

Delft University of Technology

Enhancing PowerFactory Dynamic Models with Python for Rapid Prototyping

López , Claudio David; Cvetkovic, Milos; Palensky, Peter

DOI
10.1109/ISIE.2019.8781432
Publication date
2019
Document Version
Final published version
Published in
2019 IEEE 28th International Symposium on Industrial Electronics (ISIE)

Citation (APA)
López , C. D., Cvetkovic, M., & Palensky, P. (2019). Enhancing PowerFactory Dynamic Models with Python
for Rapid Prototyping. In 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE):
Proceedings (pp. 93-99). Article 8781432 IEEE. https://doi.org/10.1109/ISIE.2019.8781432

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ISIE.2019.8781432
https://doi.org/10.1109/ISIE.2019.8781432

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Enhancing PowerFactory Dynamic Models
with Python for Rapid Prototyping

Claudio David López, Miloš Cvetković and Peter Palensky
Department of Electrical Sustainable Energy

Delft University of Technology
The Netherlands

Abstract—DIgSILENT PowerFactory is among the most widely
adopted power system analysis tools in research and industry. It
provides a comprehensive library of device models and it allows
users to define their own. Models for dynamic simulation can be
defined in the DIgSILENT Simulation Language (DSL). When
the functionality of DSL is insufficient, new DSL functions can be
defined in C or C++. However, C and C++ can be challenging for
inexperienced programmers. Furthermore, every time the C or
C++ code is modified, it needs to be recompiled and PowerFactory
needs to be restarted for the changes to take effect, which
slows down the workflow, model development, and inhibits rapid
prototyping. In this paper we present an open source library
that allows users to call Python functions and methods from
DSL with minimal effort. Python is a powerful and much easier
to use language than C or C++. Additionally, Python programs
do not need to be compiled. Furthermore, with this library
PowerFactory does not need to be restarted every time the Python
code is changed. To illustrate what can be accomplished with
our library we present three example use cases related to load
modeling, co-simulation, and fault detection based on machine
learning. The examples show that it becomes straightforward to
enhance DSL with Python and that sophisticated models can be
produced with reduced effort using popular open source Python
libraries. As a consequence, PowerFactory users gain access to
enhanced modeling capabilities and user-friendliness, and a more
speedy workflow, which is beneficial for rapid prototyping.

Index Terms—Co-simulation, DSL, dynamic simulation,
machine-learning, PowerFactory, Python

I. INTRODUCTION

DIgSILENT PowerFactory is among the most widely
adopted power system analysis tools in research and industry.
It is known for its versatility, since it allows users to perform
a wide range of static and dynamic analyses on power system
models, and provides a comprehensive library of electrical
power system device models that users can customize and
expand with new models. In the case of dynamic simula-
tions (i.e., transient stability and electromagnetic transient
simulation), users can define new models in the DIgSILENT
Simulation Language (DSL).

DSL is a language for modeling continuous linear and
non-linear systems that is well suited for defining control
structures. When the functionality of DSL is insufficient for
a given application, new DSL functions can be defined by
the user. These functions must be specified in either the C
or C++ programming language and compiled into a Dynamic
Link Library (DLL) that PowerFactory can access [1]. This
is a powerful feature, as it creates the opportunity for po-

tentially unlimited expansion of the simulation capabilities of
PowerFactory. Additionally, this feature is also useful when
implementing a model in DSL becomes too cumbersome, for
example, when if/else, while and/or for statements are
required, none of which are provided in DSL.

However, creating new DSL models in C or C++ poses
some challenges. C is a low-level programming language
by today’s standards, so considerable programming effort is
needed to implement sophisticated functionality. Furthermore,
some of its features have proven troublesome to inexperienced
programmers, such as direct memory addressing and dynamic
memory management. On the other hand, C++ is a higher level
language than C, but with a steep learning curve, and most
electrical power engineers are not well versed in it. Using these
languages can also slow down the simulation development
workflow; Every time the C or C++ code is modified, the DLL
must be recompiled and PowerFactory must be restarted for the
changes to take effect. Altogether, using C or C++ for creating
DSL models is inconvenient when the code is modified often
and/or when the main goal is implementation with minimal
effort, which is the case during model development and rapid
prototyping.

