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a b s t r a c t 

Airlines operate their fleet of aircraft over a relatively long time horizon during which the realized 

stochastic demand has the potential to profoundly impact the airlines’ financial performance. This makes 

the investment in a fleet of aircraft a highly capital-intensive long-term commitment, associated with 

inherent risks. We propose an innovative three-step airline fleet planning methodology with the primary 

objective of identifying fleets that are robust to stochastic demand realizations. The methodology presents 

two main innovation aspects. The first one is the use of the mean reverting Ornstein–Uhlenbeck process 

to model the long-term travel demand, which is then combined with discrete-time Markov chain tran- 

sitions to generate demand scenarios. The second innovative aspect is the adoption of a portfolio-based 

fleet planning perspective that allows for an explicit comparison of different fleets, in size and composi- 

tion. Ultimately, the methodology yields for each fleet in the portfolio a distribution of net present values 

of operating profit across the planning horizon and a list of key financial and operational metrics per 

year. The robustest fleet can be selected based on the operating profit generating capability across dif- 

ferent realizations of stochastic demand. An illustrative case study is presented as a proof of concept. 

The case study is used to demonstrate the type of results obtained and to discuss the usefulness of the 

methodology proposed. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

.1. Airlines’ poor financial performance 

Airlines have low profit margins and consequently are among

he poorest performers when it comes to providing return on in-

ested capital (ROIC). For example, between 2004 and 2011, North

merican airlines annually returned 4.1% to their investors, which

s lower than the average weighted cost of capital (WACC) of 7.4%

1] . 

There are a plethora of reasons underlying this poor profitabil-

ty, which can be partially explained via Porter’s five forces model

2] : the bargaining power of suppliers (i.e. aircraft and engine

anufacturers, labor unions); bargaining power of buyers (i.e. pas-

engers); relatively easy market entrance conditions; regulation;

erce price competition due to the commoditization of air trans-

ortation; a fragmented industry structure; and problems with the

ir transport value chain [1] . 

Two other factors can be added to these five. The first is the

olatile nature of airlines operating profitability. The cyclical de-
� This manuscript was processed by Associate Editor I. Ljubic. 
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and and the inconstant fuel prices can significantly impact the

volution of year-to-year operating profits and could contribute to

 critical financial state of the airline or even bankruptcy [3] . The

econd factor to add is the fact that airline orders for new aircraft

end to be synchronized with years of high profit. Due to the lead

ime between the order and delivery of aircraft, these aircraft are

ften delivered in periods of downturn of the business cycle which

auses overcapacity [4–6] . 

The combination of all these factors results in a persistently low

rofit margin, an inability to meet return requirements (i.e. ROIC

ower than WACC), and a high risk of bankruptcy due to year-to-

ear volatility in demand and fuel prices. 

.2. The airline fleet planning problem 

Fleet planning is the most strategic long-term consideration in

irline planning and can profoundly impact the financial perfor-

ance and operational flexibility of an airline. The fleet planning

roblem involves the management of the fleet size and compo-

ition over time by deciding on matters such as: how many air-

raft to acquire, which aircraft types to acquire, when to acquire

hem, when to dispose them and decisions regarding leasing or

uying. These decisions are commonly addressed separately or se-

uentially, to produce a fleet planning plan [7] . Often, the fleet

https://doi.org/10.1016/j.omega.2019.08.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/omega
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2019.08.008&domain=pdf
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Nomenclature 

B Set of scenarios generated 

D Set of Monte Carlo simulations 

F Set of fleets in portfolio 

H Set of hub airports 

K Set of aircraft types 

M Set of OD demand matrices per year 

N Set of airports 

S Set of sample values 

Y Set of years in planning horizon 

Z Set of OD pairs 

planning decisions are closely tied to decisions on network de-

velopment [8,9] , which deals with the question on which markets

(i.e. origin-destination pairs) to serve and which routing network

to employ (e.g. hub-and-spoke or point-to-point). Investing in an

aircraft fleet is a highly capital-intensive long-term commitment

which bears inherent risk because the fleet is deployed across a

long-term planning horizon over which uncertainty will material-

ize, both on the revenue side (e.g. stochastic demand) as well as

on the cost side (e.g. fuel price volatility). Consequently there is a

need for airlines to have a robust fleet that is resilient and flexible

to this uncertainty in terms of profit generating capability. 

Numerous measures can be taken to achieve robustness to un-

certainty; revenue management and pricing models can be used

to favorably influence demand patterns; hedge contracts can re-

duce the exposure to fuel price volatility; and there is an increas-

ing trend towards aircraft leasing because of the flexibility bene-

fits and reduced up-front investment cost. Leasing comes at an op-

erational cost for the airline however, due to a compensation for

the incurred risk that is transferred to the leasing company. This

cost of purchasing flexibility from another entity could potentially

be avoided by focusing on robustness during the fleet investment

process by having the robustness built into the fleet composition

itself. This research presents an innovative methodology that aims

to identify fleets that are robust to stochastic demand realizations. 

1.3. Literature review 

1.3.1. Buying versus leasing 

A major consideration in fleet planning is whether to buy or

lease the aircraft in the fleet. In [10] , the authors address this as-

pect of the fleet composition problem by focusing on the optimal

lease/own mix for airlines that experience cyclical and stochastic

demand. Specifically, they propose a formulation for the cost trade-

off between owning an aircraft, which yields reduced capital cost

and increased expected cost of overcapacity, as opposed to leasing

an aircraft. Through a case study on 23 airlines in the period 1986–

1993, they show that the optimal portion of leased aircraft with re-

spect to all the aircraft in the fleet lies between 40% and 60%. The

authors concluded by noting that aircraft lease contracts act as a

means for risk sharing between airlines, which have reduced risk

through increased flexibility in capacity management, and leasing

companies that require a risk premium for their incurred risk. 

In a more recent work [11] , the authors approach the fleet plan-

ning problem from the same perspective and proposes a binary-

integer linear programming model for aircraft replacement strat-

egy. The objective function minimizes the total discounted cost of

buying, leasing, operating and maintaining aircraft over a planning

horizon of 10 years. Moreover, it includes two other cost terms.

