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Fault Detection in Photovoltaic Arrays via Sparse
Representation Classifier

Heybet Kiliç∗, Behnam Khaki†, Bilal Gumuş‡, Musa Yilmaz§ and Peter Palensky∗
∗ TU Delft, † New York Power Authority, ‡ Dicle University, § Batman University,

Abstract—In recent years, there has been an increasing interest
in the integration of photovoltaic (PV) systems in the power
grids. Although PV systems provide the grid with clean and
renewable energy, their unsafe and inefficient operation can affect
the grid reliability. Early stage fault detection plays a crucial role
in reducing the operation and maintenance costs and provides
a long lifespan for PV arrays. PV Fault detection, however, is
challenging especially when DC short circuit occurs under the
low irradiance conditions while the arrays are equipped with an
active maximum power point tracking (MPPT) mechanism. In
this case, the efficiency and power output of a PV array decrease
significantly under hard-to-detect faults such as active MPPT
and low irradiance. If the hard-to-detect faults are not detected
effectively, they will lead to PV array damage and potential fire
hazard. To address this issue, in this paper we propose a new
sparse representation classifier (SRC) based on feature extraction
to effectively detect DC short circuit faults of PV array. To verify
the effectiveness of the proposed SRC fault detection method, we
use numerical simulation and compare its performance with the
artificial neural network (ANN) based fault detection.

Index Terms—Compressive sensing, Photovoltaic array fault
detection, sparse representation.

I. INTRODUCTION

In recent years, the electrical power generation form of
renewable energy resources has become popular due to the
significant increase in the energy demand and environmen-
tal issue relating to the fossil fuel energy. Among others,
solar energy is reliable, broadly available, sustainable, and
inexhaustible [1]. Several countries, such as USA, Germany,
China, Japan, Italy and India have made tremendous effort
and investment to meet their energy demand by increasing
the penetration of renewable energy resources in the electrical
power grids. As a case in point, India has an ambitious plan
to increase its PV installation capacity to 34GW by 2022 [2].
By increasing the integration of PV systems in power grids,
however, several technical issues emerge which should be
effectively addressed. One of those issues is the electrical fault
in PV arrays, especially DC side line-to-line (L-L) and line-
to-ground (L-G) faults. Efficient, reliable, and safe operation
of electrical systems with PV arrays requires the short circuit
faults to be detected by a proper protection mechanism [3].
Undetected faults can cause PV array failure, fire hazard risk,
as well as unexpected loss of energy economic benefits. The
DC-side faults are hardly detectable under two conditions: (i) a
low current fault occurs between points that have close electric
potential, i.e. low mismatch faults or under low irradiance
condition faults in the morning, evening, and cloudy days;
and (ii) the PV array system is equipped with the maximum
power point tracking (MPPT) algorithm [4].

In the literature, various methods have been proposed for
PV fault detection. A Fractional-order colour relation classifier
method is proposed in [5] to monitor mismatch, L-G, open-
circuit, and bridge faults in a PV array using output power
degradation. A practical fault detection is proposed in [6]
which compares the predicted and measured AC power of
the PV system. In [7], the authors utilize offline descriptive
inferential statistical procedure and online inferential algo-
rithm to monitor and supervise the PV system operation. The
authors in [8] report a sensor suited approach comparing the
measured and estimated voltage and current based on iMPPT
algorithm presented in [9]. To detect the efficiency loss in the
PV arrays, a multisensory approach proposed in [10] which
is equipped with the inertial, temperature, irradiance, current,
and voltage sensors. Despite the effectiveness and efficiency of
the fault detection methods which are based on the comparison
of measured and estimated parameters, they suffer from the
following shortcomings: (1) they are costly due to the need
for considerable number of sensors; (2) power losses due
to the fault are quite similar under small mismatch and low
irradiance conditions, thus it cannot work properly under those
conditions; (3) they are not practical as their low fault detection
accuracy results in a difference between the simulated and
actual cases; and (4) due to non-linear operation of PV array,
their performance depends on the PV array performance which
is influenced under different environmental conditions.