Python in comparison to C and C++ is easier to learn, read,
write and debug. It is a high-level language with an extensive
standard library. In addition, Python’s popularity within the
scientific and engineering communities has materialized in
a vast collection of reliable and user-friendly open source
libraries, like SciPy [2] for scientific computing, scikit-learn
[3] for machine learning, and pandas [4] for manipulation
and analysis of large datasets. These characteristics make
it appealing when the priority is to minimize programming
effort. Since version 15.1 PowerFactory provides a Python
3 API [5], however, this API cannot be invoked during a
dynamic simulation, much less from a DSL model [1], as it
is mainly intended for automating simulation tasks.

In this paper we present a small open source library1 that
addresses these challenges by allowing PowerFactory users
to easily call Python functions and methods from their DSL
models. Our library has the added benefit of a more speedy
simulation development workflow. Unlike C and C++, Python
is an interpreted scripting language that does not need to be
compiled. Moreover, the library is designed so PowerFactory

1https://github.com/claudiodavidlopez/digexfunPyDSL

import numpy as np
from external_script import external_function

def square_to_polar(re, im):
"""Converts a phasor from square to polar
coordinates.
"""
mag = float(np.sqrt(re**2 + im**2))
ang = float(np.arctan2(im, re))
return mag, ang

CALLABLE_REGISTRY = [
external_function, # pyFunID = 0
square_to_polar # pyFunID = 1

]

Listing 1. Example of a valid script.py file.

does not need to be restarted when the Python code is
modified. All of these characteristics make the library valuable
for rapid prototyping.

To illustrate what can be accomplished with our library
we present three example use cases. In the first one we
implement a load model in Python and compare it to its DSL
implementation to highlight how some models are easier to
implement in Python, in the second one we present a co-
simulation interface that shows how the library can be used
to couple PowerFactory with external simulators and models,
and in the third one we present a machine learning-based
fault detector that emphasizes how this library can be used to
incorporate models that are beyond classic power engineering.
Together, these examples show that it becomes straightforward
to enhance DSL with Python and that sophisticated models
can be produced with reduced effort using popular Python
libraries. As a consequence, PowerFactory users gain access
to enhanced modeling capabilities and user-friendliness, and
a more speedy workflow, which is beneficial for rapid proto-
typing.

This paper is structured as follows: Section II presents the
library design, Section III describes some key aspects of the
library implementation, Section IV introduces the example use
cases, and Section V concludes the paper.

II. LIBRARY DESIGN

In this section we describe the main aspects of the library
design, namely the requirements it fulfills, the assumptions that
it makes to find and access Python code, and the functions it
provides to the user.

A. Requirements

The library fulfills the following requirements:
• Multiple Python functions and/or methods may be called

from a DSL model.
• Each Python function and/or method can take a different

number of arguments.

! Block inputs: re, im
! Block outputs: mag, ang

pyFunID = 1 ! From CALLABLE_REGISTRY

! -----------------------------------
! Executed only during initialization
! -----------------------------------
! square_to_polar takes 2 arguments
inc(dummy0) = LoadPyFun(2, pyFunID)

! -----------------------------------
! Executed every time step
! -----------------------------------
! Set arguments
dummy1 = SetPyFunArg(re, 0, pyFunID)
dummy2 = SetPyFunArg(im, 1, pyFunID)

! Call square_to_polar
dummy3 = CallPyFun(pyFunID)

! Get returned values
mag = GetPyFunRetVal(0, pyFunID)
ang = GetPyFunRetVal(1, pyFunID)

Listing 2. DSL code for calling the Python function square_to_polar.

• Each Python function and/or method can return a different
number of values.

• Each Python function and/or method takes only floating
point arguments.

• Each Python function and/or method returns only floating
point values.

• Modifications to the Python code take effect on the next
simulation run, without restarting PowerFactory.

B. Assumptions

The library assumes that the Python functions and methods
that are to be called from DSL are referenced in a Python
list called CALLABLE_REGISTRY, which should be defined
in a file called script.py located in PowerFactory’s installation
folder. Since only references to the functions and methods
are expected in CALLABLE_REGISTRY, the functions and
methods themselves may be defined either in script.py or in
an external Python script.

Listing 1 shows an example of a valid script.py. This script
defines one function and it imports an external function from
and external Python script. Both functions are then referenced
in CALLABLE_REGISTRY so they can be called from DSL.
When called from DSL, these functions are identified by their
pyFunID, which is their index in CALLABLE_REGISTRY.

