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Abstract
We perform an analysis of public transport data from The Hague, the Netherlands, 
combined from three sources: static network information, automatic vehicles loca‑
tion and automated fare collection data. We highlight the effect of bunching swings, 
and show that this phenomenon can be extracted using unsupervised machine learn‑
ing techniques, namely clustering. We also show the correlation between bunching 
rate and passenger load, and bunching probability patterns for working days and 
weekends. We present the approach for extracting isolated bunching swings for‑
mations (BSF) and show different cases of BSFs, some of which can persist for a 
considerable time. We applied our approach to the tram line 1 of The Hague, and 
computed and presented four different patterns of BSFs, which we name “high pas‑
senger load”, “whole route”, “evening, end of route”, “long duration”. We analyse 
each bunching swings formation type in detail.

Keywords Public transport · Machine learning · Clustering · Bunching · Passenger 
load · Bunching probability
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1 Introduction

One of the most important quality aspects of public transport (PT) is service reli‑
ability, being the match of operations and planning. In PT systems worldwide, 
passengers consider this aspect both important and yet not sufficient (van Oort 
2014; Diab et al. 2015). An increasing amount and complexity of data describing 
PT services allows us to better explore the detection methods and analysis of dif‑
ferent phenomena of PT operations, related to service reliability, e.g. AVL data 
(Hickman 2004) and smartcard data (Pelletier et al. 2011). One such phenomenon 
is the bunching of PT vehicles, which is characterised by uneven deviations of 
headways between vehicles from the designed value. These disturbances are mag‑
nified over time, until PT vehicles travel in pairs, instead of evenly spaced (Pila‑
chowski 2009). The cause of this phenomenon is described as follows: the delay 
of a vehicle compared to its expected schedule (and resulting increase of headway 
with the previous vehicle) causes more passengers to gather at PT stops, which 
increases the vehicle’s dwell times, which in turn increases the delay of that vehi‑
cle even more. The next vehicle, even though starting according to schedule, has 
fewer passengers to collect, and, therefore, is able to travel faster, further decreas‑
ing the headway with the delayed vehicle, and so forth.

The bunching phenomenon was first identified by Newell and Potts (1964) and 
has been extensively studied by many scholars in the past decades. For instance, 
Mandelzys and Hellinga (2010) propose a method for identifying the causes of per‑
formance issues in bus schedule adherence using both Automatic Vehicle Loca‑
tion (AVL) and Automatic Passenger Count (APC) data. Fonzone et  al. (2015) 
conclude that unexpected passenger demands are the root cause of bunching. Sun 
and Schmöcker (2018) model the choice behavior of passengers when there is more 
than one bus serving a stop. Yu et  al. (2016) show that supervised learning tech‑
niques such as Support Vector Machines can be employed to predict bus headways 
and bunching by using the information available from transit smart cards. When 
it comes to the solutions to this problem, many have attempted to develop various 
control strategies for the vehicle headway, such as Daganzo (2009), Daganzo and 
Pilachowski (2011), Bartholdi and Eisenstein (2012), Moreira‑Matias et al. (2016), 
Varga et al. (2018), etc. Bunching has been shown to severely negatively affect the 
operations of PT (Osuna and Newell 1972; Chapman and Michel 1978) and different 
techniques have been proposed designed to deal with the adverse effects of bunching 
(Daganzo 2009; Feng and Figliozzi 2011; Moreira‑Matias et al. 2016). Most strate‑
gies revolve around holding and headway control, e.g. Zhang and Lo (2018) pro‑
posed two‑way‑looking self‑equalizing headway control. Despite the vast research 
effort that has been spent on this topic, not many studies are available that investi‑
gate bunching (patterns) using real data sets. This may be attributed to the scarcity 
of observations on PT system operations on a sufficiently large spatiotemporal scale. 
This, however, is changing rapidly, with the increased data availabilty of (real‑time) 
scheduling, vehicle location and fare collection systems. Andres and Nair (2017) 
propose to use linear regression for data‑driven prediction of headways and use it in 
combination with the existing dynamic holding strategy for corrective control.
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To the best of our knowledge, our study is the first attempt to explore and exam‑
ine—by combining these new data sources—bunching patterns on different levels 
of scale (i.e. not only at the level of a vehicle or pairs of vehicles, but also over 
larger spatiotemporal periods for a particular service) using machine learning tech‑
niques. Specifically, we show that it is possible to extract and detect single instances 
of bunching by using fully unsupervised techniques (clustering). Furthermore, the 
same technique allows us to identify and track how bunching propagates over time, 
and, specifically, to uncover the bunching swings phenomenon, defined as repeat‑
ing patterns of pairs of delayed and bunched vehicles, without ‘normal’ vehicles, 
which are running according to schedule with evenly spaced headways, in between. 
When investigating data, we regularly observed 5 or more pairs of vehicles forming 
bunching swings, without returning to normal scheduled times for nearly two hours 
or even longer.

