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Technical University of Delft, The Netherlands.

ABSTRACT: The present paper discusses the application principles of value of information theory in adaptive
metamodeling for reliability analysis. Metamodeling for reliability purposes has become particularly relevant
in recent years. The usage of metamodels allows surrogating the, costly to evaluate, performance functions of
engineering structures. Adaptive Kriging procedures are examples of the successful application of metamodel-
ing in reliability analysis. Efficient adaptive Kriging involves the usage of some notion of improvement in what
ultimately is an unsupervised decision making scheme that selects points to enrich the model. Therefore, the
decision to select a point to enrich the experimental design should consider the utility of each candidate in the
expectation of improvement of the metamodeling accuracy. Within this context, a comprehensive discussion on
the application of value of information for reliability metamodeling is presented. Since the candidate points and
surrogate are jointly built in a virtually costless model, it is possible to know the virtual outcome of the enrich-
ment decisions. In many circumstances, points in the experimental design may provide redundant information.
Furthermore, a priori knowledge on the performance function may be applied to weight the expected outcome
of exploration and exploitation. Value of information considerations adds value to reliability metamodeling that
uses adaptive methods, and is of interest for efficient design and optimization of complex structures, such as
bridge structures.

1 INTRODUCTION

The present paper discusses the application of value
of information (VoI) theory in metamodeling for reli-
ability analysis. Interest on VoI has been substantial in
structural health monitoring. For monitoring purposes
the goal is to optimize the utility of the information
obtained from a structure within a limited amount of
effort or cost (Thöns 2018). However, it is a fact that
every engineering decision has a utility gain and a cost
or consequence associated (Raiffa & Schlaifer 1961,
Thöns & Kapoor 2019), and hence VoI may appear
in many contexts in engineering problems. This ratio-
nale of utility has transversal interest to all engineer-
ing fields.

The purpose of the present paper is then to research
on the application of VoI principles in the field of
adaptive metamodeling for reliability analysis. Due
to the characteristic of reliability analyses, they can
be costly by nature. In its most fundamental form
of calculation, due to the low probabilities of failure

(Pf ) that are usually involved in the problem of reli-
ability, multiple evaluations of a limit-state or perfor-
mance function need to be assessed. Metamodeling
is one of the most promising alternatives identified to
make the problem of reliability analysis manageable.
Metamodels are surrogates of the problem of reliabil-
ity that allow a fast calculation of the Pf . As a re-
sult, significant research interest has been performed
in the application of these as a mean to decrease the
effort required to perform reliability analysis, without
significant loss of accuracy. Adaptive metamodels are
of particular interest in this context (Echard, Gayton,
& Lemaire 2011). Adaptive metamodeling techniques
use a notion of improvement to sequentially improve
the metamodel approximation to the problem of in-
terest (Teixeira, Nogal, O’Connor, Nichols, & Dumas
2019).

Adaptive metamodeling consists then on iteratively
improving the surrogate approximation considering
a priori knowledge about the problem. In each step
a decision should be made in regard to whether the



surrogate approximation is improved or not. This is
weighted by some measure of accuracy and cost. De-
cisions on improvement and stopping conditions use
a learning function, or enrichment functions, and a
stopping criterion that weights on further learning. In
its fundamental rationale there is some resemblance
with the principles that rule the theory of VoI, how-
ever in the present case, no analysis is performed in
relation to the output beyond of the stopping con-
dition, e.g. multiple consequences of each decision.
The present work exploits this idea of treating adap-
tive metamodeling with the approach of the problems
of VoI, in order to further enhance the accuracy and
comprehensiveness of adaptive implementations. It
merges knowledge of VoI in the sequential construc-
tion of surrogates for limit-state functions in reliabil-
ity.

