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A B S T R A C T

This paper presents a framework for estimating and updating user preferences in the context of app-based
recommender systems. We specifically consider recommender systems which provide personalized menus of
options to users. A Hierarchical Bayes procedure is applied in order to account for inter- and intra-consumer
heterogeneity, representing random taste variations among individuals and among choice situations (menus) for
a given individual, respectively. Three levels of preference parameters are estimated: population-level, in-
dividual-level and menu-specific. In the context of a recommender system, the estimation of these parameters is
repeated periodically in an offline process in order to account for trends, such as changing market conditions.
Furthermore, the individual-level parameters are updated in real-time as users make choices in order to in-
corporate the latest information from the users. This online update is computationally efficient which makes it
feasible to embed it in a real-time recommender system. The estimated individual-level preferences are stored for
each user and retrieved as inputs to a menu optimization model in order to provide recommendations. The
proposed methodology is applied to both Monte-Carlo and real data. It is observed that the online update of the
parameters is successful in improving the parameter estimates in real-time. This framework is relevant to various
recommender systems that generate personalized recommendations ranging from transportation to e-commerce
and online marketing, but is particularly useful when the attributes of the alternatives vary over time.

1. Introduction

Personalization has gained increasing interest among researchers
and practitioners in the past two decades. Greater ease in data collec-
tion about users has made it possible for service providers to re-
commend items, services, and content in a non-intrusive way [1]
through online recommendations. The conventional recommendation
techniques, which mainly rely on item and user profiles, produce rat-
ings that do not take full advantage of the available data. On the other
hand, discrete choice models, which have been rarely used in online
recommendations, integrate item specific, user specific, and contextual
data in a single model [11].

According to Jiang et al. [23], the use of discrete choice models in
recommender systems can address some limitations associated with the
standard recommendation approaches. The first limitation is the tra-
deoff between relevancy and diversity [23,38]. The second limitation is

that both metrics (relevancy and diversity), which are commonly used
to measure the degree of matching, do not necessarily explain user
preferences. On the other hand, discrete choice models directly measure
the individual-specific utility of an alternative (or a set of alternatives)
as a function of its attributes (without the need to measure relevancy or
diversity separately). Finally, and unlike most standard recommenda-
tion techniques, discrete choice models can be applied even when the
universal set from which alternatives are recommended and the alter-
native attributes vary over time. This is because the utility of each al-
ternative is represented as a function of its attributes. For example, in
travel recommendations, the travel time, cost, and availability of the
different alternatives might vary over time.

This paper presents a methodology for estimating discrete choice
models online, which can be used in updating user preferences con-
tinuously in an app-based setting such as recommender systems. The
framework presented in this paper utilizes the Hierarchical Bayes (HB)
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estimator proposed by Becker et al. [6] and Ben-Akiva et al. [7] which
accounts for inter- and intra-consumer heterogeneity. An offline-online
procedure is proposed in which individual-specific parameters are up-
dated after each choice without the need to re-estimate the whole
model. Periodically, data from multiple individuals are pooled, and
population level parameters are updated by re-estimating the model
with the new data.

This paper addresses important gaps associated with using discrete
choice models in recommender systems:

• Online estimation: Although discrete choice models have been used
in some recommender systems [11,23], the applications were
mostly offline because updating individual-level preferences re-
quires re-estimating the entire model (which becomes computa-
tionally burdensome as the sample size, number of attributes, or
number of alternatives increases). On the other hand, many online
applications (such as recommender systems, personalized adver-
tisement, etc.) require updating individual preferences in real-time.
With infrequent preference updates, users' most recent choices
might not be taken into consideration in generating personalized
recommendations. The proposed online methodology therefore en-
ables us to use the most up-to-date preferences for recommendations
without computational constraints.
• Advanced level of heterogeneity: The existing few online applica-
tions of discrete choice models in recommender systems were based
on multinomial or nested logit/probit models, which do not account
for preference heterogeneity. Such models can only be used in non-
personalized recommendations. On the other hand, logit mixture
models (which account for heterogeneity) cannot be estimated in
real-time because estimation requires integration over multi-
dimensional distributions (in Maximum Likelihood Estimation), or
drawing from complex posteriors (in Hierarchical Bayes methods).
Applications of logit mixture models were also limited to inter-
consumer heterogeneity, and assumed that preferences are stable
over time. The proposed methodology accounts for more complex
patterns of heterogeneity (inter- and intra-consumer heterogeneity),
which improves the quality of predictions and recommendations
[7,33].
• Identification of individual preferences: Other studies have cali-
brated choice models on the individual level. However, this method
also has limitations since it requires a sufficiently large number of
observations per user. When limited data per user is available, a
good prior on the individual-specific parameters is needed. To the
best of our knowledge, specifying a good prior has not been ade-
quately addressed in the literature. In our proposed methodology,
the online estimation procedure overcomes this issue since it is
comparable to estimating models at the individual level, but with
good priors which are obtained from the offline HB estimator.

In order to validate this methodology, Monte Carlo data on the choice
of grapes and real stated preferences (SP) data on the choice of transport
mode in Switzerland [9] are used. Individual preferences are estimated
and updated using repeated observations, and then used in predicting the
next choice and generating personalized recommendations. While our
applications focus on personalized recommendations, this methodology
allows discrete choice models to be applied online in various real-time
applications and decision support systems such as personalized adver-
tisement, real-time forecasting, personalized tolling, and others.

The remainder of this paper is organized as follows: Section 2 pre-
sents an overview of online recommendations and recent applications
of discrete choice models in this domain. Section 3 presents the pro-
posed methodology for estimating and updating user preferences on-
line. Section 4 presents an application of this methodology to Monte
Carlo data. Section 5 presents a similar application to real SP data.
Section 6 presents a discussion of the modeling approach and its ap-
plications in online recommendations, and Section 7 concludes.

2. Background

2.1. Online recommendations

The goal of online recommendations is to suggest items of interest to
a user from a much larger set in order to handle information overload
[11,23,28]. Personalized recommender systems must deliver relevant
and precise recommendations based on each user's tastes and pre-
ferences, which should be determined with minimal involvement from
the user. Recommendations must also be delivered in real-time so users
are able to act immediately [11].

According to Ansari et al. [5], online recommendations can make
use of several information sources including the individual's expressed
preferences or choices among different alternatives, preferences for
product attributes, other people's preferences or choices, expert judg-
ments, and individual characteristics that may predict these preferences
and choices.