In addition to the methods discussed above, which compare
the estimated with measured parameters to detect the faults,
there are several methods based solely on the measured values.
A two-sectional fault detection method based on optimized
voltage sensor locations is introduced in [11]. Although the
method can locate the faulty string in small-scale arrays, it
needs a large number of costly sensors for the large-scale
arrays, so it is not economical for practical implementation.
The authors in [12] propose a method to detected fault based
on power loss, ratio of irradiance and DC power to detect
partial shading and mismatch. The method, however, shows
low accuracy due to the variation of irradiance over large-
scale PV array. A quick fault detection scheme using multiple
meters is proposed in [13] to measure the different outputs
under the sequential change detection framework. However,
its performance is degraded under irradiance fluctuations.
To detect short and open circuit faults in a PV string, a
probabilistic neural network method is presented in [14]. This
method is valid only for high current faults, it suffers from
long testing time for each sample, and it is impractical for
large-scale big data cases
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According to the literature review, there are a number of
researches on the DC-side short circuit faults such as L-L
with low-mismatch percentage and L-G with high mismatch
percentage under low irradiance and high-fault impedance. In
addition, the impact of MPPT algorithm has not been taken
into account. Although the algorithms in [15], [16] attempt to
evaluate the impact of small mismatch, high-impedance, and
low irradiance, their accuracy is not satisfactory. Moreover,
they require large datasets of irradiance and temperature to
train the algorithm. Studies in [17] and [18] demonstrate a time
domain reflectometry approach to detect the impedance change
by injecting a signal and observing its response. Previous
studies such as [8], [10], and [19] focus on the detection
of short circuit faults, but they have a low accuracy for low
mismatch and high impedance under low irradiance condition.

Fuzzy Logic, Support Vector Machine (SVM), and Artificial
Neural Network (ANN) are also deployed to detect faults in
PV arrays. An unsupervised one class SVM is proposed for
detecting anomalies in photovoltaic systems. Reference [20]
presents a wavelet and ANN based L-L fault detection for
ungrounded PV systems. However, the performance of these
methods significantly depends on the choice of feature and
tuning option, and they have high computational cost. In [21],
a sample entropy method is used to detect L-L, L-G and short
circuits (S-C) faults, but it requires a long computational time
and is impractical for real-time fault detection.

To address the shortcomings in the literature, this study
presents a new methodology, called sparse representation (SR),
to detect short-circuits faults in a PV array based on feature
extraction and classification. The aim of the proposed method
is to detect the faults under low-mismatch, low-irradiance
and high-impedance conditions. The SR method consists of
a dictionary of feature vectors obtained from measurements
and an SR vector which includes non-zero (for a specific
element) and negligible or zero elements for other vectors.
To classify the inputs, the proposed method used a SR vector
which consists of non-zero elements. The main contributions
of this paper are:
• Although there are many methods in the field of fault-

diagnosis such as multilayer perception (MLP) net-
work,Probabilistic neural network (PNN),Decision tree
(DT)Support vector machine (SVM). They suffer slow
learning speed, limited to applications with relatively
small data sets, large network structures. However our
proposed SRC does not suffer parameter tuning due to
iteratively training pro-poses, Hence it provides high
learning speed.

• The computational complexity and storage space are
crucial in many applications, especially in the case of
dealing with a large dataset and requiring a fast response.
The lower computational cost provides a quick response
for a test sample. The sparse properties of our proposed
method ensure low computational cost and low sample
storage.

• The proposed method creates an overcomplete dictionary
consisting of the training samples themselves. Due to
including a small part of the overall training dataset,
this representation proved an automatically discriminated
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Fig. 1. A PV array configuration with potential short-circuit faults.

nature. Therefore, our method is effective under hard-
to-detect fault conditions such as partial shading, low-
mismatch, high fault impedance and low irradiance with
blocking diode and active MPPT cases.