Our main contribution in this paper is looking at the whole formations of these 
bunching swings, isolated in time and space by periods of normal (i.e. those that 
conform to the schedule) operations. We call these patterns bunching swings for-
mations (BSF), and define them as sequences of PT vehicles on the one axis with 
sequences of PT stops on the other axis, where these vehicles are affected by either 
delays or bunching, surrounded by the normal PT operations. The precise formal 
definition of a BSF is given in Sect.  5. We looked further into the formations of 
bunching swings, and additionally present a way to detect and extract these BSFs 
directly from the PT data. To demonstrate the methods we apply them to a densely 
used tram service in the The Hague area, the Netherlands, and we show that the 
BSFs can be categorised into four distinct types, that differ in passenger load, and 
in spatial and temporal extent. We argue that the presented methods and findings are 
relevant for both operational and tactical planning of PT services.

The paper is outlined as follows. In Sect. 2, we define our case study and describe 
the data that we used in our analysis. In Sect. 3, we describe how the clustering can 
be used to extract delayed or bunched situations. In Sect. 4, we discuss the bunching 
swings phenomenon. Section 5 formally defines bunching swings formations, and 
shows, how BSFs can be extracted, and which parameters can be used for finding 
different types of these formations. Section 6 discusses the results of clustering for 
formation types extraction, and discusses each of four types in detail. Finally, Sect. 7 
concludes the paper.

2  Case study and data description

For this study, we use a dataset containing static and dynamic information for each 
stop of the public transport network in The Hague, the Netherlands, which consists 
of 12 tram lines and 8 bus lines. The dataset covers the period of one month, March 
2015.

The static data includes information about the transportation network, its 
geographical structure, stops, routes, and schedules. It is derived from General 
Transit Feed Specification (GTFS) data. The dynamic data comes from two dif‑
ferent sources. One is Automatic Vehicle Location (AVL) data (Hickman 2004; 
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van Oort et  al. 2015a): which contain actual times of arrival/departure of vehi‑
cles, headways, delays, etc. Arrival ahead of schedule is represented as a negative 
value of delay. The second type of dynamic data is the Automated Fare Collec‑
tion (AFC) data, also known as Smart Card data (Pelletier et al. 2011; van Oort 
et al. 2015b), which contain the tap‑in/tap‑out times of personalised smart cards 
(which are extremely prevalent in the Netherlands over other types of payment), 
and the exact vehicles in which these transactions took place. Using the tap‑in 
and tap‑out times of the smart cards, the passenger load (or occupancy) of a vehi‑
cle can be estimated with an intricate set of tools presented in Luo et al. (2018).

Main analysis in this paper is performed specifically on tram line number 1. 
This is the longest line in The Hague, having 41 stops; going from the west side 
of the city (Scheveningen, the beach district, nearby the sea) through the city 
center; continuing to the south‑east; and then south into the center of the nearby 
city of Delft. Figure 1 shows the plan of this line.

Important feature of this route is that there is no visible control from the side 
of the operator with regards to the holding patterns (e.g. holding the next vehicle 
if the first one becomes delayed). Therefore, the analysis in the following sections 
relates to the behavior of PT vehicles in an uncontrolled situation.

Fig. 1  Tram line 1 from Scheveningen Noorderstrand to Delft Tanthof
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3  Situation profiles via clustering

In this section, we apply unsupervised techniques to look for recurring patterns 
we call “situation profiles” in single trips (of PT vehicles). We do this using occu‑
pancy data combined with automatic vehicle location data.

We prepare the dataset by first removing all time/place/route signifying infor‑
mation. This includes time of the day, date, line number, stop ID, trip ID, and so 
on. The reason for removal of this information is that when constructing situation 
profiles, we want to look at traffic conditions, and we want to avoid clustering two 
situations with similar conditions differently, just because they occurred on dif‑
ferent routes or times. The features that we use are, therefore, all related directly 
to the traffic conditions, and are obtained per every stop on every tram route:

• dwell—dwell times on stops;
• delayArr—delay of arrival;
• load—passenger load;
• preHw—previous headway;
• nextHw—next headway.

It has to be noted, that the original dataset contains some missing periods of 
data, which sometimes produce data points, where either previous or next head‑
ways are unknown. This happens in around 1% of the whole dataset. In order to 
keep these points in our dataset, we use an imputation heuristic to fill the missing 
values with their probable values. In this case, we use the scheduled headway.