Collaborative filtering and content-based filtering are the two most
popular recommendation techniques. Other techniques include
knowledge-based and context-aware methods [28]. Collaborative fil-
tering [14] provides recommendations to an individual based on
overlapping interests with other individuals. In other words, it mimics
‘word-of-mouth’ recommendations. Content-based techniques match
the attributes of the user profile against the attributes of an item [28].
These techniques make recommendations similar to those a given user
has liked in the past [11]. Knowledge- or utility-based recommender
systems base their recommendations on the computation of the utility
of each item for the user [21]. These systems utilize previous knowl-
edge about users, items, and the utility function [28]. Context-aware
recommender systems (CARS) account for contextual information such
as the user's knowledge level (e.g. expert user or beginner), the time a
recommendation is requested, and the external context (e.g. proximity
of restaurants to the user) [28]. Other techniques have been proposed
that utilize traditional machine learning techniques such as support
vector machines and latent class models [12] and multi-armed bandit
methods [24,30].

Despite the significant advances in online recommendations, several
theoretical and practical challenges have been identified. For example,
Ziegler et al. [38] showed that the commonly used top-N lists do not
necessarily map user satisfaction and utility. In some cases, measuring
the (expected) utility of recommendations may be more important than
measuring the accuracy of recommendations [16,38]. Another major
challenge is that the commonly used recommendation techniques are
designed to consider different configurations as different items [28].
Therefore, very few of these techniques can be applied when the uni-
versal set from which items are recommended varies over time (as in
the case of travel advisers, where the attributes of alternatives such as
time and cost vary over time).

Using discrete choice models in personalized recommendations
overcomes many of the limitations mentioned above. First, these
models represent utility as a function of the attributes of items (or al-
ternatives), and the individual preferences towards each of these at-
tributes. Therefore, utility is not inferred from measures of similarity
obtained from item or user profiling. Second, since utility is modeled as
a function of attributes, this method is able to handle cases where new
items (with known attributes) could be recommended (e.g. items that
have not been chosen or rated before), and cases where the attributes
vary over time. The researcher decides on the specification of the utility
functions, which may include the attributes, the individual preferences
for attributes, contextual variables, and individual characteristics, thus
making use of all the available data. Third, since the users' preferences
are inferred from their previous choices, this reduces the burden on
users because they are not required to rate or evaluate any items.
Finally, this method is able to deal with diversification and the ex-
ploration-exploitation problem using simple extensions described in
Section 6.2.
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2.2. Econometric and discrete choice models in recommender systems

Discrete choice models are often used to predict choices on an ag-
gregate level. More recently these models have been utilized in re-
commender systems due to their ability to predict individual choices
[11,23,27].

Chaptini [11] utilized discrete choice models to predict choices on
the individual level and provide personalized recommendations. He
developed an online academic advisor for MIT students that re-
commends academic courses based on observed and latent attributes of
the courses (e.g. difficulty, workload, overall impression, etc.). These
attributes were expressed as functions of students' characteristics (such
as gender, degree program, etc.). The model was estimated using
maximum likelihood estimation with data collected via an online re-
vealed preferences (RP)/stated preferences (SP) survey. He then con-
ditioned on the individual choices to find individual-level parameters
that were used in generating course recommendations. In this study,
preferences were estimated offline for each student and not updated as
more choices were observed. In addition, the behavioral model ac-
counted for inter-consumer heterogeneity only (and ignored intra-
consumer heterogeneity).

Jiang et al. [23] used discrete choice models to measure users'
preferences towards an entire recommendation list. The goal was to
identify a recommendation list with the highest choice probability. A
multi-level nested multinomial logit model was proposed, and the re-
commendation problem was formulated as a nonlinear binary integer
programming problem. The authors noted that unlike typical re-
commender systems, discrete choice models introduce product diversity
in the proposed recommendations. The main limitation of this approach
was the lack of personalization, since a nested logit model was used
(this model can be estimated at the individual level only if a large
number of choices per individual is available).

Rubin and Steyvers [29] introduced a probabilistic model of the
process by which an individual selects and later rates an item. This
model was applied to movie rating data collected by Netflix. A Latent
Dirichlet Allocation (LDA) model was used to model the probability of
selecting a movie given a set of movies classified by topic. An ordered
logit model was used to model movie ratings. This model included an
individual-specific bias term which determines the general tendency of
a user to give favorable ratings, however, it did not account for het-
erogeneity in the other parameters (preferences). In addition, since all
parameters are learnt through Markov-Chain Monte Carlo methods, this
model can only be run offline.

Ansari et al. [5] proposed a Hierarchical Bayes approach for a re-
commender system that accounts for unobserved heterogeneity in user
preferences, unobserved product heterogeneity and attributes (such as
holistic consumer judgements and product appeal structures), and ex-
pert judgements. Customer ratings were modeled as a function of pro-
duct attributes, customer characteristics, and expert evaluations. User
preferences were expressed as a function of fixed effects (i.e. observed
customer and movie variables and their interactions) and random ef-
fects pertaining to the customer. The model was applied to movie re-
commendations on the internet and estimated using MCMC. The main
advantage of this paper was accounting for various sources of in-
formation (i.e. movie genres, expert evaluations, and socio-demo-
graphic characteristics). The authors also suggested different extensions
which are included in this paper. First, preferences can be learnt from
implicit rather than explicit information (i.e. revealed preferences or
actual choices). Second, more complex forms of heterogeneity can be
considered. This model also cannot be estimated online because of the
excessive running times.

Our methodology extends the abovementioned studies by esti-
mating models that account for personalization, and yet can be esti-
mated online after each choice. Our model also accounts for complex
forms of user heterogeneity, and uses only implicit data (observed
choices) in order to estimate and update user preferences.

2.3. User heterogeneity and personalization

According to Castells et al. [10], user preferences are complex,
dynamic, context-dependent, heterogeneous, and even contradictory.
Therefore, accounting for consumer heterogeneity is crucial in re-
commender systems. Most of the methods mentioned earlier account,
either directly or indirectly, for inter-consumer heterogeneity. On the
other hand, limited research has been done on intra-consumer taste
heterogeneity, representing taste variation among different choices
done by the same individual. For example, in travel recommendations
(such as the one presented in Section 5), the same user might be more
or less sensitive to travel time depending on various unobserved factors
specific to the particular choice situation, such as his/her schedule, the
trip purpose, weather conditions, etc.

According to Ben-Akiva et al. [7], ignoring intra-consumer hetero-
geneity assumes a nearly neoclassical consumer with “permanent” in-
dividual preferences. Perturbations in these preferences are treated as
nuisance factors. In the presence of multiple observations from each
individual, it is possible to identify inter- and intra-consumer hetero-
geneity. In the context of discrete choice models, excluding intra-con-
sumer heterogeneity when its effect is significant will result in biases
due to a greater degree of unobserved effects [7].

