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Real-Time Predictive Control Strategy
Optimization

Samarth Gupta1, Ravi Seshadri2, Bilge Atasoy3, A. Arun Prakash1,
Francisco Pereira4, Gary Tan5, and Moshe Ben-Akiva1

Abstract
Urban traffic congestion has led to an increasing emphasis on management measures for more efficient utilization of existing
infrastructure. In this context, this paper proposes a novel framework that integrates real-time optimization of control strate-
gies (tolls, ramp metering rates, etc.) with the generation of traffic guidance information using predicted network states for
dynamic traffic assignment systems. The efficacy of the framework is demonstrated through a fixed demand dynamic toll opti-
mization problem, which is formulated as a non-linear program to minimize predicted network travel times. A scalable effi-
cient genetic algorithm that exploits parallel computing is applied to solve this problem. Experiments using a closed-loop
approach are conducted on a large-scale road network in Singapore to investigate the performance of the proposed metho-
dology. The results indicate significant improvements in network-wide travel time of up to 9% with real-time computational
performance.

Urban transportation networks are subject to a large
degree of variability because of fluctuating supply and
demand characteristics. These fluctuations result in the
pervasive phenomena of recurrent and non-recurrent
congestion, which is an escalating problem worldwide.
The adverse impacts of the resulting congestion include
long travel delays, high travel costs, and significant costs
to the economy and the environment. Consequently,
there has been an increased emphasis on developing tools
to mitigate congestion and utilize existing infrastructure
efficiently. In this context, the paper proposes an inte-
grated framework—within a dynamic traffic assignment
(DTA) system—to optimize network control strategies in
real-time considering network state predictions.
Specifically, the generated control strategies are predic-
tive (or proactive) as opposed to being just reactive. The
framework also incorporates the generation of consistent
guidance—it ensures that the guidance disseminated con-
siders the traveler’s response to it, thereby increasing the
reliability of the provided information. Further, the
effectiveness of the proposed framework is demonstrated
through a real-world application to the predictive opti-
mization of network tolls.

The motivation for this study is fourfold. First, the
need for decision support tools to facilitate a more effi-
cient utilization of existing infrastructure. Second, most
studies on optimal network control do not combine the
optimization of network control strategies with the

generation of guidance information. The third motivat-
ing factor is the complexity and scale of the problem. As
the objective function involves simulation, it tends to be
non-linear and non-convex, making it challenging for a
real-time application. Finally, the study is also motivated
by important applications in real-time traffic manage-
ment and incident response systems.

In view of the aforementioned motivations, the fol-
lowing objectives are identified: (a) to develop an inte-
grated framework within a real-time DTA system that
determines optimal control strategies and consistent gui-
dance information considering traffic state predictions;
(b) to apply the framework to the fixed demand dynamic
toll optimization problem; and (c) to evaluate the pro-
posed framework using a closed-loop approach (where
the DTA system is interfaced with a traffic microsimula-
tor that emulates stochasticity in the real world, thus pro-
viding a platform for realistic evaluation) on a large real-
world network with link tolls as control strategies.
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There are several salient contributions of this work.
First, the proposed simulation-optimization framework
simultaneously optimizes network control strategies and
computes consistent guidance information based on traf-
fic state predictions. Utilizing traffic state predictions
aids in accurately evaluating the effect of control strate-
gies. Furthermore, the control strategy at any location is
determined based on global traffic state predictions and
not just local predictions, thereby explicitly considering
the system-level effects. The consistency in guidance
ensures that the information disseminated by the traffic
management center is reliable, an important issue that
has been overlooked in the literature on control strategy
optimization. A parallel genetic algorithm is applied to
solve for the optimal control strategy (within the pro-
posed framework) that maintains computational tract-
ability to achieve real-time performance on a large real-
world network. Second, the proposed framework is eval-
uated using a rigorous closed-loop approach which
ensures that impacts of the control strategy are not over-
estimated. The experiments demonstrate the effectiveness
of the proposed system which can yield travel time
improvements of up to 9%, and average computational
times of less than 5 min. Third, a sensitivity analysis is
performed with respect to network demand levels and
the consistency in guidance information is verified.