Line 1, which we investigated, utilises two different headways in scheduling. In 
the majority of cases (from 7:00 to 20:00 on weekdays and from 12:00 to 18:00 
on weekends), the scheduled headway between the vehicles is 10 min; however, 
it becomes 15 min in the very early and late hours. In order to control for this dif‑
ference in the initial unsupervised investigation, we performed this analysis only 
on vehicles with 10 min (600 s) scheduled headways. However, further analysis in 
Sect. 5 will use all vehicles of the line due to its generalised features.

All features are vectorised and normalised, and we perform K‑means clustering 
in order to find the situational profiles. The results with different numbers of clusters 
are shown in Table 1. All values, except passenger load, are reported in seconds.

It can be seen that there are three fundamental types of situations:

1. “Normal” situations: Characterised by average dwell times; low delay (half a 
minute on average); average passenger load; and equal headways with previous 
and next vehicles.

2. “Delayed” situations: Increased dwell times; considerable delay; considerably 
increased passenger load; the headway with previous vehicle is considerably 
larger than the headway with the next one.

3. “Bunched/early” situations: Decreased dwell times; no delay or early arrival; 
low to medium passenger load; the headway with previous vehicle is considerably 
smaller than the headway with the next one.
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An interesting effect occurs when changing the number of clusters. When com‑
paring Table 1 (a–c) (with 3, 4, and 5 clusters, respectively) it can be seen that the 
three profiles described above are always created. However, the bigger the number 
of clusters, the more fine‑grained these clusters are, further discriminating between 
low delays/high delays, or low passenger load to medium passenger load. These 
results suggest that bunching has the most pronounced effect on the difference in the 
situation profiles, and led us to further investigate this phenomenon.

4  The bunching swings phenomenon

In this section, we zoom out and investigate the larger spatiotemporal context in 
which, particularly, bunching occurrences take place. Further in this paper, we use 
clustering of points with four clusters, which are shown in Table 1b. We combine 

Table 1  Clustering results with (a) three; (b) four; (c) five clusters

(a) Three clusters produce a good distinction between three fundamental types of vehicle conditions: nor‑
mal operation; being late with increased passenger load, being early and bunched with a previous vehicle.
(b) Four clusters provide a further distinction in “normal” situations (clusters 2 and 3), dividing them on 
“slightly late” and “early”. Delayed (clusters 1) and bunched (cluster 2) situations are more pronounced
(c) Five clusters further split the situation. Note the last cluster 5, which now shows extremely bunched 
trams, with just over 2 min headway time on average and very low passenger load.

(a) Feature Cluster 1 “delayed” (18.1%) Cluster 2 “normal” (59.9%) Cluster 3 
“bunched” 
(22.0%)

dwell 30.6 ± 17 29.1 ± 16 26.6 ± 19
delayArr 239.6 ± 136 33.5 ± 70 − 66.4 ± 104
load 37.1 ± 24 27.6 ± 19 24.5 ± 17
preHw 804.1 ± 167 608.2 ± 83 407.7 ± 138
nextHw 388.5 ± 135 605.6 ± 88 768.8 ± 161

(b) Feature Cluster 1 (10.6%) Cluster 2 (30.2%) Cluster 3 (45.0%) Cluster 4 (14.3%)

dwell 31.0 ± 17 30.1 ± 17 28.4 ± 16 25.9 ± 19
delayArr 296.2 ± 137 99.6 ± 79 − 2.8 ± 64 − 80.2 ± 111
load 38.5 ± 25 32.0 ± 21 25.8 ± 18 22.7 ± 17
preHw 850.9 ± 180 674.9 ± 101 567.0 ± 76 355.2 ± 135
nextHw 323.5 ± 128 537.8 ± 82 650.5 ± 95 794.3 ± 174

(c) Feature Cluster 1 (7.7%) Cluster 2 
(18.6%)

Cluster 3 
(41.1%)

Cluster 4 
(24.3%)

Cluster 5 (8.3%)

dwell 30.5 ± 16 30.6 ± 17 28.9 ± 16 28.0 ± 17 24.9 ± 20
delayArr 327.6 ± 138 146.1 ± 90 31.5 ± 56 − 35.7 ± 84 − 93.6 ± 116
load 39.1 ± 26 34.9 ± 22 26.4 ± 19 27.3 ± 18 19.8 ± 15
preHw 874.6 ± 181 721.8 ± 124 609.6 ± 69 508.4 ± 88 288.3 ± 120
nextHw 283.7 ± 119 495.7 ± 90 602.2 ± 73 711.6 ± 122 815.6 ± 188
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two middle clusters (clusters 2 and 3) into one “normal” cluster, which now contains 
about 80% of all situations, while marking cluster 1 as “delayed”, and cluster 4 as 
“bunched”.