Models with inter- and intra-consumer heterogeneity have been
estimated by Hess and Train [20], Yáñez et al. [37] and Hess and Rose
[19] using maximum simulated likelihood (MSL). These studies in-
vestigated taste variations among different choices done by the same
individual, and demonstrated that accounting for such effects results in
better estimates. However, these studies were mainly exploratory and
limited to offline applications, and estimation was computationally
burdensome. Becker et al. [6] and Ben-Akiva et al. [7] introduced a
Hierarchical Bayes (HB) estimator for such models by extending the
standard HB procedure for logit mixture [2,36]. This model sig-
nificantly reduces the computation time compared to the previously
used MSL estimators. All of these studies presented methods to estimate
choice models with inter- and intra-consumer heterogeneity offline, and
did not address online applications.

In the following sections, a novel framework is proposed that uti-
lizes discrete choice models in estimating and updating individual level
preferences in an online setting, building on the HB estimator proposed
by Becker et al. [6] and Ben-Akiva et al. [7]. This framework can be
used in various applications, but is particularly useful in recommender
systems. The estimated preferences account for both inter- and intra-
consumer heterogeneity, and are updated in real-time after each choice.
They can serve as input to an assortment optimization algorithm, which
recommends personalized menus to users by maximizing an objective
function (e.g. the probability of choosing an alternative from the menu,
the expected revenue of the menu, etc.).

3. Methodology

This section explains the methodology for estimating and con-
tinuously updating population-level and individual-level preferences.
The Hierarchical Bayes estimator of a logit mixture model with inter-
and intra-consumer taste and scale heterogeneity proposed by Becker
et al. [6] is used in order to estimate these preferences. Inter- and intra-
consumer heterogeneity are used to improve the estimation results, and
thus the predictive capabilities of the choice models [7]. Individual-
specific coefficients, which can be extracted from the estimation pro-
cedure, are used for personalization.

3.1. Estimating preferences

We consider the case whereby individual n (n=1, 2, … N) is pre-
sented with a menu m (m=1, 2, … Mn) and makes a choice among a
set of alternatives (j= 1, 2,… , Jmn). Thus, each menu refers to a
choice situation. The total number of individuals is N and the total
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number of menus presented to each individual is Mn. The number of
parameters to be estimated is denoted by T.

In order to estimate user preferences, we use the HB estimator
proposed by Becker et al. [6], which extends the widely used 3-step HB
estimator of logit mixture [36] to a 5-step estimator in order to account
for intra-consumer heterogeneity.

We assume the utility specification of choice j in menu m presented
in Eq. (1):

= + +U 1
exp( )

( P X )jmn
mn

jmn jmn mn jmn (1)

where Pjmn is the price of alternative j in menu m faced by individual n
(with its coefficient fixed to −1), Ujmn is individual n's unobserved
utility of alternative j in menu m, Xjmn represents a vector of individual
characteristics and alternative attributes, ηmn represents a vector of
coefficients/preferences, αmn is a scale parameter for individual n in
menu m, and ϵjmn is an error term following the extreme value dis-
tribution. The subscripts (mn) in ηmn and αmn indicate that these
coefficients might vary among individuals and among choice situations
of the same individual respectively.

The model uses the Willingness-to-Pay space notation defined by
Ben-Akiva et al. [7], whereby the price coefficient is fixed to −1.
Therefore, all other coefficients represent the willingness-to-pay for the
corresponding attributes. Since the price coefficient is fixed, the scale
parameter αmn can be estimated.

We start by defining three levels of parameters needed to account
for both inter- and intra-consumer heterogeneity as proposed by Ben-
Akiva et al. [7]:

1. Population-level parameters μ and Ωb: represent the average tastes/
preferences in the population and the inter-consumer covariance
matrix respectively.

2. Individual-level parameters ζn and Ωw: represent the average tastes/
preferences of a specific individual and the intra-consumer covar-
iance matrix respectively.

3. Menu-specific parameters ηmn: reflect the tastes/preferences specific
to each choice situation.

We assume that ζn and ηmn are normally distributed:

N~ ( , )mn T n w (2)

N~ (µ, )n T b (3)

The probability of a sequence of choices (dn) made by individual n
can be expressed as:

=
= =

dP( |µ, , )

P ( ) H(d | , ) F(d | µ, )d

n b w

m 1

M

j 1

J

j mn mn n w n b
n

n

mn

mn
jmn

(4)

where djmn is equal to one if individual n chooses alternative j in menu
m and zero otherwise, and:

=
=

P ( )
exp(V ( ))

exp(V ( ))
j mn

jmn mn

j 1
J

j mn mn
mn

(5)

NH(d | , )~ ( , )mn n w T n w (6)

NF(d | µ, )~ (µ, )n b T b (7)

The posterior distribution is presented in Eq. (8):

= = =

dK(µ, n, mn, , | )

[P ( ) ]h( | , ) f( | µ, ) k( )k

(µ)k( )

b

d

n mn w

n 1

N

m 1

M

j 1

J

j mn mn n w n b w

b

n mn
jmn

(8)

where:

Nk(µ)~ (µ , A)T 0 (9)

k( )~IW(T, I)b (10)

k( )~IW(T, I)w (11)

μ0 represents a vector of prior means, A is a diagonal covariance
matrix with diagonal values →∞ (uninformative prior), T is the number
of unknown parameters, I is the T-dimensional identity matrix, and IW
(T, I) represent an Inverse Wishart distribution with T degrees of
freedom and parameter I.

The model is estimated using the five-step Gibbs sampling proce-
dure proposed by Ben-Akiva et al. [7] and Becker et al. [6]. This pro-
cedure is explained below:

Step I: drawing from the population means by drawing from the
conditional posterior:

K(µ | n, mn, , ) f( n | µ, )k(µ)n mn w b n b (12)

The conditional posterior on μ isN ,i 1
N
b
i 1

(where i is an

iteration index) where:

= 1
N n

n
i 1

(13)

Step II: drawing from the population-level covariance matrix by
drawing from the conditional posterior:

K( | µ, n, mn, ) f( n | µ, )k( )b n mn w n b b (14)

The conditional posterior on Ωb is Inverted Wishart with T+N
degrees of freedom and parameter TI+NVb, where T is the number of
unknown parameters, I is the T-dimensional identity matrix, and:

=
=

V 1
N

( µ )( µ )b
n 1

N

n
i 1 i

n
i 1 i

(15)

Step III: drawing from the individual-level covariance matrix by
drawing from the conditional posterior:

K( | µ, n, mn, ) h( mn | n, )k( )w n mn b mn n w w

(16)

Given ηmn
i−1 and ζni−1 for all n, the conditional posterior on Ωw is

Inverted Wishart with degrees of freedom T+Mt and parameter
+

+
TI M V

T M
t w

t
, where Mt represents the total number of menus faced by all

individuals, and:

=
= =

V 1
M

( )( )w
t n 1

N

m 1

M

mn
i 1

n
i 1

mn
i 1

n
i 1

n

(17)

In this step, we assume a single covariance matrix for all in-
dividuals. Due to the potentially small number choice situations faced
by each individual in a typical recommender system, it might not be
possible to estimate an individual-specific covariance matrix.