For such, Section 2 discusses the implementation
of reliability in the context of metamodeling, Section
3 discusses the theory behind decision analyses that
measure the value of information, Section 4 presents
the framework developed that uses the rationale of
the VoI to explore and exploit the experimental de-
sign in metamodeling for reliability analysis, Section
5 presents and discusses results from two examples, a
series system with four branches and a virtual bridge
system. Finally, the main conclusion of the work de-
veloped is presented in Section 6.

2 RELIABILITY ANALYSIS

In time-invariant reliability analysis (Bourinet, De-
heeger, & Lemaire 2011), the Pf is expressed as the
probability P [.] of the performance function having
values smaller than a threshold of failure (tf ) (in reli-
ability tf=0) is given by

Pf = P [g(x) < tf ] =

∫
g(x)<0

fx(x)dx (1)

where fx(x) is the continuous joint distribution of x
input variables. g(x) is the performance function of
the system that is being evaluated.

It is noted that this integral calculation is complex
and usually solved by using approximate methods. A
common technique to solve the problem of reliability
analysis is then to numerically approximate this inte-
gral calculation by defining discrete x classification,
in failure or non-failure events. In the form of classifi-
cation, the reliability analysis becomes divided in two
discrete domains of

If (x) =


0, if g(x) ≥ 0

1, if g(x) < 0

(2)

where If is a binary classification that defines the
x domains of failure (IF (x) = 1) and non-failure

(IF (x) = 0) accordingly to g(x) and the tf defined.
With this classification scheme Pf can be approxi-
mated with,

P̂f =

∑
x̂ If (x̂)

N
(3)

by using a random vector x̂ = [x1, x2, . . . , xN ] with N
being the size of the vector x. This random vector is
representative of the random conditions of operation
of the system or structure being analysed. The pre-
diction accuracy for the estimated Pf improves as N
increases, with

lim
N→∞

P̂f = Pf (4)

This is the principle beyond the most primitive tech-
nique to solve the problem of reliability, that is
the Monte Carlo Sampling (MCS) technique. It is
straightforward to understand how this calculation
can become cumbersome, in particular when increas-
ingN is large and involves the usage of complex g(x)
that are costly to evaluate.

The principle behind the application of metamodel-
ing to reliability is that of solving this same problem,
but relying only to a limited extent in the performance
function g(x). A metamodel is then a surrogate G(x)
of g(x) that is expected to provide an accurate approx-
imation of the performance function.

2.1 Adaptive Kriging in Reliability

In the present paper, the adaptive Kriging is applied
to discuss VoI in the context of metamodeling. The
works that use Kriging pursuit to facilitate this classi-
fication procedure by using it as a metamodel. Kriging
models, in addition to reducing the cost of the relia-
bility analysis by surrogating g(x), have gained rel-
evant interest in the field of reliability analysis due
to their capability to perform as self-improving func-
tions. Because Kriging models have the capability to
surrogate the limit-state function and at the same time
enclose a measure of uncertainty in the approxima-
tion, they have been widely applied in active adaptive
procedures (Teixeira, O’Connor, & Nogal 2019).

It is not difficult to understand that these models
enclose a significant amount of information that can
be used in a decision-making procedure. The adaptive
Kriging stopping criteria already rely to some extent
on this fact.

The Kriging model, used to create a surrogate such
that G(x) = E[g(x)], is defined by,

G(x) = f(βp;x) + z(x) (5)

where f(βp;x) is a deterministic function defined by
a regression model with p (p ∈ N+) basis functions,
and z(x) a Gaussian stochastic process with zero
mean. These models are defined using a likelihood



search on a set of θ hyperparameters. A set of sup-
port points is required to define G(x), and these are
designated as the Experimental Design (ED). Every
prediction of G(x) at a generic x point is defined by a
mean value µ(x) and a standard deviation σ(x), which
provides a measure of uncertainty in the approxima-
tion.