An example of such larger scale tram operations can be seen in Fig.  2, which 
represents the whole day of operations of The Hague’s tram line 1 on Sunday, the 
1st of March, 2015. In this and the following figures, red‑green line represents AVL 
routes, with the colour matching the actual passenger load (green is low, red is 
high). Clusters are marked with green crosses (normal), black squares (delayed), and 
blue circles (bunched). Every line represents a trip of a single tram, in time (x‑axis) 
and space (y‑axis, representing stops). The line varies its colour depending on the 
relative occupancy rate of the tram. The markers on stops indicate to which situation 
cluster this particular event (a tram arriving, serving and leaving a stop) belongs, 
with green crosses representing the normal situation, black cubes—a “delayed” situ‑
ation, blue circles—a “bunched” situation. 

In Fig. 2 a clear phenomenon of bunching swings can be observed. We define it 
as follows:

Bunching swings is the phenomenon of several consecutive PT vehicles in a row 
alternating between “delayed” and “bunched” states, not returning to a “normal” 
state.

A more close‑up and very clearly marked case of such bunching swings can 
be observed in Fig. 3a, from line 1 on March 20. One tram (that left < 11:00) got 
delayed at a stop (nr. 25) for a considerable time, with 5 pairs of trams afterwards 
alternating between being delayed with a high number of passengers and being 
early with a low number of passengers, a situation that lasted for almost two 
hours. It can also be seen how bunching got progressively worse over time (e.g. 

Fig. 2  Clustering results with observed “bunching swings” (Line 1, March 1, Sunday)



540 V. Degeler et al.

1 3

each next pair of vehicles were closer to each other than the previous pair), before 
being diminished around 13:30 and returning to a more or less normal schedule 
after this. Figure 3b shows a different kind of situation, from line 9 on March 4, 
with three separate cases of a single swing, where two times swings are started by 
a delayed tram, and one time by an early tram. In these cases there is one vehicle 

Fig. 3  Different cases of bunching swings. Pale blue line represents expected schedule. Clusters are 
marked with green crosses (normal), black squares (delayed), and blue circles (bunched) (colour figure 
online)
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that clearly got out of its schedule, which caused some issues to the neighbouring 
vehicles, but did not affect the route efficiency in the long term.

The clustering allows us to construct patterns of bunching probability, as shown 
in Fig. 4. We calculate the bunching probability as a percentage of trams clustered 
into “delayed” or “bunched” clusters, compared to all trams during the same period. 
Bunching patterns differ noticeably between working days and weekends. As can be 
seen, weekdays have two clear peaks of bunching rate increase: a huge one in the 
morning, and a more moderate one in the evening. Weekends have a considerable 
increase in bunching rate in the middle of the day. In all cases, bunching is very low 
to almost non‑existent at the beginning of the route, but steadily increases during the 
route, and is at its heaviest by the end of the route.

5  Bunching swings formations

We now look in detail at the different types of consecutive bunching swings forma‑
tions, such as those that are shown in Fig. 3. The formation as a whole represents a 
tightly interlinked situation, where early schedule irregularities may be still having 
an effect on bunching/delays and uneven passenger distribution two or more hours 
later. Therefore, understanding the types of formations and conditions, under which 
they occur, leads to a better anticipation of how a situation will evolve.

Before we dig deeper into the analysis of bunching formations, we want to define 
precisely, what a bunching swings formation is. We define it as follows:

A bunching swings formation (BSF) is a consecutive sequence of public trans-
port vehicles each serving a consecutive sequence of stops (a part of the PT route), 
in which all or a majority of vehicles are either being delayed or being bunched 
compared to the previous vehicle on the corresponding affected parts of the route, 
such that this formation is isolated and surrounded in space (PT stops) and time 

Fig. 4  Probability of bunching, Line 1. Bunching patterns are different on working days and weekends
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(consecutive vehicles on route) by the “normal” operations of PT vehicles, e.g. 
operations according to schedule.

We perform the following steps to analyse BSFs. First, we extract the linked for‑
mations and look at each formation separately. Then, we extract important features 
of each formation, in order to be able to cluster them by the formation type. In the 
ensuing two subsections we describe each step in detail.

5.1  Formations extraction

Each day there are usually several BSFs occurring; therefore, we need to be precise 
when extracting a single interlinked formation, to avoid combining into one forma‑
tion two or more separate bunching swings occurrences. To this end, we are not 
interested in cases of a single tram being delayed/early, unless it is followed by a dis‑
crepancy with the schedule in the following trips. Therefore, we only look at forma‑
tions that have at least two bunched/delayed trips (a single bunching swing) or more.