Literature Review

Although the framework presented in this paper is appli-
cable to other control strategies, including signal timing
and ramp metering, the review here focuses on real-time
congestion pricing in view of the application presented.
The reader is referred to Chung and Recker (1) for a
review of existing toll facilities in the U.S.A. and to de
Palma and Lindsey (2) for a discussion of congestion
pricing technologies.

There are two broad categories of tolling strategies:
fixed pricing strategies and dynamic pricing strategies. In
fixed pricing strategies, the tolls are predetermined; they
can be time-invariant or can vary in a predetermined
manner during the day (time-of-day tolling). Further, in
a fixed pricing strategy, tolls can also vary based on loca-
tion and vehicle type. In dynamic pricing strategies, the
tolls are continually determined based on the current/
future traffic conditions and are not predetermined. A
dynamic tolling strategy can be either reactive or predic-
tive. In a reactive tolling strategy, the tolls are determined
based on the current traffic conditions. In contrast, in
predictive tolling, the tolls are determined considering
predicted traffic states.

Yang and Huang (3) and Tsekeris and Voß (4) should
be referred to for a review of work on static and fixed
congestion pricing. Among the studies that determine

time-dependent and fixed pricing, de Palma et al. (5) was
one of the earliest to examine the effect of time-invariant
versus time-dependent pricing using a simulator. Their
experiments show that time-dependent tolls can generate
twice the welfare gains compared with time-invariant
tolls. Xu (6) presented an optimization framework with
the travel time objective and solved the problem using
the simultaneous perturbation stochastic approximation
(SPSA) algorithm. Chen et al. (7) solved the similar prob-
lem for a travel time objective. The problem was solved
by statistically modeling the objective function (calcu-
lated from the output of DynusT) using Kriging. The
same authors later extended the work to objectives of
throughput and revenue (8). The tolling scheme was
based on the vehicle miles traveled.

Studies on the dynamic reactive pricing have predomi-
nantly been in the context of managed-lane operations.
Yin and Lou (9) propose two dynamic pricing
approaches for managed toll lanes: a feedback control
approach and a reactive self-learning approach. The
pricing decisions are based on real-time traffic conditions
and the objective is to improve the free-flow travel ser-
vice on the toll lanes while maximizing total throughput.
Similar approaches—based on feedback control—have
been used to optimize for various other objectives like
speed, travel time, delays, and revenues. There have been
several studies on dynamic reactive pricing for different
tolled links in a network by employing the traffic simula-
tion software Paramics and TransModeler (10–13). The
algorithm applied was from Zhang et al. (10); it is a feed-
back controller based on speed measurements. It was
shown that dynamic tolling results in shorter queue
lengths and higher speeds.

Dong et al. (14) studied a predictive tolling strategy,
where the predicted traffic conditions provided by
DYNASMART-X were used to generate the tolls. A
feedback control approach was adopted where the toll at
a location is determined by adjusting the previous toll
based on the deviation of predicted concentration on the
corresponding link from the desired level. Hassan et al.
(15) also studied predictive tolling to maximize revenue.
The toll is optimized based on a formulation where a
Greenshields model is embedded to represent traffic
dynamics and a binary logit model is incorporated for
route choice. A linear approximation is used for the solu-
tion of the optimization model and the optimized toll is
evaluated through a simulation-based DTA system
(DIRECT) with prediction capabilities. They applied the
tolling methodology on a synthetic corridor network
with two gantries where the tolls need to be optimized.
Zhang et al. (16) also study a a managed-lane setting and
demonstrate the impact of online calibration within a
predictive toll optimization framework. More recently
Hashemi and Abdelghany. (17) provided a predictive
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control framework with an example of timing decisions
on signalized intersections. As in (15), the authors use
the simulation-based DTA system DIRECT for state
estimation and prediction, and for control optimization
a genetic algorithm was used, similar to that adopted in
this study. They applied the methodology to the US-75
corridor in Dallas. The authors also extended the frame-
work for robust traffic network management on a corri-
dor network by explicitly accounting for uncertainty
(18). Finally Hashemi and Abdelghany (19) proposed a
deep learning methodology for real-time network man-
agement and demonstrated that the method achieves
comparable travel time savings on a corridor network to
the optimization-based approach they had previously
proposed (17).