To define new ED points to improve the meta-
modeling approximation, multiple functions and al-
gorithms have been presented before, e.g., (Echard,
Gayton, & Lemaire 2011, Bichon, Eldred, Swiler,
Mahadevan, & McFarland 2008, Teixeira, O’Connor,
& Nogal 2019). The U function (Echard, Gayton,
& Lemaire 2011) and Expected Feasibility Function
(EFF) (Bichon, Eldred, Swiler, Mahadevan, & Mc-
Farland 2008) are of particular interest in this context.
These two functions have set the early benchmarks for
the AK methods, and are still widely applied.

3 VALUE OF INFORMATION (VOI)

The VoI can be measured in different forms, depend-
ing on the context of the problem in-hand. This is
due to the dependence of the VoI in the concept of
utility. Thöns & Kapoor (2019) define the expected
utility gain as the difference between a pre-posterior
(for predicted) or a posterior decision analysis (for
obtained information) and a prior decision analysis,
which implies that the information acquirement states
(predicted, obtained, not considered) define the deci-
sion analysis and thus the VoI conceptual definition.
In the same work, the authors introduce a general con-
sistent formulation to apply and consider VoI in deci-
sion processes.

Three main aspects can be highlighted in VoI im-
plementations, (1) the consideration of both informa-
tion acquirement and action implementation states;
(2) consideration of action implementation uncer-
tainty; and (3) system state trade-off analysis in re-
gard to further information. Within this context, the
decision of considering additional and yet unknown
information in a engineering problem can be based
upon an objective quantitative analysis that represents
the value of that information (commonly this appears
in the form of utility (u) or benefit).

Section 1 highlighted the resemblance of these as-
pects with the generic problem of adaptive metamod-
eling that implicitly has considerations on the utility
of new information in the surrogate approach. A chal-
lenge that is posed in this context is that of defining a
value of u of relevance in the particular field of meta-
modeling for reliability. Generally, this value of utility
should enclose comparative measures of two or more
scenarios of implementation, such as, a base scenario
and enhancement scenarios; which allows the quan-
tification of the value of information in the analy-
sis. Because metamodeling in reliability analysis is
based on using a limited knowledge about a certain
performance function g(x) to characterize the com-

plete problem of reliability estimation, a conceptual
idea of information and utility can be proposed. The
rationale of the present paper is to research on how to
create such concepts of information and utility. In the
present case, the maximization of the value of infor-
mation can be calculated by finding the maximum dif-
ference between the expected utilities that may arise
from increasing the “true” information about g(x), in
relation to the case of no additional information.

The following section discusses the application of
decision analyses that use notional ideas of VoI in
metamodeling, with particular emphasis on adaptive
implementations. Adaptive implementations are of in-
terest, since in an adaptive approaches, the goal is to
find the most relevant information that is expected to
further improve the metamodel approximation.

4 METAMODELING BASED ON VALUE OF
INFORMATION CONSIDERATIONS

The common approach to metamodeling that consid-
ers adaptive techniques is to start with an ED (or set of
defined x̂ values) and then to sequentially enlarge this
x̂ using some criterion that contributes to incremen-
tally improve the approximation of the created surro-
gate. This involves a decision process that is solved
with an unsupervised decision procedure, and by set-
ting some halting criterion on the decision. Figure 1
resumes how this procedure is developed. If a meta-
model is to be adaptively updated (in order to pur-
suit further accuracy) it uses knowledge on the present
model in order to estimate the benefit of adding fur-
ther points to the ED. In this context, as depicted in
the figure, the analysis involves the choice of infor-
mation from a candidate update scheme, the utility
of each candidate is measured in terms of the ben-
efit that is expected to bring to current i metamodel
(explicitly or implicitly), and an update choice is per-
formed based on it. When the decision involves the
selection of a new candidate, the outcome is to eval-
uate it in the g(x). This coincides with the point (1)
in the previous section. Furthermore, in the present
case uncertainty is considered by means of expecta-
tion, such as discussed in (2) in the previous section.
Any decision on the choice and chance of information
is uncertain, and the utility effective outcome is only
addressed after choice on action. Finally the point (3)
concerns measuring the trade-off of further analysis
that can be obtained by using the choice and chance
of information, and the model state. Initially, if no in-
formation is pursued the model is not updated and the
metamodel state is not modified. If the expected ben-
efit is small, the choice decision is to not update the
model, whereas if the expected benefit is large, the
decision is to update G(x) at i+1 with the candidate
strategy. In a fully adaptive implementation this anal-
ysis is repeated until no relevant utility is expected.

