://edgar.jrc.ec.europa.eu/
www.temis.nl
https://disc.gsfc.nasa.gov/datasets/OMNO2
https://siata.gov.co/descargasiata/index.php/index2/
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certain parameters, represent the unknown LOTOS-EUROS emission correction factors.
The emissions ek at time k are calculated according to

ek = êk ( 1 + δe ) (1)

with êk as the nominal emissions at time k from the emission inventory.
We want to estimate the emission correction factors δe using all the observations avail-

able. Let yk ∈ <m with m the number of observations at time k, related to the parameters δe
via the nonlinear observation operatorHk. This operatorHk includes the LOTOS-EUROS
model to relate the emission correction factors with the concentrations, and the satellite
kernel to map the column concentrations to the retrieval satellite representation:

yk = Hk(δe). (2)

The correction factors δe are estimated by the minimisation of a cost function. This
is a function of the n unknown parameters over a time window defined from k = 0 to
k = T that measures the differences between the satellite observations and the model
representation of these observations:

J (δe) =
1
2
‖δe− eb‖2

B−1 +
1
2

T

∑
k=0
‖dk‖2

R−1 , (3)

where ‖ · ‖ is the L2 norm, eb is the first guess of the emission correction factors, B is the
n× n background error covariance matrix, R corresponds to the m×m observation error
covariance matrix and dk is the innovation vector:

dk = yk −Hk(δe), (4)

The basic idea of the 4DEnVar method is to estimate the sensitivities of the observations
with respect to changes in the parameters using directly the computation of the LOTOS-
EUROS model instead of using its tangent linear model and its adjoint. This is done
by generating an ensemble of forward model simulations that is used to obtain a linear
approximation of the operatorHk [1,51]. Perturbations of the parameters are used to create
this ensemble. For the details of the methodology, the reader is referred to [36].

In ensemble-based data assimilation, the background covariance matrix B can be
approximated by the ensemble sample covariance matrix

B = Xb · XbT
, (5)

with Xb ∈ Rn×N equal to

Xb =
1√

N − 1
[δe(1) − δe, δe(2) − δe, . . . , δe(N) − δe], (6)

where δe(i) is the i-th emission correction factor ensemble member, δe is the mean emission
correction factor among all the ensembles, and N is the ensemble number.

The cost function (3) can be rewritten as a function of a new parameter δXens using Xb

as Control Variable Transform (CVT):

δe = XbδXens (7)

This idea is also known as the preconditioning step in optimisation problems (see
in [36]). This method improves the conditioning of the optimisation problem.

The choice of the emission correction parameters to be estimated and the quantification
of their uncertainty is critical in designing the assimilation system because this should
reflect the most significant uncertainty of the CTM model. As chemical species can be
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sensitive to physical and chemical processes, the primary uncertainty source could differ
depending on the species of interest.

In order to minimise (3), the gradient of the cost function is required. The expression
for the gradient of the cost function in terms of the parameters δXens can be shown to
be [36]

∇J (δXens) = δXens +
T

∑
k=0

YT
k · R

−1 · (dk − Yk · δXens), (8)

where
Yk = Hk · Xb ≈ 1√

N − 1
(Hk(δe(1)))− yk, . . . , (Hk(δe(N)))− yk. (9)

and Hk is the linear approximation of the observation operator Hk. Once the gradient
has been computed, the parameters can be improved using some gradient-based updat-
ing scheme. After a number of iterations, a new ensemble of model simulations can be
generated using perturbations of the parameters around the latest estimate of these pa-
rameters, and these ensembles can then be used to approximate the observation operator
more accurately.

For cases where the number of parameters is not too large, there is an alternative
algorithm. By setting the gradient of the cost function equal to 0, the following system of
equations for δXens can be obtained:

(I−
T

∑
k=0

YT
k · R

−1 · Yk) · δXens = −
T

∑
k=0

YT
k · R

−1 · dk (10)

δXens can now be solved from this system of equations. This procedure can also be repeated,
starting with the latest estimates of the parameters, by generating a new ensemble of
model simulations through perturbing these parameters, and by computing a new linear
approximation of the observation operator. For large scale problems, this implementation
is not attractive from the computational point of view and a gradient-based minimisation
algorithm based on Equation (8) is to be preferred. This is the implementation that has
been used in this paper.

After the successive implementation of one of the techniques just described, the param-
eters δe can finally be calculated using (7). The input to this procedure is the CTM model,
the satellite observations, and the parametrisation of the algorithm (e.g., window length,
inner loops and convergence criteria) and the output is the set of optimised parameters.