One that represents additional costs associated with owning air-

craft, such as spare parts, hangars and crew training; An another

term that accounts for the sale of aircraft. Five observations are
ade from the results, that apply to both of the case studies that

ere performed: new aircraft are favored over old aircraft irrespec-

ive of buying/leasing decisions; solutions with short-term leases

re favored; old aircraft are to be sold; fleet diversity is discour-

ged; and leasing is preferred over buying. The latter observation is

onsistent with [10,12] . Although a method is proposed that incor-

orates a considerable number of terms in the objective function

nd constraints, the contribution fails to account for uncertainty

n demand. Rather a sensitivity analysis is performed on lease and

uy prices (i.e. plus or minus 50%). When analyzing the magni-

ude of these different cost terms it is observed that operation and

aintenance cost are the major cost drivers when evaluated over

he long term. The results of a case study indicate a strategy to-

ards leasing new aircraft of common aircraft types over the short

erm and moreover shows that aircraft with a higher purchase

rice and a higher operating efficiency are preferred over aircraft

hat are less expensive to acquire but more costly to operate. 

.3.2. Dynamic capacity allocation 

In an effort to account for stochastic demand in the fleet com-

osition problem, the authors of Listes and Dekker [13] propose

 two-stage stochastic programming model for fleet composition

ptimization where robustness is added to the fleet planning deci-

ion by including stochastic demand and using the concept of de-

and driven dispatch, as introduced in [14] . The latter concept ac-

nowledges the existence of uncertainty in future demands when

ecisions about fleet compositions or initial fleet assignments are

ade, and tries to accommodate that uncertainty by having fleets

hat consist of aircraft of different sizes but within the same crew-

ompatible family so that they can be swapped when more infor-

ation about the actual demand becomes available close to the

ay of operation. Moreover, it is noted that when the stochastic

odel is solved with integrality constraints the optimality gap is

maller than 0.5%, which is comparable to the order of magnitude

f the optimality gaps that result from linear relaxation in deter-

inistic models. Although Listes and Dekker [13] makes a great

tep forward when it comes to considering stochastic demand in

he fleet planning decision, the approach is limited due to a sole

ocus on short cycle variations in stochastic demand that are to

e solved using re-assignment. The approach fails to account for

he longer term uncertainty in demand that is characteristic to

eet planning. A scenario aggregation solution algorithm is used

o solve the fleet composition problem in the first stage. The as-

umption is made that demand is independent and follows a nor-

al distribution, which is discretized into a set of scenarios using

escriptive sampling. 

.3.3. Multi-period fleet planning 

Initial studies on the multi-period fleet planning problem date

rom the ’80s [15] . These initial models were deterministic and

implified representations of the problem, producing less efficient

esults. The current trend is to consider demand uncertainty when

lanning the fleet for multiple years. For instance, in [12] the au-

hors propose an optimal replacement schedule for airline fleets

sing a stochastic dynamic programming model which is solved

sing backward computing. A grey topological forecasting method

ombined with Markov-chain is used to model the stochastic de-

and on a market level. Subsequently, a frequency dependent mar-

et share estimation is used to calculate demand at the airline

evel. From the results it is observed that high volatility in demand

rives fleet planning decisions to favor leasing over buying. The

bjective function minimizes three cost terms per period over a

ulti-period planning horizon. These cost terms are operating cost,

ircraft replacement cost and a penalty cost which arises from the

otential difference between forecasted and actually realized de-

and. Operating cost are assumed to be dependent on aircraft sta-
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us , which is defined as: aircraft age, type and mileage travelled.

 sensitivity analysis is performed on the aircraft age and average

ease cost. Although a profound step forward is made using the so-

histicated demand forecasting method that accounts for the cycli-

al demand, the authors of Hsu et al. [12] note that this method

till lacks the influence of non-cyclical (i.e. random) variations in

emand as result of, for instance, terrorist attacks and aircraft ac-

idents. 

One drawback of earlier attempts in literature to include the

on-cyclical nature of stochastic demand was noticed by Khoo and

eoh [16] . This is referred to as ”the possibility of unexpected events

hat could take place unexpectedly”. In order to capture this, the

uthors propose the formulation a stochastic demand index (SDI).

he SDI is developed in multiple steps by identifying a range of

ossible unexpected events such as disease outbreaks and natu-

al disasters, as well as the probability distributions of these situ-

tions based on their historical occurrence. Then the occurrence of

ll these uncertain events is modeled using a Monte Carlo simu-

ation, combined with a traditional demand forecast that does not

ccount for uncertain events, in order to arrive at a single SDI for

ach operating period. The SDI is then used as an input to a fleet

anagement optimization model. 

More recently, Du et al. [17] proposed a multi-period sched-

le for a set of heterogeneous airport towing tractors, under de-

and uncertainty, flight schedule disruptions and different cost

tructures. The model optimizes fleet size and mix by determining

he time of buying, overhauling and selling tractors. The authors

ropose a 4-step approach for demand aggregation and demon-

trating the application of the model in a case study with a ma-

or European airport. In [18] , a scenario tree approach to solve the

ulti-period airline fleet planning problem. The authors consid-

red that the nodes of the tree represent the decisions points in

ifferent stages of the planning horizon and the branches repre-

ent the scenario paths with demand variations. A mixed-integer

inear programming model is proposed to determine the optimal

eets. Given that some scenario paths share common nodes of the

ree, the scenarios are modeled as interdependent and solved to-

ether. The probabilities associated with each scenario are used to

ompute fleet probability tables for each time stage in the scenario

ree. The authors only consider cyclical and pre-defined demand

ariation cases. In a very recent paper, Wang et al. [19] addressed

he multi-period fleet planning problem for the chartering problem

n the shipping industry. The authors model the problem as a tac-

ical fleet composition problem taking into account market uncer-

ainties. A two-stage stochastic programming model is proposed,

n which the planning period is divided in two periods to capture

ifferent confidences levels in the estimation of the market condi-

ions (i.e., demand, fuel prices and spot rates). 

.4. Research objective 

The motivation behind this fleet planning research work stems

rom three observations. 

– First, in the long-term, air transportation demand is resilient to

external shocks ( Fig. 1 ). That is, the demand evolution is com-

posed by cyclical and non-cyclical variations, however, in the

long-term, it readjusts from non-cyclical variations and gravi-

tates around a long-term trend. 

– Second, in practice fleet planners make their decisions based

on a set of different alternatives, which are explicitly compared.

The fleet optimization models present in the literature usually

focus on obtaining a single optimal fleet and do not capture all

elements that influence the fleet planning process in practice. 

– Finally, optimization models and models that explore the evo-

lution of stochastic variables tend to be computationally de-
manding (as highlighted by, e.g., [16,18] ). These properties make

it challenging to combine these methodologies into one fleet

planning modeling framework that provides meaningful results.