The major question that arises in the context dis-
cussed is on how to define utility in metamodeling. To



Figure 1: Example of adaptive metamodeling decision tree con-
figuration.

create a surrogateG(x) of a function g(x) that enables
efficient reliability analysis, commonly two character-
istics are pursued, accuracy and limited analysis ef-
fort. Utility in metamodeling needs then to enclose
these two characteristics. It was seen that, even con-
sidering that adaptive metamodeling is not commonly
discussed in a context of decision theory that uses a
priori information, most of the techniques implicitly
consider provisions of it. Most of the metamodeling
techniques that have become prominent in the field
of metamodeling for reliability analysis use a learn-
ing function that considers a notion of improvement
(value of further information) and a stopping crite-
rion that halts the methodology when the expectation
of further information is small. While the learning
function evaluates candidates and their potential for
improvement, the stopping criterion applies the trade-
off of pursuing further information. This rationale of
using information and to some extent expectation of
utility (or expectation of improvement) appears in dif-
ferent forms in reliability and structural analysis, such
as, classification error (Echard, Gayton, & Lemaire
2011), analysis budget (Teixeira 2019), or accuracy
estimation (Sun, Wang, Li, & Tong 2017).

The present application of VoI concepts intends to
foment discussion on this topic, by creating the for-
mal basis of the problem of adaptive metamodeling as
a problem of measuring the VoI of further improving
the surrogate approximation. In parallel to setting this
discussion, a new methodology to define surrogates
of g(x) for reliability analysis is proposed, where the
adaptive metamodeling is discussed under the consid-
eration of utility.

4.1 Methodology to build a metamodel using VoI
principles

In the present study we construct the problem of adap-
tive metamodeling and merge it with VoI and decision
analysis by considering three aspects of u, accuracy,

uncertainty, and cost.
The goal is to use this rationale to evaluate the

metamodel in each step of its definition, and in order
to decide where to further improve the metamodel.
Hence, the sequential or iterative approach should be
continued only if the expected utility is large enough
for the metamodel to harness the contribution from
further information. For this purpose, a measure of
utility u is required. In the present case, the utility u
is measured as a posterior expectation of contribution
to the accuracy of the estimation from the metamodel
enclosing in a potential candidate.

As a result, in order to measure the posterior, the
expected effect of adding a point j of the candidates
to the i iteration model surrogate of g(x) is measured
by:

uj = E[∆ε|G(x|x∗ED)] (6)

with

∆ε|G(x|x∗ED) = Pf ±E[∆Pf |G(x|x∗ED)] (7)

where G(x|x∗ED) is a metamodel with ED updated
based on the consideration that the expected value of
the j candidate is true. That is to say, that the cur-
rent metamodel approximation is updated with a can-
didate, and the utility uj of this candidate is given by
the expected VoI of having it in the ED.

Ideally, assuming that the definition of G(x) is sta-
ble for all the sizes of xED, the limit case when the
size of the xED → ∞, the approximation of G(x)
tends to the original function g(x). In implementation
conditions of metamodeling for reliability problems
where the size of xED is relatively small, the accuracy
of g(x) is only approximated by G(x) with a certain
level of confidence, that in the case of Kriging can be
estimated by a Gaussian N (µG, σG).