The remaining part of the paper proceeds as follows: in
Section II, the PV array configurations, DC-side short-circuit
faults, and their challenges are presented; in Section III,
SRC method for PV fault detection and norm minimization
method for feature extraction are discussed; in section IV, the
simulation results for PV array fault detection using SR are
given and followed by section V for discussion on the findings;
and finally the paper is concluded in Section VI.

II. PV SYSTEM MODEL AND FAULT DETECTION

A. PV Array Configuration

A generic PV systems structure, which consists of PV
modules, DC-DC converters with MPPT algorithm, Pulse-
Width-Modulation (PWM) inverters, electrical connections
and wiring, and ground-protection devices, is shown in Fig. 1.
Multiple PV modules are connected in series to construct a
PV string. Then multiple PV string are connected in parallel
to form a PV array. To maximize the output power of PV array
which is influenced by the temperature and the irradiance, the
PV array should be equipped with MPPT providing maximum
PV array output power under different weather conditions.

Grounding of PV system in practice depends on the size of
the solar plant, operating voltage, geographic location, local
standards, and the type of installation (i.e. building mounted,
ground-mount, roof-top, etc.). Generally, in the U.S. system
grounding is defined as an electrical connection between
ground and current carrying conductors (CCCs) through a
ground-fault detection and interruption (GFDI) fuse. On the
other hand, different grounding systems, such as DC-insulation
resistance (Riso) measurement and the residual current moni-
toring devices (RCDs), are used outside the U.S, and there is
no connection between ground and CCC [3].
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B. PV Array Faults and Detection Challenges

The common faults in PV systems are short and open circuit
faults as well as panel mismatch and module failures [3].
In this study, the L-L and L-G faults which are shown by
LL and LG in Fig. 1 are studied. Those faults can happen
spontaneously due to a connection between one PV and the
ground (L-G faults) or two PV modules (L-L faults).

The short-circuit between CCCs is due to the DC junction
box corrosion, animal chewing, mechanical damages, and
water ingress [4]. The occurrence of short-circuit faults is
not predictable, therefore, in order to prevent fire hazard
and power loss, a protection scheme should be designed for
early-stage fault detection. According to the U.S. National
Electrical Code (NEC), the non-current-carrying (NCC) metal
parts (e.g. chassis, mounting racks, panel frames, etc.) must
be connected to the equipment grounding conductor (EGC)
to prevent electric shocks. The connection between the NCC
metals and EGC results in an L-G fault in PV arrays [22].

Short-circuit faults can be described as the percentage of
mismatch which shows the number of PV panels influenced
by the fault directly. The PV array in Fig. 1 consists of 10
panels linked in series and 10 strings linked in parallel. For
instance, LL1 and LL2 represent 30% mismatch, while LG1

and LG2 represent 90% and 30% L-L faults, respectively. In
general, L-G faults with high mismatch percentage and L-
L faults with low mismatch percentage are considered as the
hard-to-detect faults since they have a smaller current than the
other faults. When a short-circuit fault occurs, the voltage of
faulty string suddenly decreases and receives a back-feeding
current from healthy strings. Thus, an over-current protection
device (OCPD) or ground fault protection devices (GFPD)
blow to prevent the back-feeding current. According to the UL
standard 2579− 7 and U.S. NEC requirements, the threshold
value for a fuse should be greater than 2.1ISC , where ISC

is the PV string’s short-circuit current under standard testing
condition (STC, irradiance = 1000 [W/m2], temperature = 25
[oC] [4], [22]. Under lower irradiance (less than 500 [W/m2],
the induced current is smaller, and therefore the back-feeding
current induced by faults may not be large enough to blow the
fuse, so it leads to undetectable faults. This case also causes
losses, damage to PV panels, and fire hazard.