C. DSL Application Programming Interface

The Application Programming Interface (API) is com-
posed of four DSL functions. Together they make it
possible to call the Python functions and methods in
CALLABLE_REGISTRY. These four functions are defined as
follows:

class ElectronicLoadWECC:
def __init__(self, Vd1, Vd2, frcel,

Pel0, Qel0, Vmin0=1.0):
self.Vd1 = Vd1
self.Vd2 = Vd2
self.frcel = frcel
self.Pel0 = Pel0
self.Qel0 = Qel0
self.Vmin = Vmin0

def calc_pq(self, V):
if V < self.Vmin:

self.Vmin = V

if self.Vmin < self.Vd2:
self.Vmin = self.Vd2

if V < self.Vd2:
Fvl = 0.0

elif V < self.Vd1:
if V <= self.Vmin:

Fvl = (V - self.Vd2)/(self.Vd1
- self.Vd2)

else:
Fvl = (self.Vmin - self.Vd2

+ self.frcel*(V
- self.Vmin))/(self.Vd1
- self.Vd2)

else:
if self.Vmin >= self.Vd1:

Fvl = 1.0
else:

Fvl = (self.Vmin - self.Vd2
+ self.frcel*(self.Vd1
- self.Vmin))/(self.Vd1
- self.Vd2)

return Fvl*self.Pel0, Fvl*self.Qel0

eload = ElectronicLoadWECC(0.866, 0.7, 0.7,
20, 10)

CALLABLE_REGISTRY = [
eload.calc_pq # pyFunID = 0

]

Listing 3. Python implementetion of the WECC electronic load model.

! Block input: V
! Block outputs: Pel, Qel

pyFunID = 0 ! From CALLABLE_REGISTRY

! Load eload.calc_pq
inc(dummy0) = LoadPyFun(1, pyFunID)

! Call eload.calc_pq
dummy1 = SetPyFunArg(V, 0, pyFunID)
dummy2 = CallPyFun(pyFunID)
P = GetPyFunRetVal(0, pyFunID)
Q = GetPyFunRetVal(1, pyFunID)

Listing 4. DSL code that calls eload.calc_pq.

Fig. 1. PowerFactory Composite Frame of the WECC electronic load model,
where V is the voltage magnitude measured at the load terminals, and Pext
and Qext are the active and reactive power consumption.

G1

B1 B2 B3 B4 B5 B6
RLCT2T1

L1 L2 SF1 SF2

LE
LSL2-3 L3-4

Fig. 2. Test grid from [6]. The WECC Composite load model is enclosed
in the dashed rectangle. The motor loads were removed. The electronic load
is marked as LE. The loads L1, L2 and LS, and the filters SF1 and SF2 are
static.

LoadPyFun(argNum, pyFunID)
Loads a Python function into PowerFactoy, where

• argNum is the number of expected arguments, and
• pyFunID specifies which function.

SetPyFunArg(argVal, argID, pyFunID)
Sets the value of one of the arguments of a Python function,
where

• argVal is the value of the argument,
• argID specifies which argument, and
• pyFunID specifies which function.

CallPyFun(pyFunID)
Calls the Python function specified by pyFunID.

GetPyFunRetVal(retValID, pyFunID)
Gets one of the values returned by a Python function, where

• retValID specifies which argument, and
• pyFunID specifies which function.

The reason why we require three different DSL functions
each time we call a Python function or method is that DSL
functions cannot take a variable number of arguments and
return only one value. Since the library needs to accommodate
Python functions and methods that take different numbers of
arguments and return different numbers of values, setting argu-
ments and retrieving returned values one by one circumvents
this limitation.

Listing 2 shows how this API can be used to call the
function square_to_polar defined in Listing 1. This DSL
listing must be placed inside a PowerFactory Block Definition
whose inputs are re and im, and whose outputs are mag and
ang. Note that the only API function whose returned value
matters is GetPyFunRetVal.

III. LIBRARY IMPLEMENTATION

To implement the library we relied on the facts that new
DSL functions can be defined in C++ [1] and that Python

0.0 0.1 0.2 0.3 0.4 0.5

Time (s)

0.8

1.0

V
(p

.u
.)

(a)

0.0 0.1 0.2 0.3 0.4 0.5

Time (s)

0

10

20

L
oa

d

P (MW) Q (Mvar)

(b)

Fig. 3. Response of the electronic load to voltage variations resulting from
a high-impedance fault. (a) Terminal voltage input. (b) Power consumption
output.

