

Delft University of Technology

Using Cossembler for Rapid Prototyping of Co-simulations for Power System Operations

Cvetkovic, Milos; Gusain, Digvijay; Palensky, Peter

DOI
10.1109/PESGM40551.2019.8973884
Publication date
2019
Document Version
Final published version
Published in
2019 IEEE Power & Energy Society General Meeting (PESGM)

Citation (APA)
Cvetkovic, M., Gusain, D., & Palensky, P. (2019). Using Cossembler for Rapid Prototyping of Co-
simulations for Power System Operations. In 2019 IEEE Power & Energy Society General Meeting
(PESGM) (pp. 1-5). Article 8973884 IEEE. https://doi.org/10.1109/PESGM40551.2019.8973884

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/PESGM40551.2019.8973884
https://doi.org/10.1109/PESGM40551.2019.8973884

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Using Cossembler for Rapid Prototyping of
Co-simulations for Power System Operations

Miloš Cvetković, Digvijay Gusain, Peter Palensky
Faculty of Electrical Engineering Mathematics and Computer Science

Delft University of Technology
Delft, The Netherlands

Email: {m.cvetkovic,d.gusain,p.palensky}@tudelft.nl

Abstract—Improved modeling and simulation of power and
energy systems has become increasingly important in the face
of energy transition. The main challenge is to capture the
complexity that heterogeneity of technologies and uncertainty
of renewable resources bring along. One approach to improve
simulation modeling capabilities, that relies on reusing existing
expertise and legacy tools, is a so-called combined simulation
(co-simulation). In this approach, well-established tools are
combined together resulting in simulation environments with
greater capabilities. In this paper, we introduce a new co-
simulation rapid prototyping tool called Cossembler (which
stands for Co-simulation assembler), whose main benefits are
high usability and a variety of potential application domains
that could be addressed by it. The paper further presents two
use cases which illustrate Cossembler capabilities.

I. INTRODUCTION

Integration of renewable and carbon-free technologies
necessitates the need for better modeling and simulation
of energy systems. The main scientific and practical chal-
lenge is in representing heterogeneity of diverse technology
portfolio operated under various market and governance
frameworks while capturing the impact of uncertainties in
weather-dependent renewable energy resources. All these
aspects must be modeled truthfully, using analytical and
numerical methods at disposal and in compliance with
the industry adopted tools and approaches. In this paper
we focus on enhancing energy system representation for
simulation purposes, particularly for short-term planning and
operations of power systems.

Today’s state-of-the-art, and particularly off-the-shelf,
simulation tools provide highly compartmentalized services,
specializing in studies of particular applications (transient
stability, power flow, etc.). As mentioned in [1], the objec-
tive of the investigation will entail deployment of different
mathematical models, ranging through time- and frequency-
domain analysis, linear system theory, optimizations, graph
theory, etc. covering a wide range of applications, from
transient stability studies to multi-period scheduling of re-
sources. Many of these application-focused approaches have
difficulties in accurately representing novel and heteroge-
neous technologies as well as uncertainty of primary energy
sources. Finally, already mentioned compartmentalization
does not provide a holistic picture, which is increasingly
needed to address integrated challenges of the energy tran-
sition.

The main premise of this paper is that a comprehensive
simulation model of power and energy systems can be ob-

tained by combining the existing simulators of various power
system applications into a co-simulation. A co-simulation
(stands for combined simulation) is a methodology of creat-
ing new simulation tools by combining already existing ones
into new functional units that have greater capabilities when
compared to each individual tool [2]. The main benefit of
co-simulation is that it avoids re-inventing the wheel. Co-
simulation uses tools and simulators developed by domain
experts, and hence, it utilizes already existing expertise and
knowledge. Although everything from tools, models, simu-
lators, platforms, etc. can be combined in a co-simulation,
we use the unifying name simulator to describe any of these
entities. In other words, we use the word simulator to refer
to any piece of software that solves a particular problem of
interest in the area of power and energy systems.

Co-simulation has already been deployed in the power
and energy field to tackle challenges of different scope and
magnitude. A rainbow of approaches for interfacing power
system and Information and Communication Technology
(ICT) simulators is found in the overview papers [3], [4].
In most of the references therein, the scientific focus is
on coupling of time-domain and discrete event simulations,
while the resulting co-simulation is deployed for investigat-
ing impact of communication network latencies and cyber-
attacks on power system controllers. Another sphere of high
interest involves connecting of Electromagnetic Transients
(EMT) and transient stability (TS) simulations (see [5] for an
overview). In this case, the focus is on coupling of two most
commonly used modeling approaches for simulating power
system dynamics. The scientific focus of such research is
on handling of algebraic loops, which are intrinsic due
to transient stability simulations, while its application is
typically on validating grid behavior in the presence of
converter-based technologies [6].