Following these observations, the goal of this research work

s to develop an innovative fleet planning model that realistically

onsiders the long-term stochastic nature of air travel demand and

enerates meaningful results. 

Results are considered meaningful if they allow for the explicit

omparison of both financial and operational performance metrics

f different fleets, across the planning horizon for numerous real-

zations of stochastic demand. To achieve this objective the pro-

osed methodology adopts a portfolio of fleets (each of different

ize or composition) and uses an optimization model that simul-

aneously considers network development and frequency planning.

his allows for the explicit comparison of the profit generating ca-

ability of each fleet from the portfolio across a long-term plan-

ing horizon across numerous realizations of stochastic demand. 

.5. Contribution 

The contribution of this paper is two-fold: 

– A long-term (multi-year) consideration of stochastic demand

per origin-destination pair is presented by modeling demand

as a mean reverting Ornstein–Uhlenbeck process and using

discrete-time Markov chain transition probability matrices to

generate scenarios. 

– The adoption of portfolio-based fleet planning perspective al-

lows for explicit comparison of different fleets in terms of size

and composition on both financial and operational performance

metrics. Robust fleets can be selected based on their operat-

ing profit generating capability across different realizations of

stochastic demand across the long-term planning horizon. 

.6. Outline 

The remainder of the paper is outlined as follows. The method-

logy, which consists of a three-step modeling framework that

eals with simulation, optimization and scenario generation, is

resented in Section 2 . Each of the three models is elaborated

n detail. The case study definition and results are presented in

ection 3 . The conclusions from this work are drawn in Section 4 . 

. Methodology 

.1. The overarching modeling framework 

A three-step modeling framework is proposed and visualized in

ig. 2 . 

The modeling framework takes two inputs: the historical pas-

enger demand of each origin-destination pair (OD pair) under

onsideration, and a portfolio of fleets where each fleet has a given

ize (i.e. total number of aircraft in the fleet) and composition (i.e.

ix of aircraft types). Model 1 is used to identify the historical

tochastic characteristics of each of the Z OD pairs under consid-

ration and outputs a set of M OD demand matrices per year that

epresent the range of uncertainty within a year, for each of the Y

ears in the planning horizon. Model 2 takes one OD demand ma-

rix as input as well as one fleet from the portfolio and returns the

esulting annual operating profits by deploying the fleet based on

he given demand in an optimal fashion. This optimization process

s iterated for each combination of fleet from the portfolio ( F ) and

ach OD demand matrix within a year ( M ) and across years ( Y ).

onsequently, a value matrix with size F · M · Y is filled with an-

ual operating profits per fleet, per OD demand matrix within the
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Fig. 1. Global air transport revenue passenger-kilometers, from 1950 to 2012 (source: ICAO). 

Fig. 2. The proposed solution methodology consists of three underlying models. 
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year ( M ), per year in the planning horizon ( Y ). As a third and fi-

nal step, Model 3 generates paths (i.e. scenarios) through the value

matrix across the planning horizon based on the underlying tran-

sition probability of demand sample values. The sequence of Y an-

nual operating profits within each scenario is reduced to a sin-

gle net present value (NPV). By iterating the scenario generation

process numerous ( B ) times, a distribution of NPVs is obtained for

each fleet in the portfolio. All three models are detailed in the next

three sections. 

2.2. Model 1: simulation of stochastic demand 

In order to explore the evolution of stochastic demand into the

future, the historical characteristics of the stochastic nature of de-

mand need to be captured in a mathematical expression. In this
esearch, the mean reverting Ornstein–Uhlenbeck process [20,21] is

sed to model the stochastic nature of air travel demand. 

The mean reverting process has been successfully applied to

odel variables that tend to be cyclical. Prime examples include

he modeling of stock, commodity and option prices [22,23] . Ul-

imately these variables tend to correlate to the cyclical behav-

or of gross domestic product (GDP). Another example is provided

n [24] , in which a Ornstein–Uhlenbeck process was proposed to

odel the retail demand uncertainty in a two-stage supply chain

nventory planning problem. The authors assume that the demand

rocess is driven by the market, but cyclically dominated by sea-

onal variations. In this research the mean reversion concept is ap-

lied to model the stochastic nature of air travel demand. Although

odeling future stock prices or retail demand are a different activ-

ty than modeling future air travel demand, the underlying causes
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Fig. 3. Example of a Monte Carlo simulation of the mean reverting process, after 10 runs. 
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or the variation in these variables share a common dependence

n GDP variations or seasonality effects. 

.2.1. Mathematical formulation 

The mean reverting process is represented by the following

quation; 

 t+1 = X t + λ(μ − X t ) + σdW t (1)

here X t+1 is the to be forecasted future air travel demand growth

ate between time t and t = t + 1 , X t is the air travel demand

rowth rate between time t − 1 and t, λ is the speed of mean

eversion, μ is the long-term mean growth rate, σ is the stan-

ard deviation of the historical estimation error and W t is a ran-

om shock with N ∼ (0,1). As can be seen from the λ(μ − X t ) term,

he expected corrective movement towards the long-term average

rowth rate at each point in time depends on the speed of mean

eversion λ and the difference between the demand growth rate at

ime t, X t , and the long-term average demand growth rate, μ. 

In physical terms, the process displays similar behavior to a

pring; the more a spring is stretched with respect to its equilib-

ium length, the higher the force with which the spring pushes

ack – i.e., the larger the difference between a passenger growth

ate at a certain point in time and the average passenger growth

ate, the higher the tendency to revert back to the mean passenger

rowth rate in the subsequent point in time. 

Furthermore the randomness of future demand growth rates is

aptured in the last term of the equation, σdW t , which resembles a

andom error shock with mean 0 and standard deviation equal to

he standard deviation of the historical estimation error which is

nherited from the estimation of the model parameters. The mean

everting model parameters λ, μ and σ are fixed over the time

nd are estimated by rewriting the mean reversion equation into a

orm that is suitable for linear least squares regression. 

The concept of mean reversion is applied to forecast future de-

and growth rates. However, ultimately the goal is to forecast fu-

ure demand levels, which are calculated using; 

em t+1 = Dem t · (1 + X t+1 ) (2)

here Dem t+1 is the demand value at time t + 1 , Dem t is the de-

and value at time t and X t+1 is the growth rate of demand be-

ween t and t + 1 . 