Fvl = select(V < Vd2, 0.0, select(V < Vd1,
select(V <= Vmin, (V - Vd2)/(Vd1 - Vd2),
(Vmin - Vd2 + frcel*(V - Vmin))/(Vd1 -
Vd2)), select(Vmin > Vd1, 1.0, (Vmin -
Vd2 + frcel*(Vd1 - Vmin))/(Vd1 - Vd2))))

Listing 5. DSL code that calculates Fvl.

provides an API for embedding Python code in C++ [7].
Thus, it is possible to create an interface between DSL and
Python in C++. The role of this C++ interface is twofold: the
front end provides the API defined in Section II-C, while the
back end is in charge of loading script.py and manipulating
the functions and methods in CALLABLE_REGISTRY, at the
request of the API. This C++ interface must be compiled as a
DLL, given a name that starts with the digexfun prefix (e.g.,
digexfunPyDSL.dll), and placed in PowerFactory’s installation
folder. This is because PowerFactory loads at start-up all DLLs
located in its installation folder that have the digexfun prefix
in their names [1]. To ensure that up-to-date Python code is
always executed without having to restart PowerFactory to
force the DLL to be reloaded, the library detects when a new
simulation is initialized and reloads script.py.

IV. EXAMPLE USE CASES

The possible applications of Python-enhanced DSL models
are potentially endless. To illustrate some of the possibilities
we present three simple use cases that we hope can provide
the reader a starting point from which to tackle more complex
problems. Although we omit some details for the sake of
brevity, these examples are available in full in the library
repository.1

import zmq

class ElectronicLoadWECC:

...

eload = ElectronicLoadWECC(0.866, 0.7, 0.7,
20, 10)

context = zmq.Context()
socket = context.socket(zmq.REP)
socket.bind("tcp://*:7000")

while True:
sim_ins = socket.recv_json()
V = sim_ins[0]
P, Q = eload.calc_pq(V)
sim_outs = [P, Q]
socket.send_json(sim_outs)

Listing 6. External electronic load script for co-simulation (eload.py).

A. WECC Electronic Load Model

The WECC Composite Load Model, developed by the
Western Electricity Coordinating Council (WECC), represents
the dynamic characteristics of end-use loads [8]. One of the
components of the WECC Composite Load Model is the
electronic load model. This model relates active and reactive
power consumption to the voltage magnitude at the load
terminals.

The ElectronicLoadWECC in Listing 3 is a Python
implementation of the electronic load model. In this class,
the calc_pq method establishes the relationship between
terminal voltage and power consumption, and the __init__
method initializes the model parameters and the Vmin
variable. This variable is defined as a member variable
because its value must be remembered between calls to
the calc_pq method. Below the class definition is the
class instantiation, that creates the eload object with
the desired set of model parameters. Once eload has
been created, the eload.calc_pq method is added to
CALLABLE_REGISTRY so it can be called from DSL.

Listing 4 shows the DSL code that calls eload.calc_pq.
This code is embedded in the Load Model block inside of the
PowerFactory Composite Frame from Fig. 1. In the Composite
Model, the Terminal block represents a bus in the grid model
and it provides the V argument to eload.calc_pq. In turn,
the Load Model block provides the active and reactive power
returned by eload.calc_pq to the Load block, which
represents a load in the grid model.

To test the Python implementation of the electronic load
model we used the grid from Fig. 2 as developed in [6], but
removed the motor loads from the WECC Composite Load
Model and replaced the DSL electronic load with our Python
implementation. Fig. 3 shows the response of the electronic
load to the voltage variations that result from a high-impedance

fault at bus B3.
Even though the electronic load model was implemented in

DSL in [6], the Python implementation is easier to create and
understand. This becomes apparent when comparing the DSL
code used for calculating the Fvl variable, shown in Listing
5, to the Python code from Listing 3. While the Python code
is a series of if/else statements, the DSL code is several
nested select functions. The advantage of using Python in
this particular case becomes even clearer when comparing the
Python implementation of the electronic load model to the
pseudocode used to define it in [8]; translating the pseudocode
into Python is almost trivial.