In many of these approaches, the newly developed co-
simulators are presented as final products targeting one
particular application. Since their application is even more
specialized than that of the individual simulators, the usage
of these co-simulators is often short lived.

On the other hand, in recent years we have seen multi-
ple efforts to develop more sustainable power system co-
simulation tools that are sufficiently general to be used
for multiple purposes. Mosaik [7] has paved the way by
introducing a scalable tool that can handle large number of
power system modules. Its simple Application Programming
Interface (API) makes its usage rather straightforward. About

978-1-7281-1981-6/19/$31.00 ©2019 IEEE

the same time Functional Mockup Interface (FMI) gained
in popularity [8]. Although it was originally developed
to streamline model exchange in automotive and airspace
industries, it is becoming more commonly used for co-
simulations by packaging models and solvers into Functional
Mockup Units (FMUs). An important benefit of FMI stan-
dard is that it provides an entry point to using an abundance
of Modelica models, that come handy for modeling of
heterogeneous power and energy systems and components.
Finally, in a search of a high-performance architecture, ref-
erence [9] has proposed HELICS for co-simulation of large-
scale power systems. Although all these solutions are highly
customizable by the user, they also require a high level of
user expertise. In particular, the user is often expected to have
quite deep understanding of co-simulation concepts and high
programming skills to use these software solutions.

Hence, a major challenge of developing a co-simulation
tool that is highly-customizable and at the same time easy-
to-use remains open.

In this paper, we introduce a co-simulation rapid prototyp-
ing tool called Cossembler, which stands for co-simulation
assembler. The tool was developed with a particular intention
to speed up the co-simulation prototyping process and to
make the co-simulation methodology accessible to engineers
and researchers with moderate programming skills. Hence,
the tool has a rather light learning curve. Since the main
design requirement is usability, the tool does not significantly
optimize for performance. In addition, the tool is designed
to be lightweight, covering only essential capabilities needed
for co-simulations of power and energy systems.

In this paper, we demonstrate the use of Cossembler and
show its capabilities and features in one particular applica-
tion domain, i.e. the domain of power system operations.

The rest of the paper is organized as follows. Section II
highlights the added value of Cossembler. In Section III we
briefly describe the architecture of the tool. In Section IV
we outline the main components of the power system op-
erations application domain. And finally, in Section V we
demonstrate two related use cases.

II. BENEFITS OF COSSEMBLER RAPID PROTOTYPING
TOOL

In this section, we highlight the added value of Cossem-
bler by describing its unique features: high usability and
application domain variety.

A. High usability

The main hurdle for creating a co-simulation is a steep
learning curve for its user. We use the term user to refer to
anyone in the need of co-simulation results. This user is typ-
ically from power and energy sphere of interests (e.g. power
system engineers, grid operators, policy makers, consultants,
etc.). However, this user has to overcome multiple challenges
in creating a co-simulation, ranging from API control to
synchronization of message exchange between simulators.
Apparently, these challenges belong to the software devel-
opment field deeming co-simulation development quite hard.

Although some of the mentioned tools (i.e. mosaik,
HELICS, FMU) can ease this journey, they still require a
certain level of coding comfort to be used. Both HELICS

and Mosaik provide layered architectures in which the user
is often reminded of lower service layers which are often of
little interest to the user. Such specs, although comfortable
for a computer scientist, are still not a natural choice for a
user coming from power and energy field.

Cossembler addresses both of these concerns with its user-
centered architecture. First, Cossembler is a block modeling
tool. Hence, creation of the co-simulation is as simple as
linking appropriate blocks together. Since many intended
users have used a block modeling tool at some point in
their education or career (the most notable example is
Matlab simulink) the learning curve of Cossembler is rather
light. In addition, the block modeling design lends itself
to a straightforward Graphical User Interface (GUI) design
(although such GUI has not been developed yet and remains
to be implemented in the future).

Second, Cossembler allows the user to work directly with
typical power and energy functionalities (such as computing
optimal power flow or running a time domain simulation).
This is accomplished by Cossembler blocks with power and
energy functionalities (for example, a Security Constrained
Unit Commitment (SCUC) block). Hence, the Cossembler
usage is very intuitive for the intended user.