.2.2. Sampling strategy 

Based on the mean reverting process, D Monte Carlo simula-

ion runs are performed for each year in the planning horizon for

ach OD pair under consideration (see Fig. 3 for an example with
 = 10 ). These D observations of realized stochastic demand are

hen sampled into a set of S sample values representative of the

nderlying probability distribution. This is done by grouping the

 Monte Carlo simulation observations across S bins with each an

qual number of observations. That is, the bins are defined such

hat each bin represents 1/10th of the D dataset, equal probability

in histograms with 10 bins are adopted which set the bin edges

t the 0, 10th, 20th, ..., 100th percentiles. The average of all D 
S ob-

ervations within each bin is then taken as a sample value. 

The method yields S demand sample values per year per OD

air. However, ultimately this data should be stored in a set of S

D demand matrices per year, where each OD demand matrix con-

ains demand sample values of all OD pairs while ensuring that

ach of those sample values corresponds to the same part of the

istribution. This simplification greatly reduces the number of OD

emand matrices per year ( M ) from M = S Z to M = S, thereby re-

ucing the computation times from impracticable large (i.e., sev-

ral years) to reasonable (i.e., several minutes or few hours). In the

resent work is also assumed that the demand growth for each

D pair is independent. However, correlated random shocks ( W t )

ould be easily incorporated in the current model by, e.g., adopt-

ng the Cholesky factorization method when generating these ran-

om values [25] . A variance-covariance matrix would have to be

recomputed to express the correlation between OD pairs. 

.3. Model 2: fleet assignment optimization 

The goal of the optimization model is to optimally allocate

 fleet in terms of operating profit given one OD demand ma-

rix. This is achieved by mathematically formulating the optimiza-

ion problem as an Integer Linear Programming (ILP) optimiza-

ion model that optimizes fleet assignment per aircraft type on a

eekly flight frequency basis. The mathematical formulation con-

ists of a profit maximizing objective function and a set of demand,

apacity, physical and integrality constraints. The formulation is

uch that it allows for both point-to-point and hub-and-spoke net-

ork routing networks. Nevertheless, only two-leg itineraries are

onsidered for the hub-and-spoke case (i.e., origin node to hub and

ub to destination node). 

In order to optimize for profit on an airline level, the weekly

ight frequency per airport pair per aircraft type as well as the

eekly passenger flow per OD pair (i.e. both nonstop and connect-

ng flow) are determined. Therefore, three sets of decision variables

re defined. The first referring to the weekly flight frequency per

ircraft type per airport pair; the second representing the weekly
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passenger flow per OD pair for nonstop connections; and the third

representing the weekly passenger flow per OD pair for passenger

connecting in any of the hubs of the airline. 

A number of inputs are used for this optimization process: a

given OD demand matrix that contains weekly demand values for

each OD pair, a given fleet which is characterized by the num-

ber of aircraft per aircraft type K , the specific aircraft character-

istics of each aircraft type (seats, cruise speed, range, daily utiliza-

tion, turnaround times, fixed cost, variable cost), yields and dis-

tances between airports. The optimization model returns weekly

operating profit which is then multiplied by 52 to arrive at an esti-

mated annual operating profit. That is, it is assumed that this aver-

age week is representative of the demand throughout the year and

thereby neglects seasonality as well as trend growth throughout

the year. Besides financial results, operational performance metrics

such as the average network load factor and aircraft utilization can

also be derived. 

2.3.1. Nomenclature 

Sets 

N Set of airports 

K Set of aircraft types 

H Set of hub airports (H ⊂ N) 

Parameters 

Q o,d demand between airports o and d 

D o,d distance between airports o and d 

yield o,d yield per route for nonstop connections 

yield h 
o,d 

yield per route for connections through hub h 

AC k number of aircraft of aircraft type k in the fleet 

U 

k aircraft maximum utilization per week for aircraft type k

 

k 
f ix 

aircraft ownership cost per aircraft type k 

 

k 
v ar aircraft operating cost per aircraft type k (i.e. CASM) 

s k number of seats per aircraft type k 

vc k cruise speed per aircraft type k 

T 
dep 

i 
taxi time per departure 

T arr 
j 

taxi time per arrival airport 

range k range per aircraft type k 

Decision variables 

x o,d Nonstop passenger flow between origin airport o and

destination airport d 

w 

h 
o,d 

Connecting passenger flow for passengers from origin air-

port i and destination airport d via the hub airport h 

z k 
i, j 

Number of flights (i.e. flight frequency) between airport i

and airport j operated by aircraft type k 

2.3.2. Objective function formulation 

The objective function aims to maximize operating profit and

consists of four terms; operating revenue stemming from nonstop

passenger flow, operating revenue stemming from connecting pas-

senger flow, ownership cost and operating cost. The mathematical

formulation is given by; 

Maximize profit = 

∑ 

o∈ N 

∑ 

d∈ N 

[
yield o,d · D o,d · x o,d 

]

+ 

∑ 

o∈ N 

∑ 

d∈ N 

∑ 

h ∈ H 

[
yield h o,d · D o,d · w 

h 
o,d 

]

−
∑ 

k ∈ K 

[
AC k · C k f ix 

]

−
∑ ∑ ∑ [

C k v ar · D i, j · s k · z k i, j 

]
(3)
i ∈ N j∈ N k ∈ K b
.3.3. Constraints formulation 

 o,d + 

∑ 

h ∈ H 
w 

h 
o,d ≤ Q o,d ∀ o, d ∈ N, o � = d (4)

 i, j + 

∑ 

m ∈ N 
w 

j 
i,m 

≤
∑ 

k ∈ K 
z k i, j · s k ∀ i ∈ N\ H, j ∈ H, i � = j (5a)

 i, j + 

∑ 

m ∈ N 
w 

i 
m, j ≤

∑ 

k ∈ K 
z k i, j · s k ∀ j ∈ N\ H, i ∈ H, i � = j (5b)

 i, j ≤
∑ 

k ∈ K 
z k i, j · s k ∀ i, j ∈ N\ H, i � = j (5c)

 

j∈ N 
z k j,i = 

∑ 

j∈ N 
z k i, j ∀ i ∈ N, k ∈ K (6)

 

i ∈ N 

∑ 

j∈ N 
z k i, j ·

[
D i, j 

v c k 
+ T dep 

i 
+ T arr 

j + T AT k 
]

≤ AC k · U 

k 

∀ k ∈ K (7)

 

k 
i, j = 0 ∀ i, j ∈ N, i � = j, k ∈ K if range k < D i, j 

(8)

 o,d ∈ Z 

+ , w 

h 
o,d ∈ Z 

+ , z k i, j ∈ Z 

+ (9)

The first set of constraints in the optimization model ensures

hat the assigned passenger flows cannot exceed the demand

 Eq. (4) ). 