MPPT algorithm causes challenges for fault detection in
PV array. Under low-irradiance condition, MPPT may hide the
DC-side faults. If a fault occurs, the normal operating point of
the PV array shifts to a different curve which has a lower open-
circuit voltage. In Fig. 2, it is shown that the MPPT algorithm
provides a new MPP to optimize the system output under the
fault which diminishes the PV array’s operating voltage and
the string’ back-feeding current of the string. In Fig. 3, the
impact of MPPT algorithm on the back-feeding current of a
PV string is demonstrated. In the case of 60% mismatch and
without MPPT, the fuse blows to prevent the PV system from
a back-feeding current. Also, in the case of 20%, 40%, and
60% mismatch with MPPT, the back-feeding current of string
is less than 2.1ISC which causes an inadequate fuse melting
time.
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Fig. 2. Normalized I-V and P-V curves of a PV array for several irradiance
levels.
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III. FEATURE EXTRACTION AND SPARSE
REPRESENTATION

A. Data Acquisition

As discussed in the preceding section, DC-side short circuit
faults detection is challenging. Our purpose is to design a fault
detection method based on SR and evaluate its performance
under the following conditions.
• Ambient temperature [oC]: 10, 20, 30, 40, and 50.
• Irradiance [W/m2]: 200, 400, 600, 800, and 1000.
• Mismatch percentage (%): 10, 20, 30, 40, 50, and 60.
• Fault impedance [Ω]: 0, 5, 15, 25.

By combining the above conditions, 2250 cases for L-L faults
and 1500 cases for L-G faults are obtained. Faults include
the grid phase-A voltage’s negative and positive peaks and its
zero-crossing.

B. Feature Extraction

To detect a fault with high accuracy, eight new features are
created and defined as follows:
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1) Features 1 and 2: To distinguish faults and make algo-
rithm scalable, the normalized version of VMPP and IMPP

are constructed.

f1 =
VMPP

NmodVOC
(1)

f2 =
IMPP

NstrISC
(2)

Where Nmod is the number of module in a string, while Nstr is
the number of string in PV array. VOC and ISC are open circuit
voltage and short-circuit current of a PV module, respectively.

2) Feature 3: is the difference between maximum power
and actual power, which is presented as

f3 = VMPP IMPP
Iirr
Iref

− VPV IPV (3)

Where Iirr is the instantaneous irradiance and Iref is
1000W/m2. These feature increase the efficiency of the al-
gorithm under uniformly distributed irradance.

3) Features 4 and 5: These features are fill factor (FF) and
Area under I-V curve which are fault indicator and sensitive
to voltage and current change due to faults and shading
conditions.

f4 =
VMPP IMPP

VOCISC
(4)

f5 =

∫ VOC

0

V (I)dI (5)

4) Features 6 and 7: These features are defined as the rate
of change of resistance at the middle point between OC and
maximum power points and created to distinguish SC faults
under low mismatch and high impedance.

f6 =
dV

dI
|VOC

(6)

f7 =
dV

dI
|mVOC

(7)

5) Feature 8: It is defined as thermal voltage which helps
to distinguish faults occurs due to low mismatch, and high
fault impedance and which are very close to normal operation
of low irradiance and high temperature.

f8 =
(2VMPP − VOC)(ISC − IMPP )

IMPP − (ISC − IMPP ) ln(
IMPP−ISC

IMPP
)

(8)

6) Features 9, 10 and 11: Now, l1 − norm, l2 − norm
and l∞−norm to extract new features and reduce dimension
of feature space f = log[f1 f2 ... f8]. l1 − norm, l2 −
norm, and l∞ − norm of original feature can be obtained as
follows:

f9 = ||fi||1 =

8∑
i=1

|f i| (9)

f10 = ||fi||2 =

8∑
i=1

|f i|0.5, (10)

f11 = ||fi||∞ = max{|f i|}, j ∈ {1, · · · , 8}. (11)

C. Sparse Representation

Before explaining the SR method, it is worth mentioning
that SR has been used successfully for face recognition [23],
speaker verification [24], partial discharge detection [25], and
fault diagnosis and location in power grids [26]. SR is a
research area of interest within the field of compressive sensing
(CS), and it can be defined as a feature vectors’ dictionary
extracted from measured data. The new input is classified
according to the feature vectors’ dictionary. The SR vector
can be non-zero for a specific vector, and negligible (or zero)
for other vector. The non-zero elements determine the class of
input signal. The main goal is to characterize the input signal
as a linear combination of feature vectors in the dictionary.