Fig. 1. Sketch of the Cossembler architecture including key components
of the Power system operations application domain.

B. Application domain variety

As already mentioned, co-simulation tools are often devel-
oped with one particular application in mind. Even the FMI
framework, which originated from cyber-physical system
community, has a strong inclination towards coupling of
time-domain simulations. A dedicated application typically
entails optimized architectural design choices. Hence, later
extensions and generalizations are sometimes hard to make.

Cossembler is focused on rapid prototyping, and hence,
it is optimized for the ease of use and not for a particular
application. At the same time, the intention of its creators is
to enable rapid prototyping for as many different application
domains as possible. Among these domains of interest are
the integration of new technologies and energy carriers,
validation of novel methods and algorithms for power system
operation and planning, cyber-security analysis, real-time co-
simulation, etc.

Since developing a tool that covers so many purposes
is a considerable task of great magnitude, the development
has been planned in stages. Each stage develops one of the
application domains. Until now, one application domain has
been developed, this is the application domain titled power

system operations and includes blocks with most typical
functionalities used in power system operations. This appli-
cation domain is described in Section IV. Before we proceed
with that description, we first describe the generalities of the
Cossembler architecture which enable the benefits from this
section.

III. COSSEMBLER ARCHITECTURE

Cossembler is an open source object oriented software
developed in Python and its architecture is illustrated in
Figure 1.

There are two basic categories of blocks within Cossem-
bler from which every other block is derived. The first one is
called Canvas and the second one is named Element. Since
Cossembler follows the rules of object oriented inheritance,
Canvas is also an incarnation of Element.

Elements are used for multiple purposes. First, they are
used to represent simulator blocks within Cossembler. To
accomplish this, a simulator adapter is created for each
simulator as an Element of Cossembler. For example, a
Matlab Element is created in such fashion.

Second, Elements are also used to represent co-simulation
master blocks. For now, Cossembler allows integration with
CERTI High Level Architecture (HLA) using the built-in
HLA Element. The co-simulation master blocks take care of
the synchronization and message exchange among simula-
tors if these run as separate processes, at remote machines,
under different Python versions or operating systems or if
they do not have a Cossembler adapter.

The third purpose of Elements is to represent various basic
data manipulation functionalities which could potentially be
useful to process the messages exchanged by the simulators.
For example, one might wish to multiply the data in the
message by a constant factor before this message arrives at
its destination. Such functionalities are useful for creating
functional interfaces between simulators (examples of really
involved ones can be found in literature on coupling of EMT
and TS simulations where an EMT signal needs to be con-
verted to a TS signal and vice versa [6]). In addition, various
blocks for simulation execution control are implemented as
such elements. We call these elements Linking elements.

Finally, the fourth purpose of the Element is to host
user defined blocks. These blocks are meant to give the
user an opportunity to extend the built-in functionalities of
Cossembler by developing their own.

Canvas is the second category of blocks available. It acts
as a workspace in which prototyping takes place. A user
creates Elements, adds them to a Canvas and connects them
in a desired configuration. Besides acting as a container for
Elements, Canvas also makes sure that the data propagates
from one Element to another in a form of a message. In other
words, Canvas acts as a local co-simulation master, directing
messages and synchronizing execution of Elements within its
jurisdiction.

Since Canvas is one form of an Element, nesting of
one Canvas within another is allowed and encouraged to
create more advanced functionalities. Elements of interest
to the intended user, for example Power flow element or
SCUC element, are created as Canvases which contain a
simulator element such as Matlab element. Then the Power

flow and SCUC elements direct the simulator element to run
appropriate functionality (in this case, to run the Matpower
toolbox).

Canvases are also used to create local loops and implement
conditional execution of certain parts of the code.

With such minimalistic representation, the use of Cossem-
bler becomes simple to master. Figure 2 gives a short code
snippet.

Fig. 2. Pseudo code showing the example of connecting two elements in
Cossembler

IV. APPLICATION DOMAIN - POWER SYSTEM
OPERATIONS

The first application domain developed with Cossembler
is the domain of power system operations. The goal of this
domain is to establish blocks typically used in power system
operations, such as power flow, optimal power flow, SCUC,
economic dispatch (with and without grid constraints), dy-
namic simulation (in particular transient stability simulation),
and the blocks referring to renewable representation (in par-
ticular their uncertainty). Application domains are essentially
libraries of modeling blocks for that particular sub-area of
power and energy field.

With the provided blocks for this application domain, the
user is able to represent variety of cases pertaining to power
system operations.