Therefore, in the problem of reliability as de-
scribed, this expectation can be used to determine the
expectation of error in case of an incorrect prediction.
The current estimation of Pf would be positively bi-
ased if the points classified as failures are in fact non-
failure occurrences,

∆P−f = 1−
∫
x

Φ

(
−µG

σG
|G(x) < 0

)
f(x)dx (8)

and negatively biased if the expected non-failure are
in fact failures,

∆P+
f =

∫
x

Φ

(
−µG

σG
|G(x) ≥ 0

)
f(x)dx (9)

This means that a certain Pf prediction with G(x) has
an uncertain component that can be estimated in aver-
aged terms. Φ Refers to the standard Gaussian cumu-
lative distribution function.

An estimation of Pf has therefore an uncertain
component

∆Pf = ∆P+
f + ∆P−f (10)



which is a range of deviation of Pf estimation with
the Kriging surrogate, under the assumption of G(x)
being the best current representation of g(x).

The expected value of adding a candidate j to the
ED can be calculated by using the expectation of this
uncertain component,

νj =

∫
x

Φ

(
−|µG|
σG
|G(x|x∗ED)

)
f(x)dx (11)

which can be approximated for a finite-sample r by

νj =
r∑

o=1

Φ

(
−
|µG(x(o)|x∗

ED)|
σG(x(o)|x∗

ED)

)
(12)

with r being the approximation sample to estimate P̂f ,
and that encloses the expected value of content in Pf

of misclassifying points in the ED.
The utility uj of enclosing the j point in the ED, is

the inverse of νj ,

uj =
1

νj
(13)

which means that a point has maximum utility uwhen
its effect is that it minimizes the value of the expected
∆P±

f
. That is to say, the candidate that is expected to

minimize the value of ∆Pf , is the one that encloses
the most relevant information to make an accurate sur-
rogate.

In summary, the value of information of adding a
new point to the ED is compared with the value of
not adding that point by the relative comparison of its
effect on the accuracy of the Pf estimation, which is
a measure of accuracy of G(x). The point that max-
imizes the VoI (of being enclosed in the ED), is the
one that induces larger expectation of gains in accu-
racy, i.e. Pf prediction.

The new candidate selected to improve g(x), xs, is
the one that has maximum utility.

xs = max [u] (14)

The problem here defined can be understood as the
problem of finding the next candidate xs to update the
xED that has the largest expectation of reducing the
uncertainty in the P̂f estimate.

To note that by construction vj > 0 ∀ j, and hence,
the maximum will be independent of the sign of the
expectations ∆±.

Two things need to be considered in this phase, that
is, interest in the region of failure and cost of updat-
ing. Because evaluating the utility of r candidates (
note that r is a very large sample) has a large compu-
tational cost, it is of interest to use only subset can-
didates in the evaluation that are of significance for
the problem in-hand. In the case of reliability analy-
sis, some points are more relevant than others, and the
points that are close to the failure region are expected

to be more relevant for the problem of classification
(they will contribute the most to classify the neigh-
borhood that encloses large ∆±Pf ).

A subset of nC points can be constructed from the
large candidate sample in order to analyse the x∗ED

effects. So the subset xC of candidates to evaluate u
is defined by,

xC = xj ⊆ ruj , j = 1, . . . ,NC (15)

with ru being the vector r of all candidates sorted
by the value of uncertainty of classification of the re-
sponse G(r).

An alternative approach to select subset candidates
that is of interest is that of using clustering techniques
in r, such as implemented in Jiang, Qiu, Yang, Chen,
Gao, & Li (2019) (Voronoi cells). A candidate quasi-
random sample is also an alternative of interest for
a better exploration of the x space. Despite not im-
plemented in the present application, both approaches
are expected to improve the information that may be
obtained from xC , in particular in order to provide ef-
ficient exploration of the x space.

It was seen that in each iteration a decision is to be
made on whether to continue to improve the surrogate
approximation or not. This is achieved by using a halt-
ing condition that stops the algorithm when fulfilled.
One of the aspects that has been accounted only in a
limited way in adaptive metamodeling for reliability
is that of weighting the cost of taking new evaluations
as a degree of freedom of the decision criteria. Enclos-
ing the cost, on the other hand, is a common practice
in the VoI theory.