More precisely, we are interested only in the part of the route where bunching 
occurs. Earlier stops in the route should be excluded from the formation. Although it 
is a common situation that bunching, once it occurs, continues until the end of a par‑
ticular trip, it also happens that the delay or early arrival are resolved en‑route. We 
will later see that some bunching cases are interesting due to the fact that they hap‑
pen in the middle of the route with a potential to be resolved during further stops.

During our data analysis we observed some situations, where one of the trams in 
the middle of a bunching swings pattern runs on schedule, whereas the trams before 
it and after it are both involved in a bunching pattern. This situation can be treated in 
two different ways: (1) as a two different BSFs before and after the tram in question, 
or (2) as a single BSF with the tram involved in‑between bunched/delayed trams 
being regarded as participating in the formation as well. There are arguments for 
both types of treatment, and in our analysis we looked at formation clustering with 
both of these types, and we found that it does alter further clustering results. Further 
in this paper, we report the results based on (2), treating such situation as a single 
BSF. The reason is that, based on the situations that we looked at, such bunching 
swings usually represent a single unfolding situation, see, for example, Figure 7 (4th 
sub‑figure) and Figure 10. However, if at least two consecutive trams run on sched‑
ule in between observed bunching swings, this does cause the creation of two differ‑
ent bunching swings formations.

The algorithm for detecting bunching swings formation reads as follows:

1. Regard each line and direction separately. Extract a collection of data points for 
the line and direction in question. Data points are represented by a list of AVL 
locations at each stop (missing information can be handled). Each data point 
should contain the following information: date, line number, line direction, stop 
ID, stop order in the route sequence, trip ID, timestamp, dwell time on a stop, 
delay of arrival in time units, passenger load, headway to the previous vehicle, 
headway to the next vehicle, previous trip ID, next trip ID
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2. Perform clustering of data points as defined in Sect. 3. Each data point is assigned 
a particular cluster type (“delayed”/“normal”/“bunched”).

3. During BSF extraction, regard each day separately. Extract all data points related 
to this line, direction, date into a current dataset.

4. While there exists an un‑investigated “delayed” or “bunched” point in the current 
dataset:

 4.1. Create a new unique potential BSF ID, and put the point in question into 
the queue of points for this ID.

 4.2. Take the next point from the queue for the current potential BSF, and 
mark it as investigated. Extract neighbours of this data point: neighbours 
are data points that correspond both to the neighbouring trips (the trip in 
question, the previous trip or the next trip) and neighbouring stops (the 
stop in question and the certain number of stops before and after this stop, 
we used 3 stops before and after in our analysis). If at least 20% of the 
neighbouring data points belong to non‑normal clusters, mark the current 
data point with the unique current “potential BSF” marker and add all its 
still un‑investigated neighbours to the queue. Remove investigated point 
from the queue, and repeat this full step, while the queue is not empty.

 4.3. Extract all points marked with the current potential BSF marker, and per‑
form the checks on the current potential BSF. Remove leading and trail‑
ing normal trips. Split the BSF into two or more, if it contains at least 2 
“normal” trips in between (“normal” trips are those that have less than the 
predefined threshold of non‑normal AVL points, in our case: 3). Check 
that it contains at least the minimum number of trips (in our case: 2). If all 
checks pass, a new BSF is detected and added to the list of BSFs.

We can now analyse the data of different days in terms of bunching swings for‑
mations, rather than separate bunching occurrences. For example, after the applica‑
tion of this algorithm to Line 1 on March 1, the occurrences of bunching swings 
that we visualised earlier in Fig.  2 can now be represented in BSFs, as shown in 
Fig. 5. Three different BSFs were extracted, each independent from others in space 
and time, with varying duration, severity, affected stops and other parameters. In this 
figure, unlike in previous and following figures, we use blue, red and purple colours 
to visualise distinct extracted BSFs on one figure; green still marks the normal situ‑
ations. Note that there are also some short‑lived occurrences of bunching (marked 
with green), that do not form BSFs due to normally having only one affected vehi‑
cle. Therefore, the BSF detection algorithm will correctly ignore them.

5.2  Formations clustering and profiling

Once we have separate bunching swings formations extracted, we carefully examine 
their parameters. In this analysis, we use the following parameters:

Bunching Swings Formations Parameters:
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1. Average passenger load—we average passenger load for the whole formation, 
mainly due to the fact that in two consecutive trams in a formation, one being 
bunched and one being early, the load can differ significantly.