B. Co-Simulation Interface

In a co-simulation two or more simulators simulate cooper-
atively by exchanging variables at run time. These simulators
may run on the same computer or separate computers. To
exemplify how this can be accomplished with our library,
we removed the electronic load model from the previous
example, and placed it in the eload.py script from Listing 6,
that can be executed independently from PowerFactory. The
objective now is to create an interface to couple the grid model
from Fig. 2 to the electronic load model in eload.py. This
means that at every simulation time step PowerFactory must
send the voltage at bus B6 to eload.py, and eload.py must
reply with its active and reactive power consumption. Listing
7 presents the co-simulation interface that couples Power-
Factory and eload.py. The communication is implemented
with PyZMQ, which provides a Python API to the ØMQ
messaging library [9], and JSON-encoded messages. The
interface is tasked with sending outputs from PowerFactory
to eload.py, and receiving inputs from eload.py. Note that
the cs_int.exchange_variables method can take a
variable number of arguments, so it can be used to exchange
as many variables as needed, provided the number is specified
in the argNum argument to the LoadPyFun function. Using
PyZMQ much more sophisticated co-simulations settings can
be implemented, such as those in [10].

C. Machine Learning for Fault Detection

DSL on its own is certainly inadequate for simulations
that require machine learning functionality, but Python is a
common choice for these applications. In this example we take
a naive approach to fault detection using Linear Discriminant
Analysis (LDA) for classification [11]. The objective is to train
LDA to detect when and where in the grid a fault happens,
and to use this information to clear the fault. We assume
that faults occur only at buses and that they can have an
impedance between 0 and 40 Ω. Thus, LDA must classify a
set of measurements obtained from the grid as characteristic
of normal operation or a fault at a specific bus.

To add more variance to the operating conditions we mod-
ified the grid from Fig. 2 so all loads are random, except
for the electronic load. The random loads vary their power
consumption within ±3% of the nominal value following a
uniform distribution, and are implemented in Python.

import zmq

ADDRESS = "tcp://localhost:7000"

class CosimInterface:
def __init__(self, address):

self.address = address
self.context = None
self.socket = None

def _open_connection(self):
self.context = zmq.Context()
self.socket = self.context.socket(

zmq.REQ)
self.socket.connect(self.address)

def _close_connection(self):
self.socket.close()
self.context.term()

def exchange_variables(self, *sim_outs):
self._open_connection()
self.socket.send_json(sim_outs)
sim_ins = self.socket.recv_json()
self._close_connection()
return sim_ins

cs_int = CosimInterface(ADDRESS)

CALLABLE_REGISTRY = [
cs_int.exchange_variables

]

Listing 7. Simple co-simulation interface for PowerFactory.

Using this grid we created a training dataset by applying
faults to every bus, each time varying the fault impedance
between 0 and 40 Ω in steps of 10 Ω, and measuring the
active and reactive power flowing through every branch. This
produced a dataset where the samples are the results of each
time step and the features are the power flows. To train LDA
we labeled each sample in the dataset as normal (label =−2),
post fault (label =−1) or fault, in which case the label is the
number of the bus where the fault is happening.

Listing 8 shows the Python implementation of the random
load (random_load function) and the LDA-based fault
detector (FaultDetector class). The fault detector relies
on the LDA implementation the scikit-learn library provides
[3]. We train LDA in the __init__ method and detect faults
with the detect method, which takes the active and reactive
power measurements from the grid and returns six flags (one
per bus) that are set when a fault in the corresponding bus
occurs.

Fig. 4 shows the inputs (branch power flows) and outputs
(flags) of the LDA-based fault detector during a simulation
where a fault with an impedance of 33 Ω is applied to bus B3
at 0.1 s and a fault with an impedance of 13 Ω is applied to

import random
import pandas as pd
import numpy as np
import sklearn.discriminant_analysis as skda

LDA = skda.LinearDiscriminantAnalysis

class ElectronicLoadWECC:

...

def random_load(Pnom, Qnom, max_dev):
p_dev = random.uniform(-max_dev, max_dev)
q_dev = random.uniform(-max_dev, max_dev)
P = (1 + p_dev)*Pnom
Q = (1 + q_dev)*Qnom
return P, Q

class FaultDetector:
def __init__(self, n_buses):

self.n_buses = n_buses
data, labels = load_training_data()
self.lda = LDA()
self.lda = self.lda.fit(data, labels)

def detect(self, *args):
fault_flags = [0.0]*self.n_buses
label = int(self.lda.predict([args]))
if label > 0:

fault_flags[label-1] = 1.0

return fault_flags

fdetector = FaultDetector(n_buses=6)

CALLABLE_REGISTRY = [
eload.calc_pq, # pyFunID = 0
random_load, # pyFunID = 1
random_load, # pyFunID = 2
random_load, # pyFunID = 3
fdetector.detect, # pyFunID = 4

]

Listing 8. Extended script.py with the implementation of the random load
and the LDA-based fault detector.

bus B5 at 0.3 s. Both faults are cleared with a delay of 0.1 s.
As Fig. 4 (b) shows, the flag that corresponds to the bus where
the fault occurs is set as soon as the fault starts, and is reset
once the fault is cleared.