Step IV: drawing from the individual-level means by drawing from
the conditional posterior:
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K( | µ, mn, , ) h( mn | n, )f( | µ, )n mn b w mn n w n b

(18)

Using N(μ, Ωb) as a prior for ζn, the conditional posterior is
N( , )n n where:

= + +
=

([ ] M [ ] ) [ ] µ M [ ] 1
Mn b

i 1
n w

i 1 1
b
i 1

i n w
i 1

n m 1

M

mn
i 1

n

(19)

and:

= ++ +([ ] M [ ] )n i 1
b 1

n i 1
w 1 1 (20)

Step V: drawing from the individual- and menu-specific coefficients
by drawing from the conditional posterior:

= … = …

=
K( | µ, , , ) [P ( ) ]h( mn | , ), n

1, 2, , N, m 1, 2, M

mn n b w
j 0

J

j mn
d

mn n w

n

mn
jmn

(21)

A draw of ηmn
i is obtained by the Metropolis-Hastings procedure.

This five-step procedure assumes that all coefficients have inter- and
intra-consumer distributions. However, the estimator can account for
coefficients with only inter-consumer heterogeneity, or coefficients
without any heterogeneity by including two additional MH steps [6,7].

3.2. Updating preferences

These parameters are estimated and updated through two inter-
acting and repeated steps: offline and online estimation procedures.

Offline Estimation: The offline estimation procedure updates all the
parameters across three levels. Namely, data are pooled and all
coefficients (μ, Ωb, ζn, Ωw, and ηmn) are updated to reflect the effects
of all choices made by all individuals since the last update. This is
performed periodically (e.g. overnight or once a week) as it is
computationally expensive. Updating population-level coefficients
accounts for population trends when estimating individual-level
coefficients.
Online Estimation: The online estimation procedure updates users'
preferences in real time as they make choices. The individual spe-
cific parameters (ζn and ηmn) are updated after every choice, as-
suming that the population parameters μ and Ωb and the intra-
consumer covariance matrix Ωw are fixed. This update is computa-
tionally inexpensive, and it can be done for each individual at a
time, i.e., when a choice is observed for a given individual, his/her
parameters are updated only. The online procedure is executed by
iterating steps IV and V of the 5-step Gibbs sampler only for all
choices available after the last offline update.

Ideally, if we ignore the computational constraints, the 5-step off-
line procedure would be used to update individual preferences after
each choice. In this procedure, Steps IV and V update the individual-
and menu-specific preferences for each individual using the intra-con-
sumer covariance matrix Ωw

i and the inter-consumer distribution
N (µ , )T

i
b
i as a prior as shown in Eq. (22). Conditional on the popula-

tion-level parameters (μ, Ωb,and Ωw), obtaining draws from ζn and ηmn
for each individual is done independently from all other individuals.
Therefore, if draws from the population level parameters were avail-
able, the individual- and menu-specific coefficients could be updated
separately for each individual by iterating steps IV and V.

Consequently, if we use a prior that is close to N (µ , )T
i

b
i and a

covariance matrix that is close to Ωw
i in the online procedure, we would

obtain results that are similar to those obtained from the offline pro-
cedure. Since population level parameters are not expected to vary
significantly between successive offline estimations (which is the key
assumption in this methodology), these values can be obtained from the

last offline estimation and used as fixed values in the online estimation.
Sections 4.3.1 and 5.2.2 illustrate that this method is able to provide
very close results compared to the offline procedure as a benchmark.

Additionally, since an informative prior is used on the individual-
specific parameters, the Markov Chains converge faster; stationarity is
achieved quickly and a fewer number of draws is required in the online
procedure (compared to the offline procedure). This procedure can also
be implemented on the users' mobile phone in app-based settings.

The key assumption in this procedure is that the population level
preferences μ, Ωb, and Ωw do not vary significantly between successive
offline estimations. The frequency of offline estimations depends on
how fast the population level preferences change over time. This might
vary from one application to another, and even between different at-
tributes within the same application. This can be mitigated by obser-
ving the population level parameters obtained from successive offline
estimations and deciding on the frequency of these estimations ac-
cordingly.

In addition, since μ and Ωb are used as priors in Step IV, their effect
diminishes as more observations per individual are observed, as the
individual specific means ζn get closer to their true values. With few
choice observations from each individual, the model suffers from
“shrinkage”, whereby individual-level preferences are shrunk towards
population means. HB is defined as a “data borrowing” technique that
stabilizes individual-level preferences for each individual using in-
formation not only from his/her past choices, but also from other in-
dividuals within the same data set [26]. Therefore, if the number of
observations per individual is large, then deviations in the population-
level parameters from their true values will have smaller effects on the
individual-level preferences.

The frequency of offline estimations results in a tradeoff between
the computational complexity of this estimation and the enhanced ac-
curacy of the online procedure. Section 5.2.4 demonstrates that if the
population level parameters are misspecified, then the predictions ob-
tained from the online procedure will be inferior to those obtained from
the offline procedure.

3.3. Personalized menu generation

The offline and online procedures result in updated individual- and
population-level parameters. These parameters are used as inputs to an
online optimizer that performs menu optimization to present the user
with a personalized list of alternatives to choose from. The system ar-
chitecture is presented in Fig. 1, which demonstrates how the online
procedure uses the individual choices and the population level para-
meters obtained from the offline estimation (μ, Ωb, and Ωw) in order to
update user preferences.

Personalized recommendations are generated using the menu opti-
mization model proposed by Song et al. [32,33]. This model maximizes
hit rate or consumer-surplus (CS) in the form of log-sum, subject to
constraints specifying the maximum number of alternatives to be shown
in a menu. Binary decision variables are defined for each alternative
representing whether or not it is shown in the recommended menu. In
the latter study, a Monte-Carlo experiment representing a smart mo-
bility service showed that models with intra-consumer heterogeneity
provide better menus (i.e., achieve higher hit-rates) compared to
models with only inter-consumer heterogeneity.