2. Number of trips involved—the total number of trams that were affected
3. Total duration—Total duration, in hours, of the bunching swings occurrence. It 

has to be noted that this variable is considerably correlated with the number of 
trips involved (Pearson’s r = 0.96 for the line 1 that we used in our analysis; how‑
ever, it will be different for other lines depending on variations in planned head‑
ways density over time and on different days), so any one of them can be used in 
further analysis, depending on the preference. In our case, we used them together 
and each separately and did not find any meaningful difference in reported results.

4. Average starting stop—when in the sequence of stops the bunching effect starts 
to occur.

5. Average length in stops—how long during the route the bunching effect lasts.
6. Time of day when the bunching swings formation starts
7. Day type—work day or weekend
8. Lasts until route end?—yes or no, depending on whether bunching is resolved 

mid‑route, or lasts until the end of the route.

Once we extract these factors from each detected bunching swings formation, we 
can use them to perform a second layer of clustering, in order to combine formations 
by type.

Fig. 5  Three separate bunching swings formations, extracted for Line 1 on March 1, marked with blue, 
red and purple colours (colour figure online)
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One of the main concerns when doing this type of analysis, is the inability to 
combine bunching swings from different lines into one common type extraction. The 
geographical differences of lines, different stops being a part of central/busy areas, 
different schedule and frequency, different coverage by neighbouring lines providing 
feasible alternatives for passengers to avoid taking delayed trams, and many other 
external factors can all influence the bunching swings formations and evolution dif‑
ferently. In our future research analysis, it is our goal to add such external factors to 
our dataset and specifically look at differences in BSFs on different lines and in dif‑
ferent cities. In this paper, however, we control all those factors by looking at bunch‑
ing swings formation types within one line, namely line 1 in The Hague.

6  Results: exploring bunching swings formations

6.1  Clusters number

The first question to be asked in the analysis of BSF types, is how to decide on the 
number of clusters. In order to do this, we performed K‑means clustering, varying 
the number K of clusters from 2 to 7, and performed the silhouette analysis for each 
K, to visually assess the quality of clusters. The silhouette analysis allows to see, 
how similar the points within the cluster are with the centroid point, and how dif‑
ferent they are from the points of different clusters (Rousseeuw 1987). Each point in 
a cluster obtains a silhouette score on a scale [− 1, 1], which indicates, how much 
more similar this point is to the points in its own cluster than to the points in differ‑
ent clusters. Here, 1.0 indicates complete equality of the point with all points in its 
own cluster, and difference with points in others, while numbers below 0 indicate 
that the assignment of a cluster for this point may have been wrong, as it is more 
close to the points outside of the cluster rather than in its own cluster. With a good 
cluster number, there are no clusters, whose silhouette score is considerably lower 
than for others.

Figure 6 shows the silhouettes for cluster numbers K from 2 to 7, while Fig. 7 
shows the average silhouette score obtained for each K. 

As can be seen, with K = 2 and K = 3, we can get a good separation between clus‑
ters, but the variability of points inside the clusters does not allow us to have a good 
description of which situations each cluster represents due to common occurrences 
of different situational types of formations being assigned to the same cluster.

With K = 5, we have one of the clusters with considerably lower quality than oth‑
ers (cluster number 1 in the figure), and the situation stays the same for K = 6 and 
K = 7. We did not investigate the number of clusters being larger than 7, since with 
the one month of data a larger number would likely result in overfitted clusters, i.e. 
those representing particular situations of this exact time frame rather than general 
formation patterns.

K = 4 has the best average silhouette score, with no cluster being clearly worse 
than others. Therefore, out of all investigated possibilities, we chose K = 4 as provid‑
ing the best number of clusters.
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Fig. 6  Silhouettes of bunching formations clusters for K from 2 to 7

Fig. 7  Average silhouette scores for number of clusters K from 2 to 7. The red point marks K = 4, the 
chosen number of clusters
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6.2  Clustering results

As described in earlier sections, we detected, extracted, and clustered bunching 
swings formations. In total, we extracted 216 BSF occurrences within one month, 
and clustered them in four different types. You can see the types combined in 
Table 2. We highlight in bold the most significant features that distinguish each clus‑
ter from other clusters and are used to explain the type of BSFs that belong to it.

1. “High passenger load”—The most common type of BSFs and it is specified by 
very high average passenger load for the whole duration of the swings formation. 
It often starts in the middle of the route and more often than other types can be 
experienced on work days. Examples can be seen in Fig. 8. It is worth mention‑
ing that although the calculated average starting time of this bunching cluster is 
in the middle of the day, most of the occurrences during work days start during 
the morning peak hours (8:00–9:00), or during the evening peak hours (15:00–
18:00). Therefore, we conclude that this type of bunching swings formations is 
clearly associated with heavy demand on the public transport route, specifically 
the demand that happens during peak hours. This conclusion is also fully consist‑
ent with the increased occurrences of this cluster during week days (89%).