Figure 2 shows the setup of the 4DEnVar assimilation process proposed for the first
days of February 2019, A simulation of 15 days over 16 January to 1 February was per-
formed before data assimilation to identify the locations where emission parameters re-
quired improvement. Data assimilation was performed over individual days (2 and 3 Febru-
ary). Each assimilation was preceded by a 1-day spin-up period, where the simulated
fields stabilised and became independent of the initial conditions. During assimilation,
the observations (satellite data available from the TROPOMI instrument at 13:30 local
time) were incorporated to estimate the value of the initial emission factor parameters.
To find the proper parameters, the optimisation procedure consisted of an outer/inner loop
iteration to reach the convergence criteria or the maximum number of iterations defined.
The iteration procedure was terminated when the maximum iteration number was reached,
or when the minimal error criteria was met.

To perform the assimilation window, the 4DEnVar weighted an ensemble of 40 model
trajectories generated from perturbing the emission factor parameters, based on how much
the ensemble matched the observations and the background state. From this, based on its
minimisation procedure, a limit of 15 was set for the number of iterations for the inner loop
of the 4DEnVar implementation step. Incorporating more than 15 iterations demonstrated
no reduction of the cost function. The 4DEnVar result (known as analysis in many data
assimilation scenarios) is the model value for the emission parameters updated in the
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previously chosen positions. The performance metrics used in this work are summarised
in Appendix A.

Figure 2. Data assimilation (4DEnVar) procedure for emission parameter estimation. Simulations were run for 15 days
(16–31 January) prior to the start of the data assimilation process. In the window 1–3 February, the ensemble was propagated
without assimilation and in this new ensemble space the assimilation was performed for 2–3 and 3–4 February.

4. Results and Discussion

This contribution assumes the problem of dealing not only with an under representa-
tion of the boundary conditions for modelling but also with the scarcity of data. Previous
section addressed the model and the data assimilation technique. TROPOMI observations
flag considerations are used to compare it appropriately with the simulations of the model.
Afterwards the 4DEnVar TROPOMI assimilation uses the simulated columns for Nitrogen
Dioxide and the vertical profiles comparison. The impact of the estimation over major cities
in Colombia and the relationship between surface and satellite data is addressed looking
for the proper establishment of the benefits of this technique.

4.1. Comparison of TROPOMI Observations with LOTOS-EUROS Simulated NO2
Column Concentration

Figure 3 shows an example of the regridded satellite data, presenting how the NO2
footprint demarcates the principal Colombian cities. The right panel of this Figure shows
an example of these quality flags qa values. A qa for the retrieval is provided for each
pixel recovered, this number might be something between 0 and 1, which is mainly
determined by the presence of clouds above the pixel. qa value > 0.75 cloud-covered
scenes partially snow/ice covered scenes, errors, and problematic retrievals. qa value > 0.5
adds good-quality retrievals over clouds and over scenes covered with snow/ice, useful
for assimilation and model comparison studies. For this comparison, the satellite quality
flag was configured in 0.75 to avoid artefacts that do not necessarily correspond to NO2
concentrations.

To see the effects due to the quality filter over this region, the Figure 4 shows the
comparison of the TROPOMI output in the first left column, and the simulation kernel
transformation for two different grid resolutions (0.09° and 0.5°) and the scatter plot be-
tween the tropospheric column density from the satellite and the LOTOS-EUROS simulated
column density, showing a large divergence between the satellite simulated data and the
output from the model.

A qualitative comparison of the simulated and observed NO2 column densities was
conducted to detect locations where the TROPOMI observations differed significantly from
the LOTOS-EUROS simulations to focus the attention therein for the data assimilation
emission estimation experiment. Figure 5 shows a comparison between the 15-day average
satellite observations (16 January–February 2019) with the LOTOS-EUROS NO2 column,
as well as the EDGAR NOx emission inventory on the right image.
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Figure 3. TROPOMI NO2 column measurements. (Right) TROPOMI Offline level 2 data for the overpass over Colombia on
2 April 2019. (Center) As before, zoomed over Bogotá and Medellí, the two largest (population-wise) Colombian cities.
(Right) Quality flag values for the corresponding data.

Figure 4. Illustration of the TROPOMI data downloaded before the re-gridding. (Upper) Data filtering at quality flag
threshold of 0.5. (Lower), data filtering at quality flag threshold of 0.75. (Left column panels) TROPOMI data retrievals for
the two qualitiy flags. (Center) TROPOMI data projected to LOTOS-EUROS grids at resolutions of 0.09° (center) or 0.5°
(center-right). (Right) Scatter plots at comparing TROPOMI vs. LOTOS-EUROS pixel values for the resolution of 0.09°).