Figure 3 gives a general overview of the blocks relative
positioning within the power system operations cycle. Note
that this is just an illustration, yet of a kind that could be
easily implemented as a template for use cases within this
domain. The user is free to modify the setup from the image
in any desired way, which we do as well when we reach the
case studies in the next section.

The green blocks in Figure 3 denote elements that rely
on external simulators for execution. Cossembler currently
provides all these elements by deploying Matpower (for
steady-state computations) and Modelica OpenIPSL library
(for dynamic simulations). Other popular legacy tools are to
be added in the future. The blue blocks are elements which
are developed directly in Cossembler in order to implement
desired functionalities.

Also note that the setup in Figure 3 does not use an
external co-simulation master algorithm. Hence, all elements
are controlled by the overarching Canvas. If one wishes to
run this setup across multiple machines or processes, one
could assign different parts to different canvases and then run

Fig. 3. Illustration of power system operations represented by Cossembler
blocks. The day-ahead operations are represented using SCUC and DSA,
while the real-time operations are represented using Economic Dispatch
(ED) and grid dynamics simulations. In this sketch, DSA is composed of
two blocks, while ED can be implemented in two common variants. Finally,
both DSA and real-time operations are implemented in cycles to capture
their repetitiveness.

these canvases on different machines using a co-simulation
connection element to connect them. In this example, the
execution of the co-simulation is largely sequential (except
for the Dynamic Security Assessment (DSA) section of the
simulation), so the division across multiple machines bring
little benefits, except for the DSA parallelization. A setup
for such paralellization is shown in Figure 4. Connection
element for HLA is the only element supported at this time
while other co-simulation master solutions will be added in
the future.

Fig. 4. Illustration of the power system operations building blocks
including process parallelization.

V. USE CASE STUDIES

In this section we briefly illustrate two possible use cases
within the application domain of power system operations.
The first use case is a probabilistic Monte Carlo-based
dynamic security assessment which accounts for variability
in renewable generation. With this use case, we show that
Cossembler can be deployed to truthfully represent grid
operational procedures. We also use this use case to illustrate
the main benefits of Cossembler. The second use case is
the one of co-optimization, which we use to demonstrate
that Cossembler can also be used to devise new algorithms
by combining the existing ones. Note that these examples
are intentionally simple; it is our wish to showcase the
capabilities of Cossembler and not to claim accuracy or the
realism of the examples.

In both use cases, power system is modeled as IEEE 9 Bus
system which is augmented with one wind farm connected
to one of the load buses (Bus 9).

A. Use case 1: Stochastic dynamic security assessment

In this use case, the grid operator runs an SCUC to create
operation schedule for the next day. After the schedules are
created, the operator runs dynamic simulations for several
scenarios of interest in order to ensure transient stability
of the grid. In this setup, we put particular emphasis on
scenarios with different renewable penetration levels. By
sampling the probability density function of the renewable
generation, we run Monte Carlo analysis to assess the
system frequency excursions and possible frequency-band
violations.

The left hand side of Figure 3, which refers to day-ahead
operations, is the exact representation of the co-simulated
system in this use case. As already explained, Matpower
SCUC and OpenIPSL are used in this co-simulation. An
interesting aspect to elaborate upon is the implementation
of the loop that handles Monte Carlo simulation. Among
diverse linking elements, Cossembler provides two block-
elements for control of execution loops. These elements
are ForLoop and WhileLoop. Their usage is straightforward
as shown in Figure 5 and fits within overall paradigm of
Cossembler. Such elements were purposely created to allow
the user to control simulation execution in a much easier
way.

Fig. 5. Example of using simulation execution control elements in
Cossembler. Variable elem is a modeling block on which the loop is
deployed.

Figure 6 shows the deviation of system frequency as a
result of Monte Carlo simulation runs. It is notable that the
maximum and minimum frequency excursions go beyond
the band of 49.8Hz-50.2Hz which is reserved for primary
frequency response in Continental Europe. Hence, the grid
operator would have to deploy secondary frequency reserves
2.2% of time in order to preserve stability. In the next
subsection, we look at co-optimization of reserve scheduling
that can address this challenge posed to a grid operator.

B. Use case 2: Co-optimization of frequency reserves

The second use case shows the co-optimization of OPF
and dynamic simulation in order to achieve highly optimal
reserve requirements. We start by replacing the Power flow
block from the left hand side of Figure 3 with the Optimal
power flow block which includes optimization of reserve
requirements. This block, as many others, engages compu-
tation services of Matpower. The updated sketch is given in
Figure 7.