2. “Whole route”—Bunching swings formations of this type usually start very 
early in the route and last for the whole duration of the trip. They have an aver‑
age number of trips involved and an average passenger load. Examples can be 

Fig. 8  Examples of bunching swings formations from cluster 1 “High passenger load”
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seen in Fig. 9. When looking closely at this cluster, we found that in a bit more 
than half (53%) of all BSFs in this cluster the delay started at the very beginning 
of the route, e.g. the first observable stop (marked as 2 in the stops sequence in 
the figures) already had either delays (most of the times), or the tram left early 
(the minority of the times). This irregularity in the dispatch of trams seems to 
originate from a circular nature of the route, so, given the absence of extra buffer 
times, the tram that arrives late to the last station has to start its next trip in the 
opposite direction late. In the remaining half of the cases, the bunching phenom‑
enon developed very early, normally within the first ten stops.

3. “Evening, end of route”—This is a somewhat unique formation type in terms 
of many factors involved. First of all, the time of day and the day type when it 
happens: it usually starts late in the evening and can be observed a bit more often 
on weekends. The bunching swings usually start very late in the route, noticeably 
later than for other clusters, but can still be resolved in 14.3% of the cases. How‑
ever, the most interesting factor of this cluster by far is the average passenger load, 
as it is very small, considerably smaller than for other bunching swings formation 
types. And, very important, this number is low even if we consider all trips, not 
only trips that are involved in bunching. On the one hand, this correlates very 
well with the fact, that this type of bunching swings usually happens on evenings 
and weekends, as at these times and days passenger numbers generally are much 
lower than average.

Fig. 9  Examples of bunching swings formations from cluster 2 “Whole route”
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  However, as was shown by previous research works and will be shown in 
Sect. 6.3, the bunching effect in itself correlates considerably with a high pas‑
senger load. The fact that there is a type of bunching swings formations that con‑
sistently happen with low passenger numbers is, therefore, very interesting and 
deserves further investigation into external factors of why this type of bunching 
swings occurs. One of the plausible explanations lies in the fact that the schedul‑
ing during evening and weekends already takes into account decreased passenger 
load, thus assumes faster dwell and en‑route times, and leaves less margin to 
mitigate minor delays. Examples can be seen in Fig. 10.

4. “Long duration”—This formation type contains mainly very long and heavy 
bunching swings occurrences, lasting for a long time with many trips involved. 
Examples can be seen in Fig. 11. Passenger load stays rather high for the dura‑
tion of such a formation. Bunching swings of this magnitude have no chance to 
be resolved mid‑route, as clearly shown by the fact that exactly 100% of such 
bunching swings formations in this cluster lasted until the end of the route. This 
is also the cluster that is the most likely to have the most extreme occurrences of 
bunching, i.e. two vehicles coming into very close proximity to each other (rather 
than still being apart, but with decreased headway between them). The severity 
and irregular nature of occurrences of this cluster points out at potential external 
(to the data available in our analysis) rather than internal (self‑inflicting) cause 
factors for these severe bunching swings formations. That assumption is also 
consistent with the fact, that some bunching swings occurrences are seemingly 

Fig. 10  Examples of bunching swings formations from cluster 3 “Evening late route”
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being fully or partially resolved en‑route for some vehicles, only to be seen reoc‑
curring again for the next vehicle (such examples can be seen in Fig. 11). This 
can be caused by any of the numerous external factors, for example, a car traffic 
jam on a road, which a tram may need to follow or cross. In any case, we believe 
that further analysis and potential comparison with more external data sources 
can be useful for this cluster.

    

6.3  Passenger load effect on bunching

It has been shown in previous research (Yu et al. 2016) that the number of passen‑
gers and changing load are one of the culprits of public transport bunching. In our 
analysis we can clearly see some cases of increased passenger load that nevertheless 
do not result in emergence of a bunching pattern, e.g. in Fig. 2.

In order to investigate the effect of increased passenger load on a bigger scale, we 
need to analyse the average rate of bunching pattern emergence over time. We look 
at all stops of our dataset, and split the full operations at each stop on periods of 2 h. 
We want to obtain the average passenger load per tram (i.e. all transported passen‑
gers divided by a number of trams), and the bunching rate (percentage of bunched/
delayed trams) during these particular periods.