4. Monte Carlo application

4.1. Data and model structure

The procedure described above is applied to Monte-Carlo CBC
Grapes data [6,7]. The data assumes that 10,000 individuals are pre-
sented with eight menus, each including three different alternatives
which are bunches of grapes with varying prices and attributes (pre-
sented in Table 1) and an opt-out alternative. The eight menus are
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assumed to be divided into three old choices (menus 1–3), four new
choices (menus 4–7), and a test menu (menu 8). The goal is to update
individual preferences in order to account for the new choices. The
dependent variable is the choice between the three different bunches or
not buying grapes at all. Both the data and the model are simplified
(compared to [7]); only four coefficients are used, two of which are
fixed and two have inter- and intra-consumer heterogeneity.

The utility equations (normalized to the opt-out alternative) are
presented in Eq. (22):

+ + + +U 1
exp( )

(–P S C B )jmn jmn jmn S jmn C jmn q jmnmn mn (22)

where:

• Ujmn represents the utility of alternative j in menu m faced by in-
dividual n.
• Pjmn is the price of bunch j in menu m faced by individual n, with its
coefficient normalized to −1.
• Sjmn and Cjmn represent sweetness and crispness of bunch j as in-
dicated in Table 1, with coefficients βSmn

and βCmn
respectively. The

subscript mn indicates that these coefficients have inter- and intra-
consumer heterogeneity.
• Bjmn is a binary variable equal to one for all three bunches of grapes
and zero for the opt-out alternative with coefficient βq. This coef-
ficient is fixed across all menus and individuals.
• α is a scale parameter, which is fixed across all menus and in-
dividuals.

Details on the data generation process, assumptions, true values,
and estimates are included in Ben-Akiva et al. [7].

The true values of the population means for βSmn
and βCmn

are 1.0 and
0.3. The true values of the fixed coefficients βq and α are 2.0 and −0.5.
Intra-consumer heterogeneity in the data is in the same order of mag-
nitude as inter-consumer heterogeneity (all inter- and intra-consumer
standard deviations are equal to 1.0 for sweetness and crispness).

The model is estimated for menus 1–7 using two procedures (the full
offline procedure and the offline-online procedure), and the eighth
menu is used for testing. In the full offline procedure, we iterate Steps I
through V of the Gibbs sampling procedure in Section 3.1 on all 7
menus. In the offline - online procedure, we iterate steps I through V
(offline procedure) for menus 1–3 and then iterate steps IV and V for the
remaining menus (online procedure).

This experiment mimics a scenario in which three observations are
initially observed from each individual. Individual- and population-
level preferences are already estimated using these three observations
(menus 1–3) by applying the five-step Gibbs sampler offline.
Afterwards, four new observations are made by each individual. In
order to update individual preferences to account for the new ob-
servations, either the full offline procedure or the online procedure can
be used.

4.2. Analysis methods

In order to avoid overfitting, all the analyses are done using test
data, which include the eighth choice. The analyses are based on the
posterior predictive distribution (PPD) given by Eq. (23) and the con-
ditional log-likelihood of the estimated parameters.

= =P d d P K d d( 1 | ) ( ) ( | )jmn m j mn mn m
mn (23)

where dm∗ denotes choices from recent menus and K(dηmn|dm∗) is the
posterior (marginal) distribution of menu-specific parameters. The
predicted probability of the chosen alternative is defined as the mean of
the posterior predictive distribution across all individuals and draws. In
addition, 95% confidence intervals of the predicted probabilities are
presented. The conditional log-likelihood of the test data is calculated
using individual-specific parameters and distributions, and therefore is
conditioned on the choices made by individuals.

On the other hand, in order to test the effect of personalization, the
results are compared to those obtained by the standard “random coef-
ficients” procedure (which does not allow for any personalization). This
is done by generating draws from the unconditional distributions

N~ (µ, )n b and N~ ( , )mn n w respectively (where µ, ,b and w
are estimates of μ, Ωb, and Ωw).

The predicted probability of the observed choice of individual n in
the test data using the random coefficients approach can be calculated
as shown in Eq. (24).

Fig. 1. System architecture.

Table 1
Grape CBC attributes and levels [7].

Attribute Symbol Levels

Price P $1.00 to $4.00
Sweetness S Sweet (1) or Tart (0)
Crispness C Crisp (1) or Soft (0)
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=d dP( | µ, , ) P( | )H(d | , )F(d | µ, )n b w n mn mn n w n b
n mn

(24)

Since the five-step Gibbs sampler uses uninformative priors on μ, Ωb,
and Ωw, the estimates and log-likelihood values obtained using this
estimator are the same as those obtained using maximum simulated
likelihood (MSL) since the posterior will be dominated by the likelihood
[7,22,39]. Since we are replicating the MSL estimates using a Bayesian
approach, we use the conditional log-likelihood on the test data as a
measure of performance.

4.3. Estimation results

4.3.1. Application of the offline - online procedure
The model is estimated using 200,000 Gibbs iterations, 100,000 of

which are used as burn-in draws while the remaining 100,000 are used
for sampling from the posterior distributions. Individual-level and
menu-level parameters are obtained directly from the MCMC (ζn and
ηmn draws respectively).

The stationarity of the Markov chains obtained from two offline
procedures (using menus 1–7 and 1–3) is verified using the Heidelberg-
Welch test [40] and Gelman and Rubin's convergence diagnostic [41].
All Markov chains pass the tests at the 95% level of confidence. The
estimation results are presented in Table 2.

The results presented in Table 3 indicate that the full offline pro-
cedure achieves the highest final log-likelihood values and probabilities
of the chosen alternatives on the test data (menu 8) as expected.
However, this procedure would be infeasible in real-time. Updating the
sample level estimates is computationally expensive; for this Monte-
Carlo experiment, the run time is approximately 12 h.

Alternatively, the results of the partial offline procedure (using
menus 1–3) have lower log-likelihood values and predicted prob-
abilities. However, the subsequent application of the online procedure
increases the probability of the chosen alternative by approximately
1.5% and yields results that are very close to those obtained by the full
offline procedure. The offline-online procedure is also feasible and ef-
ficient in real time because it can be applied to the individual making
the choice only rather than the whole sample.