D. Caveats

Note that in Listing 8 we register the random_load
function three times in CALL_REGISTRY, once for each
random load in the test system. This means that we can access
it with three different pyFunIDs. We avoid calling the same
function or method multiple times with different arguments

−200

−100

0

P
(M

W
)

L2-3 L3-4 T1 T2 RLC

0.0 0.1 0.2 0.3 0.4 0.5

Time (s)

−100

−50

0

Q
(M

va
r)

(a)

0.0 0.1 0.2 0.3 0.4 0.5

Time (s)

0.0

0.5

1.0

Fl
ag

s

B1 B2 B3 B4 B5 B6

(b)

Fig. 4. Inputs and outputs of the LDA-based fault detector during faults at
bus B3 and B5. (a) Input branch power flows. (b) Output fault flags.

using the same pyFunID to prevent inadvertently overriding
these arguments.

During a dynamic simulation, PowerFactory might call the
DSL functions, and therefore the Python functions or methods,
more than once per time step. In the previous examples we
do not deal with this problem, but we advise the reader to
consider this behavior while designing a Python function or
class for use with PowerFactory.

V. CONCLUSION

This paper presented a small open source library for enhanc-
ing DSL models with Python, and three example use cases
related to load modeling, co-simulation, and fault detection
based on machine learning. The example use cases show that
with our library it is simple to embed Python code in DSL
models, and that with the help of popular open source Python
libraries it is possible to easily create sophisticated models that
are beyond the boundaries of traditional power engineering.
The library is especially well suited for situations where the
model code is modified often and/or when the main goal is
implementation with minimal effort. As a consequence, Pow-
erFactory users gain access to enhanced modeling capabilities
and user-friendliness, and a more speedy workflow, which is
beneficial for model development and rapid prototyping.

REFERENCES

[1] M. Stifter, F. Andrén, R. Schwalbe, and W. Tremmel, “Interfacing Pow-
erFactory: Co-simulation, real-time simulation and controller hardware-
in-the-loop applications,” in PowerFactory Applications for Power Sys-
tem Analysis, F. M. Gonzalez-Longatt and J. L. Rueda, Eds. Springer
International Publishing, 2014, pp. 343–366.

[2] T. E. Oliphant, “Python for scientific computing,” Computing in Science
& Engineering, vol. 9, no. 3, pp. 10–20, May 2007.

[3] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[4] W. McKinney, “Data structures for statistical computing in Python,” in
Proceedings of the 9th Python in Science Conference, S. van der Walt
and J. Millman, Eds., 2010, pp. 51–56.

[5] C. D. López and J. L. Rueda-Torres, “Python scripting for DIgSILENT
PowerFactory: Leveraging the Python API for scenario manipulation

and analysis of large datasets,” in Advanced Smart Grid Functionalities
Based on PowerFactory, F. M. Gonzalez-Longattand and J. L. Rueda-
Torres, Eds. Springer, 2018, pp. 19–48.

[6] A. Joseph, M. Cvetković, and P. Palensky, “Predictive mitigation of short
term voltage instability using a faster than real-time digital replica,” in
Proceedings of the 2018 IEEE PES Innovative Smart Grid Technologies
Conference Europe (ISGT-Europe), Oct. 2018.

[7] Python Software Foundation. Python/C API Reference Manual.
[Online]. Available: docs.python.org/3/c-api/index.html

[8] Western Electricity Coordinating Council, “WECC dynamic composite
load model (CMPLDW) specifications,” WECC, Tech. Rep., Jan. 2015.

[9] iMatix. ØMQ. [Online]. Available: zeromq.org
[10] C. D. López, M. Cvetković, and P. Palensky, “Distributed co-simulation

for collaborative analysis of power system dynamic behavior,” in Pro-
ceedings of the MEDPOWER 2018 Conference, Nov. 2018.

[11] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning, 2nd ed. Springer, 2001.