In summary, many studies adopt a reactive setting,
that is, they do not consider the effects in future time
periods while determining tolls in the current time period.
This myopic tolling policy can result in undesirable and
fluctuating tolls and traffic conditions. Additionally, a
common approach to determine dynamic tolls is based
on feedback control, where the tolls are adjusted based
on either observed or predicted characteristics like speed
or queues. However, as the characteristics of only the
tolled links are used to determine the corresponding tolls,
the system-level interactions are ignored, which makes
them inefficient for large-scale networks. The approaches
that utilize traffic state predictions for the optimization
of tolls typically have been applied only to corridor type
networks. Furthermore, consistency between the pro-
vided guidance and the resulting network conditions is
not completely handled in most of the studies. Finally,
the evaluation of the optimized tolls is done through the
same simulator that is used to optimize the tolls. This
may overestimate the network performance improve-
ments. This study addresses these gaps in real-time pre-
dictive control systems, more specifically tolling.

Integrated Framework for Real-Time
Control Strategy Optimization
and Guidance Generation

This section briefly describes the proposed framework
for the integrated optimization of control strategies and
generation of consistent travel time guidance. For ease
of exposition, the framework is illustrated using
DynaMIT2.0, a simulation-based DTA system for traffic
state estimation and prediction developed at the MIT
Intelligent Systems Laboratory (20, 21). Note, however,
that the framework is generic and applies to any real-
time DTA system. The DynaMIT2.0 system is first
briefly introduced, followed by a discussion of the pro-
posed framework.

DynaMIT2.0 is composed of two core modules, state
estimation and state prediction, and operates in a rolling
horizon mode. During each execution cycle, the state
estimation module uses a combination of historical infor-
mation and real-time data from various sources (surveil-
lance sensors, traffic information feeds, weather
forecasts), first, to calibrate the demand and supply para-
meters of the simulator so as to replicate prevailing traf-
fic conditions as closely as possible. The updated
parameters are then utilized to estimate the state of the
entire network for the current time interval. Based on
this estimate of the current network state, the state pre-
diction module predicts future traffic conditions for a
prediction horizon and generates consistent guidance
information (refer to Ben-Akiva et al. [20] for more
details on DynaMIT) that is disseminated to travelers.

The integrated framework is summarized in Figure 1.
During each execution cycle, following state estimation,
the prediction based information generation and strategy
optimization process is invoked. Within this process, the
optimization module generates a series of control strate-
gies (for example, network tolls, signal timings, etc.) for
the prediction horizon period which are to be evaluated
on the basis of a specific objective. This can include the
minimization of total system travel time, maximization
of consumer surplus, maximization of operator revenues,
and so on. The evaluation of each control strategy
involves running the state prediction module iteratively
to ensure that the predicted network state is consistent
with the provided guidance.

More specifically, the state prediction module
(expanded in the right half of Figure 1) begins with the
most recently disseminated guidance (for instance, the
guidance may be in the form of network link travel
times) as a trial solution. The coupled demand and sup-
ply simulators are then used to predict the network state
based on the given control strategy and assumed gui-
dance as inputs (note that the route choices of drivers
change in response to the control strategy and guidance).
This yields predicted network travel times which are then
combined with the original guidance (using the method
of successive averages [MSA]) to obtain a revised travel
time guidance solution. This procedure is iteratively per-
formed until convergence, that is, the provided travel
time guidance and predicted network travel times are
within a pre-specified tolerance limit eP. Once conver-
gence is achieved, the state prediction and guidance strat-
egy are termed ‘‘consistent’’ and the corresponding
network state is then used by the optimization module to
evaluate the objective function and search for the opti-
mal control strategy. Following the completion of the
optimization procedure, the prediction based informa-
tion generation and strategy optimization process returns
an optimal control strategy that is applied to the network
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and consistent travel time guidance that is disseminated
to travelers.

The proposed framework is demonstrated in the sub-
sequent sections through an application to the dynamic
toll optimization problem.