The NO2 concentration in the model and the observations presented high values over
the main urban centres, but the amplitude of the simulated NO2 concentrations often
differed. Simulated values over the densely populated area of Venezuela that includes
Caracas, Valencia, Barquisimeto and Maracaibo (a region known as the oil refinery corridor)
showed much higher values in the model simulation output than the satellite observations,
and in consequence, showed the highest root mean square error (RMSE; lower-left in
Figure 5). A Mean Fractional-bias (MFB; lower-centre in Figure 5) calculation showed a
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broader perspective over the domain, revealing that the model underestimated the NO2
in the south except for some isolated, overestimated points over the southern Colombian
Amazon. The model also underestimated NO2 concentrations along the Magdalena River
valley in the north of Colombia.

Figure 5. (Top left and centre) Fifteen days mean (16 January–1 February 2019) of the TROPOMI tropospheric NO2 vertical
column and the corresponding LOTOS-EUROS simulations. Purple areas correspond to areas where no data was available,
mainly due to the cloudiness presence over the area for all that time. The dashed yellow squares correspond to two locations
selected to update emissions that are not principal cities but considerable concentration spots seeing from the remote
sensing instrument to qualitatively detect the right place to estimate unknown or uncertain parameters. (Bottom left and
centre), root mean square error and modified-fractional-bias between retrieval and simulation. (Right), EDGAR V4.3.2
anthropogenic NOx emissions, 2012.

4.2. Parameter Location and Perturbation Model

The discrepancies between the LOTOS-EUROS model and the observations were
mostly attributable to the uncertainty in model emission parameters [15,34]. For the region
of interest, the inventories are not accurate, that is the reason why accurate emissions
for specific components such as PM2.5 were estimated recently for example for cities
like Medellín using an EnKF DA technique [15], nevertheless for the coarse domain the
inventories and other pollutants the emission inventories remain uncertain. Different
perspectives have been taken into account for the emission parameter estimation problem
using satellite information and data assimilation variational (4DVar) techniques ([52–56],
and also from the sequential (EnKF, OI) techniques [57,58].

Twenty seven locations were selected for perturbing the model’s parameters in order
to generate a subspace of model ensemble trajectories to estimate appropriate values driven
by the observations; black squares in Figure 6 denote the areas selected over the initial
nominal emission parameter value. These correspond not only to the major cities, but also
to other areas of interest denoted in the previous Figure 5, one is the main oil refinery in
Colombia located in the central part of the country in the Magdalena River valley and
the other an open-pit coal mine mining in northern Colombia near the Venezuelan border
that presented anomalous concentration values in a rural area. The emissions for these
27 locations were updated using the 4DEnVar data assimilation.

Each perturbation location consisted of a 3 × 3 buffer of 0.09° grid cells. The emission
factor perturbation value multiply the concentrations homogeneously in the area where the
estimation of the parameter was made. The reason for this buffer of 9 grids is that TROPOMI
samples the downwind plume, which might be 1–2 grid cells away from the source.
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Figure 6. Locations selected for emission parameter adjustment via 4DEnVar data assimilation. The 27 locations indicated
in the (right) panel, corresponding primarily to large urban centres, were chosen for parameter adjustment based on
the magnitude of the differences observed in Figure 5. (Left) Location of Colombia’s largest oil refinery (near the city of
Barrancabermeja). The Drummond open-pit coal mine, a non-urban site whose emissions were poorly represented by the
default emissions inventory.

4.3. 4DEnVar LOTOS-EUROS Data Assimilation Using TROPOMI Data
4.3.1. Simulated NO2 Columns

Figure 7 shows the NO2 columns concentrations from the LOTOS-EUROS before
assimilation (free run) and the TROPOMI retrieved product for the 2 of February 2019.
Although the satellite data presented gaps (white areas) due to the quality filter, it was
possible to observe a difference between the model simulation and the observation from
the remote instrument. The dashed rectangle marks a relatively flat area in Venezuela
where good quality observations, due to low cloud cover, are present and where the model
overestimates the satellite product denoting areas to update the emission parameters.
Other cities like Bogotá, Medellín, Barranquilla and Quito also present differences between
LOTOS-EUROS and the satellite information. An open-pit mining operation in northeastern
Colombia stands out in the satellite observations as a prominent NO2 source point, as do
small cities along the gulf of Maracaibo.