It is noted that the cost of evaluating g(x) is not
always the same. In some circumstances, extending
the search for 10 more points is not costly, whereas,
in other, it may demand few more hours of analysis
time.

It is not uncommon for metamodeling techniques to
consider a limit to the computational budget (Teixeira
2019), however, it is more interesting to have a cost
(τ ) associated to new g(x) evaluations that adjusts the
utility criterion to proceed or not with acquiring infor-
mation. In this sense, the us of the present more ade-
quate xs candidate accordingly to what was described
in the present section is evaluated in comparison with
a weighted cost of new evaluation and the current es-
timation of Pf ,

u−1s < PfΞε (16)

where Ξ is the cost of new g(x) evaluations that is
bounded in [0,1]. If the model has a relative low cost
to be evaluated, decreasing Ξ means that the deci-
sion on utility is progressively more conservative (the
method is not concerned on computing a few extra
points to increase the accuracy of the approximation
to g(x)). ε is a measure of accuracy that weights the
present expectation of error and that should be upper
bounded at 0.01, or 1% of the estimated P̂f , in order



to guarantee an accurate approximation (this upper
bound will be used in the present implementations).

Under the described theoretical background, the
adaptive metamodeling algorithm for reliability cal-
culations that based on VoI principles uses the follow-
ing sequence:

1 Initiate the ED and the sample r, which should
be large enough to allow accurate estimation of
Pf . In the present application using Latin Hyper-
cube Sampling and MCS respectively. Evaluate
the ED in g(x).

2 Transform all variables to the standard normal
space before fitting. If r is relatively small in
comparison to P̂f , then r can be enlarged without
loss of generality of the procedure;

3 Define G(x), surrogate of g(x) and estimate P̂f ;

4 Set xC ⊆ rsort, xC = [xj=1, xj=2, . . . , xj=nC ] us-
ing predictions µG(r) and σG(r);

5 Predict νj and uj by using a virtual x∗ED and
G∗(x) built on expectation that xj is true for the
G(xj);

6 Find the xj where uj is maximum, this point is
the selected most adequate candidate xs and has
utility us;

7 Evaluate the us of adding xs with equation (16);

8 If the condition of equation (16) is true or Pf = 0
enrich the present ED and return to 2. In this
case, the utility surpasses cost, or not enough ex-
ploration of the space was promoted. If the con-
dition of equation (16) is false and Pf 6= 0 stop
the procedure, and proceed to 9.

9 Estimate P̂f . G(x) is expected to be an accurate
estimator of the problem of reliability for g(x)

Two examples of implementation of the proposed
methodology are presented in the following section.

5 IMPLEMENTATION OF THE FRAMEWORK
PRESENTED

Two examples are used to study the technique pro-
posed. The first is a series system that has been widely
researched in the field of adaptive metamodeling. The
second is a bridge system based on the results pre-
sented in Akgül & Frangopol (2004).

5.1 Example I - Four branches series system

The series system, in its k, m, dependent form, has
been widely researched in adaptive modeling imple-
mentations. The performance function of the series
system is evaluated as the minimum of g(x) in four
branches,

g(x) = min


k + 0.1(x1 − x2)2 − x1+x2√

2

k + 0.1(x1 − x2)2 + x1+x2√
2

(x1 − x2) + m√
2

(x2 − x1) + m√
2

(17)

Results for the reliability calculations of density
scanned AK of the series system in comparison to
benchmarked results from Jiang, Qiu, Yang, Chen,
Gao, & Li (2019) are presented in Table 1. Reference
comparative results use the implementation of Jiang,
Qiu, Yang, Chen, Gao, & Li (2019)

Table 1: Comparative results for distinct techniques to perform
reliability calculations in the present example. In the present ex-
ample values of k = 3 and m =6 are considered. Results pre-
sented for the framework proposed are averaged from 25 imple-
mentations. geval is the number of true function g(x) evaluations
in the procedure. LIF - Least Improvement Function.