Formulation of the Dynamic Toll
Optimization Problem

The transportation network of interest is represented as
a directed graph G(N ,A) where N represents the set of n
network nodes and A represents the set of m directed

links. Let eA � A represent a subset of network links that

are tolled with em = jeAj. Consider an arbitrary time inter-
val ½t0 � D, t0� where D is the size of the state estimation
interval (typically 5 min in real-time DTA systems).
Assume that the length of the current state prediction
horizon is equal to HD (each D interval within the pre-
diction horizon is termed a prediction interval) and
extends from ½t0, t0 +HD�. In addition, assume that the
link tolls are set for intervals of size D (this period is
referred to as the tolling interval) and that the tolling
intervals are aligned with the state estimation/prediction

intervals. Let th =(th
1, t

h
2 . . . them ) represent the vector of

link tolls for the time period ½t0 +(h� 1)D, t0 + hD�
where h= 1 . . . H . The vector of tolls for the current pre-

diction horizon is thus given by t =(t1, t2, . . . tH ).
In real-world applications, given that the state estima-

tion and solution of the optimization problem will
require a finite computational time (assume that this is at
most equal to the interval length D), it will not be possible
to implement the optimal toll vector for the first tolling
interval within the prediction horizon. Consequently, the

size of the optimization horizon is assumed to be one tol-
ling interval less than the size of the prediction horizon
and the decision variables in the optimization problem
are in fact t0=(t2, . . . tH ). t1 is set to the optimal value
for the same prediction interval from the previous execu-
tion cycle (denoted by l), so that t =(l, t0).

This is illustrated in the example in Figure 2 for a case
where H = 3. In execution cycle 1 (denoted by C1), the
decision vector consists of the toll values (t2

C1, t
3
C1) for

the prediction intervals P2 and P3. The toll vector t1
C1 is

set as the optimal value from the previous execution
cycle (denoted by l1). Subsequently, in the second execu-
tion cycle, the decision vector consists of the toll values
(t2

C2, t
3
C2) and l2 = t2�

C1, where t2�
C1 is the optimal value

of t2
C1 from execution cycle 1.
Furthermore, consider the collection of vehicles

n = 1, . . . V on the network during the prediction

Figure 1. Framework for integrated guidance generation and control strategy optimization.

Figure 2. Illustration of the rolling horizon approach for toll
optimization.
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horizon ½t0, t0 +HD�. Let the travel time of vehicle n be
represented by ttn and the predictive travel time guidance
be denoted by ttg =(ttgi ; 8i 2 A), where tt

g

i represents a
vector of time-dependent link travel times (guidance) for
link i. Note that the vehicle travel times
tt=(ttn; n= 1, . . . V ) are a result of the state prediction
module of the DTA system and cannot be written as an
explicit function of the tolls and predictive guidance. We
characterize the complex relationship through a function
S(:) that represents the coupled demand and supply simu-
lators as

S(xp,gp, ttg, t)= tt, ð1Þ

where xp,gp represent the forecasted demand and supply
parameters for the prediction horizon. Note also that the
iterative procedure (described in the previous section)
ensures consistency between ttg and tt.

It is assumed that the total network demand is fixed
(inelastic) and the behavioral response of users to the
tolls and predictive travel time guidance is solely through
route choice which is modeled within the demand simula-
tor of DynaMIT2.0 using a path size logit model wherein
the utility of a vehicle n on path k is given by,

[n
k =bc etk +bt

�ttg
k +log(PSk)+Ck + en

k , ð2Þ

where etk is the toll on route k, �ttg
k is the travel time on

route k as per the guidance information (which is the
sum of travel times on component links), bc and bt rep-
resent the cost and travel time coefficients respectively,
PSk represents the path size variable for path k, Ck repre-
sents a composite utility pertaining to additional vari-
ables including path length, number of left turns and
number of signalized intersections, and en

k represents a
random error term. Note that, first, for vehicles that do
not have access to the guidance information, historical
travel times are used and second, similar model struc-
tures are used for both the pre-trip and en-route choice
models. The reader is referred to Ben-Akiva et al. (20)
for more details.

It should also be pointed out that since the optimiza-
tion is performed within a rolling horizon framework,
and given that the tolls change every 5 min, it is likely
that the toll values on which the driver based their pre-
trip (or en-route) route choice decision are significantly
different from the tolls they pay in reality. To mitigate
the public opposition that may arise from this, a limit is
imposed on how much the tolls can vary across succes-
sive tolling intervals on a given gantry. Thus we have,

th�1 � d ł th ł th�1 + d, h= 2, . . . H , ð3Þ

where d=(di; 8i 2 eA) represents the vector of limits on
the change in tolls across successive intervals.