The left panel of Figure 8 shows the emission factors obtained with the 4DEnVar tech-
nique, showing the estimated values of the 27 emission parameters location selected based
on the preliminary simulation over the domain. In the north part of the domain, mainly in
the Venezuelan dashed area, adjustment factor values below 1 and overestimation of the
model relative to the satellite observations. In some areas in the centre of Colombia, the re-
gion with the highest population density, the analyses suggest a model underestimation.

The 4DEnVar analysis output is shown in the centre mosaic in the Figure 8. This graphic
shows the NO2 column that the LOTOS-EUROS model simulated using the updated emission
parameters. The image on the right shows the MFB between this analysis step and the back-
ground condition; here it is possible to appreciate the spatial over/underestimations between
both scenarios resulting from the updated initial parameter values. The area’s values in the
dashed square region in the previous Figure 6 needed to reconciliate the LOTOS-EUROS
simulations with the TROPOMI observations, with values < 1 indicating LOTOS-EUROS
over-estimations, and values > 1 indicating underestimations (observations > simulated
values), suggest a reduction of (0.2–0.6) in some areas of interest. With the new emission
factors, the emissions within the rectangle were strongly reduced, leading to simulated lower
magnitude NO2 columns in better agreement with the TROPOMI simulations. Curaçao
shows a plume with a high east-west trend in the LOTOS-EUROS that is not appreciated
in the TROPOMI data for this day and where we did not put an update emission. Is it
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possible to see in the analysis simulation how the same plume appears indicating that the
model not was modified for this location. The value of the parameters and the comparison
of the results is presented with the MFB in the right panel, using the emissions estimated
to propagate a new forward run (4DEnVar analysis simulated retrieval) and the free run.
Locations where the emission adjustment does not help presumably, are the locations where
the satellite information is not complete, such as the Andean mountain corridor and regions
for which the emission are too low in the current inventory and no matter the parameter
estimated suggests changes, they are not evident.

Figure 7. Comparison of the tropospheric NO2 column estimation from LOTOS-EUROS simulations (left) and TROPOMI
retrievals (right) for 2 February 2019. The dashed rectangle highlights the sizable discrepancies between the two sources
observed over the main Venezuelan cities (Caracas, Valencia, Barquisimeto, and Maracaibo).

Figure 8. NO2 emission factor adjustment. (Left) Estimates of the emission factor adjustment (δe) over the 27 locations
(Center), simulated TROPOMI NO2 columns from the analysis run using the newly-estimated emission factors. (Right)
Mean Fractional Bias in NO2 column between LOTOS-EUROS simulations with the adjusted emission factors (analysis),
and the simulations with the default emissions factors (background).

4.3.2. Vertical Profiles

Figure 9 shows a comparison between the assimilated and non-assimilated vertical
NO2 concentrations at latitude 10.255° for four different time steps (1 a.m., 7 a.m., 1 p.m.,
7 p.m. UTC) during the second assimilation day (3 February 2019). This mosaic compares
the changes in the vertical profiles of this gas. This latitude corresponds to the locations of
the parameters with the highest emissions in Venezuela, originating in part from the high
concentration of oil refineries in the area. The non-assimilated scenario displays a higher
NO2 concentration than the assimilated scenario, it is evident how the plume partially
disappear for moments like at the 1 pm presumably due to the updating of emissions,
which conditions the intensity of concentrations in subsequent hours. The emission was
updated with the parameters estimated, suggesting for this location a decrease of the
emissions for the current time for the experiment. These results could be explained by the
fact that during the last ten years, there has been a dramatic reduction in oil production in
Venezuela due to the U.S sanctions, with an accompanying decrease in refining activity [59].
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The 2012 emission inventory used in this paper does not account for these geopolitical
ramifications. With these findings, it is advised that the rate of emission for this area is
adjusted based on the assimilation of satellite observations.

Figure 9. Transverse cut profiles for NO2 concentration over latitude = 10.255° for four different time points during the
assimilation window day (3 February 2019). The adjustment in emission parameters affected the simulated NO2 column
estimates at various heights, as well as the associated plume. Shaded grey denotes topography.

4.3.3. Impact over Major Cities

The 4DEnVar results have been evaluated in more detail for the cities of Medellín
and Bogotá (Figure 10). In the corresponding close-ups it is also possible to appreciate
the prevailing east-west 10 meter wind pattern comes from the ECMWF input wind fields
interpolated at the LOTOS-EUROS simulation grids. The TROPOMI retrieval is shown in
the two left columns, while the emission factors estimated are in the two right columns.