We choose M classes each of which has ni, i ∈ [1, · · · ,M ]
feature vectors including k subjects. Then, feature matrix can
be defined as:

Fi = [fi1, fi2, · · · , fini
] ∈ Rk×ni , i ∈ [1, · · · ,M ], (12)

where fij indicates the jth feature vector of the ith class. The
feature vector of y ∈ Rp is presented as:

y = Ax. (13)

In the case of k > p, (13) is over-determined so it has a
unique solution. When k < p, (13) is under-determined, and
there are multiple solutions for x. In our application, (13) can
be rearranged as follows: f1...

f11

 =

 f1,1 · · · f1,M
...

. . .
...

f11,1 · · · f11,M



X1

X2

...
XM

 (14)

where y = [f1, · · · , f11]T ∈ R11×1 is the feature vector for
test. The vectors F1 = [f1,1, · · · , f11,1]T ∈ R2×1 and FM =
[f1,M , · · · , f11,M ]T ∈ R2×1 are feature vectors for the 1st and
the Mth samples, respectively. The X1 corresponds to the 1st
sample, and XM corresponds to the Mth sample.

To find the sparsest solution for x, l1−norm minimization
can be used, as it is already utilized in many areas such as com-
puter vision, sensor networks, data compression, and image
processing. Many optimization methods such as augmented
Lagrange multipliers, greedy algorithm, homotopy, iterative
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shrinkage-thresholding, Bregman iterative algorithm, subspace
pursuit, CoSaMP, linear programming, proximal gradient and
and gradient projection (GP) are reported for l1−norm in the
literature [27]. The performance of these algorithms varies in
terms of accuracy. For our case, the following algorithms are
applicable: basis pursuit de-noise [28], and primal-dual interior
point [29].
l0 − norm minimization, written as follows, provides a

sparse solution which finds the non-zero entries of x in (13):

x̃0 = argmin ‖x‖0
y = Ax,

(15)

which is known as an NP-hard problem [27]. The l1 − norm
minimization in (16) provides the sparsest solution for x with
mild conditions and high probability:

x̃1 = argmin ‖x‖1
y = Ax.

(16)

As it is difficult to use (15) in practice due to the noisy
measurement data, we rearrange (15) as the stable l1− norm
minimization which is subject to an l2 − norm inequality as
follows:

x̃1 = argmin ‖x‖1 s.t. ‖Ax− y‖ ≤ ε (17)

(17) indicates that the noise energy is restricted by ε. In
the literature, there are several algorithms to solve (16) and
(17), most of them, however, are not appropriate to provide
a sufficient solution for a sparse x [30]. Some of those
algorithms needs information regarding the sparsity of the
vector x, and some others require an orthogonal basis set. As,
none of them are applicable to our cases, we use the Primal-
Dual interior point (PDIP) and Basis Pursuit De-noise (BPDN)
algorithms to solve (16) and (17), respectively.

The solution obtained for x̃1, which includes the non-zero
terms associated with some classes, may not be related to the
feature vector of one specific class. To avoid such a situation,
a residual function can be used to minimize l2−norm of the
difference between the obtained and the actual signal feature
vectors as follows:

ri = ‖y −Ax̃1(i)‖2, i = 1, ...,M, (18)

where x̃1 ∈ Rpx1 is similar to x̃1 except the ni entry
corresponding to the ith class set, which is equal to zero.
The residual of (18) is calculated for the test sample y that
corresponds to the class with minimum residual and all M
classes. Algorithm 1 presents the overall SRC based fault
detection procedure.

IV. SIMULATION RESULTS

To verify and evaluate the effectiveness of the proposed
method, the introduced test cases are simulated in PSCAD,
and MATLAB is used to implement SR algorithm. To further
validate our proposed method, a comparison is performed be-
tween Artificial Neural Network (ANN) and SR. An electrical
power grid, is modelled, which is supplied by 100 PV panels
equipped with bypass diode in parallel for each panel. It is
worthwhile to notice that the system is not grounded. The

Algorithm 1: Sparse Representation Classifier.