Eqs. (5a) –(5c) ensure that the passenger flow in a certain flight

egment between airport i and airport j must be smaller than or

qual to the capacity offered between airports i and j . The capacity

n a flight segment is the total number of seats offered between

he two airports, computed by multiplying the number of flights

er aircraft type between these airports z k 
i, j 

by the number of seats

er aircraft type s k . Focusing on a flight segment between two air-

orts i and j , both of these airports can be either a regular airport

r act as a hub. Therefore, the passenger flow between the two

irports can be composed by only nonstop passengers (5c) or by a

ix of nonstop and connecting passengers ( (5a), (5b) ). 

The aircraft continuity at the airports is guaranteed by con-

traints 6. These constraints ensure that the total number of in-

ound flights per aircraft type k that arrive at airport i from all

irports j must be equal to the total number of outbound flights

er aircraft type k that depart from airport i to all airports j . 

Eq. (7) ensures per aircraft type that the total weekly opera-

ional time does not exceed the weekly aircraft utilization. The air-

raft utilization per aircraft type should not be based on a 24 h per

ay availability. It should rather reflect the average available hours

o operation per week when considering the need for scheduled

nd unscheduled maintenance. The total weekly operational time

s a function of the number of flights of each aircraft type between

ach airport pair, the flight time, the taxi time and turnaround

ime. The flight time is a function of the distance between two

irports D i,j and the cruise speed of the aircraft type vc k . The taxi

imes are airport dependent and depend on whether the flight is

nbound or outbound. The turnaround times range from 30 min to

ne hour and are based on the assumption that larger aircraft have

igher turnaround times. 

Each aircraft type is characterized by its maximum range.

q. (8) ensures that a flight between two particular airports i and j

an only be operated by a particular aircraft type k if the range of

he respective aircraft type is equal to or larger than the distance

etween two airports. 
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Fig. 4. An example value matrix encompassing 8 fleets ( F = 8 ) in the portfolio, 

9 planning years ( Y = 2015 , . . . , 2023 ) and 10 OD demand matrices per year ( M = 

10 ),resulting in F Y M = 8910 = 720 profit values. 
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Finally, Eq. (9) defines the domain for the decision variables in-

luded in the model. 

.3.4. The size of the LP matrix 

The LP-matrix contains the decision variables (i.e. columns) and

onstraints (i.e. rows) of the problem. It is considered interesting to

now how the size of the LP-matrix of the optimization problem

cales with increasing problem size. The problem size is defined

y the number of airports, hubs and aircraft types under consider-

tion. This explicit relationship between the problem size and LP-

atrix is given by; 

ecision variables = N 

2 + N 

2 H − 2 N + N 

2 K − NK (10)

onstraints = 2(N 

2 − N) + NK + K + D k (11)

ith N the number of airports, H the number of hubs, K the num-

er of aircraft types and D k is the number of aircraft range con-

traints, which is specific to the characteristics of the aircraft types

nd the distances between the airports under consideration. 

.3.5. Iterating over the optimization model 

The optimization process is solved for each fleet-OD demand

atrix combination. Consequently, the optimization model is run

 · M · Y times which results in an equal amount of annual operating

rofits that are stored in a value matrix. The Gurobi Optimizer is

sed to find the optimal solution for each problem solved. 

.3.6. Model output 

Each optimization model run returns the optimal decision vari-

ble values (i.e., weekly OD passenger flow and weekly airport-to-

irport aircraft flow per aircraft type) and the optimal objective

unction value (i.e., weekly operating profit). These optimal values

an be used to derive a range of financial and operational perfor-

ance metrics. 

Moreover, the annual operating profits returned by each opti-

ization run are stored in a so-called value matrix ( Fig. 4 ), which

ontains annual operating profit for each fleet F in the portfolio for

ach of the M OD demand matrices within the year, for each of the

 years in the planning horizon. 

Both the vast amount of financial and operational performance

etrics as well as the value matrix with annual operating profit

ata provide valuable information that can be used to compare

eets. However, one more step in the methodology allows for an

ven more profound analysis of the impact of the evolution of

tochastic demand on the robustness of operating profit generat-

ng capability of the different fleets in the portfolio: the scenario

eneration model. 

.4. Model 3: scenario generation 

The goal of the scenario generation model is to generate numer-

us paths through the value matrix across the planning horizon by

sing the underlying stochastic nature of demand. 

A single path across the planning horizon is basically a se-

uence of elements in the value matrix. This sequence of annual

perating profits is driven by the underlying sequence of OD de-

and matrices. 

Each OD demand matrix contains demand sample values of all

D pairs, which are drawn from the same part (i.e. the same bin

umber) of their distribution of Monte Carlo simulation observa-

ions. Therefore, a sequence of year-to-year annual operating profit

alues essentially is driven by the year-to-year transition behav-

or of individual Monte Carlo simulation observations from one

in number to another. Please refer to Lohndorf [26] for a recent

iscussion on scenario generation methods and on the error that

rises from using a small set of scenarios. 
.4.1. Discrete-time Markov chain 

A discrete-time Markov Chain (DTMC) is used to describe the

tochastic process of the transition behavior of Monte Carlo simu-

ation observations from one bin number in year t to another bin

umber in year t + 1 . The Markov property describes the memory-

essness of the stochastic process: the probability of arriving in a

uture state only depends on the present state. A transition prob-

bility matrix contains the transition probabilities of transitioning

rom state i at time t to state j at time t + 1 . Based on the Markov

roperty the transition probability should be a square matrix (i.e.

he number of states must remain constant over time) and each

ow should add up to one (i.e. the total probability of arriving in

ny of the states must be 1). 

Translated to the context of this research, a DTMC can be used

o model the stochastic process of the evolution of Monte Carlo

imulation observations that are outputted by the stochastic de-

and forecasting model. D Monte Carlo simulation observations

er year per OD pair are equally distributed across S bins. These

 bins are the discrete states in this research context. Subsequently

he transition probability matrix has size S × S . 

.4.2. OD demand matrix based transition probability matrices 

Fig. 5 serves as an illustration of the transition process when

onsidering 50 0 0 Monte Carlo simulation observations ( D = 50 0 0 )

nd 4 bins ( S = 4). An observation can transition from any of the 4

tates at time t to any of the 4 states at time t + 1 resulting in S 2 

ossible transitions. Because each bin contains the same number

f observations ( D S ), each row of observed transitions (i.e. counts)

s converted to probabilities by multiplying each element in the

ow with: 

1 

D 
S 

(12) 

In a similar fashion, such a transition probability matrix can be

onstructed for each consecutive year combination ( Y − 1 ) in the Y
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Fig. 5. An example of the transition process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Case study specific variable values. 