Figure 10. Comparison of the TROPOMI retrieval products for 2 February 2019 and 3 February 2019 with a zoom over
the two principal Colombian cities, Medellín and Bogotá. Right panels show the corresponding estimated values of the
emission parameters that suggest reduction in the emission for the two cities for the two assimilation days.

For the two assimilation days the change of the value of this new emission parameter
from the nominal value has an impact on the concentration fields as shown in Figure 11.
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The second assimilation day integrates the emissions being estimated as the new nominal
values to start the new assimilation window. Figure 11 shows the difference between the
background NO2 plumes and the retrieval with the estimated parameters. The 10 m wind
fields from the LOTOS-EUROS model are shown in the figures as well as the concentration
plumes. The magnitude reduction due to the emission update is shown for the assimilated
scenario reducing spatially the concentration along the flow trajectory.

Figure 11. LOTOS-EUROS free run and the analysis run generated from the 4DEnVar results with the Mean Fractional Bias
comparison for the 2 February 2019 (three first rows) and for 3 February 2019 (three last rows). For each of the situation the
zoom is made for Medellín and Bogot́. In the right column the statistics is used to quantify the impact of those changes.
The cyan color in the last MFB over Bogotá correspond to an absence of data from the gap between the two overpasses of
the satellite for this day.

Figure 12 shows the vertical cross sections for the city of Bogotá and Medellín for the
two assimilation days declared in the schematic of Figure 2 before assimilation and with
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data assimilation. Bogotá is located atop a high-altitude plateau where the prevailing NO2
transport occurs from east to west. The assimilation effect is noticeable in terms of the mag-
nitude of the concentration reduction in the plume transported in this direction. Medellín
is located in a deep valley (Aburrá Valley). Here the assimilation effect is noticeable in
terms of the magnitude of the concentration reduction inside the valley.

Figure 12. Transverse cut for NO2 concentration over latitude = 6.2518° for Medellín and latitude = 4.609° for Bogotá.
The emission parameter update has impact in the column of the model concentration output.

4.4. Comparison with SIATA Surface Observations and OMI Measurements

For the City of Medellín, surface measurements of NO2 are available along the valley
from the ground-based sensor network measurements from the Sistema de Alerta Temprana
del Valle de Aburrá (SIATA; Figure 13), with stations located mainly at the bottom of the
valley. The figure shows the mean of the concentration magnitude for all the available
stations with their standard deviation spread against the non assimilated and 4DEnVar
assimilated model output. The study period corresponds to one of comparatively low
atmospheric loads for NO2.

Figure 13. (Left) Time variation of hourly NO2 data for Seven station from the SIATA network of NO2 compared with the
no assimilated (green line) and 4DEnVar assimilated (red line) model output. Grey shaded area denotes de deviation from
the individual stations. Spatial distribution depicted with the red circles of the (Right) NO2 stations over the Aburrá Valley.
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Table 2 shows the MFB and RMSE and the Correlation factor comparison in the
assimilation period for the free run and assimilated propagation against the mean of the
observation network. For this location from the assimilation experiment, the estimated
emission parameter suggests an increase in the emission value (e > 1), which is appreciated
in reducing the MFB and RMSE statistic and increasing the correlation factor.

Table 2. Different statistics to quantify the change between the assimilated and non assimilated
output respect the surface observation in the Aburrá Valley.

Observation SIATA as Reference MFB RMSE Correlation

Free run −0.4520 7.3050 0.5485

Assimilation −0.3226 7.0464 0.5864

For this area the comparison was not too relevant in modifying the initial conditions
for the analysis value, because the TROPOMI information was not very significant for
the experiment period to promote a drastic update in the parameters. At the same time,
in Medellin’s vertical cut, the effect was more evident in the concentration of higher levels
that was seen in Figure 11. It was possible to see how the analysis tends to search the mean
value from the ground observation. No more NO2 observations were available around the
domain at the time of this study.

Comparisons were made against OMI measurements. Only data that were of excellent
quality (VCD Quality Flags of 0) and cloud screened (Effective Cloud Fraction 30 percent)
were included in the analyses. Figure 14 shows the OMI vertical column density, expressing
the “baseline” concentrations as the weighted average of all daily values for 2015–2019.
For all the cities, the magnitude of the concentration value simulated from the model
decreased approaching to the OMI magnitude. Different works have studied the effect of
assimilation of satellite retrieved NO2 data on emissions or Surface concentrations in a
global domain [57,60] pointing towards the ability to estimate emissions by assimilating
satellite observations that are taken only once per day over one place concerning with the
NO2 atmospheric life time during different times of the year. On another side regional
domain estimation studies like Skoulidou et al. [49], Wang et al. [61] orient our subsequent
emission experiments toward the interest of persistent emission estimation capabilities.