Fig. 11  Examples of bunching swings formations from cluster 4 “Long duration”
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Figure 12 shows the combined data of all occurrences of average load (x‑axis) 
vs. bunching rate (y‑axis) for the whole month for one direction of tram 1. The 
red line shows the average bunching rate depending on average passenger load 
values. The average bunching rate clearly goes up until an average load of about 
70 people per tram. The Pearson coefficient, which measures the linear depend‑
ency between the two variables (bunching rate and passenger load) is r = 0.88. 
The Spearman coefficient, which measures a monotonic—but not necessarily 
linear—correlation between these two variables is ρ = 0.86. This clearly shows 
a high correlation of passenger load and bunching. In Fig.  13 we split bunch‑
ing rates on three categories: high (rates over 0.7), low (rates lower than 0.3), 
medium (between 0.3 and 0.7), and draw histograms of average passenger load 

Fig. 12  Bunching rate occurrences depending on passenger load

Fig. 13  Histograms of average passenger load for a high (x > 0.7); b medium (0.3 < x ≤ 0.7); or c low 
(x ≤ 0.3) bunching rates
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for every rate. It can be seen that a low bunching rate corresponds to a lower pas‑
senger load.

7  Conclusions

In this paper, we showed that clustering techniques can be used to extract three 
fundamental types of situations in which PT vehicles may be observed (normal, 
delayed or bunched). Using these labels on each line and stop we showed that 
clustering also unravels so‑called ‘bunching swings’ phenomena, which some‑
times last for a considerable time. By varying the number of clusters, we can 
tune the characteristics and severity of the bunching patterns we extract. We also 
showed a clear correlation between passenger load and bunching rate. Clustering 
results allow us to perform further analyses on bunching swings in an uncon‑
trolled environment, e.g. their characteristics and conditions under which the 
swings return to normal or intensify. We showed, how the formations of bunching 
swings can be extracted, and that they in turn can be clustered into four types: 
“high passenger load”, “whole route”, “evening late route”, “long duration”.

These explorative data‑driven analyses may hold important benefits for PT 
planning and operations management. First, the techniques demonstrated can sup‑
port detecting smaller scale bunching patterns automatically in large service net‑
works. Second, as these smaller scale bunching patterns evolve over time and the 
network, detecting common bunching swings formations may support the predic‑
tion of these patterns, which allows operators to take appropriate measures faster, 
and users to be informed better.

In our further research, we plan to investigate to abstract the parameters of 
bunching swings formation from the specific characteristics of a particular line, 
by parameterizing running frequency and other differences in schedule, and by 
including the information about the geographical location and other external 
parameters into the model. The reason why we are looking at the parameteriza‑
tion is to be able to combine different lines and routes and analyse them in a uni‑
form manner. This includes using relative values (e.g. percentage of delay with 
respect to the planned schedule as opposed to its value in seconds, percentage 
of a route affected, etc.) However, we have to be careful with parameterization, 
because some of the features still affect the outcome in absolute values, e.g. we 
are not only interested in the percentage of actual passenger load with respect 
to the average load on a line, but we are also interested in the absolute number 
of people to embark/disembark, since that affects the dwell time. Geographical 
parameters of the stops are also important, e.g. if a stop is in the suburb, business 
neighbourhood or the city center, and what are the distances between consecutive 
stops.

This analysis can be useful in control strategies. In particular, we aim to use 
this information to look at how the evolution of bunching swings formation can 
be predicted in real time. When processing real‑time information, the onset of a 
bunching swings formation can be detected as early as with the second or third 
vehicle. The initial features (severity of delay, passenger load, etc.) can then 



554 V. Degeler et al.

1 3

be extracted and updated in real time. These features can be used in predictive 
machine learning algorithms, to predict the duration and the severity of the ongo‑
ing bunching swings formation. We expect the accuracy of prediction to grow 
with the total time passing since the onset of the bunching swings formation. This 
is especially important for clusters such as cluster 2 (“whole route”) and cluster 
4 (“long duration”), due to their longer duration and relatively high severity. The 
biggest hurdle is the real‑time estimation of the passenger load, as this feature 
is quite important for the analysis of BSFs. The smart card data that we used 
for analysis in this paper cannot be obtained in real time at the moment, as it 
is normally gathered in batches and becomes available for previous time peri‑
ods (e.g. the previous day). Other passenger load estimation techniques should 
be employed. Real‑time detection of ongoing BSFs is important not only for the 
calculation of its total expected duration and severity, but also for the analysis of 
which particular vehicles are likely to become delayed, and which of them are 
likely to become bunched. Since in most cases bunching patterns unfold in pairs, 
this becomes a somewhat straightforward task in the majority of cases. However, 
there are cases where the pattern of going in pairs breaks by having an odd vehi‑
cle not following the pattern (as was discussed in step 4.3 of the algorithm in 
Sect. 5.1), which should be further investigated to increase the prediction accu‑
racy for any control strategy that uses the predicted bunched/delayed pattern of a 
particular vehicle.
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