4.3.2. Benefits of individual-level parameters
As shown in Table 4, the non-personalized (unconditional) log-

likelihood values and the predicted probabilities of the chosen alter-
native are inferior to the respective conditional values calculated using
the posterior draws. In this example, using individual-level parameters
improves the predicted probabilities of the observed choices by about
4–6% compared to the random coefficients procedure.

4.3.3. Applications in personalized recommendations
In this section, we assume that users are offered only one alternative

from the test menu. In order to maximize consumer surplus, the alter-
native with the highest predicted probability is chosen. The choice
between the recommended alternative and opting-out is then simu-
lated. The hit-rate is defined as the probability of accepting the re-
commendation instead of choosing the opt-out alternative.

The simulated hit-rate with individual-specific parameters obtained
from the full offline procedure is 67.0%. On the other hand, the si-
mulated hit-rates obtained using the offline procedure with menus 1–3
only is 65.7%. However, accounting for the new choices using the on-
line procedure raises the hit-rates back to 67.0%. On the other hand,
using population-level parameters instead of individual-level para-
meters results in a simulated hit-rate of 62.5% even when we consider
all 7 choices.

5. Real application: Swissmetro data

5.1. Data and model

The procedure described in Section 3 is also applied to the Swiss-
metro data set [9], with the dependent variable being the transporta-
tion mode choice. The data was collected in Switzerland on the trains
between St. Gallen and Geneva in 1998. Each survey respondent was
presented with 9 hypothetical choice tasks, each having three alter-
natives (private car, Swissmetro (SM), and train). The attributes of
these modes include the travel cost (fuel and parking costs for private
car and fares for Swissmetro and train), travel time for all three modes,
and Swissmetro and train headway. Since multiple observations are
available from each respondent, we can use the offline-online proce-
dure to demonstrate how preferences are learnt as more choices are
observed.

In this application, we consider the simplified utility equations
presented in Eqs. (25)–(27). Since the cost coefficient is fixed to −1, all
the estimated coefficients represent the willingness to pay for the cor-
responding attributes (i.e. the time coefficient represents the value of
time). Consequently, a scale parameter (αmn) is estimated.

Table 2
Estimation results.

Full offline (menus 1–7) Offline on menus 1–3

True value Posterior mean Std. dev Posterior mean Std. dev

Population mean
Constant 2 2.004 0.011 2.015 0.016
Log(scale) −0.5 −0.508 0.009 −0.510 0.014
Sweetness 1 1.004 0.015 0.989 0.020
Crispness 0.3 0.313 0.015 0.294 0.020

Inter-consumer std. dev
Sweetness 1 0.961 0.017 0.954 0.029
Crispness 1 1.036 0.017 1.054 0.030

Intra-consumer std. dev
Sweetness 1 0.997 0.024 0.972 0.039
Crispness 1 0.989 0.025 0.991 0.043

Table 3
Estimation results for the offline-online procedure.

Estimation procedure and
menus

PPD mean PPD confidence
interval

Log-likelihood

Full offline (menus 1–7) 0.458 [0.456, 0.461] −9955.2
Offline (menus 1–3) 0.442 [0.439, 0.446] −10,335.6
Offline (menus 1–3)

Online (menus 4–7)
0.458 [0.456, 0.461] −9962.7

Table 4
Comparison between individual-specific and random coefficients.

Estimation procedure
and menus

Random coefficients Individual-specific
coefficients

PPD mean Log-likelihood PPD
mean

Log-likelihood

Full offline (menus
1–7)

0.397 −11,090.7 0.458 −9955.2

Offline (menus 1–3) 0.397a −10,959.5a 0.442 −10,335.6
Offline (menus 1–3)

Online (menus
4–7)

0.458 −9962.7

a Using the non-personalized approach, the probabilities predicted for the
test data using the offline-online procedure would be similar to those predicted
using the partial offline procedure.
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= ×

+

U (ASC exp( ) Time Cos t )/exp( )Car,nm Car,mn mn Car,mn Car,mn mn

Car,mn (25)

= ×

+

U (ASC exp( ) Time Cos t )

/exp( )
SM,nm SM,mn mn SM,mn SM,mn

mn SM,mn (26)

= ×

+

U ( exp( ) Time Cos t )/exp( )Train,nm mn Train,mn Train,mn mn

Train,mn (27)

where:

• UCar, mn, USM, mn, and UTrain, mn represent the utilities for car,
Swissmetro, and train in menu m for individual n, respectively.
• Timej, mn and Costj, mn represent the total (door-to-door) travel time
and travel cost of alternative j in menu m presented to individual n,
respectively. The cost coefficient is fixed to −1.
• ASCCar, mn and ASCSM, mn represent alternative specific constants for
car and train, respectively. The standard deviation of the train
constant has been normalized to zero since it has the lowest value
among all three alternatives.
• exp(ηmn) and exp(αmn) represent the coefficient of travel time and
the scale parameter, respectively. Exponentiation is used in order
model the log-normal distribution, which ensures that the travel
time coefficient and the scale parameter are positive (and thus travel
time and cost have a negative effect on utility to all individuals).
• ϵCar, mn, ϵSM, mn, and ϵTrain, mn are error terms independently and
identically distributed as extreme value type I.

5.2. Results

The model is estimated for menus 1–8 and the ninth menu is used
for testing. In the following sections, we explore the estimation results
with regards to inter- and intra-consumer heterogeneity and persona-
lization. Afterwards, we estimate models using fewer choices done by
each individual (2 or 5 choices out of 8), then apply the online proce-
dure to the remaining choices up to the eighth choice.

5.2.1. Estimation with inter- and intra-consumer heterogeneity
The model is estimated using 400,000 Gibbs iterations, 200,000 of

which are used as burn-in draws while the remaining 200,000 are used
for sampling from the posterior distributions. The estimation results
with menus 1–8 show significant inter-consumer heterogeneity for all
coefficients. In addition, we find significant intra-consumer hetero-
geneity in the car and Swissmetro constants as shown in Table 5.

5.2.2. Predicting the next choice
The model estimated above is based on eight choices done by each

individual. It utilizes all of the available training data. In this section,
we estimate similar models using fewer menus (e.g. 2 or 5) and then
perform the online procedure to all individuals.

Table 6 shows the log-likelihood and the predicted probability of
the chosen alternative for the test menu (9th choice) using different
estimation procedures. We first present the results for the full offline

procedure (8 menus for each individual). This procedure achieves an
average predicted probability of 0.717 and a log-likelihood of −400.9.

The following rows present the results with a subset of the data (2
choices and 5 choices per individual respectively). The results indicate
that with fewer observations, we estimate models with lower average
probabilities and log-likelihood values on the test data. However, the
subsequent application of the online-procedure to the remaining menus
recovers the drop in prediction accuracy as shown in the last two rows.