The reserve requirements are usually set a priori much
ahead of time (sometimes even on seasonal basis), and
hence, they are increasingly found to be either overly conser-
vative or overly optimistic in presence of large amounts of
renewable generation. Using co-optimization, a grid operator
can adjust the required level of reserves on the fly while

Fig. 6. Frequency deviation histogram from Monte Carlo simulations in
dynamic security assessment use case. In this case, the frequency excursion
violates the bounds 2.2% of time, assuming that bounds are set at 49.8Hz
and 50.2Hz.

observing the true grid conditions and renewable energy
levels.

Fig. 7. Co-optimization of frequency reserves using Cossembler.

Figure 8 shows how the frequency requirement changes
with each simulation run. By running a sufficient number
of scenarios, the frequency requirement will converge to a
value which satisfies all frequency deviations and which is
not overly conservative.

Fig. 8. Frequency requirement as a function of the simulation run.

VI. CONCLUSIONS

In this paper, we presented Cossembler - a rapid proto-
typing tool for co-simulations of power and energy systems.
As emphasized throughout the text, the main features of the
tool are high usability and variety of potential application
domains it can cover. These features result in rather light
learning curve for Cossembler users. Cossembler is built on
top of legacy tools and connects already existing domain
expertise.

The first application domain developed with Cossembler,
and also presented in this paper, is the one of power
system operations. Within this domain, we showed how
modeling blocks of Cossembler can be used to model
stochastic dynamic security assessment and how the tool
can be used to propose improved operational methods using
co-optimization. These examples illustrate effortless use of
Cossembler and provide a teaser for variety of possible
applications.

The future work on Cossembler will aim to develop block
models for other relevant application domains (e.g. cyber-
security, multi-energy system modeling, etc.), and also to
enhance variety within the existing application domain by
integrating other commercial and open source tools.

REFERENCES

[1] T. Strasser, M. Stifter, F. Andrén, P. Palensky, Co-Simulation Training
Platform for Smart Grids, IEEE Tran. on Power Systems, vol. 29, no.
4, pp. 1989-1997, July 2014.

[2] P. Palensky, A. van der Meer, C. D. López, A. Joseph, K. Pan, Ap-
plied Co-simulation of Intelligent Power Systems: Implementing Hybrid
Simulators for Complex Power Systems, IEEE Industrial Electronics
Magazine, vol. 11, no. 2, pp.6-21, June 2017.

[3] IEEE Task Force on Interfacing Techniques for Simulation Tools et al.,
Interfacing Power System and ICT Simulators: Challenges, State-of-the-
Art, and Case Studies, in IEEE Tran. on Smart Grid, vol. 9, no. 1, pp.
14-24, Jan. 2018.

[4] W. Li, M. Ferdowsi, M. Stevic, A. Monti, F. Ponci, Cosimulation for
Smart Grid Communications, in IEEE Tran. on Industrial Informatics,
vol. 10, no. 4, pp. 2374-2384, Nov. 2014.

[5] V. Jalili-Marandi, V. Dinavahi, K. Strunz, J. A. Martinez, A. Ramirez,
Interfacing Techniques for Transient Stability and Electromagnetic Tran-
sient Programs IEEE Task Force on Interfacing Techniques for Simula-
tion Tools, IEEE Tran. on Power Delivery, vol. 24, no. 4, pp. 2385-2395,
Oct. 2009.

[6] A. A. van der Meer, M. Gibescu, M. A. M. M. van der Meijden,
W. L. Kling, J. A. Ferreira, Advanced Hybrid Transient Stability and
EMT Simulation for VSC-HVDC Systems, IEEE Tran. on Power Delivery,
vol. 30, no. 3, pp. 1057-1066, June 2015.

[7] S. Rohjans, S. Lehnhoff, S. Schütte, S. Scherfke, S. Hussain, mosaik: a
modular platform for the evaluation of agent-based smart grid control,
IEEE/PES Innovative Smart Grid Technologies Europe, 2013.

[8] A. A. van der Meer, et al., Cyber-Physical Energy Systems Modeling,
Test Specification, and Co-Simulation Based Testing, 2017 Workshop on
Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES),
Pittsburgh, PA, 2017, pp. 1-6.

[9] B. Palmintier, D. Krishnamurthy, P. Top, S. Smith, J. Daily, J. Fuller,
Design of the HELICS high-performance transmission-distribution-
communication-market co-simulation framework, 2017 Workshop on
Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES),
Pittsburgh, PA, 2017, pp. 1-6.