Notation Definition Case study value 

F # Fleets in portfolio 8 

Y # Years in planning horizon 9 

D # Monte Carlo simulations 5000 

S # Sample values 10 

M # OD demand matrices per year 10 

N # Airports under consideration 10 

Z # OD pairs under consideration 100 

H # Hubs under consideration 1 

K # Aircraft types under consideration 3 

B # Scenarios generated 5000 

b  

p  

s

3

3

 

o  

i  

t  

s  

o

 

t  

2  

c

 

c  

d

3

 

s  

u

3

 

d  

p  

T  

k  
years of the planning horizon and for each OD pair Z under con-

sideration, resulting in Z · (Y − 1) transition probability matrices. 

For the construction of OD demand matrix based transition

probability matrices the same underlying principles of counting

observations and transforming these to probabilities can be used.

However, the counting process is iterated for all Z OD pairs and

therefore each row contains Z · D 
S observations. Consequently, rows

are normalized by multiplying each element with; 

1 

D 
S 

· Z 
(13)

It is noted that this aggregation is made possible by the de-

cision presented in Section 2.2 to set the number of unique OD

demand matrices per year equal to the number of sample values

( M = S). As result of that decision, each OD demand matrix con-

tains demand sample values of different OD pairs that are based

on the same bin number. 

2.4.3. Path generation 

Due to the memoryless property of the DTMC, a scenario can be

generated throughout the planning horizon of Y years by utilizing

the Y − 1 OD demand matrix based transition probability matrices.

The process of one scenario generation resembles a roulette pro-

cess which is executed Y − 1 times in sequence using the known

probabilities from the Y − 1 transition probabilities and acknowl-

edging that the first roulette is defined by a 1/ S probability for

each state (i.e. bin number). 

A scenario is essentially a sequence of Y bin numbers; i.e. one

bin number for each year in the planning horizon. The sequence of

OD demand matrices can in turn be related to a sequence of an-

nual operating profit values using the value matrix. Ultimately, the

generation of B scenarios results in B sequences of annual operat-

ing profits each of length Y . 

2.4.4. A distribution of NPVs 

One scenario corresponds to a sequence of Y annual operating

profit values. These Y values can be reduced to a single monetary

value; the so called net present value (NPV) in the following fash-

ion; 

NP V = 

Y ∑ 

t=1 

annual profit t 
(1 + r) t 

(14)

where r is the discount rate and t is the year, with t = 1, ..., Y.

When B scenarios are generated the resulting B NPVs can be used

to construct a distribution of NPVs. Moreover, this procedure is ex-

ecuted for each fleet F in the portfolio so that ultimately F distri-

butions of NPVs are outputted that can be used to compare the

profit generating capabilities of the different fleets in the portfolio
ased on the underlying evolution of stochastic demand across the

lanning horizon. It is noted that each fleet is subject to the same

et of scenarios which is required to ensure fair comparison. 

. Case study 

.1. Context 

A small real-world based case study serves as proof of concept

f the proposed methodology. The purpose of this case study is to

llustrate the applicability of the proposed methodology, evaluating

he type of results that can be generated. It does not represent any

pecific airline operating in the market. Table 1 presents the size

f the sets considered for the case study. 

The forecasting period consists of 9 years ( Y = 9 ) with 2014 as

he last historical year and the following forecasting years: 2015,

016, . . . , 2023. This time span roughly coincides with one business

ycle [1] . 

Based on Eqs. (10) and (11) , and noting that the number of air-

raft range constraints is 38, it can be derived that the number of

ecision variables and constraints are 450 and 251, respectively. 

.2. Model parameter data 

The data used in this case-study is explained in the next sub-

ections. The data can be downloaded from https://doi.org/10.4121/

uid:90abf0a2- 369e- 4a52- 9a2c- 518ab9f66478 . 

.2.1. Demand data 

The historical passenger data is extracted from the TranStats

atabase of the Bureau of Transportation Statistics (BTS), which is

art of the United States Department of Transportation (US DOT).

he underlying dataset that was used is the T-100 Domestic Mar-

et (U.S. Carriers) data table that contains monthly scheduled US

https://doi.org/10.4121/uuid:90abf0a2-369e-4a52-9a2c-518ab9f66478
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Table 2 

Aircraft characteristics per aircraft type: number of seats ( s k ), cruise speed ( vc k ), range ( range k ), daily utilization ( U k ), 

turnaround time ( TAT k ), ownership cost ( C k 
f ix 

), variable cost ( C k v ar ) and purchase price ( IC k ). 

Attributes s k vc k range k U k TAT k C k 
f ix 

C k v ar PP k 

Units # miles/hour miles hours hours USD USD USD 

A 75 514 1401 11 0.75 1.23E + 06 0.11 2.45E + 07 

B 162 543 3582 12 1.00 3.95E + 06 0.09 7.90E + 07 

C 295 555 8510 14 1.50 1.10E + 07 0.08 2.19E + 08 
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Table 3 

Portfolio of fleets. 

Aircraft types 

Fleet A B C Total 

Fleet 1 4 4 4 12 

Fleet 2 5 5 5 15 

Fleet 3 10 2 2 14 

Fleet 4 2 10 2 14 

Fleet 5 2 2 10 14 

Fleet 6 15 0 0 15 

Fleet 7 0 15 0 15 

Fleet 8 0 0 15 15 
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omestic passenger data based on a 10 percent ticket sale informa-

ion dataset, aggregated for all airlines for the period 1990–2014. 

A group of 10 different airports ( N = 10 ) was selected for this

ase study. They include the 10 most high-density OD connections

n the US domestic economic passenger market, according to 2014

ir travel data. The OD demand matrix has then the size 10 × 10. A

0% market share is assumed for each OD pair when reducing total

arket demand to airline specific demand. 