Method Pf (10
−3) geval er(%)

MCS 4.454 106 -
U 4.435 106.1 0.43

EFF 4.475 114.0 0.47
H 4.456 97.5 0.05

LIF 4.471 64.8 0.38
Results from the framework of (Jiang, Qiu, Yang, Chen, Gao, & Li 2019)

U 4.423 64.7 0.70
EFF 4.456 64.3 0.05

H 4.411 69.7 0.97
LIF 4.497 56.5 0.97

Results from the framework presented
nC = 20, c =1 4.355 54.1 2.2
nC = 40, c =1 4.447 54.7 0.16
nC = 100, c =1 4.446 54.8 0.25

The results of the series system implementation
show that using the idea of utility it is possible to
achieve robust predictions for Pf with a relatively
low number of performance function evaluations. The
results obtained are comparable with the ones of
the FPS framework, and occasionally with a slightly
lower number of g(x) evaluations. The gains relative
to the original works of AKMCS that use the EFF and
U learning functions are more evident in the present
case.

Figure 2 presents the ED evolution for the cases
of iterations i, 20 and 40. It is possible to infer that
using information on the expected utility of the can-
didate in the surrogate model, an efficient balance of
exploitation and explorations is achieved. After only
20 iterations, the four branches of the g(x) function
were found in the present example. Moreover, the ED
of i = 40 shows that the sequential improvement of
the surrogate approximation maintains a balance of
exploitation and exploration. Points that are close in



Figure 2: Example of adaptive Kriging implementations using
the methodology presented. i refers to the iteration number. nc =
40.

the ED, and that may provide redundant information
in the surrogate approximation, are not added to the
ED. This is due to the notional improvement based on
the expectation of improvement for a neighborhood
(reduction of content in misclassification) given by ν.

It is noted, however, that the implementation of
a measure of utility u that is characterized on a
“dummy” G(x) increases the analysis time as more
metamodels need to be created. Hence, in a context
of implementation the trade-off of additional analy-
sis time and effort should be weighted in relation to
the gains in decreasing the number of geval, and hence
also weighted when defining the value of Ξ. The al-
gorithm used to build the metamodel is also expected
to have large influence on the implementation. In the
present case the ooDACE toolbox was used (Couck-
uyt, Dhaene, & Demeester 2014). An alternative to
consider in future implementations is the UQLAB
Kriging algorithm of (Marelli & Sudret 2014).

5.2 Example II - Simple bridge system reliability

A bridge system example that is an approximation of
the bridge presented in (Akgül & Frangopol 2004) is
applied as a representative example of reliability anal-
ysis with the methodology proposed. The limit-state
considered refers to flexure failure of the bridge.

The bridge is considered to be of compact section
type. A single mode of failure is considered from the
ones presented in the reference, ultimate limit state
with failure by flexure. The flexure limit state (LS)
function at the critical section is given by

gF = Mu − (MDLNC +MLL+I +MDLC) (18)

Mu = KFySpλmfg (19)

MDLNC = 32.07λs (20)

MDLC = C1λc +C2λa +C3λs +C4 (21)

MLL+I = MtrkIfDf (22)

with C1= 142.5; C2 =54.72; C3 = 4.39 and C4 = 1.49.
In this problem there are 9 random variables. Their
probabilistic characterization is presented in Table 2.
A tunable variable K is considered to have the value
of 0.5.

Results are shown in Table 3. Similarly to the pre-
vious example, using a measure of utility allows gains
in the number of evaluations of g(x). When the evalu-
ating g(x) is relatively cheap Ξ = 0.1, the performance
is comparable to the performance of the AKMCS
of (Echard, Gayton, & Lemaire 2011). However, in
the present example the best results were obtained
with the First Order Reliability Method (FORM) (it
is noted that Equation (18) indicates that g(x) is ex-
pected to be relatively simple and capable of being ap-
proximated with FORM). Despite this fact, the geval
needed to complete FORM in comparison with the
methodology presented indicates that further benefits
can be attained with a hybrid technique that combines
the two.