It can also be observed that the confidence intervals of the predicted
probabilities (calculated empirically using the posterior distribution) of
the full offline and the partial offline estimations (menus 1–2 and 1–5)
do not overlap, indicating that the differences are statistically sig-
nificant, and thus estimation with a fewer number of menus results in
inferior predictions.

When more menus are included in the offline estimation, the pre-
dicted probabilities are higher because better priors are used (i.e. po-
pulation level parameters μ, Ωb, and Ωw). Therefore, it is critical that the
estimates of these parameters (which are obtained from the offline
procedure) are accurate and up to date. To demonstrate the effects of
using bad population level parameters, we perform online estimation
using all 8 choices, but with the sample level means (μ) set to zeroes,
and the inter- and intra-consumer covariance matrices set to identity
matrices. The results indicate significantly worse predictions, with the
mean of the posterior predictive distribution being 0.630, with the 95th
percentile confidence interval [0.622, 0.637]. In addition, the like-
lihood of the test data is −463, which is substantially worse than the
values in Table 6.

5.2.3. Generating personalized recommendations
In order to demonstrate the accuracy and robustness of the proposed

method in personalized recommendations, it is compared to two dif-
ferent approaches: a simple content-based method (in which the most
chosen alternative in the previous menus, 1–7, is recommended), and
non-personalized discrete choice models (flat logit and double mixture
model with inter- and intra-consumer heterogeneity). The first

Table 5
Estimation results.

Population mean Inter-consumer
Standard deviation

Intra-consumer
Standard deviation

Coefficient Posterior mean Std. Dev. Posterior mean Std. Dev. Posterior mean Std. Dev.

ASCSM 0.321 0.064 0.748 0.058 0.255 0.036
ASCCar 0.574 0.071 1.286 0.050 0.091 0.045
Scale −2.019 0.067 1.053 0.075 0.163 0.101
Travel time 0.179 0.037 0.912 0.029 0.024 0.016

Table 6
Prediction results with the full offline, partial offline, and offline-online pro-
cedures.

Non-personalized Personalized

Estimation
procedure

Log-likelihood Probability Log-likelihood Probability

Full offline
(1–8)

−657 0.509
[0.487, 0.531]

−401 0.717
[0.709, 0.725]

Partial offline
(1–2)

−666 0.514
[0.492, 0.536]

−551 0.668
[0.652, 0.683]

Partial offline
(1–5)

−656 0.504
[0.480, 0.528]

−437 0.699
[0.689, 0.709]

Online (3–8) – – −410 0.700
[0.692, 0.708]

Online (6–8) – – −403 0.716
[0.708, 0.724]

Numbers in brackets indicate the 95th percentile confidence intervals of the
mean predicted probability.

M. Danaf, et al. Decision Support Systems 119 (2019) 35–45

42



approach accounts for personalization by considering the choice history
of each individual, however, it cannot account for the impact of
changes in the attributes (travel cost and travel time) as these vary
among different choices. On the other hand, the non-personalized logit
models account for attributes, but do not make use of the choice history
of each individual. The offline-online estimation methodology pre-
sented in Section 3 accounts for both the individual choice history and
alternative attributes.

Personalized menu optimization is performed with the objective of
maximizing the expected hit rate [32,33] on the 9th choice. We simu-
late recommended menus that have either one or two out of the three
original alternatives. The hit rate is defined as the fraction of in-
dividuals who choose an alternative that is included in the re-
commended menu. As shown in Table 7, the offline-online procedure
can also approximate the full offline procedure in terms of hit rate, and
the observed effect of personalization is substantial. (In this table, the
online procedure using menus 6–8 achieves the highest hit rate. We
would expect the full offline procedure to perform better, but predic-
tions are based on the testing data; the sample level coefficients ob-
tained from the offline estimation with the first 5 menus might fit the
test data better than those obtained from the full estimation).

Table 7 indicates that the personalized double mixture model out-
performs the content-based recommendation in all cases (by a margin
of 1–2%), even when the online procedure is used. In addition, it is
substantially better than the non-personalized flat logit and double
mixture models.

6. Discussion

6.1. Model estimation

In this section, we discuss practical issues related to the effect of
priors, identifiability, and applications in recommender systems.

6.1.1. Effect of priors
The basic HB procedure utilizes the Inverse Wishart (IW) prior,

which has some undesirable properties, and thus can lead to biased
estimates of standard deviations [4]. Particularly, this prior tends to
inflate standard errors if their true values are small since it has a low
density near zero. Although this issue did not impose any problems in
our Monte-Carlo examples (because the standard errors are sub-
stantially distinguishable from zero), other priors can be used to avoid
these biases such as the Hierarchical Inverse Wishart (HIW), Scaled
Inverse Wishart (SIW), and Separation Strategy (or BMM) [34]. It
should also be noted that the effect of priors decreases with increasing
the sample size. With sufficient data, and with the “infinitely” diffuse
priors, the posterior distribution is completely determined by the data,
and therefore replicates the estimates obtained by maximum simulated
likelihood.

6.1.2. Identifiability of individual-level preferences and accounting for
uncertainty

The model with inter- and intra-consumer heterogeneity is only
identifiable if multiple choice situations from each individual are

available. In addition, with few choice observations from each in-
dividual, the model suffers from “shrinkage”, whereby individual-level
preferences are shrunk towards population means. HB is defined as a
“data borrowing” technique that stabilizes individual-level preferences
for each individual using information not only from his/her past
choices, but also from other individuals within the same data set [26].

While Allenby and Rossi [2] state that this procedure allows us to
estimate the distributions of the population level parameters (μ and Ωb)
and yields exact finite-sample estimates of the posterior distribution of
individual-level parameters, Greene [15] argues that these estimates
are only “exact” for the assumed priors and the data used, and up to
simulation variance. To account for uncertainty in individual-level es-
timates, Allenby and Rossi [3] indicate that these estimates are not
precisely estimated, and the use of point-estimates leads to over-con-
fident predictions of effect-sizes. To avoid this over-confidence, Allenby
and Rossi [3] suggest using all the posterior draws to make predictions
instead of the point estimates (which is applied in our results in Sections
4 and 5).

Despite the fact that individual-level preferences are not accurately
estimated, the results show that we achieve significantly better pre-
dictions compared to those without any personalization. These pre-
ferences are “learnt” with more choices, which makes this procedure
suitable for application in recommender systems.