.2.2. Yield data 

Yield is defined as revenue per revenue-passenger-mile in 2014

S Dollar cents. The yields are based on average fare data in 2014.

his data stems from the BTS US DOT database and the underlying

ataset that was used is Table 1 a Domestic Airline Airfare Report

2011 - 2014) which contains average fare data per OD pair per

uarter for the period 2011–2014 for a large set of OD pairs in the

S. Yield data is calculated by dividing the fares by their origin-

estination distance. It is noted that the average fares that form

he basis for this dataset are not only averaged for the year 2014,

ut also reflect average fares as listed by all airlines in the market-

lace, irrespective of the offered service (i.e. nonstop or connect-

ng). For simplification, the ratio between yields for nonstop and

onnecting passengers is set at 1.0 in the case study. This results

n the nonstop flow being more profitable because it generates the

ame level of revenue at a lower cost. In practice, these yield ratios

re airline specific and highly depend on how an airline prioritizes

onstop or connecting flow per OD pair in their revenue manage-

ent models, based on the competitive environment. 

.2.3. Aircraft characteristics 

Three different aircraft types are considered – a regional jet (A),

 narrow body (B) and a wide body (C) aircraft ( Table 2 ). The air-

raft types are differentiated by their characteristics, which are the

umber of seats, cruise speed, range, daily utilization, turnaround

ime, variable cost, ownership cost and purchases price. The num-

er of seats s k , cruise speed vc k , range range k and purchase price

i.e. list price) are based on information provided on the internet

27] . Weekly utilization U 

k , turnaround times TAT k and operating

ost C k v ar are based on previous studies done by the authors (e.g.,

18] ) and on the assumption that larger aircraft tend to have a

igher daily utilization, higher turnaround time and lower unit op-

rating cost [8] . The yearly ownership cost C k 
f ix 

are based on the

ircraft purchase price and assuming a 20-year linear depreciation

eriod and residual value of 15% at the end of the depreciation pe-

iod, which is based on an example depreciation scheme provided

y Doganis [28] . This way, the purchase prices are not considered

n the NPV calculations. They are replaced by the yearly ownership

osts. For the sake of simplicity and following Repko and Santos

18] , we assumed that the ownership costs reflect either the lease

osts or the depreciation costs per period. 

.2.4. Fleet portfolio 

The portfolio of fleets considered is presented in Table 3 . Each

f the 8 fleets in the portfolio ( F = 8 ) is characterized by the num-

er of aircraft per aircraft type. The fleets were created so they

ould represent different fleet configurations of similar fleet sizes.
t was estimated that a fleet of 15 aircraft would be enough to

ransport most of the demand considered. Therefore, fleets of 12

o 15 aircraft were considered. Fleets 1–2 have compositions with

he same amount of aircraft of each type, but Fleet 1 represents an

ption with less aircraft. Fleets 3–5 have a predominance of one

ircraft type in the fleet. Fleets 6–8 represent options with just a

ingle aircraft type in the fleet. 

.2.5. Airport characteristics 

The taxi-in and taxi-out times stem from the BTS US DOT

atabase. The underlying dataset that was used is the Airline On-

ime Statistics - Origin and Destination Airport dataset that pro-

ides 2014 data on taxi-in and taxi-out times in minutes per OD

air averaged for all airlines. 

.2.6. Inflation, discount rate and tax rate 

Inflation is considered across the planning horizon on the cost

ide (i.e., operating and ownership cost) and on the revenue side

i.e., nonstop and connecting yields). In the case study the inflation

s assumed to be 1.5% per year for all the 9 years in the planning

orizon. This number is calculated as the average inflation in the

S between 2010 and 2014 which is based on data from the US

ureau of Labor Statistics (US BLS). 

For the NPV calculation, the discount rate r is set at 7.4% which

s the average historical WACC for US airlines (both legacy carriers

nd low cost carriers) between 2004 and 2011 [1] . The effective

orporate tax rate in the US depends on a federal and state com-

onent and is assumed to be 39%. Using the tax rate, a simplified

ersion of the return on invested capital (ROIC) is calculated as: 

OIC = 

Annual operating profit − tax 

Investment 

= 

Annual operating profit · (1 − tax rate ) 

Investment 
. (15) 

.3. Results 

The three models together produce a vast amount of results, the

ajority of which are used as intermediate results that are part of

he methodology. The most important final results in terms of the

verarching methodology are: 

– The distribution of net present values of profit across the plan-

ning horizon across the range of stochastic demand, for each

fleet in the portfolio 
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Fig. 6. A distribution of net present values based on annual operating profits across the planning horizon across numerous realizations of stochastic demand, for each fleet 

in the portfolio. 
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– Table with all financial and operational performance metrics

per fleet ( F ), per year ( Y ), per OD demand matrix within the

year ( M ) 

3.3.1. Distribution of net present profit values for each fleet in the 

portfolio 

Fig. 6 presents for each fleet in the portfolio the distribution

of net present profit (NPVs) values based on the 5.0 0 0 scenarios

across the planning horizon. Four key attributes can be evaluated

in order to compare the different fleets from the portfolio. 

– The mean of the distribution 

• This gives insight in the absolute operating profit generation

capability of the fleet across the planning horizon across the

range of stochastic demand. 

– The spread of the distribution: 
• This provides insight in the robustness of the profit generat-

ing capability of a fleet to the range of stochastic of demand

it is subject to across the planning horizon. A wide distribu-

tion indicates a lot of uncertainty, while a narrow distribu-

tion indicates little uncertainty. 

– The location of the distribution with respect to the level of in-

vestment required 

• This observation relates the profit generating capability of

a fleet to the magnitude of the investment cost that is re-

quired to purchase the fleet. Whereas operating profit is an

indicator of how efficient the assets (i.e. the fleet) are de-

ployed, the difference between profitability and investment

can be used as an indicator of how efficient the investment

is generating a return. 

– The level of investment required 
• In the case of limited capital to invest in a fleet, the amount

of investment required (i.e., the location of the ’investment

cost in2014 ′ line) could make some of the fleets unfeasible. 

he third observation reveals a key insight in the difference be-

ween the profit generating capability of a fleet and its capability

o generate returns on invested capital: there can be fleets with

igh operating margins and low returns. A fleet could be very prof-

table in operation in absolute terms (i.e. a distribution with a high

ean) but at the same time can be a poor investment because of

he disproportionate level of investment that is required to get to

hat level of absolute operating profits. 

.3.2. Financial and operational performance metrics 

Each iteration returns the same type of financial and opera-

ional performance metrics as presented in Table 4 , which are

tored in one large data table with 720 cells. This allows for an

xplicit comparison of both financial and operational performance

etrics between different fleets across different realizations of

tochastic demand across the 9 years in the planning horizon. 

.3.3. How should a fleet planner interpret the results? 