It is noted that despite the decrease in the number of
geval, with performance relatively close to the frame-
work introduced in (Jiang, Qiu, Yang, Chen, Gao, &
Li 2019), further improvements are expected from ex-
ploiting the relation between the VoI and the sample
candidate in the space. One of the main future devel-
opments in the present method is related to the se-
lection of the nC in the space, in order to foment ex-
ploration with a relatively low number of candidates.
Clustering techniques are an example of one of the
techniques that may be used for the effect.

In order to use relatively small values of nC two
recommendations are given; the first is to decrease
the cost of further iterations, and the second is to
avoid strong candidates that are very close to each
other in the x space (such as discussed for cluster-
ing techniques). Alternatively, uniform designs may
be applied to create the initial ED for the case of the
Kriging, which is particularly efficient for local inter-
polation, and less efficient to approximate the global
trends (Schobi, Sudret, & Wiart 2015).



Table 2: Generic properties of the bridge considered in the current assessment (all variables are assumed to be lognormal). The bridge
is of steel I-beam type. m and v are the lognormal mean and standard deviation, and µ and σ are mean and standard deviation of the
associated normal distribution.

Variable Specification m v µ σ

Structural resistance variables
Fy (MPa) Yeld strength of the material 252.56 30.31 5.5245 0.1196
Sp(cm

3) Plastic modulus 9053 226.33 9.1106 0.025
λmfg Model uncertainty factor 1.11 0.128 0.0978 0.1146
λs Uncertainty steel weight 1.03 0.0824 0.0264 0.0799
λa Uncertainty asphalt weight - - 1 0.1
λc Uncertainty concrete weight - - 1 0.1
Structural loading variables
Mtrk(kNm) Moment truck load 245.67 87.26 5.4446 0.3447
If (−) Impact factor 1.122 0.1122 0.1098 0.0998
Df (−) Distribution factor 1.44 0.1785 0.3568 0.1235

Table 3: Comparative results for distinct AK implementations
for the adapted bridge system.

Method Pf (10−3) geval er(%)

MCS 1.636 106 -
AKMCS 1.661 93.50 1.5
FORM 1.627 55.00 0.6

Results from the framework presented
nC = 20, Ξ =1 1.619 71.59 1.0
nC = 50, Ξ =1 1.611 70.80 1.5
nC = 20, Ξ =0.1 1.661 90.40 1.5
nC = 50, Ξ =0.1 1.659 91.60 1.4

6 CONCLUSIONS

A methodology was presented that combines knowl-
edge on decision theory, using value of information,
in order to create an adaptive metamodeling tech-
nique for efficient reliability analysis. The proposed
approach uses an expectation of utility measured on
the i iteration metamodel in order to define the ex-
pected gains of adding a point to the experimental de-
sign. The gains are measured in terms of the expecta-
tion of reducing the uncertainty in the probability of
failure prediction. A point is considered to have large
utility when it contributes the most to approximate the
surrogate, based on the expectation that its prediction
is true. A measure of cost was also introduced in or-
der to calibrate the decision on utility as a function of
the performance function expense. Two examples of
implementation were researched. Results showed that
using a priori establishment of utility for posterior
decision analysis in the adaptive approach produces
efficient implementations for reliability analysis. In
both of the examples studied the number of evalua-
tions of the performance function were reduced to a
comparable, and with a slight edge over, values found
for efficient implementation in the literature. How-
ever, it is noted that the gains in efficiency come at
the expense of additional effort in establishing utility
measures for the adaptive improvement, and also in-
ducing metamodel-algorithm dependency. Therefore,
to conclude, it is important to highlight that despite
the relatively large efficiency of the methodology pre-
sented, there is still room to further improve efficiency
by reducing the number of performance function eval-
uations and procedure cost. This may be achieved by
a slight increase of the exploration capability of the

subset candidate sample (in the case of the Kriging).
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