Figure 14. (Left), Comparison between the assimilated output and the OMI vertical column density for the February days
experiment. (Right), Maps showing 15 days of OMI tropospheric NO2 mean values gridded at a resolution of 0.1◦ by 0.1◦.
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5. Conclusions

A 4DEnVar methodology has been developed to combine TROPOMI satellite observa-
tions with LOTOS-EUROS regional CTM simulations for the northwest of South America.
This paper shows the viability of this method in dealing with a small number of highly
nonlinear reactive species such as NO2 in a control scenario.

Cities and municipalities in developing countries without local air quality and meteo-
rological networks can use this technique, that avoids the implementation of the adjoint
of the CTM, to estimate coarse emissions inventories. In this study, emission correction
factors defined as the uncertain parameters to be estimated multiply the nominal emis-
sion inventory.

Using the 4DEnVAR technique to assimilate the TROPOMI-NO2 columns, the spatial
and temporal concentration distribution of the NO2 fields improves with the modification
of those correction factors . The emission update has substantially enhanced the agreement
between the simulated and observed NO2 fields. These findings showed that TROPOMI
NO2 concentrations can be utilised to reconstruct spatial and temporal variable NO2
components, making it relatively simple to enhance temporal NO2 emission patterns in a
forward modelling setting.

Although the satellite data have not yet been exploited for extended periods due
to the high cloudiness, we have demonstrated how to use a 4DEnVAr data assimilation
technique, and how we can take advantage of the relationships between observed and
unobserved states of a chemical transport model to improve the model results. Adding
satellite information to the model makes it possible to estimate a coarse emission inventory,
which is also a good starting point for establishing higher resolution emission inventories
or improving boundary conditions for high resolution nested simulations.

The particular results from this case study suggest a decrease in the emission values
in notorious places like the refinery corridor in the Venezuela region, driven by the drastic
decrease in oil production over the last ten years.

In the future, we will refine the surface information, complementing the region’s
surface information with the satellite data and the meteorology from high resolution
mesoscale models such as WRF, to represent more accurately patterns, like we see in
deep-seated narrow valleys such as in Medellín. We will also improve the data assimilation
methodology with the implementation of localisation techniques to reduce the well-known
problems introduces by the use of a limited amount of ensembles.
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Appendix A. Performance Metrics

The results have been evaluated using two different metrics to compare the simulations
of the LOTOS-EUROS before and after assimilation with the validation data from the
ground sensors.

The mean fractional bias (MFB) normalises the bias for each model–observation pair
using division by the average of the model and observation before taking the sample mean:

MFB =
2
M

M

∑
k=1

(
yLE)

k − yo
k

(yLE)k + yo
k

, (A1)

The number of elements in the set is represented by M. The number of observations
from all valid monitoring station data for the comparison time period of interest is M,
the model simulation output is yLEi and the observation is yoi in this application. The MFB
has a range of−2 to +2 and has the benefit of preventing the bias from being dominated by
a few high-value observations/simulation combinations in the case of substantial changes,
such as those caused by a strong diurnal cycle [62].

The root mean square error (RMSE) represents the sample standard deviation of the
differences between predicted values and observed values (Equation (A2)). The RMSE
penalises a high variance, as it gives errors with larger absolute values more weight than
errors with smaller absolute values [63]:

RMSE =

√√√√ 1
M

M

∑
k=1

(
(yLE)k − yo

k
)2. (A2)

The correlation coefficient depicts the relationship between the values of one data
set (simulations) and the values of another data set (observations). A high number (ap-
proaching +1.0) indicates a strong direct link, while values around 0.5 indicate a moderate
relationship and values below 0.3 indicate a weak relationship. A significant inverse asso-
ciation is indicated by a low negative value (approaching −1.0), whereas values near 0.0
suggest little, if any, relationship.

Corr =
∑M

k=1

(
H(c)k − H(c)k

)
(yk − y)√

∑M
k=1

(
H(c)k − (Hc)k

)2 √
∑M

k=1(yk − y)2

(A3)

where the overline denotes a sample mean over the M elements of the validation set.
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