With this background, the dynamic toll optimization
problem (DTOP) in this context is formulated as a non-
linear program in Equation 4. The objective function
considered here is the total travel time of all vehicles on
the network, but can be suitably modified to accommo-
date other objectives such as consumer surplus, operator
revenues, or social welfare, depending on the context.
The decision variables are the vector of toll values for
the optimization horizon period. The constraints are the
DTA system, upper and lower bounds on the toll values
(denoted by vectors tLB and tUB), and the constraints on
changes in toll values across successive tolling intervals.

DTOP : MIN
t0

XV

n= 1

ttn(t0)

s:t:

S(xp,gp, ttg, t)= tt,

th�1 � d ł th ł th�1 + d, h= 2, . . . H ,

tLB ł th ł tUB, h= 2, . . . H :

ð4Þ

In case of computational performance constraints, the
dimensionality of the DTOP problem above may be sig-
nificantly reduced by assuming that the vector of tolls
does not change across prediction intervals within the
optimization horizon. In other words, it is assumed that
(t2 = t3 . . . = tH = �t) which reduces the number of
decision variables from em(H � 1) to em. In this case, the
constraints defined by Equation 3 are replaced by,

l� d ł �t ł l+ d ð5Þ

Solution Algorithm

As noted earlier, since the objective function of the
dynamic toll optimization problem in this context does
not have a closed form and is the output of a complex
simulator, evolutionary algorithms and meta-heuristics
are preferable to classical gradient based approaches.
Therefore, a real-coded genetic algorithm (22) is applied
to solve the DTOP problem formulated in Equation 4.
For more details on the solution algorithm, the user is
referred to Gupta et al. (23).

To facilitate real-time performance, given that evalua-
tions of different control strategies in a particular itera-
tion are independent of each other, evaluating them in
parallel significantly reduces computational time and
makes the approach scalable. This study adopts a
master-slave architecture using the GNU Parallel library
(24). (GNU is a recursive acronym for GNUs Not
Unix.) To evaluate each control strategy, a new process
is launched on a different CPU. Moreover, the frame-
work is designed to allow batch-wise evaluation of differ-
ent control strategies. Specifically, during each iteration,
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different control strategies can be launched as different
processes on different CPUs, or they can be launched in
batches of smaller size. In this batch-wise implementa-
tion, different batches can either be launched sequen-
tially on a single cluster of CPUs or they can even be
launched in parallel on multiple clusters of CPUs.

Experiments

This section discusses results from a set of experiments
conducted to investigate the performance of the proposed
strategy optimization approach using DynaMIT2.0 on
the Singapore expressway network. The numerical
experiments are conducted using a closed-loop frame-
work, interfacing DynaMIT2.0 and MITSIMLab
(MITSIM), a microscopic simulator (25). MITSIM is run
concurrently with DynaMIT and mimics the real net-
work, providing sensor counts for the current interval to
DynaMIT, which in turn provides predictive guidance
and tolls to MITSIM. The effect of the guidance and tolls
can then be examined by extracting relevant performance
measures from MITSIM, avoiding overestimation of the
benefits.

The experiments were conducted on the network of
major arterials and expressways in Singapore (Figure 3)
which consists of 948 nodes, 1150 links, 3891 segments,
4123 origin-destination (OD) pairs, and 16 tolled links.
The labels represent the links, which contain a toll
gantry.

This section is organized into six parts. The first sub-
section discusses the setup of the closed-loop framework
and calibration, the second describes the experimental
design and inputs. The third section analyzes the results
in relation to travel time savings and the effect of net-
work demand, the fourth part discusses the nature of
optimal tolls on a few gantries, the fifth describes the
consistency of guidance information and finally, the sixth
part discusses computational performance.