The information that stems from the two datasets can be used

o explicitly compare fleets. First, the distribution of NPVs can be

sed by fleet planners to get a high level insight in the magnitude

nd uncertainty of the operating profits across a 9-year planning

orizon and how these operating profits relate to the required fleet

nvestment. Second, the vast amount of both financial and opera-

ional data can be used to unravel the underlying factors that drive

he distribution of profitability; what are the aircraft utilizations of

he different aircraft types in the fleet? What is the average net-

ork load factor? How many passengers are spilled? What is the
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Table 4 

Example of the financial and operational performance metrics for portfolio Fleet 6. 

Financial performance metrics Operational performance metrics 

Metric Value Metric Value 

Weekly revenue $3,597,750 Weekly OD pax transported 42,900 

Weekly operating cost $1,986,880 Weekly seats offered 45,700 

Weekly ownership cost $300,360 Weekly seats-miles offered 48,477,034 

Weekly operating profit $1,310,509 Percentage nonstop flow 96% 

Annual operating profit $68,146,505 Percentage OD demand satisfied 21.4% 

Operating profit margin 36.43% Average network load factor 98% 

Annual after-tax profit $41,569,368 Number of OD pairs served 7 

Total investment cost $367,500,000 Utilization per aircraft type: 

Annual return on invested capital 11.31% Type A 100% 

Spilled revenue 80.49% 

Table 5 

An overview of computation times per model. 

Model Total computation time ( s ) Number of runs Time per run ( s ) 

Model 1 5400 Y · Z = 9 · 10 0 = 90 0 6 

Model 2 520 F · Y · M = 8 · 9 · 10 = 720 0.72 

Model 3 1100 B · F = 5 . 0 0 0 · 8 = 40 . 0 0 0 0.0275 
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pilled revenue? How many OD pairs are served? What percent-

ge of the passengers is transported nonstop? What are the weekly

perating cost and ownership cost? What is the routing network?

his vast amount of detailed information can be used for subse-

uent detailed analysis. 

A fleet planner from industry is likely to select the fleet with

 distribution with a high mean, low uncertainty (i.e. high robust-

ess) and a beneficial relation between NPVs and required invest-

ent in terms of ROIC, which in this illustrative case study corre-

ponds to Fleet 6 in Fig. 6 . 

.3.4. Results analysis 

From the results it can be concluded that fleets with the same

mount of aircraft of the same type (Fleets 1–2) do not produce

ery promising results. Both cases have a similar NPV distribution

nd an investment cost that is higher than the maximum expected

PV. The best results are obtained for the fleets with more type A

ircraft (Fleets 3 and 6). These are the least cost options and pro-

ide narrow NPV distributions. Fleet 6 is the only fleet in the port-

olio that has a high probability of having a NPV higher than the

nvestment costs. However, this is also the fleet with lower maxi-

um expected NPV. For a more risk prone decision maker, Fleets

, 4 and 7 could be a good option. For these fleets, the considera-

ion of aircraft lease options could result in a good alternative. If all

r some of the aircraft in the fleet would be lease, the investment

osts could be spread over time, resulting in investment costs in

014 lower than the ones presented in Fig. 6 . 

The fleets with a predominance of wide body aircraft (Fleets 5

nd 8) prove to be unsuitable to the network considered. They are

ssociated with high investment costs and their NPV distributions

re the most to the left. The latter is a result of, on one hand, the

ower utilization of the aircraft due to higher turn-around times,

nd on the other hand, lower load factors combined with higher

osts per flight. 

.4. Computation times 

The computation times of the presented small case study for

ach of the three models is presented in Table 5 . The three mod-

ls are run sequentially. Thus, the total computation time is simply

alculated as the sum of the computation times of the three mod-

ls: 

T TOTAL = C T + C T + C T 
model 1 model 2 model 3 
= Y · Z · 6 + F · Y · M · 0 . 72 + B · F · 0 . 0275 s 

= 9 · 100 · 6 + 8 · 9 · 10 · 0 . 72 + 50 0 0 · 8 · 0 . 0275 s 

= 117 min . (16) 

The computational times for each model and for the complete

odel framework, show how demanding is the stochastic multi-

eriod fleet planning problem. For a larger real world case study,

he computation would amount to several hours of computation.

owever, it is considered valuable to harvests insight into how

he computation time scales with increasing problem size. Armed

ith that insight, fleet planning decision makers can make explicit

rade-offs with regards to the level of detail they wish to consider

i.e. number of fleets in the portfolio, aircraft types, OD pairs un-

er consideration, Monte-Carlo simulations) and the corresponding

omputation times to get to a solution. 

. Summary and conclusions 

This paper proposes a three-step methodology that harvests in-

ight into the operating profit generating capability of different

eets portfolios, in terms of size and composition, over a multi-

ear planning horizon under stochastic demand. The long-term

tochastic nature of demand growth rates is modeled as a mean

everting Ornstein–Uhlenbeck process and explored using a Monte

arlo simulation, per origin-destination pair. Demand scenarios are

enerated by using discrete-time Markov chain transition probabil-

ty matrices that are based on the transition behavior of the evo-

ution of stochastic demand realizations. 

An illustrative small case study is used in this paper to demon-

trate the type of results obtained with the proposed methodology.

he proposed airline fleet planning modeling framework has the

otential to identify robust fleet plans through the detailed con-

ideration of stochastic demand per origin-destination pair across

 long term planning horizon, and being able to compare both

nancial and operational performance metrics of different fleets

cross a multi-year planning horizon across numerous realizations

f stochastic demand. The methodology is generic and can be ap-

lied to any airline, irrespective of the business model, size, rout-

ng network and preference with regards to aircraft types or risk

rofile. 

Besides the contribution of this work, with a innovative ap-

roach to solve the fleet planning problem, this paper opens the

pportunity for further research. For instance, one of the limita-

ions of this work is that no competition elements are considered.
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Instead, a 20% market share is assumed for each OD pair when

reducing total market demand to airline specific demand. The im-

plication of the absence of a market share model on the results

of this research is that the distribution of NPVs is likely to shift

to the right for fleets with more aircraft, considering they can of-

fer a higher flight frequency and thus capture a larger share of the

market and vice versa for smaller fleets. 

Another research opportunity is the consideration of portfolios

of variable fleet size and composition over time. The consideration

of aircraft replacement would be an interesting development in fu-

ture studies. However, this development would, on one hand, re-

quire the analysis of more fleet portfolios and, on the other hand,

make it more challenging the comparison of different portfolios

across the planning horizon. 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.omega.2019.08.008 . 
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