Alternatively, the posterior distributions of the individual- and
menu-specific parameters can be used in Multi-armed bandit methods
such as Thompson sampling and Upper Confidence Bounds as described
in Teo et al. [35] and Song [31]. For example, Thompson sampling uses
individual draws from the posterior distributions. A distribution with
large variance indicates high uncertainty in the estimated parameter.
Therefore, attributes with uncertain parameter distributions become
more likely to be recommended, which allows for learning these dis-
tributions more efficiently.

6.2. Application in recommender systems

6.2.1. Sample size and scalability
The sample size considered in our Monte-Carlo application is

10,000, which is sufficient for demonstrating the methodology for es-
timating and updating preferences. However, in app-based systems, the
number of users can be potentially greater than tens of thousands. The
five-step Gibbs sampler scales well with increasing sample size, as the
estimates become closer to their true values and the required number of
burn-in iterations decreases. Since the offline procedure is only per-
formed periodically, long computational times can be tolerated.
Individual preferences, on the other hand, are updated after each choice
using the online procedure which can be performed in a few seconds to
minutes, and can even be implemented on mobile devices.

6.2.2. Application to new users
The online procedure can be applied to new users with known

choices with estimates of μ, Ωb and Ωw obtained from the offline pro-
cedure. For instance, these users may have joined the system and made
choices after the last offline update. On the other hand, the random
coefficients procedure described in Section 4.2 can be applied to

Table 7
Prediction results with the full offline, partial offline, and offline-online procedures.

Content-based (most chosen) Flat logit Double mixture Double mixture - personalized

Menu size 1 2 1 2 1 2 1 2

Full offline (1–8) 0.763 0.954 0.636 0.910 0.609 0.914 0.770 0.977
Partial offline (1–2) 0.713 0.912 0.588 0.910 0.608 0.912 0.725 0.941
Partial offline (1–5) 0.745 0.947 0.626 0.911 0.609 0.912 0.757 0.968
Online (3–8) – – – – – – 0.767 0.952
Online (6–8) – – – – – – 0.777 0.975
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individuals with no previous choice history, and thus, these users will
be first presented with non-personalized menus, i.e., population-level
parameters will be used for menu optimization.

6.2.3. Data collection and endogeneity
In applications to recommender systems, the estimated models must

account for endogeneity; the choice set presented to the user in each
menu is based on this user's preferences, which are estimated based on
his/her previous choices. Extensive research has been done on en-
dogeneity corrections in discrete choice models, most of which falls into
two categories: the BLP method [8], and the control-function method
[17,18].

Endogeneity is not a concern in the models presented in this paper
(since all the attributes used in the estimation of preferences were
generated exogenously). In addition, Danaf et al. [13] show that en-
dogeneity bias in recommender systems is ignorable if all the relevant
data are used in estimation. This can be achieved by initializing the
system with exogenous recommendations, and including all the avail-
able data in subsequent offline estimations.

7. Conclusions

This paper presented a methodology for estimating and updating
consumer preferences online in the context of app-based recommender
systems. We proposed an offline estimator, which estimates and up-
dates individual and population level parameters periodically using a
five-step Gibbs sampling procedure, and a real-time online estimator,
which updates individual-specific parameters in real-time as more
choices are made and assumes that population level parameters are
fixed until the next offline estimation.

The proposed online estimator enables the use of discrete choice
models in online decision support systems because it is (1) computa-
tionally efficient, (2) empirically accurate, and (3) theoretically justi-
fied. It is computationally efficient because it uses the data of the in-
dividual making the choice only, without the need to use data from
other users. It is empirically accurate as it can achieve the same level of
prediction accuracy as the offline estimator (which is computationally
expensive and infeasible in real-time) as we have shown using real and
Monte Carlo data. Finally, it is theoretically justified since it is
equivalent to calibrating the model at the individual level, but with
good priors representing the distribution of preferences in the popula-
tion.

Our methodology subsumes the utility-based advantages of discrete
choice models and the personalization capabilities of standard re-
commendation techniques by making use of all the available data in-
cluding user-specific characteristics and preferences, alternative-spe-
cific attributes, and contextual variables. In our formulation of the
utility equations, the estimated distributions can be interpreted as the
individual's “willingness-to-pay” for different features, which can be
used in pricing, designing, and recommending new alternatives. In
addition, our models are able to account for complex patterns of pre-
ference heterogeneity, namely intra-consumer heterogeneity which re-
presents variations in preferences across different choices of the same
individual. Therefore, we avoid the unrealistic assumption that pre-
ferences are stable over time. This has also been shown to improve the
accuracy of recommendations and predictions [7,33].

Several limitations arise in the application of our proposed metho-
dology. The Monte-Carlo results indicate that sample level parameters
(μ, Ωb,and Ωw) are recovered using the five-step Gibbs sampler.
However, as in most Hierarchical models, individual- and menu-specific
parameters might not be estimated precisely due to shrinkage [25].
These preferences are “learnt” gradually from repeated choices.
Nevertheless, using these preferences results in substantially better
predictions compared to using an “average individual” (or uncondi-
tional distributions) even with a few number of choice situations.

The results presented in this paper are static and mimic SP

experiments. Consumer behavior may differ significantly between SP
experiments and app-based choices. For instance, the time intervals
between successive choices may vary considerably between the app-
based systems and SP experiments.

Finally, there is a tradeoff between the model complexity (which
results in high computational times) and the accuracy of predictions
and recommendations. The complexity is determined by the utility
equations which are specified by the researcher. The offline estimation
results can be used to identify the significant predictors of choices, and
adjust the utility equations accordingly. In addition, the model struc-
ture can be simplified by accounting for inter-consumer heterogeneity
only (if intra-consumer heterogeneity does not appear to be significant).
This would reduce the running time of the online procedure from a few
seconds to less than 1 s.

This framework is implemented in the app-based travel adviser
Tripod (Sustainable Travel Incentives with Prediction, Optimization
and Personalization) [32,33] which incentivizes travelers to shift to-
wards more sustainable alternatives (e.g. changing mode, route, or
departure time choice behavior). Once more data from Tripod becomes
available, the proposed methodology will be further validated, espe-
cially that users will be presented with real-life situations rather than SP
experiments, and will have longer time intervals as well as contextual
differences between successive choices, which allows for a higher level
of intra-consumer heterogeneity. In addition, ongoing research is fo-
cused on modeling extensions to allow for flexible mixing distributions
of inter- and intra-consumer heterogeneity, and incorporating socio-
demographic and contextual information in order to partially explain
inter- and intra-consumer heterogeneity respectively.
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