Closed-Loop Calibration

To set up the closed-loop environment, a two-stage cali-
bration procedure is adopted using the w-SPSA algo-
rithm (26). In the first stage, dynamic OD demand (for a
period between 06:30 and noon), driver behavior and
route choice parameters of MITSIM are calibrated by
minimizing a two-component objective function. The
first component is the sum of squared deviations between
simulated counts and actual counts (on a set of 325 sen-
sors for 5-min time intervals averaged across 30 week-
days in February and March 2015) obtained from the
Singapore Land Transport Authority. The second com-
ponent is the difference between the parameter values
and a priori estimates. The inputs for the calibration pro-
cess is a set of a priori parameter values and a seed OD
matrix obtained from a prior calibration procedure (26).
The normalized root mean square error (RMSN) in the
sensor counts before and after the calibration process
were 73% and 34%, respectively.

In the second stage, the historical OD matrix, supply
and route choice parameters of DynaMIT2.0 are cali-
brated against the outputs (sensor counts on 650 net-
work segments) generated by MITSIM. The RMSN in
the sensor counts before and after the calibration process
were 56% and 19%, respectively. Further, a manual cali-
bration of segment capacities and traffic dynamics para-
meters was also carried out based on link travel times,
and the RMSN in time-dependent link travel times after
calibration was 24%.

Experimental Setup

The numerical experiments were conducted using a simu-
lation period from 06:30 to noon, which includes the
morning peak hours in Singapore. The state estimation
interval (and OD demand interval) is 5 min (D= 300 s)
and the prediction horizon is 15 min (H = 3). The simu-
lation period is composed of three parts: a warm-up
period from 06:30 to 07:30, when no tolls are imposed, a
tolling period from 07:30 to 11:00, and a post-tolling
period from 11:00 to noon where again, no tolls are
imposed.

The impact of the predictive toll optimization is exam-
ined against two benchmarks using the closed-loop
framework described above. It is assumed that the base
demand (MITSIM OD demand obtained from the
closed-loop calibration) represents the historical demand
or an ‘‘average’’ day. This demand is then perturbed to
reflect day-to-day variability by sampling from a normal
distribution with expected value as the base demand and
a coefficient of variation of 0.2.

The first benchmark is the no toll scenario, where the
closed-loop is simulated using the perturbed demand
with zero tolls. The second scenario consists of static

Figure 3. Network of expressways and major arterials in
Singapore.
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optimum tolls. In this scenario, the optimum static tolls
are first computed, which involves minimizing the total
travel times for the entire simulation period (obtained
from the state estimation) by implementing a single vec-
tor of tolls for the complete tolling period. The closed-
loop is now simulated using the perturbed demand with
the static optimum tolls. Finally, in the third scenario,
the closed-loop is simulated using the perturbed demand
and the predictive optimized tolls based on the proposed
framework for predictive optimization. In all three sce-
narios, MITSIM receives predictive travel time guidance
from DynaMIT2.0 and in turn provides sensor counts to
DynaMIT2.0 every estimation interval (or execution
cycle). The sensor counts are used by the online calibra-
tion process, as noted previously (for more on the online
calibration methodology, the reader is referred to
Prakash, Seshadri et al. [27–29]).

Further, to investigate the effect of the overall demand
level, all the three aforementioned scenarios are simu-
lated for four different demand levels: low (base demand
reduced by 10%), base (closed-loop calibration as noted
above), high (base demand increased by 10%) and very
high (base demand increased by 20%). Note that the
demands referred to here are the actual MITSIM (real-
world) demands. The RMSNs between the sensor counts
of DynaMIT2.0 and MITSIM range between 15% and
22.5% across the various demand scenarios (this is an
outcome of the online calibration process).

For the scenarios with predictive optimization, the
DynaMIT2.0 historical demand (obtained from the sec-
ond stage in the closed-loop calibration) remains
unchanged for all demand scenarios. For the scenarios
with static optimum tolls, note that the regulator must
perform the determination of the optimum tolls offline,
using an estimate of historical demand. Given that differ-
ent levels of actual demand (unknown to the regulator)
are tested, we assume that a single computation of the
static optimum tolls is performed by considering a worst
case scenario where the calibrated DynaMIT2.0 histori-
cal demand is increased by 20%. In addition to the com-
parison with predictive optimization, this allows us also
to test the robustness of the static optimum tolls to both

systematic and random variation in the actual OD
demands (from historical estimates).