1 Inputs: Matrix of features(training) samples.
Fi = [f1, f2, · · · , fn] ∈ Rk×n, i ∈ [1, · · · ,M ],
y ∈ Rp, and an error ε > 0.

2 Normalize F to obtain unit l2 − norm.
3 Solve the l1 or l2 -minimization problem:

x̃1 = argmin ‖x‖1 s.t. y = Ax.
x̃1 = argmin ‖x‖1 s.t. ‖Ax− y‖ ≤ ε

4 for i=1 to M do
5 Compute the residuals ri = ‖y −Ax̃1(i)‖2
6 end
7 Output: y = argmini ri.

challenges to detect DC side faults of PV arrays are already
discussed in Section II. The output voltage and current of the
PV are collected for several short-circuit faults under different
irradiance levels to evaluate the performance of the proposed
method.

Results obtained from the proposed method in the cases of
L-L and L-G faults are shown in Table I. Results clarify the
high accuracy of SR method in detection of L-Land L-G faults
for PV array. Further analysis shows that when the mismatch
percentage is greater than 30% for L-L faults with any fault
impedance, the method provides 96, 2% detecting accuracy.
Although SR has a high accuracy for fault detection in the
case of high mismatch percentage, because of the minimal
effect of shorted modules on PV system, under the conditions
of low mismatch percentage and high fault impedance the
accuracy of detecting fault decreases. Nevertheless, SR still
has an accuracy rate higher than 72% and 65.5% under 20%
and 10% mismatch percentage, respectively. In the case of L-
G faults, the method also provides an accurate fault detection.
In cases where mismatch percentage is lower than 40%, the
accuracy is higher than 99.6%, while it will be more than 85%
if mismatch is higher than 40%.

TABLE I
RESULT OF SIMULATION CASES UNDER VARIOUS CONDITIONS

Fault Mismatch Fault Impedance Average
Types Percentage 0 5 15 25 Accuracy

60 100% 100% 100% 100% 100%
50 100% 100% 100% 100% 100%
40 100% 100% 95.2% 90.3% 96.7%

L-L Faults 30 99.1% 93.6% 84.7% 75.4% 88.2%
20 94.7% 70.5% 63.6% 59.2% 72%
10 82.3% 68.7% 59.8% 49.8% 65.2%
10 100% 100% 100% 100% 100%
20 100% 100% 100% 100% 100%
30 100% 100% 100% 95.3% 98.8%

L-G Faults 40 100% 100% 91.5% 85.4% 94.5%
50 100% 95.2% 89.6% 75.5% 90.5%
60 100% 98.1% 65.7% 61.2% 81.3%

The simulation also includes L-L and L-G fault detection
in PV arrays with a blocking diode, and the results are shown
in Table II. The result verify the effectiveness of our proposed
method in PV arrays equipped with blocking diode, although
it is designed to detect the short-circuit faults in a PV array
without blocking diodes. The proposed method is successful
in detecting faults with mismatch percentage over 30% for L-
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Fig. 4. Detection accuracy for L-L short-circuit faults of different mismatch
percentage.

L faults and with mismatch below 40% in case each string
has blocking diodes.Moreover, Fig. 4 and Fig. 5 include the
results which indicate that the accuracy of different mismatch
percentage under various irradiance levels.

TABLE II
RESULT OF SIMULATION CASES WITH BLOCKING DIODE UNDER

VARIOUS CONDITIONS

Fault Mismatch Fault Impedance
Types Percentage 0 5 15 25

60 X X X X
50 X X X X
40 X X X ×

L-L Faults 30 X X × ×
20 X × × ×
10 X × × ×
10 X X X X
20 X X X X
30 X X X X

L-L Faults 40 X X X X
50 X X × ×
60 X × × ×

The Feed Forward Back Propagation Neural Network
(FFBP-NN) multi-layer preceptor (MLP) method is used to
verify the validity of the proposed method to detect the short-
circuit faults. ANN consists of three layers called as input,
hidden and output layers. The input signal is connected to the
hidden layer’s neurons through the input layer neurons. The
output of each neuron is associated with a Gaussian radial,
hyperbolic tangent sigmoid, or logistic sigmoid based function
of a weighted sum of inputs. The hidden layer’s neurons are
similar to those of the output layer. In general, BP algorithm is
used to train the MLP. The weights of the connections between
hidden and input layers’ neurons change iteratively with a
specified learning rate.
Fi matrices are the inputs of ANN. There are many options