The performance measures are: (i) average travel
times (across vehicles) for each departure time interval
obtained from MITSIM, and (ii) computational time for
each execution cycle of DynaMIT2.0. Note that for each
scenario and demand level, the performance measures
reported are averages across 10 different runs to account
for stochasticity in the overall system.

A high performance computing cluster (HPCC) with
120 CPUs and 256 GB of memory was used to run the
experiments. For the genetic algorithm parameters, a
population size of 60 was used; probability of cross-over
and mutation were 0.7 and 0.1, respectively, with a com-
putation budget of 300 s. The number of generations
may vary from interval to interval depending on the
demand, that is, peak or off-peak periods.

Analysis of Travel Time

To compute and compare average time-dependent travel
times across scenarios, for the entire population, all the
drivers departing in a given time interval (e.g., 07:00–
07:05) are identified and their average trip travel time is
calculated. This process is repeated for each consecutive
5-min interval in the entire simulation period, starting
from 06:30–06:35, 06:35–06:40, ., up to 12:25–12:30.
The results indicate that the use of predictive optimized
tolls yields significant travel time savings over both the
no toll and static optimum scenarios. The percentage
improvement in travel times of the predictive optimized
toll scenarios over the two benchmark scenarios for the
tolling period and peak period (for all demand levels) is
summarized in Table 1. The average travel times (over
the tolling period) in the case of the predictive optimized
tolls are lower than the static optimum and no toll cases
by 9.12% and 6.74% in the base demand case.
Interestingly, the static optimum is worse than the no toll
case for the low, base, and high demand scenarios (see
also Figure 4). This indicates that the static optimum
based on historical demands is not robust when the
actual demands vary significantly from the historical

Table 1. Travel Time Improvement

Demand level

% Travel time improvement

Total demand
(vehicle trips)

Tolling period Peak period

No toll Static optimum No toll Static optimum

Low 3.71 5.39 7.61 6.25 275,000
Base 6.74 9.12 8.36 7.94 300,000
High 8.24 8.88 9.65 10.74 325,000
Very high 8.38 4.00 8.20 7.01 350,000
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estimates. Note that the historical demand was scaled up
by 20% when computing the static optimum and there-
fore, in the very high demand case where the historical
estimates are closest to the actual demands, the static
outperforms the no toll scenario. The percentage
decrease in travel time is 5.39% and 3.71% in the low
demand case, 8.88% and 8.24% in the high demand
case, and 4.00% and 8.38% in the very high demand
case. In addition, the percentage improvement for the
peak period (between 08:00 and 09:30) is 7.94% with
respect to the no toll scenario and 8.36% with respect to
the static optimum scenario for the base demand case. It
should be noted that in event of non-recurrent scenarios
(like a special event or an incident) one would expect a
significantly higher impact of the toll optimization and
guidance provision.

Furthermore, for all demand cases, a standard two-
sided t-test indicates that the mean travel time (for all
departure time intervals within the peak period) of the
predictive optimized tolling scenario has a statistically
significant difference from that of the no toll/static opti-
mum scenarios at a confidence level of a= 95 %.

Figure 4 plots the mean travel times (shaded region
represents the standard error in estimate of the mean)
versus departure time interval for the three scenarios and
each demand level. With regard to the effect of the

overall demand level on the improvement in travel time
savings with respect to the static toll/no-toll case, the
results indicate the lowest improvements (during the
peak period) are attained when the congestion levels are
either very low or very high. This occurs because in the
low demand scenario the relatively uncongested state of
the network reduces the impact of toll optimization. On
the other hand, the severely congested network state in
the very high demand scenario also reduces the possibil-
ity of alleviating congestion through the re-routing of
vehicles leading once again to smaller benefits of toll
optimization.

Analysis of Optimized Tolls

This section provides some examples to analyze the opti-
mized tolls under predictive optimization with respect to
static optimization. The first example is of two gantries
on links 45 and 83 (see Figure 3). The optimized tolls
under static and predictive strategies are presented in
Figure 5. The most preferred path for one of the ODs
with a very high demand during the morning peak uses
these gantries (first 83 and then 45). The predictive tolls
are optimized at higher values compared with the static
case and this indicates that real-time predictive tolls are
adjusted better with respect to demand.