to select the transfer function of the FFBP networks, learning
and training. The results show that a combination of logistic
sigmoid transfer function, gradient descent weight, Levenberg-
Marquardt training and bias learning, and mean-square nor-
malized error performance provides better results. Initially,
the weights of ANN are selected at random, which changes
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Fig. 5. Detection accuracy for L-G short-circuit faults of different mismatch
percentage.

the simulation results for each case. Therefore, in order to
provide the best results, we repeat the simulations several
times. As a consequence, FFBP-NN provides similar results
with SR in the case of high-mismatch percentage and low-fault
impedance for L-L faults, and in the case of low-mismatch
and low-fault impedance for L-G faults. In such cases as
low-mismatch and high-fault impedance, ANN performance
is slightly better than SR’s. The results for ANN are shown
in Table III. Nonetheless, ANN requires to simulate each case
many times for various combinations of the tuning parameters,
which means its performance depends on the tuning parameter,
while SR does not suffer from this practical issue.

TABLE III
RESULT OF SIMULATION CASES UNDER VARIOUS CONDITIONS

Fault Mismatch Fault Impedance Average
Types Percentage 0 5 15 25 Accuracy
L-L 60 100% 100% 100% 100% 100%

10 86.5% 73.8% 66.2% 58.2% 71.2%
L-G 10 100% 100% 100% 100% 100%

60 100% 100% 76.2% 69.8% 86.5%

V. DISCUSSIONS

Results reveals that the detection accuracy of the proposed
method for L-L faults decreases as mismatch percentage de-
creases and fault impedance increases, and vice versa. Results
also demonstrates that the fault detection accuracy decreases
for low-irradiance level cases.

The performance of the SR-based fault detection method
was verified in various scenarios, we trained FFBP-NN to
detect L-L and L-G faults and compare its results with
SR’s. SR method and FFBP-NN show quite similar accuracy,
especially in the case of high-mismatch percentage for L-L
faults and low-mismatch percentage for L-G faults with low
short-circuit impedance. Although the performance of FFBP-
NN is slightly better than SR’s in the case of low-mismatch
percentage for L-L faults and high-mismatch percentage for
L-G faults with high short-circuit impedance, SR method has
noticeable and practical benefits: (i) the implementation of SR
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is easier than FFBP-NN; (ii) SR does not need training to
tune several parameters such as learning selection and number
of neurons to obtain acceptable fault detection accuracy; and
(iii) the convergence of SR method is always consistent and
guaranteed, while it depends on the weights for training in
FFBP-NN. It is also worth noting that to obtain the best
results by FFBP-NN, we re-tune several parameters that are
computationally inefficient.

VI. CONCLUSIONFUTURE WORK

This study proposed a method to detect short-circuits faults
in PV systems based on feature extraction and classification.
More specifically, our proposed method uses SR for feature
extraction for measured signals. The detection accuracy of our
method was verified for short-circuit faults which occur under
challenging conditions such as high impedance, low irradiance,
and the effects of MPPT algorithm, numerous scenarios were
investigated. Several compressive sensing algorithms were
examined for l-norm minimization, which revealed that BPDN
and PDIP algorithms ensure better performance for extracting
feature and effective computation. Compared to the present
method in the literature, our proposed method reduces com-
putational cost and number of sensors, and it benefits from a
fast response to the faults.

As our future direction, it is also required to set-up an
experiment for PV array and real cases to verify fault detection
accuracy. A SR classifier can also be considered to train
support vector machine or ANN for future research.
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