Figure 4. Travel time plots for various demand levels: (a) low, (b) base, (c) high, and (d) very high.
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Second, gantries on links 225 and 226 are optimized
at lower values during the peak compared with the static
strategy, as shown in Figure 5. It is observed that these
gantries are used toward destinations that have very low
demand in the morning peak. Predictive toll optimiza-
tion is able to lower the tolls during the peak to account
for lower demand values toward better travel times.

Consistency of Guidance Information

A key contribution of the proposed strategy optimization
framework is that it ensures that the predicted network
states (in relation to link travel times) are consistent with
the guidance information provided to travelers. For a
given prediction interval, we begin with the historical
travel times as a trial guidance solution (in this case, the
guidance is in the form of network link travel times). The
coupled demand and supply simulators are then used to
predict the network state based on the assumed guidance
as an input (note that the route choices of drivers change
in response to the guidance). A revised travel time gui-
dance solution for the next iteration is then computed
using a convex combination (MSA) of the predicted net-
work travel times and the guidance from the current
iteration. This procedure is iteratively performed until
convergence, that is, the provided travel time guidance
and predicted network travel times are within a pre-
specified tolerance limit.

The process of achieving consistency is illustrated in
Figure 6 where the mean absolute percentage error
between the guidance information and the predicted link
travel times are plotted as a function of the prediction
iteration. The simulation period is 06:30 to noon, that is,
5.5 h, which involves 5.5 3 12 = 66 prediction intervals.
The plots show that with as few as three or four itera-
tions of the state prediction, a mean absolute percentage
error of less than 5% is achieved in a majority of the 66
prediction intervals in the simulation.

Computational Performance

The results also indicate that the proposed solution algo-
rithm achieves real-time performance, that is, the average
computational time per execution cycle (across all
demand levels) is within the 5-min time budget (less than
a single state estimation interval) discussed above.

The tractable computational times are the result of
three contributing factors. The first is the imposition of
the constraint on the extent to which tolls on a given
gantry can vary across successive tolling intervals, which
significantly reduces the search space for the genetic
algorithm. This ensures that a population size of 60 suf-
fices to attain a significant reduction in travel times
within a low computational time budget. Secondly, the
rolling horizon approach implies that the system is re-
optimized every 5 min and consequently a poor solution

Figure 5. Optimal tolls on selected links: (a) link 45, (b) link 83, (c) link 225, and (d) link 226.
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in one interval can be quickly rectified or improved in
subsequent intervals. This, along with the feedback
from the real network to the DTA system (through the
online calibration) makes the control strategy optimiza-
tion framework more robust. Finally, and most impor-
tantly, the synchronous parallel evaluation of strategies
in each iteration of the optimization procedure allows
for evaluation of a sufficiently large number of candi-
date solutions.

Conclusions

This paper proposes an integrated framework that com-
bines the optimization of network control strategies with
the generation of consistent guidance information for
real-time DTA systems. The efficacy of the proposed
framework is demonstrated through a fixed demand
dynamic toll optimization problem. Furthermore, a
highly parallelizable genetic algorithm-based solution
approach is adopted. Numerical experiments conducted
on a large-scale real-world network (expressways and
major arterials in Singapore) indicate that use of the pro-
posed framework can yield significant network-wide
travel time savings of up to 8.36% and 7.94% over the
no toll and static optimum scenarios, respectively. A sen-
sitivity analysis of demand levels further indicates that
the highest improvements are attained at moderate and
high demand levels. Finally, the proposed solution algo-
rithm achieves real-time performance with a computa-
tional time of less than 5 min for each execution cycle
within the rolling horizon scheme. The proposed frame-
work and solution approach have important applications

for real-time traffic management and advanced traveler
information systems.

Some directions for future research include the appli-
cation of the strategy optimization framework to non-
recurrent scenarios, consideration of other objectives
such as consumer surplus, operator revenue, and multi-
ple objectives; incorporation of traffic state prediction
errors, and the modeling of elastic demand through trip
cancellation and departure time shifts in response to
tolls. The application to other network control strategies
and examination of the suitability of alternative solution
algorithms also promise to be interesting areas for future
research.
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